1
|
Liu X, Shao Y, Li Y, Chen Z, Shi T, Tong Q, Zou X, Ju L, Pan J, Zhuang R, Pan X. Extensive Review of Nanomedicine Strategies Targeting the Tumor Microenvironment in PDAC. Int J Nanomedicine 2025; 20:3379-3406. [PMID: 40125427 PMCID: PMC11927507 DOI: 10.2147/ijn.s504503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world, mainly because of its powerful pro-connective tissue proliferation matrix and immunosuppressive tumor microenvironment (TME), which promote tumor progression and metastasis. In addition, the extracellular matrix leads to vascular collapse, increased interstitial fluid pressure, and obstruction of lymphatic return, thereby hindering effective drug delivery, deep penetration, and immune cell infiltration. Therefore, reshaping the TME to enhance tumor perfusion, increase deep drug penetration, and reverse immune suppression has become a key therapeutic strategy. Traditional therapies for PDAC, including surgery, radiation, and chemotherapy, face significant limitations. Surgery is challenging due to tumor location and growth, while chemotherapy and radiation are hindered by the dense extracellular matrix and immunosuppressive TME. In recent years, the advancement of nanotechnology has provided new opportunities to improve drug efficacy. Nanoscale drug delivery systems (NDDSs) provide several advantages, including improved drug stability in vivo, enhanced tumor penetration, and reduced systemic toxicity. However, the clinical translation of nanotechnology in PDAC therapy faces several challenges. These include the need for precise targeting and control over drug release, potential immune responses to the nanocarriers, and the scalability and cost-effectiveness of production. This article provides an overview of the latest nanobased methods for achieving better therapeutic outcomes and overcoming drug resistance. We pay special attention to TME-targeted therapy in the context of PDAC, discuss the advantages and limitations of current strategies, and emphasize promising new developments. By emphasizing the enormous potential of NDDSs in improving the treatment outcomes of patients with PDAC, while critically discussing the limitations of traditional therapies and the challenges faced by nanotechnology in achieving clinical breakthroughs, our review paves the way for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Xing Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, People’s Republic of China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Yunjiang Li
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Zuhua Chen
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Tingting Shi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Qiao Tong
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xi Zou
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Liping Ju
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Jinming Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| |
Collapse
|
2
|
Noh KM, Jangid AK, Park J, Kim S, Kim K. Membrane-immobilized gemcitabine for cancer-targetable NK cell surface engineering. J Mater Chem B 2024; 12:12087-12102. [PMID: 39465499 DOI: 10.1039/d4tb01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although natural killer (NK) cell-based adoptive cell transfer (ACT) has shown promise in cancer immunotherapy, its efficacy against solid tumors is limited in the immunosuppressive tumor microenvironment (TME). Combinatorial therapies involving chemotherapeutic drugs such as gemcitabine (Gem) and NK cells have been developed to modulate the TME; however, their clinical application is constrained by low drug delivery efficiency and significant off-target toxicity. In this study, we developed cell membrane-immobilized Gem conjugates (i.e., lipid-Gem conjugates), designed to anchor seamlessly onto NK cell surfaces. Our modular-designed ex vivo cell surface engineeringmaterials comprise a lipid anchor for membrane immobilization, poly(ethylene glycol) to inhibit endocytosis, a disulfide bond as cleavable linker by glutathione (GSH) released during cancer cell lysis, and Gem for targeted sensitization. We demonstrated that the intrinsic properties of NK cells, such as proliferation and surface ligand availability, were preserved despite coating with lipid-Gem conjugates. Moreover, delivery of Gem prodrugs by lipid-Gem coated NK (GCNK) cells was shown to enhance antitumor efficacy against pancreatic cancer cells (PANC-1) through the following mechanisms: (1) NK cells recognized and attacked cancer cells, (2) intracellular GSH was leaked out from the lysed cancer cells, enabling cleavage of disulfide bond, (3) released Gem from the GCNK cells delivered to the target cells, (4) Gem upregulated MHC class I-related chain A and B on cancer cells, and (5) thereby activating NK cells led to enhance antitumor efficacy. The simultaneous co-delivery of membrane-immobilized Gem with NK cells could potentially facilitate both immune synapse-mediated cancer recognition and chemotherapeutic effects, offering a promising approach to enhance the anticancer efficacy of conventional ACTs.
Collapse
Affiliation(s)
- Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Jaewon Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
3
|
Sultanova TR, Mukhlynina EA, Danilova IG. Morphofunctional Characteristics of Primary Culture of Rat Pancreatic Stellate Cells in the Dynamics of Short-Term Culture. CELL AND TISSUE BIOLOGY 2024; 18:528-534. [DOI: 10.1134/s1990519x24700494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 01/03/2025]
|
4
|
Zourelidis A, Trojanowicz B, Sunami Y, Hause G, Vieweg D, Kleeff J. Distance-depending transcriptome changes of pancreatic stellate cells in paracrine pancreatic ductal adenocarcinoma co-culture models. Sci Rep 2024; 14:18030. [PMID: 39098880 PMCID: PMC11298529 DOI: 10.1038/s41598-024-68148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Pancreatic stellate cells (PSC) are one source of cancer-associated fibroblasts (CAF) and play, therefore, an essential role in pancreatic ductal adenocarcinoma (PDA). Paracrine signalling between PDA cells and CAF has been widely studied, yet external influences on paracrine crosstalk are poorly understood. This study aimed to gain a deeper insight into the communication of PSC and cancer cells under different co-culture conditions via analysis of PSC gene expression profiles. Two contactless co-culture models with tumor cells from the p48-Cre; lox-stop-lox-KrasG12D/+; lox-stop-lox-Trp53R172H/+ mouse model (KPC) and murine PSC separated through a microporous membrane and grown in different compartments (standard co-culture) or on different sides of the same membrane (inverse co-culture), were established. RNA-Sequencing analysis of PSC mRNA was performed 24 h and 72 h after co-culture with KPC cells. For selected genes, results were confirmed by quantitative RT-PCR and immunocytochemistry. Standard co-culture displayed 19 differentially expressed genes (DEG) at 24 h and 52 DEG at 72 h. In inverse co-culture, 800 DEG at 24 h and 2213 DEG at 72 h were enriched. PSC showed great heterogeneity in their gene expression profiles; however, mutually regulated genes of both co-cultures, such as VCAN and CHST11, could be identified. VCAN-protein-protein interaction-network analysis revealed several shared genes between co-culture models, such as SDC4 and FN1. In conclusion, PSC show a varying susceptibility to cancer cell signals depending on the co-culture method, with intensified transcriptome changes with closer proximity.
Collapse
Affiliation(s)
- Anais Zourelidis
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - David Vieweg
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Budde I, Schlichting A, Ing D, Schimmelpfennig S, Kuntze A, Fels B, Romac JMJ, Swain SM, Liddle RA, Stevens A, Schwab A, Pethő Z. Piezo1-induced durotaxis of pancreatic stellate cells depends on TRPC1 and TRPV4 channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572956. [PMID: 38187663 PMCID: PMC10769407 DOI: 10.1101/2023.12.22.572956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness. The molecular sensors behind durotaxis are still unclear. To investigate the role of mechanosensitive ion channels in PSC durotaxis, we established a two-dimensional stiffness gradient mimicking PDAC. Using pharmacological and genetic methods, we investigated the role of the ion channels Piezo1, TRPC1, and TRPV4 in PSC durotaxis. We found that PSC migration towards a stiffer substrate is diminished by altering Piezo1 activity. Moreover, disrupting TRPC1 along with TRPV4 abolishes PSC durotaxis even when Piezo1 is functional. Hence, PSC durotaxis is optimal with an intermediary level of mechanosensitive channel activity, which we simulated using a numerically discretized mathematical model. Our findings suggest that mechanosensitive ion channels, particularly Piezo1, detect the mechanical microenvironment to guide PSC migration.
Collapse
Affiliation(s)
- Ilka Budde
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - André Schlichting
- Institute for Analysis and Numerics, University of Münster, Einsteinstr. 62, 48149, Germany
| | - David Ing
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | | | - Anna Kuntze
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
- Gerhard-Domagk-Institute of Pathology, University of Münster; Münster, Germany
| | - Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
- Institute of Physiology, University of Lübeck; Lübeck, Germany
| | - Joelle M-J Romac
- Department of Medicine, Duke University, Durham, North Carolina, 27708, USA
| | - Sandip M Swain
- Department of Medicine, Duke University, Durham, North Carolina, 27708, USA
| | - Rodger A Liddle
- Department of Medicine, Duke University, Durham, North Carolina, 27708, USA
| | - Angela Stevens
- Institute for Analysis and Numerics, University of Münster, Einsteinstr. 62, 48149, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| |
Collapse
|
6
|
Fujita N, Ushijima Y, Itoyama M, Okamoto D, Ishimatsu K, Wada N, Takao S, Murayama R, Fujimori N, Nakata K, Nakamura M, Yamamoto T, Oda Y, Ishigami K. Extracellular volume fraction determined by dual-layer spectral detector CT: Possible role in predicting the efficacy of preoperative neoadjuvant chemotherapy in pancreatic ductal adenocarcinoma. Eur J Radiol 2023; 162:110756. [PMID: 36907069 DOI: 10.1016/j.ejrad.2023.110756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE To clarify the relationship between extracellular volume (ECV) measured by dual-energy CT (DECT) and efficacy of preoperative neoadjuvant chemotherapy (NAC) in patients with pancreatic ductal adenocarcinoma (PDAC), as compared with single-energy CT (SECT). METHODS We enrolled 67 patients with PDAC who underwent dynamic contrast-enhanced CT with a dual-energy CT system prior to NAC. Attenuation values were measured on unenhanced and the equilibrium-phase 120-kVp equivalent CT images for PDAC and the aorta. ΔHU-tumor, ΔHU-tumor/ΔHU-aorta, and SECT-ECV were calculated. Iodine densities of the tumor and aorta were measured in the equilibrium phase, and DECT-ECV of the tumor was calculated. Response to NAC was evaluated and the correlation between imaging parameters and response to NAC was statistically assessed. RESULTS Tumor DECT-ECVs were significantly lower in the response group (n = 7) than in the non-response group (n = 60), with most significant difference (p = 0.0104). DECT-ECV showed highest diagnostic value with an Az value of 0.798. When using the optimal cut off value of DECT-ECV (<26.0 %), sensitivity, specificity, accuracy, positive predictive value, and negative value for predicting response group were 71.4 %, 85.0 %, 83.6 %, 35.7 % and 96.2 %, respectively. CONCLUSION PDAC with lower DECT-ECV can potentially show better response to NAC. DECT-ECV might be a useful biomarker for predicting response to NAC in patients with PDAC.
Collapse
Affiliation(s)
- Nobuhiro Fujita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasuhiro Ushijima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahiro Itoyama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Okamoto
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keisuke Ishimatsu
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriaki Wada
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiichiro Takao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Murayama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Hosen SMZ, Uddin MN, Xu Z, Buckley BJ, Perera C, Pang TCY, Mekapogu AR, Moni MA, Notta F, Gallinger S, Pirola R, Wilson J, Ranson M, Goldstein D, Apte M. Metastatic phenotype and immunosuppressive tumour microenvironment in pancreatic ductal adenocarcinoma: Key role of the urokinase plasminogen activator (PLAU). Front Immunol 2022; 13:1060957. [PMID: 36591282 PMCID: PMC9794594 DOI: 10.3389/fimmu.2022.1060957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Previous studies have revealed the role of dysregulated urokinase plasminogen activator (encoded by PLAU) expression and activity in several pathways associated with cancer progression. However, systematic investigation into the association of PLAU expression with factors that modulate PDAC (pancreatic ductal adenocarcinoma) progression is lacking, such as those affecting stromal (pancreatic stellate cell, PSC)-cancer cell interactions, tumour immunity, PDAC subtypes and clinical outcomes from potential PLAU inhibition. Methods This study used an integrated bioinformatics approach to identify prognostic markers correlated with PLAU expression using different transcriptomics, proteomics, and clinical data sets. We then determined the association of dysregulated PLAU and correlated signatures with oncogenic pathways, metastatic phenotypes, stroma, immunosuppressive tumour microenvironment (TME) and clinical outcome. Finally, using an in vivo orthotopic model of pancreatic cancer, we confirmed the predicted effect of inhibiting PLAU on tumour growth and metastasis. Results Our analyses revealed that PLAU upregulation is not only associated with numerous other prognostic markers but also associated with the activation of various oncogenic signalling pathways, aggressive phenotypes relevant to PDAC growth and metastasis, such as proliferation, epithelial-mesenchymal transition (EMT), stemness, hypoxia, extracellular cell matrix (ECM) degradation, upregulation of stromal signatures, and immune suppression in the tumour microenvironment (TME). Moreover, the upregulation of PLAU was directly connected with signalling pathways known to mediate PSC-cancer cell interactions. Furthermore, PLAU upregulation was associated with the aggressive basal/squamous phenotype of PDAC and significantly reduced overall survival, indicating that this subset of patients may benefit from therapeutic interventions to inhibit PLAU activity. Our studies with a clinically relevant orthotopic pancreatic model showed that even short-term PLAU inhibition is sufficient to significantly halt tumour growth and, importantly, eliminate visible metastasis. Conclusion Elevated PLAU correlates with increased aggressive phenotypes, stromal score, and immune suppression in PDAC. PLAU upregulation is also closely associated with the basal subtype type of PDAC; patients with this subtype are at high risk of mortality from the disease and may benefit from therapeutic targeting of PLAU.
Collapse
Affiliation(s)
- S. M. Zahid Hosen
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Zhihong Xu
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Benjamin J. Buckley
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Chamini Perera
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Tony C. Y. Pang
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The University of Sydney, Sydney, NSW, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ron Pirola
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy Wilson
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Marie Ranson
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia,Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Minoti Apte
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia,*Correspondence: Minoti Apte,
| |
Collapse
|
8
|
Gola M, Sejda A, Godlewski J, Cieślak M, Starzyńska A. Neural Component of the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:5246. [PMID: 36358664 PMCID: PMC9657005 DOI: 10.3390/cancers14215246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive primary malignancy of the pancreas, with a dismal prognosis and limited treatment options. It possesses a unique tumor microenvironment (TME), generating dense stroma with complex elements cross-talking with each other to promote tumor growth and progression. Diversified neural components makes for not having a full understanding of their influence on its aggressive behavior. The aim of the study was to summarize and integrate the role of nerves in the pancreatic tumor microenvironment. The role of autonomic nerve fibers on PDAC development has been recently studied, which resulted in considering the targeting of sympathetic and parasympathetic pathways as a novel treatment opportunity. Perineural invasion (PNI) is commonly found in PDAC. As the severity of the PNI correlates with a poorer prognosis, new quantification of this phenomenon, distinguishing between perineural and endoneural invasion, could feature in routine pathological examination. The concepts of cancer-related neurogenesis and axonogenesis in PDAC are understudied; so, further research in this field may be warranted. A better understanding of the interdependence between the neural component and cancer cells in the PDAC microenvironment could bring new nerve-oriented treatment options into clinical practice and improve outcomes in patients with pancreatic cancer. In this review, we aim to summarize and integrate the current state of knowledge and future challenges concerning nerve-cancer interactions in PDAC.
Collapse
Affiliation(s)
- Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology and Forensic Medicine, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 18 Żołnierska Street, 10-561 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Małgorzata Cieślak
- Department of Pathomorphology and Forensic Medicine, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 18 Żołnierska Street, 10-561 Olsztyn, Poland
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland
| |
Collapse
|
9
|
Wang D, Li Y, Ge H, Ghadban T, Reeh M, Güngör C. The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers (Basel) 2022; 14:cancers14163998. [PMID: 36010993 PMCID: PMC9406497 DOI: 10.3390/cancers14163998] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rich in dense fibrotic stroma that are composed of extracellular matrix (ECM) proteins. A disruption of the balance between ECM synthesis and secretion and the altered expression of matrix remodeling enzymes lead to abnormal ECM dynamics in PDAC. This pathological ECM promotes cancer growth, survival, invasion, and alters the behavior of fibroblasts and immune cells leading to metastasis formation and chemotherapy resistance, which contribute to the high lethality of PDAC. Additionally, recent evidence highlights that ECM, as a major structural component of the tumor microenvironment, is a highly dynamic structure in which ECM proteins establish a physical and biochemical niche for cancer stem cells (CSCs). CSCs are characterized by self-renewal, tumor initiation, and resistance to chemotherapeutics. In this review, we will discuss the effects of the ECM on tumor biological behavior and its molecular impact on the fundamental signaling pathways in PDAC. We will also provide an overview of how the different ECM components are able to modulate CSCs properties and finally discuss the current and ongoing therapeutic strategies targeting the ECM. Given the many challenges facing current targeted therapies for PDAC, a better understanding of molecular events involving the interplay of ECM and CSC will be key in identifying more effective therapeutic strategies to eliminate CSCs and ultimately to improve survival in patients that are suffering from this deadly disease.
Collapse
|
10
|
Qiang Z, Dai K, He Y, Yang Z, Tao L, Zhang H, Yu H. The prognostic value of stromal tumor-infiltrating lymphocytes in intrahepatic cholangiocarcinoma: a population-based study. Scand J Gastroenterol 2022; 57:965-971. [PMID: 35522155 DOI: 10.1080/00365521.2022.2055972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We assess the predictive value impacted by tumor-infiltrating lymphocytes (TILs) for overall survival (OS) and progression-free survival (PFS) in patients with intrahepatic cholangiocarcinoma (ICC) undergoing complete resection. METHODS Sixty-eight patients with resectable ICC were included in this study. We studied stromal TIL density and scored it by staining sections from surgically resected ICC patients with hematoxylin and eosin (HE). The clinical data and prognosis of patients with ICC were obtained by searching clinical and follow-up records. RESULTS A stromal TIL negative status was a predictor of poor OS (HR = 0.41, 95% CI 0.20-0.83, p = .01) and poor PFS (HR = 0.47, 95% CI 0.23-0.97, p = .04) independently. Low stromal TIL density was associated with high levels of CA125 (p = .03) and CA19-9 (p < .01). The high level of CA19-9 (p = .05), high differentiation (p = .02), a large diameter (p = .05), a positive bile duct/vascular cancer embolus (p = .03) and positive satellite nodules (p = .02) were tendencies to develop tumors for patients with a negative status of stromal TIL. CONCLUSION Our data prompt for the prediction of the PFS and OS of patients with ICC after complete resection, stromal TILs play an important role.
Collapse
Affiliation(s)
- Zeyuan Qiang
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Kunfu Dai
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenwei Yang
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lianyuan Tao
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huifeng Zhang
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Self-Assembled Peptide Habitats to Model Tumor Metastasis. Gels 2022; 8:gels8060332. [PMID: 35735676 PMCID: PMC9223161 DOI: 10.3390/gels8060332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
Metastatic tumours are complex ecosystems; a community of multiple cell types, including cancerous cells, fibroblasts, and immune cells that exist within a supportive and specific microenvironment. The interplay of these cells, together with tissue specific chemical, structural and temporal signals within a three-dimensional (3D) habitat, direct tumour cell behavior, a subtlety that can be easily lost in 2D tissue culture. Here, we investigate a significantly improved tool, consisting of a novel matrix of functionally programmed peptide sequences, self-assembled into a scaffold to enable the growth and the migration of multicellular lung tumour spheroids, as proof-of-concept. This 3D functional model aims to mimic the biological, chemical, and contextual cues of an in vivo tumor more closely than a typically used, unstructured hydrogel, allowing spatial and temporal activity modelling. This approach shows promise as a cancer model, enhancing current understandings of how tumours progress and spread over time within their microenvironment.
Collapse
|
12
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
13
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
14
|
Carvalho TMA, Di Molfetta D, Greco MR, Koltai T, Alfarouk KO, Reshkin SJ, Cardone RA. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers (Basel) 2021; 13:6135. [PMID: 34885243 PMCID: PMC8657427 DOI: 10.3390/cancers13236135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the median overall survival of PDAC patients rarely exceeds 1 year and has an overall 5-year survival rate of about 9%. These numbers are anticipated to worsen in the future due to the lack of understanding of the factors involved in its strong chemoresistance. Chemotherapy remains the only treatment option for most PDAC patients; however, the available therapeutic strategies are insufficient. The factors involved in chemoresistance include the development of a desmoplastic stroma which reprograms cellular metabolism, and both contribute to an impaired response to therapy. PDAC stroma is composed of immune cells, endothelial cells, and cancer-associated fibroblasts embedded in a prominent, dense extracellular matrix associated with areas of hypoxia and acidic extracellular pH. While multiple gene mutations are involved in PDAC initiation, this desmoplastic stroma plays an important role in driving progression, metastasis, and chemoresistance. Elucidating the mechanisms underlying PDAC resistance are a prerequisite for designing novel approaches to increase patient survival. In this review, we provide an overview of the stromal features and how they contribute to the chemoresistance in PDAC treatment. By highlighting new paradigms in the role of the stromal compartment in PDAC therapy, we hope to stimulate new concepts aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | | | - Khalid O. Alfarouk
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah 42316, Saudi Arabia;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| |
Collapse
|
15
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
16
|
Polani F, Grierson PM, Lim KH. Stroma-targeting strategies in pancreatic cancer: Past lessons, challenges and prospects. World J Gastroenterol 2021; 27:2105-2121. [PMID: 34025067 PMCID: PMC8117738 DOI: 10.3748/wjg.v27.i18.2105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to emerge as the second leading cause of cancer-related death after 2030. Extreme treatment resistance is perhaps the most significant factor that underlies the poor prognosis of PDAC. To date, combination chemotherapy remains the mainstay of treatment for most PDAC patients. Compared to other cancer types, treatment response of PDAC tumors to similar chemotherapy regimens is clearly much lower and shorter-lived. Aside from typically harboring genetic alterations that to date remain un-druggable and are drivers of treatment resistance, PDAC tumors are uniquely characterized by a densely fibrotic stroma that has well-established roles in promoting cancer progression and treatment resistance. However, emerging evidence also suggests that indiscriminate targeting and near complete depletion of stroma may promote PDAC aggressiveness and lead to detrimental outcomes. These conflicting results undoubtedly warrant the need for a more in-depth understanding of the heterogeneity of tumor stroma in order to develop modulatory strategies in favor of tumor suppression. The advent of novel techniques including single cell RNA sequencing and multiplex immunohistochemistry have further illuminated the complex heterogeneity of tumor cells, stromal fibroblasts, and immune cells. This new knowledge is instrumental for development of more refined therapeutic strategies that can ultimately defeat this disease. Here, we provide a concise review on lessons learned from past stroma-targeting strategies, new challenges revealed from recent preclinical and clinical studies, as well as new prospects in the treatment of PDAC.
Collapse
Affiliation(s)
- Faran Polani
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| |
Collapse
|
17
|
Prediction of Tumor Cellularity in Resectable PDAC from Preoperative Computed Tomography Imaging. Cancers (Basel) 2021; 13:cancers13092069. [PMID: 33922981 PMCID: PMC8123300 DOI: 10.3390/cancers13092069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease. However, variations in tumor biology influence individual patient outcomes greatly. We previously showed a strong association between magnetic resonance imaging-based tumor cell estimates and patient survival. In this study we aimed to transfer this finding to more broadly applied computed tomography (CT) imaging for non-invasive risk stratification. We correlated in vivo CT imaging with histopathological analyses and could show a strong association between regional Hounsfield Units (HU) and tumor cellularity. In conclusion, our study suggests CT-based tumor cell estimates as a widely applicable way of non-invasive tumor cellularity characterization in PDAC. Abstract Background: PDAC remains a tumor entity with poor prognosis and a 5-year survival rate below 10%. Recent research has revealed invasive biomarkers, such as distinct molecular subtypes, predictive for therapy response and patient survival. Non-invasive prediction of individual patient outcome however remains an unresolved task. Methods: Discrete cellularity regions of PDAC resection specimen (n = 43) were analyzed by routine histopathological work up. Regional tumor cellularity and CT-derived Hounsfield Units (HU, n = 66) as well as iodine concentrations were regionally matched. One-way ANOVA and pairwise t-tests were performed to assess the relationship between different cellularity level in conventional, virtual monoenergetic 40 keV (monoE 40 keV) and iodine map reconstructions. Results: A statistically significant negative correlation between regional tumor cellularity in histopathology and CT-derived HU from corresponding image regions was identified. Radiological differentiation was best possible in monoE 40 keV CT images. However, HU values differed significantly in conventional reconstructions as well, indicating the possibility of a broad clinical application of this finding. Conclusion: In this study we establish a novel method for CT-based prediction of tumor cellularity for in-vivo tumor characterization in PDAC patients.
Collapse
|
18
|
Liot S, Balas J, Aubert A, Prigent L, Mercier-Gouy P, Verrier B, Bertolino P, Hennino A, Valcourt U, Lambert E. Stroma Involvement in Pancreatic Ductal Adenocarcinoma: An Overview Focusing on Extracellular Matrix Proteins. Front Immunol 2021; 12:612271. [PMID: 33889150 PMCID: PMC8056076 DOI: 10.3389/fimmu.2021.612271] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide and is predicted to become second in 2030 in industrialized countries if no therapeutic progress is made. Among the different types of pancreatic cancers, Pancreatic Ductal Adenocarcinoma (PDAC) is by far the most represented one with an occurrence of more than 90%. This specific cancer is a devastating malignancy with an extremely poor prognosis, as shown by the 5-years survival rate of 2–9%, ranking firmly last amongst all cancer sites in terms of prognostic outcomes for patients. Pancreatic tumors progress with few specific symptoms and are thus at an advanced stage at diagnosis in most patients. This malignancy is characterized by an extremely dense stroma deposition around lesions, accompanied by tissue hypovascularization and a profound immune suppression. Altogether, these combined features make access to cancer cells almost impossible for conventional chemotherapeutics and new immunotherapeutic agents, thus contributing to the fatal outcomes of the disease. Initially ignored, the Tumor MicroEnvironment (TME) is now the subject of intensive research related to PDAC treatment and could contain new therapeutic targets. In this review, we will summarize the current state of knowledge in the field by focusing on TME composition to understand how this specific compartment could influence tumor progression and resistance to therapies. Attention will be paid to Tenascin-C, a matrix glycoprotein commonly upregulated during cancer that participates to PDAC progression and thus contributes to poor prognosis.
Collapse
Affiliation(s)
- Sophie Liot
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Jonathan Balas
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Alexandre Aubert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Laura Prigent
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Perrine Mercier-Gouy
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Philippe Bertolino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France
| | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France
| | - Ulrich Valcourt
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
19
|
Oliveira C, Calmeiro J, Carrascal MA, Falcão A, Gomes C, Miguel Neves B, Teresa Cruz M. Exosomes as new therapeutic vectors for pancreatic cancer treatment. Eur J Pharm Biopharm 2021; 161:4-14. [PMID: 33561524 DOI: 10.1016/j.ejpb.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers with a very short rate of survival and commonly without symptoms in its early stage. This absence of symptoms can lead to a late diagnosis associated with an advanced metastasis process, for which therapy is not effective. Although with extensive research in this field, the 5-year survival rate has not increased significantly. Notwithstanding, novel insights on risk factors, genetic mutations and molecular mechanisms pave the way for novel therapeutics that urge with a significant part of PC patients presenting resistance to chemotherapy treatments. Exosomes are presented as a promising strategy, working as delivery systems, since they can transport and release their cargoes after fusing with the membrane of pancreatic cells. Exosomes present advantages over liposomes, being less toxic and reaching higher levels in the bloodstream, working as molecule carriers that can inhibit oncogenes, activating tumor suppressor genes and inducing immune responses as well as controlling cell growth. This review intends to provide an overview about the scientific and clinical studies regarding the entire process, from isolation and purification of exosomes, to their design and transformation into anti-oncogenic drug delivering systems, particularly to target PC cells.
Collapse
Affiliation(s)
- Constança Oliveira
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Calmeiro
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Mylène A Carrascal
- Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal; Tecnimede Group, 2710-089 Sintra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, 300-504 Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
20
|
Garcia-Gil M, Turri B, Gabriele M, Pucci L, Agnarelli A, Lai M, Freer G, Pistello M, Vignali R, Batistoni R, Marracci S. Protopine/Gemcitabine Combination Induces Cytotoxic or Cytoprotective Effects in Cell Type-Specific and Dose-Dependent Manner on Human Cancer and Normal Cells. Pharmaceuticals (Basel) 2021; 14:ph14020090. [PMID: 33530428 PMCID: PMC7912662 DOI: 10.3390/ph14020090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The natural alkaloid protopine (PRO) exhibits pharmacological properties including anticancer activity. We investigated the effects of PRO, alone and in combination with the chemotherapeutic gemcitabine (GEM), on human tumor cell lines and non-tumor human dermal fibroblasts (HDFs). We found that treatments with different PRO/GEM combinations were cytotoxic or cytoprotective, depending on concentration and cell type. PRO/GEM decreased viability in pancreatic cancer MIA PaCa-2 and PANC-1 cells, while it rescued the GEM-induced viability decline in HDFs and in tumor MCF-7 cells. Moreover, PRO/GEM decreased G1, S and G2/M phases, concomitantly with an increase of subG1 phase in MIA PaCa-2 and PANC-1 cells. Differently, PRO/GEM restored the normal progression of the cell cycle, altered by GEM, and decreased cell death in HDFs. PRO alone increased mitochondrial reactive oxygen species (ROS) in MIA PaCa-2, PANC-1 cells and HDFs, while PRO/GEM increased both intracellular and mitochondrial ROS in the three cell lines. These results indicate that specific combinations of PRO/GEM may be used to induce cytotoxic effects in pancreatic tumor MIA PaCa-2 and PANC-1 cells, but have cytoprotective or no effects in HDFs.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Benedetta Turri
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Alessandro Agnarelli
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Giulia Freer
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Robert Vignali
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Renata Batistoni
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
- Correspondence:
| |
Collapse
|
21
|
Martinez-Useros J, Martin-Galan M, Garcia-Foncillas J. The Match between Molecular Subtypes, Histology and Microenvironment of Pancreatic Cancer and Its Relevance for Chemoresistance. Cancers (Basel) 2021; 13:322. [PMID: 33477288 PMCID: PMC7829908 DOI: 10.3390/cancers13020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decade, several studies based on whole transcriptomic and genomic analyses of pancreatic tumors and their stroma have come to light to supplement histopathological stratification of pancreatic cancers with a molecular point-of-view. Three main molecular studies: Collisson et al. 2011, Moffitt et al. 2015 and Bailey et al. 2016 have found specific gene signatures, which identify different molecular subtypes of pancreatic cancer and provide a comprehensive stratification for both a personalized treatment or to identify potential druggable targets. However, the routine clinical management of pancreatic cancer does not consider a broad molecular analysis of each patient, due probably to the lack of target therapies for this tumor. Therefore, the current treatment decision is taken based on patients´ clinicopathological features and performance status. Histopathological evaluation of tumor samples could reveal many other attributes not only from tumor cells but also from their microenvironment specially about the presence of pancreatic stellate cells, regulatory T cells, tumor-associated macrophages, myeloid derived suppressor cells and extracellular matrix structure. In the present article, we revise the four molecular subtypes proposed by Bailey et al. and associate each subtype with other reported molecular subtypes. Moreover, we provide for each subtype a potential description of the tumor microenvironment that may influence treatment response according to the gene expression profile, the mutational landscape and their associated histology.
Collapse
|
22
|
Pande G, Rai M, Sharma S, Agarwal V. Indigenous primary culture protocols for human adult skin fibroblast, pancreatic stellate cells, and peritoneal fibroblasts. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_160_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
Vincent P, Bruza P, Palisoul SM, Gunn JR, Samkoe KS, Hoopes PJ, Hasan T, Pogue BW. Visualization and quantification of pancreatic tumor stroma in fresh tissue via ultraviolet surface excitation. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200312R. [PMID: 33423407 PMCID: PMC7850982 DOI: 10.1117/1.jbo.26.1.016002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 05/11/2023]
Abstract
SIGNIFICANCE The study has confirmed the feasibility of using ultraviolet (UV) excitation to visualize and quantify desmoplasia in fresh tumor tissue of pancreatic adenocarcinoma (PDAC) in an orthotopic xenograft mouse model, which provides a useful imaging platform to evaluate acute therapeutic responses. AIM Stromal network of collagen prominent in PDAC tumors is examined by imaging fresh tissue samples stained with histological dyes. Fluorescence signals are color-transferred to mimic Masson's trichrome staining. APPROACH Murine tumor samples were stained with Hoechst, eosin, and rhodamine B and excited at 275-nm. Fluorescence signals in the visible spectrum were captured by a CMOS color camera with high contrast and resolution at whole-tumor slice field of view. RESULTS Fluorescence imaging using UV excitation is capable of visualizing collagen deposition in PDAC tumors. Both fluorescence and histology data showed collagen content of up to 30%. The collagen modulation effect due to photodynamic priming treatment was observed showing 13% of collagen reduction. Necrosis area is visible and perfusion imaging using Texas Red dextran is feasible. CONCLUSIONS The study demonstrates collagen visualization in fresh PDAC tumor samples using UV excitation. This imaging platform also provides quantitative stromal information from fiber analysis and visibility of necrosis and perfusion, suitable for therapeutic response assessment of photodynamic therapy.
Collapse
Affiliation(s)
- Phuong Vincent
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Address all correspondence to Phuong Vincent,
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Scott M. Palisoul
- Dartmouth-Hitchock Pathology Shared Resource Lab, Lebanon, New Hampshire, United States
| | - Jason R. Gunn
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Kimberley S. Samkoe
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - P. Jack Hoopes
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Geisel School of Medicine, Department of Surgery, Hanover, New Hampshire, United States
| | - Tayyaba Hasan
- Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Geisel School of Medicine, Department of Surgery, Hanover, New Hampshire, United States
| |
Collapse
|
24
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Targeting HGF/c-MET Axis in Pancreatic Cancer. Int J Mol Sci 2020; 21:E9170. [PMID: 33271944 PMCID: PMC7730415 DOI: 10.3390/ijms21239170] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC/PC)) has been an aggressive disease that is associated with early metastases. It is characterized by dense and collagenous desmoplasia/stroma, predominantly produced by pancreatic stellate cells (PSCs). PSCs interact with cancer cells as well as other stromal cells, facilitating disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells and endothelial cells. The current review discusses the role of the MET/HGF axis in tumour progression and dissemination of pancreatic cancer. Therapeutic approaches that were developed targeting either the ligand (HGF) or the receptor (c-MET) have not been shown to translate well into clinical settings. We discuss a two-pronged approach of targeting both the components of this pathway to interrupt the stromal-tumour interactions, which may represent a potential therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
25
|
Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer 2020; 1875:188461. [PMID: 33157162 DOI: 10.1016/j.bbcan.2020.188461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a lethal disease with limited opportunity for resectable surgery as the first choice for cure due to its late diagnosis and early metastasis. The desmoplastic stroma and cellular genetic or epigenetic alterations of pancreatic cancer impose physical and biological barriers to effective therapies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Here, we review the current therapeutic options for pancreatic cancer, and underlying mechanisms and potential reversal of therapeutic resistance, a hallmark of this deadly disease.
Collapse
Affiliation(s)
- Sen Yu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chunyu Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ke-Ping Xie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Integrated bioinformatics analysis identified COL11A1 as an immune infiltrates correlated prognosticator in pancreatic adenocarcinoma. Int Immunopharmacol 2020; 90:106982. [PMID: 33129696 DOI: 10.1016/j.intimp.2020.106982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is the most common pancreatic cancer, with high mortality rate and limited treatment options. Tumor infiltrating cells and genes in microenvironment are emerging as pivotal players in PAAD progression and prognosis. In this study, we obtained genes expression data set GSE119794 of PAAD, which contains data from 10 tumor and 10 normal samples. A total of 262 differentially expressed genes (DEGs), including 169 up-regulated and 93 down-regulated genes, were obtained based on expression fold change and significance. Combining the pathway analysis of DEGs and GSEA analysis of all genes, four KEGG pathways were enriched. The 4 pathways include pancreatic secretion, protein digestion and absorption, fat digestion and absorption, and PPAR signaling pathways. Functional enrichment of Gene Ontology significantly enriched extracellular matrix, an important component in microenvironment. In the Protein-protein interaction (PPI) network, we screened out 3 hub genes of COL11A1, KRT19 and CXCL5 by CytoHubba. At last, the expression level, prognostic significance and correlation with tumor infiltrates were validated in TCGA database, with GEPIA and TIMER. The validation identified Collagen Type XI Alpha 1 Chain (COL11A1), an extracellular matrix structural constituent, as a hazardous prognosticator with significant correlation with macrophage, neutrophil and dendritic cells. In sum, we identified COL11A1 as an immune infiltrates correlated prognosticator in pancreatic adenocarcinoma.
Collapse
|
27
|
Verloy R, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12102782. [PMID: 32998311 PMCID: PMC7601057 DOI: 10.3390/cancers12102782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This review aims to highlight the potential of cold plasma, the fourth state of matter, as anti-cancer treatment for pancreatic cancer, and the importance of pancreatic stellate cells in the response to this treatment. Currently, a significant lack of basic research on cold plasma considering both pancreatic cancer and stellate cells exists. However, co-cultures of these populations can be advantageous, as they resemble the cell-to-cell interactions occurring in a tumor in response to therapy. Even more, these studies should be performed prior to clinical trials of cold plasma to avoid unforeseen responses to treatment. This review article provides a framework for future research of cold plasma therapies for pancreatic cancer, considering the critical role of pancreatic stellate cells in the disease and treatment outcome. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Collapse
Affiliation(s)
- Ruben Verloy
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
| |
Collapse
|
28
|
Honselmann KC, Finetti P, Birnbaum DJ, Monsalve CS, Wellner UF, Begg SKS, Nakagawa A, Hank T, Li A, Goldsworthy MA, Sharma H, Bertucci F, Birnbaum D, Tai E, Ligorio M, Ting DT, Schilling O, Biniossek ML, Bronsert P, Ferrone CR, Keck T, Mino-Kenudson M, Lillemoe KD, Warshaw AL, Fernández-Del Castillo C, Liss AS. Neoplastic-Stromal Cell Cross-talk Regulates Matrisome Expression in Pancreatic Cancer. Mol Cancer Res 2020; 18:1889-1902. [PMID: 32873625 DOI: 10.1158/1541-7786.mcr-20-0439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a highly desmoplastic reaction, warranting intense cancer-stroma communication. In this study, we interrogated the contribution of the BET family of chromatin adaptors to the cross-talk between PDAC cells and the tumor stroma. Short-term treatment of orthotopic xenograft tumors with CPI203, a small-molecule inhibitor of BET proteins, resulted in broad changes in the expression of genes encoding components of the extracellular matrix (matrisome) in both cancer and stromal cells. Remarkably, more than half of matrisome genes were expressed by cancer cells. In vitro cocultures of PDAC cells and cancer-associated fibroblasts (CAF) demonstrated that matrisome expression was regulated by BET-dependent cancer-CAF cross-talk. Disrupting this cross-talk in vivo resulted in diminished growth of orthotopic patient-derived xenograft tumors, reduced proliferation of cancer cells, and changes in collagen structure consistent with that of patients who experienced better survival. Examination of matrisome gene expression in publicly available data sets of 573 PDAC tumors identified a 65-gene signature that was able to distinguish long- and short-term PDAC survivors. Importantly, the expression of genes predictive of short-term survival was diminished in the cancer cells of orthotopic xenograft tumors of mice treated with CPI203. Taken together, these results demonstrate that inhibiting the activity BET proteins results in transcriptional and structural differences in the matrisome are associated with better patient survival. IMPLICATIONS: These studies highlight the biological relevance of the matrisome program in PDAC and suggest targeting of epigenetically driven tumor-stroma cross-talk as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Kim C Honselmann
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France
| | - David J Birnbaum
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France.,Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France
| | - Christian S Monsalve
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ulrich F Wellner
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sebastian K S Begg
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akifumi Nakagawa
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas Hank
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Annie Li
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mathew A Goldsworthy
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Himanshu Sharma
- Partners Healthcare Personalized Medicine Center, Cambridge, Massachusetts
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France
| | - Eric Tai
- MGH Cancer Research Center, Harvard Medical School, Boston, Massachusetts
| | - Matteo Ligorio
- MGH Cancer Research Center, Harvard Medical School, Boston, Massachusetts
| | - David T Ting
- MGH Cancer Research Center, Harvard Medical School, Boston, Massachusetts
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tobias Keck
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keith D Lillemoe
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew L Warshaw
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
29
|
Pham T, Banerjee B, Cromey B, Mehravar S, Skovan B, Chen H, Kieu K. Feasibility of multimodal multiphoton microscopy to facilitate surgical margin assessment in pancreatic cancer. APPLIED OPTICS 2020; 59:G1-G7. [PMID: 32749310 DOI: 10.1364/ao.391315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Pancreatic cancer is a common cancer with poor odds of survival for the patient, with surgical resection offering the only hope of cure. Current surgical practice is time-consuming and, due to time constraints, does not sample the whole cut surface sufficiently to check for remaining cancer. Although microscopy with hematoxylin and eosin (H&E) stain is the gold standard for microscopic evaluation, multiphoton microscopy (MPM) has emerged as an alternative tool for imaging tissue architecture and cellular morphology without labels. We explored the use of multimodal MPM for the label-free identification of normal and cancerous tissue of the pancreas in a mouse model by comparing the images to H&E microscopy. Our early studies indicate that MPM using second-harmonic generation, third-harmonic generation, and multiphoton excitation of endogenous fluorescent proteins can each contribute to the label-free analysis of the pancreatic surgical margin.
Collapse
|
30
|
Takehara M, Sato Y, Kimura T, Noda K, Miyamoto H, Fujino Y, Miyoshi J, Nakamura F, Wada H, Bando Y, Ikemoto T, Shimada M, Muguruma N, Takayama T. Cancer-associated adipocytes promote pancreatic cancer progression through SAA1 expression. Cancer Sci 2020; 111:2883-2894. [PMID: 32535957 PMCID: PMC7419047 DOI: 10.1111/cas.14527] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/02/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Although pancreatic cancer often invades peripancreatic adipose tissue, little information is known about cancer-adipocyte interaction. We first investigated the ability of adipocytes to de-differentiate to cancer-associated adipocytes (CAAs) by co-culturing with pancreatic cancer cells. We then examined the effects of CAA-conditioned medium (CAA-CM) on the malignant characteristics of cancer cells, the mechanism underlying those effects, and their clinical relevance in pancreatic cancer. When 3T3-L1 adipocytes were co-cultured with pancreatic cancer cells (PANC-1) using the Transwell system, adipocytes lost their lipid droplets and changed morphologically to fibroblast-like cells (CAA). Adipocyte-specific marker mRNA levels significantly decreased but those of fibroblast-specific markers appeared, characteristic findings of CAA, as revealed by real-time PCR. When PANC-1 cells were cultured with CAA-CM, significantly higher migration/invasion capability, chemoresistance, and epithelial-mesenchymal transition (EMT) properties were observed compared with control cells. To investigate the mechanism underlying these effects, we performed microarray analysis of PANC-1 cells cultured with CAA-CM and found a 78.5-fold higher expression of SAA1 compared with control cells. When the SAA1 gene in PANC-1 cells was knocked down with SAA1 siRNA, migration/invasion capability, chemoresistance, and EMT properties were significantly attenuated compared with control cells. Immunohistochemical analysis on human pancreatic cancer tissues revealed positive SAA1 expression in 46/61 (75.4%). Overall survival in the SAA1-positive group was significantly shorter than in the SAA1-negative group (P = .013). In conclusion, we demonstrated that pancreatic cancer cells induced de-differentiation in adipocytes toward CAA, and that CAA promoted malignant characteristics of pancreatic cancer via SAA1 expression, suggesting that SAA1 is a novel therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Masanori Takehara
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Yasushi Sato
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Tetsuo Kimura
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
- Clinic Green HouseKochiJapan
| | - Kazuyoshi Noda
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Yasuteru Fujino
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Jinsei Miyoshi
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Fumika Nakamura
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Hironori Wada
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Yoshimi Bando
- Division of PathologyTokushima University HospitalTokushima CityJapan
| | - Tetsuya Ikemoto
- Department of SurgeryInstitute of Health BiosciencesTokushima University Graduate SchoolThe University of TokushimaTokushima CityJapan
| | - Mitsuo Shimada
- Department of SurgeryInstitute of Health BiosciencesTokushima University Graduate SchoolThe University of TokushimaTokushima CityJapan
| | - Naoki Muguruma
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| | - Tetsuji Takayama
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
| |
Collapse
|
31
|
Bolm L, Zghurskyi P, Lapshyn H, Petrova E, Zemskov S, Vashist YK, Deichmann S, Honselmann KC, Bronsert P, Keck T, Wellner UF. Alignment of stroma fibers, microvessel density and immune cell populations determine overall survival in pancreatic cancer-An analysis of stromal morphology. PLoS One 2020; 15:e0234568. [PMID: 32658932 PMCID: PMC7357746 DOI: 10.1371/journal.pone.0234568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of this study was to define histo-morphological stroma characteristics by analyzing stromal components, and to evaluate their impact on local and systemic tumor spread and overall survival in pancreatic ductal adenocarcinoma (PDAC). Methods and materials Patients who underwent oncologic resections with curative intent for PDAC were identified from a prospectively maintained database. Histological specimens were re-evaluated for morphological stroma features as stromal fibers, fibroblast morphology, stroma matrix density, microvessel density and distribution of immune cell populations. Results A total of 108 patients were identified undergoing curative resection for PDAC in the period from 2011–2016. 33 (30.6%) patients showed parallel alignment of stroma fibers while 75 (69.4%) had randomly oriented stroma fibers. As compared to parallel alignment, random orientation of stroma fibers was associated with larger tumor size (median 3.62 cm vs. median 2.87cm, p = 0.037), nodal positive disease (76.0% vs. 54.5%, p = 0.040), higher margin positive resection rates (41.9% vs. 15.2%, p = 0.008) and a trend for higher rates of T3/4 tumors (33.3% vs. 15.2%, p = 0.064). In univariate analysis, patients with parallel alignment of stroma fibers had improved overall survival rates as compared to patients with random orientation of stroma fibers (42 months vs. 22 months, p = 0.046). The combination of random orientation of stroma fibers and low microvessel density was associated with impaired overall survival rates (16 months vs. 36 months, p = 0.019). A high CD4/CD3 ratio (16 months vs. 33 months, p = 0.040) and high stromal density of CD163 positive cells were associated with reduced overall survival (27 months vs. 34 months, p = 0.039). In multivariable analysis, the combination of random orientation of stroma fibers and low microvessel density (HR 1.592, 95%CI 1.098–2.733, p = 0.029), high CD4/CD3 ratio (HR 2.044, 95%CI 1.203–3.508, p = 0.028) and high density of CD163 positive cells (HR 1.596, 95%CI 1.367–1.968, p = 0.036) remained independent prognostic factors. Conclusion Alignment of stroma fibers and microvessel density are simple histomorphological features serving as surrogate markers of local tumor progression dissemination and surgical resectability and determine prognosis in PDAC patients. High CD4/CD3 ratio and CD163 positive cell counts determine poor prognosis.
Collapse
Affiliation(s)
- Louisa Bolm
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Petro Zghurskyi
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Hryhoriy Lapshyn
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Ekaterina Petrova
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Sergiy Zemskov
- Department of General Surgery #1, Bogomolets National Medical University, Kyiv, Ukraine
| | - Yogesh K. Vashist
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Steffen Deichmann
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Kim C. Honselmann
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Peter Bronsert
- Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Keck
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
- * E-mail:
| | - Ulrich F. Wellner
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| |
Collapse
|
32
|
Abdkarimi S, Razi Soofiyani S, Elham G, Mashhadi Abdolahi H, Safarzadeh E, Baradaran B. Targeting immune checkpoints: Building better therapeutic puzzle in pancreatic cancer combination therapy. Eur J Cancer Care (Engl) 2020; 29:e13268. [PMID: 32459388 DOI: 10.1111/ecc.13268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is related to a very weak diagnosis; the close parallel between disease incidence and mortality rates from pancreatic cancer reflects the fatal nature of this disease. Although early detection procedures are growing, they are not applicable yet for pancreatic cancer. The majority of cancer patients suffer from advanced disease, in which surgery has no potential effect. Based on the growing evidence, it is predicated that cancer immunotherapy alone or in combination will probably be an essential section of different cancer treatment methods. There are different kinds of immune processes, including various antitumour and tumour-promoting leukocytes. Moreover, tumour cells utilise numerous approaches to overwhelm the immune response. Use of antibody in the therapeutic protocols is proving significant success and is probably a key element of cancer treatment. This method is directed against numerous negative immunologic regulators and immune checkpoints. In the present review, the clinical outlines of immune checkpoint inhibition are discussed in pancreatic cancer.
Collapse
Affiliation(s)
- Sina Abdkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Goli Elham
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Mashhadi Abdolahi
- Tabriz Health Services Management Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Jiang J, Bai J, Qin T, Wang Z, Han L. NGF from pancreatic stellate cells induces pancreatic cancer proliferation and invasion by PI3K/AKT/GSK signal pathway. J Cell Mol Med 2020; 24:5901-5910. [PMID: 32294802 PMCID: PMC7214160 DOI: 10.1111/jcmm.15265] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer (PC) is a continuously high lethal disease, and the tumour microenvironment plays a pivotal role during PC progression. Herein, we focus on that the Nerve growth factor (NGF)/Tropomyosin-related kinase A (TrkA), in pancreatic stellate cells-pancreatic cancer cells (PSCs-PC cells) co-culture system, influences PC proliferation and invasion. The model of PC cells and PSCs was directly co-cultured in a no-touch manner, using the Transwell as the co-culture system. NGF and TrkA expression was measured in cultured system by real-time PCR, immunofluorescence, Western blotting analysis or ELISA. Small interfering RNA transfection was used to regulate the expression of TrkA in PC cells. The promotion of cancer invasion was investigated using Matrigel Transwell assay. In our study, NGF/TrkA is overexpressed in PSCs-PC cells co-culture system and promotes the invasion and proliferation of PC cells. And the epithelial-mesenchymal transition-related genes are influenced by si-TrkA. What's more, NGF/TrkA regulates the PC cell proliferation and invasion via activation of PI3K/AKT/GSK signalling. The present study demonstrated NGF/TrkA promoted the PC cell proliferation and invasion in the co-culture system by the activation of the PI3K/AKT/GSK signal cascade, providing a potential therapeutic target for PC patients.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jun Bai
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Tao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Pothula SP, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology 2020; 20:409-418. [PMID: 31928917 DOI: 10.1016/j.pan.2020.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Tumour-stromal interactions have now been acknowledged to play a major role in pancreatic cancer (PC) progression. The abundant collagenous stroma is produced by a specific cell type in the pancreas-the pancreatic stellate cell (PSC). Pancreatic stellate cells (PSCs) are a unique resident cell type of pancreas and with a critical role in both healthy and diseased pancreas. Accumulating evidence indicates that PSCs interact closely with cancer cells as well as with other cell types of the stroma such as immune cells, endothelial cells and neuronal cells, to set up a growth permissive microenvironment for pancreatic tumours, which facilitates local tumour growth as well as distant metastasis. Consequently, recent work in the field has focused on the development of novel therapeutic approaches targeting the stroma to inhibit PC progression. Such a multi-pronged approach targeting both tumour and stromal elements of PC has been successfully applied in pre-clinical settings. The challenge now is to translate the pre-clinical findings into the clinical setting to achieve better outcomes for pancreatic cancer patients.
Collapse
Affiliation(s)
- Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia.
| |
Collapse
|
35
|
Pausch TM, Aue E, Wirsik NM, Freire Valls A, Shen Y, Radhakrishnan P, Hackert T, Schneider M, Schmidt T. Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep 2020; 10:5420. [PMID: 32214219 PMCID: PMC7096431 DOI: 10.1038/s41598-020-62416-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
The characteristic desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a key contributor to its lethality. This stromal microenvironment is populated by cancer-associated fibroblasts (CAFs) that interact with cancer cells to drive progression and chemo-resistance. Research has focused on CAFs in the primary tumour but not in metastases, calling into question the role of analogous metastasis-associated fibroblasts (MAFs). We infer a role of MAFs in murine hepatic metastases following untargeted treatment with the anti-angiogenic drug sunitinib in vivo. Treated metastases were smaller and had fewer stromal cells, but were able to maintain angiogenesis and metastasis formation in the liver. Furthermore, sunitinib was ineffective at reducing MAFs alongside other stromal cells. We speculate that cancer cells interact with MAFs to maintain angiogenesis and tumour progression. Thus, we tested interactions between metastatic pancreatic cancer cells and fibroblasts using in vitro co-culture systems. Co-cultures enhanced fibroblast proliferation and induced angiogenesis. We identify carcinoma-educated fibroblasts as the source of angiogenesis via secretions of CXCL8 (aka IL-8) and CCL2 (aka MCP-1). Overall, we demonstrate that metastasis-associated fibroblasts have potential as a therapeutic target and highlight the CXCL8 and CCL2 axes for further investigation.
Collapse
Affiliation(s)
- Thomas M Pausch
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisa Aue
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Naita M Wirsik
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Aida Freire Valls
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ying Shen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
36
|
Thomas D, Radhakrishnan P. Pancreatic Stellate Cells: The Key Orchestrator of The Pancreatic Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:57-70. [PMID: 32040855 DOI: 10.1007/978-3-030-37184-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most challenging adenocarcinomas due to its hostile molecular behavior and complex tumor microenvironment. It has been recently postulated that pancreatic stellate cells (PSCs), the resident lipid-storing cells of the pancreas, are important components of the tumor microenvironment as they can transdifferentiate into highly proliferative myofibroblasts in the context of tissue injury. Targeting tumor-stromal crosstalk in the tumor microenvironment has emerged as a promising therapeutic strategy against pancreatic cancer progression and metastasis. This chapter brings a broad view on the biological and pathological role of PSCs in the pancreas, activated stellate cells in the onset of tissue fibrosis, and tumor progression with particular emphasis on the bidirectional interactions between tumor cells and PSCs. Further, potential therapeutic regimens targeting activated PSCs in the pre-clinical and clinical trials are discussed.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
37
|
Roger E, Martel S, Bertrand-Chapel A, Depollier A, Chuvin N, Pommier RM, Yacoub K, Caligaris C, Cardot-Ruffino V, Chauvet V, Aires S, Mohkam K, Mabrut JY, Adham M, Fenouil T, Hervieu V, Broutier L, Castets M, Neuzillet C, Cassier PA, Tomasini R, Sentis S, Bartholin L. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFβ signaling. Cell Death Dis 2019; 10:886. [PMID: 31767842 PMCID: PMC6877617 DOI: 10.1038/s41419-019-2116-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the solid tumors with the poorest prognosis. The stroma of this tumor is abundant and composed of extracellular matrix and stromal cells (including cancer-associated fibroblasts and immune cells). Nerve fibers invading this stroma represent a hallmark of PDAC, involved in neural remodeling, which participates in neuropathic pain, cancer cell dissemination and tumor relapse after surgery. Pancreatic cancer-associated neural remodeling is regulated through functional interplays mediated by physical and molecular interactions between cancer cells, nerve cells and surrounding Schwann cells, and other stromal cells. In the present study, we show that Schwann cells (glial cells supporting peripheral neurons) can enhance aggressiveness (migration, invasion, tumorigenicity) of pancreatic cancer cells in a transforming growth factor beta (TGFβ)-dependent manner. Indeed, we reveal that conditioned medium from Schwann cells contains high amounts of TGFβ able to activate the TGFβ-SMAD signaling pathway in cancer cells. We also observed in human PDAC samples that high levels of TGFβ signaling activation were positively correlated with perineural invasion. Secretome analyses by mass spectrometry of Schwann cells and pancreatic cancer cells cultured alone or in combination highlighted the central role of TGFβ in neuro-epithelial interactions, as illustrated by proteomic signatures related to cell adhesion and motility. Altogether, these results demonstrate that Schwann cells are a meaningful source of TGFβ in PDAC, which plays a crucial role in the acquisition of aggressive properties by pancreatic cancer cells.
Collapse
Affiliation(s)
- Elodie Roger
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Sylvie Martel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Adrien Bertrand-Chapel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Arnaud Depollier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Nicolas Chuvin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roxane M Pommier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Karam Yacoub
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Cassandre Caligaris
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Victoire Cardot-Ruffino
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Véronique Chauvet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Sophie Aires
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Kayvan Mohkam
- Hospices Civils de Lyon, Croix Rousse hospital, Claude-Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Jean-Yves Mabrut
- Hospices Civils de Lyon, Croix Rousse hospital, Claude-Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Mustapha Adham
- Hospices Civils de Lyon, Edouard Herriot hospital, Claude-Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Tanguy Fenouil
- Hospices Civils de Lyon Institute of Pathology EST, CRCL INSERM U1052, University Lyon 1, Lyon, France
| | - Valérie Hervieu
- Hospices Civils de Lyon Institute of Pathology EST, CRCL INSERM U1052, University Lyon 1, Lyon, France
| | - Laura Broutier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Marie Castets
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University, 35 rue Dailly, 92210, Saint Cloud, France
| | - Philippe A Cassier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France.,Departement d'Oncologie Médicale, Centre Léon Bérard, Lyon, 69008, France
| | - Richard Tomasini
- Aix-Marseille Université, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR 7258, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Stéphanie Sentis
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Laurent Bartholin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France.
| |
Collapse
|
38
|
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20184504. [PMID: 31514451 PMCID: PMC6770382 DOI: 10.3390/ijms20184504] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), generally known as pancreatic cancer (PC), ranks the fourth leading cause of cancer-related deaths in the western world. While the incidence of pancreatic cancer is displaying a rising tendency every year, the mortality rate has not decreased significantly because of late diagnosis, early metastasis, and limited reaction to chemotherapy or radiotherapy. Adjuvant chemotherapy after surgical resection is typically the preferred option to treat early pancreatic cancer. Although 5-fluorouracil/leucovorin with irinotecan and oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel can profoundly improve the prognosis of advanced pancreatic cancer, the development of chemoresistance still leads to poor clinical outcomes. Chemoresistance is multifactorial as a result of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment. Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. Therefore, we outline new perspectives for enhancing the efficacy of gemcitabine after reviewing the related factors of gemcitabine metabolism, mechanism of action, and chemoresistance.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany.
| | - Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
39
|
Nam S, Khawar IA, Park JK, Chang S, Kuh HJ. Cellular context-dependent interaction between cancer and stellate cells in hetero-type multicellular spheroids of pancreatic tumor. Biochem Biophys Res Commun 2019; 515:183-189. [DOI: 10.1016/j.bbrc.2019.05.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022]
|
40
|
Snail-Overexpression Induces Epithelial-mesenchymal Transition and Metabolic Reprogramming in Human Pancreatic Ductal Adenocarcinoma and Non-tumorigenic Ductal Cells. J Clin Med 2019; 8:jcm8060822. [PMID: 31181802 PMCID: PMC6617272 DOI: 10.3390/jcm8060822] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
The zinc finger transcription factor Snail is a known effector of epithelial-to-mesenchymal transition (EMT), a process that underlies the enhanced invasiveness and chemoresistance of common to cancerous cells. Induction of Snail-driven EMT has also been shown to drive a range of pro-survival metabolic adaptations in different cancers. In the present study, we sought to determine the specific role that Snail has in driving EMT and adaptive metabolic programming in pancreatic ductal adenocarcinoma (PDAC) by overexpressing Snail in a PDAC cell line, Panc1, and in immortalized, non-tumorigenic human pancreatic ductal epithelial (HPDE) cells. Snail overexpression was able to induce EMT in both pancreatic cell lines through suppression of epithelial markers and upregulation of mesenchymal markers alongside changes in cell morphology and enhanced migratory capacity. Snail-overexpressed pancreatic cells additionally displayed increased glucose uptake and lactate production with concomitant reduction in oxidative metabolism measurements. Snail overexpression reduced maximal respiration in both Panc1 and HPDE cells, with further reductions seen in ATP production, spare respiratory capacity and non-mitochondrial respiration in Snail overexpressing Panc1 cells. Accordingly, lower expression of mitochondrial electron transport chain proteins was observed with Snail overexpression, particularly within Panc1 cells. Modelling of 13C metabolite flux within both cell lines revealed decreased carbon flux from glucose in the TCA cycle in snai1-overexpressing Panc1 cells only. This work further highlights the role that Snail plays in EMT and demonstrates its specific effects on metabolic reprogramming of glucose metabolism in PDAC.
Collapse
|
41
|
Ghanaatgar-Kasbi S, Khorrami S, Avan A, Aledavoud SA, Ferns GA. Targeting the C-MET/HGF Signaling Pathway in Pancreatic Ductal Adenocarcinoma. Curr Pharm Des 2019; 24:4619-4625. [PMID: 30636579 DOI: 10.2174/1381612825666190110145855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
The c-mesenchymal-epithelial transition factor (c-MET) is involved in the tumorigenesis of various
cancers. HGF/Met inhibitors are now attracting considerable interest due to their anti-tumor activity in multiple
malignancies such as pancreatic cancer. It is likely that within the next few years, HGF/Met inhibitors will become
a crucial component for cancer management. In this review, we summarize the role of HGF/Met pathway in
the pathogenesis of pancreatic cancer, with particular emphasize on HGF/Met inhibitors in the clinical setting,
including Cabozantinib (XL184, BMS-907351), Crizotinib (PF-02341066), MK-2461, Merestinib (LY2801653),
Tivantinib (ARQ197), SU11274, Onartuzumab (MetMab), Emibetuzumab (LY2875358), Ficlatuzumab (AV-
299), Rilotumumab (AMG 102), and NK4 in pancreatic cancer.
Collapse
Affiliation(s)
- Sadaf Ghanaatgar-Kasbi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed A. Aledavoud
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| |
Collapse
|
42
|
Meng FT, Huang M, Fan FF, Shao F, Wang C, Huang Q. A modified method for isolating human quiescent pancreatic stellate cells. Cancer Manag Res 2019; 11:1533-1539. [PMID: 30863163 PMCID: PMC6388941 DOI: 10.2147/cmar.s192354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background This study explored a simple, high-yield method for isolating quiescent human pancreatic stellate cells (PSCs) to provide sufficient and reliable raw materials for PSC-related studies. Materials and methods Single-cell suspensions were prepared from normal human pancreatic tissue specimens using the gentleMACS™ tissue processor, which enhanced the yield and viability of the suspensions. Percoll density gradient centrifugation was then performed to isolate quiescent normal PSCs (NPSCs). Cell viability was determined by trypan blue staining, and the states of the NPSCs were determined by autofluorescence and oil red O staining. The purity of human activated PSCs (APSCs) was determined by immunofluorescence assays. Results The yield of NPSCs was ~(2.75±0.65)×106 cells/g. The maximum cell viability was 92%, whereas the maximum cell purity was 95%. Conclusion The method employed in this study to isolate PSCs is a simple, high-yield and stable method that is worth popularizing.
Collapse
Affiliation(s)
- Fu-Tao Meng
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, People's Republic of China, .,Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital, Hefei, Anhui Province, People's Republic of China,
| | - Mei Huang
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, People's Republic of China, .,Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital, Hefei, Anhui Province, People's Republic of China,
| | - Fang-Fang Fan
- Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Feng Shao
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, People's Republic of China, .,Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital, Hefei, Anhui Province, People's Republic of China,
| | - Chao Wang
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, People's Republic of China, .,Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital, Hefei, Anhui Province, People's Republic of China,
| | - Qiang Huang
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, People's Republic of China, .,Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital, Hefei, Anhui Province, People's Republic of China,
| |
Collapse
|
43
|
Dzobo K, Senthebane DA, Thomford NE, Rowe A, Dandara C, Parker MI. Not Everyone Fits the Mold: Intratumor and Intertumor Heterogeneity and Innovative Cancer Drug Design and Development. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:17-34. [PMID: 29356626 DOI: 10.1089/omi.2017.0174] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disruptive innovations in medicine are game-changing in nature and bring about radical shifts in the way we understand human diseases, their treatment, and/or prevention. Yet, disruptive innovations in cancer drug design and development are still limited. Therapies that cure all cancer patients are in short supply or do not exist at all. Chief among the causes of this predicament is drug resistance, a mechanism that is much more dynamic than previously understood. Drug resistance has limited the initial success experienced with biomarker-guided targeted therapies as well. A major contributor to drug resistance is intratumor heterogeneity. For example, within solid tumors, there are distinct subclones of cancer cells, presenting profound complexity to cancer treatment. Well-known contributors to intratumor heterogeneity are genomic instability, the microenvironment, cellular genotype, cell plasticity, and stochastic processes. This expert review explains that for oncology drug design and development to be more innovative, we need to take into account intratumor heterogeneity. Initially thought to be the preserve of cancer cells, recent evidence points to the highly heterogeneous nature and diverse locations of stromal cells, such as cancer-associated fibroblasts (CAFs) and cancer-associated macrophages (CAMs). Distinct subpopulations of CAFs and CAMs are now known to be located immediately adjacent and distant from cancer cells, with different subpopulations exerting different effects on cancer cells. Disruptive innovation and precision medicine in clinical oncology do not have to be a distant reality, but can potentially be achieved by targeting these spatially separated and exclusive cancer cell subclones and CAF subtypes. Finally, we emphasize that disruptive innovations in drug discovery and development will likely come from drugs whose effect is not necessarily tumor shrinkage.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa .,2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa .,2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Nicholas Ekow Thomford
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Arielle Rowe
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa
| | - Collet Dandara
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - M Iqbal Parker
- 2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
44
|
Lan C, Li J, Huang X, Heindl A, Wang Y, Yan S, Yuan Y. Stromal cell ratio based on automated image analysis as a predictor for platinum-resistant recurrent ovarian cancer. BMC Cancer 2019; 19:159. [PMID: 30777045 PMCID: PMC6380057 DOI: 10.1186/s12885-019-5343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/01/2019] [Indexed: 02/03/2023] Open
Abstract
Background Identifying high-risk patients for platinum resistance is critical for improving clinical management of ovarian cancer. We aimed to use automated image analysis of hematoxylin & eosin (H&E) stained sections to identify the association between microenvironmental composition and platinum-resistant recurrent ovarian cancer. Methods Ninety-one patients with ovarian cancer containing the data of automated image analysis for H&E histological sections were initially reviewed. Results Seventy-one patients with recurrent disease were finally identified. Among 30 patients with high stromal cell ratio, 60% of the patients had platinum-resistant recurrence, which was significantly higher than the rate in patients with low stromal cell ratio (9.80%, P < 0.001). Multivariate logistic regression analysis revealed elevated CA125 level after 3 cycles of chemotherapy (P < 0.001) and high stromal cell ratio (P = 0.002) were the negative predictors of platinum-resistant relapse. The area under the curve (AUC) of receiver operating characteristic (ROC) curves of the models for predicting platinum-resistant recurrence with stromal cell ratio, normalization of CA125 level, and the combination of two parameters were 0.78, 0.79, and 0.89 respectively. Conclusions Our results demonstrated stromal cell ratio based on automated image analysis may be a potential predictor for ovarian cancer patients at high risk of platinum-resistant recurrence, and it could improve the predictive value of model when combined with normalization of CA125 level after 3 cycles of chemotherapy.
Collapse
Affiliation(s)
- C Lan
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - J Li
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - X Huang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - A Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,Centre for Molecular Pathology, The Royal Marsden Hospital, London, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Y Wang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - S Yan
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Y Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK. .,Centre for Molecular Pathology, The Royal Marsden Hospital, London, UK. .,Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
45
|
Derivation and Validation of the Potential Core Genes in Pancreatic Cancer for Tumor-Stroma Crosstalk. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4283673. [PMID: 30519576 PMCID: PMC6241336 DOI: 10.1155/2018/4283673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/30/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
Background Pancreatic cancer is a fatal malignancy with a poor prognosis. The interactions between tumor cells and stromal cells contribute to cancer progression. Pancreatic stellate cells (PSCs) play a key role in tumor-stroma crosstalk of pancreatic cancer. The in-depth exploration for tumor-stroma crosstalk is helpful to develop novel therapeutic strategies. Our aim was to identify the potential core genes and pathways in tumor-stroma crosstalk. Methods 3 microarray datasets were from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened through bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network were used to obtain the biological roles of DEGs. The top 15 DEGs were explored by principal component analysis. We validated the top 15 DEGs expression in the tumor-stroma crosstalk model in which PSCs were treated with the mixture of Aspc-1 and Panc-1 supernatant. Results A total of 221 genes were filtered as DEGs for tumor-stroma crosstalk. The results of principal component analysis for the top 15 DEGs can distinguish three groups. According to the KEGG enrichment, there were 8, 7, and 7 DEGs enriched in cancer related pathway, PI3K-Akt signaling pathway, and microRNAs, respectively. In the tumor-stroma crosstalk model, significant differences can be validated in the AKAP12, CLDN1, CP, FKBP1A, LAMB3, LSM4, MTMR3, PRKARIA, YWHAZ, and JUND expressions. Conclusions These results identified the potential core genes and pathways in pancreatic cancer for tumor-stroma crosstalk, which could provide potential targets for the treatment of pancreatic cancer.
Collapse
|
46
|
Pancreatic cancer stem cells: A state or an entity? Semin Cancer Biol 2018; 53:223-231. [PMID: 30130664 DOI: 10.1016/j.semcancer.2018.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, has a median overall survival of 6-12 months and a 5-year survival of less than 7%. While PDAC currently represents the 4th most frequent cause of death due to cancer worldwide, it is expected to become the second leading cause of cancer-related death by 2030. These alarming statistics are primarily due to both the inherent chemoresistant and metastatic nature of this tumor, and the existence of a subpopulation of highly plastic "stem"-like cells within the tumor, known as cancer stem cells (CSCs). Since their discovery in PDAC in 2007, we have come to realize that pancreatic CSCs have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. More importantly, the concept of the CSC as a fixed entity within the tumor has also evolved, and current data suggest that CSCs are states rather than defined entities. Consequently, current treatments for the majority of PDAC patients are not effective, and do not significantly impact overall patient survival, as they do not adequately target the plastic CSC sub-population nor the transient/hybrid cells that can replenish the CSC pool. Thus, it is necessary that we improve our understanding of the characteristics and signals that maintain and drive the pancreatic CSC population in order to develop new therapies to target these cells. Herein, we will provide the latest updates and knowledge on the inherent characteristics of pancreatic CSCs and the CSC niche, specifically the cross-talk that exists between CSCs and niche resident cells. Lastly, we will address the question of whether a CSC is a state or an entity and discuss how the answer to this question can impact treatment approaches.
Collapse
|
47
|
Toesca DAS, Koong AJ, Poultsides GA, Visser BC, Haraldsdottir S, Koong AC, Chang DT. Management of Borderline Resectable Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2018; 100:1155-1174. [PMID: 29722658 DOI: 10.1016/j.ijrobp.2017.12.287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/07/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
With the rapid development of imaging modalities and surgical techniques, the clinical entity representing tumors that are intermediate between resectable and unresectable pancreatic adenocarcinoma has been identified has been termed "borderline resectable" (BR). These tumors are generally amenable for resection but portend an increased risk for positive margins after surgery and commonly necessitate vascular resection and reconstruction. Although there is a lack of consensus regarding the appropriate definition of what constitutes a BR pancreatic tumor, it has been demonstrated that this intermediate category carries a particular prognosis that is in between resectable and unresectable disease. In order to downstage the tumor and increase the probability of clear surgical margins, neoadjuvant therapy is being increasingly utilized and studied. There is a lack of high-level evidence to establish the optimal treatment regimen for BR tumors. When resection with negative margins is achieved after neoadjuvant therapy, the prognosis for BR tumors approaches and even exceeds that for resectable disease. This review presents the current definitions, different treatment approaches, and the clinical outcomes of BR pancreatic cancer.
Collapse
Affiliation(s)
- Diego A S Toesca
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Amanda J Koong
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | | | - Brendan C Visser
- Department of Surgery, Stanford Cancer Institute, Stanford, California
| | | | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California.
| |
Collapse
|
48
|
Lianyuan T, Dianrong X, Chunhui Y, Zhaolai M, Bin J. The predictive value and role of stromal tumor-infiltrating lymphocytes in pancreatic ductal adenocarcinoma (PDAC). Cancer Biol Ther 2018; 19:296-305. [PMID: 29313457 DOI: 10.1080/15384047.2017.1416932] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, increasing evidence has indicated that the presence of tumor infiltrating immune cells has shown predictive significance for many solid tumors. Present study was performed to evaluate the predictive value of stromal tumor-infiltrating lymphocytes (TILs) for the presence of liver metastasis and overall survival in PDAC (pancreatic ductal adenocarcinoma) patients after complete resection and to explore the potential role of lymphocytes in PDAC. A total of 155 resectable patients with PDAC were enrolled in our study. Stromal TIL density was investigated in hematoxylin and eosin-stained sections of surgical specimens and scored. The effect and possible mechanism of lymphocytes on cancer cells was evaluated using co-culture techniques and ELISA test. Stromal TIL negative status (HR = 2.80, 95% CI 1.75-4.48, P < 0.01) was not only an independent predictor of worse OS (HR = 2.7, 95% CI 1.80-4.06, P = <0.01) but also a significant independent predictor of liver metastasis. Higher CEA (P = 0.01) or CA19-9 (P = 0.01) levels were associated with low stromal TIL density. Stromal TIL negative patients appeared to develop tumors with a higher CEA (P = 0.01), larger diameter (P = 0.05) and advanced stage (P = 0.02). The co-culture experiment suggests that lymphocytes can inhibit pancreatic cancer cell proliferation. Further ELISA and cell culture test indicate that lymphocytes may cause pancreatic cancer cells apoptosis through TNF-alpha secretion. Our data suggest a potential favorable role of stromal TILs in predicting liver metastasis and overall survival of patients with PDAC after complete resection. Lymphocytes may inhibit the growth of PDAC through TNF-alpha secretion, which suggest a potential therapeutic approach against PDAC.
Collapse
Affiliation(s)
- Tao Lianyuan
- a Department of General Surgery , Peking University Third Hospital , Beijing , China
| | - Xiu Dianrong
- a Department of General Surgery , Peking University Third Hospital , Beijing , China
| | - Yuan Chunhui
- a Department of General Surgery , Peking University Third Hospital , Beijing , China
| | - Ma Zhaolai
- a Department of General Surgery , Peking University Third Hospital , Beijing , China
| | - Jiang Bin
- a Department of General Surgery , Peking University Third Hospital , Beijing , China
| |
Collapse
|
49
|
Tesfaye AA, Kamgar M, Azmi A, Philip PA. The evolution into personalized therapies in pancreatic ductal adenocarcinoma: challenges and opportunities. Expert Rev Anticancer Ther 2018; 18:131-148. [PMID: 29254387 PMCID: PMC6121777 DOI: 10.1080/14737140.2018.1417844] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/12/2017] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer related mortality in the United States in 2030, with a 5-year overall survival of less than 10% despite decades of extensive research. Pancreatic cancer is marked by the accumulation of complex molecular changes, complex tumor-stroma interaction, and an immunosuppressive tumor microenvironment. PDAC has proven to be resistant to many cytotoxic, targeted and immunologic treatment approaches. Areas covered: In this paper, we review the major areas of research in PDAC, with highlights on the challenges and areas of opportunity for personalized treatment approaches. Expert commentary: The focus of research in pancreatic cancer has moved away from developing conventional cytotoxic combinations. The marked advances in understanding the molecular biology of this disease especially in the areas of the microenvironment, metabolism, and DNA repair have opened new opportunities for developing novel treatment strategies. Improved understanding of molecular abnormalities allows the development of personalized treatment approaches.
Collapse
Affiliation(s)
- Anteneh A Tesfaye
- Department of Oncology, Wayne State University, School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Mandana Kamgar
- Department of Oncology, Wayne State University, School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Asfar Azmi
- Department of Oncology, Wayne State University, School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Philip A Philip
- Department of Oncology, Wayne State University, School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI
| |
Collapse
|
50
|
Parente P, Parcesepe P, Covelli C, Olivieri N, Remo A, Pancione M, Latiano TP, Graziano P, Maiello E, Giordano G. Crosstalk between the Tumor Microenvironment and Immune System in Pancreatic Ductal Adenocarcinoma: Potential Targets for New Therapeutic Approaches. Gastroenterol Res Pract 2018; 2018:7530619. [PMID: 30662458 PMCID: PMC6312626 DOI: 10.1155/2018/7530619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a lethal disease for which radical surgery and chemotherapy represent the only curative options for a small proportion of patients. Recently, FOLFIRINOX and nab-paclitaxel plus gemcitabine have improved the survival of metastatic patients but prognosis remains poor. A pancreatic tumor microenvironment is a dynamic milieu of cellular and acellular elements, and it represents one of the major limitations to chemotherapy efficacy. The continued crosstalk between cancer cells and the surrounding microenvironment causes immunosuppression within pancreatic immune infiltrate increasing tumor aggressiveness. Several potential targets have been identified among tumor microenvironment components, and different therapeutic approaches are under investigation. In this article, we provide a qualitative literature review about the crosstalk between the tumor microenvironment components and immune system in pancreatic cancer. Finally, we discuss potential therapeutic strategies targeting the tumor microenvironment and we show the ongoing trials.
Collapse
Affiliation(s)
- Paola Parente
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Pietro Parcesepe
- 2Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Claudia Covelli
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Nunzio Olivieri
- 3Biology Department, University of Naples Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | - Andrea Remo
- 4“Mater Salutis” Hospital, ULSS 9, Via C. Gianella 1, 37045 Legnago, Verona, Italy
| | - Massimo Pancione
- 5Department of Sciences and Technologies, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Tiziana Pia Latiano
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Paolo Graziano
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Evaristo Maiello
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Guido Giordano
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|