1
|
Lado W, Ham A, Li H, Zhang H, Chang AY, Sardi SP, Alcalay RN, Arancio O, Przedborski S, Tang G. Synaptic and cognitive impairment associated with L444P heterozygous glucocerebrosidase mutation. Brain 2025; 148:1621-1638. [PMID: 39562000 PMCID: PMC12073992 DOI: 10.1093/brain/awae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024] Open
Abstract
Cognitive impairment is a common but poorly understood non-motor aspect of Parkinson's disease, negatively affecting the patient's functional capacity and quality of life. The mechanisms underlying cognitive impairment in Parkinson's disease remain elusive, limiting treatment and prevention strategies. This study investigates the molecular and cellular basis of cognitive impairment associated with heterozygous mutations in GBA1, the strongest risk gene for Parkinson's disease, which encodes glucocerebrosidase, a lysosome enzyme that degrades the glycosphingolipid glucosylceramide into glucose and ceramide. Using a Gba1L444P/+ mouse model, we provide evidence that L444P heterozygous Gba1 mutation (L444P/+) causes hippocampus-dependent spatial and reference memory deficits independently of α-synuclein (αSyn) accumulation, glucocerebrosidase lipid substrate accumulation, dopaminergic dysfunction and motor deficits. The mutation disrupts hippocampal synaptic plasticity and basal synaptic transmission by reducing the density of hippocampal CA3-CA1 synapses, a mechanism that is dissociated from αSyn-mediated presynaptic neurotransmitter release. Using a well-characterized Thy1-αSyn pre-manifest Parkinson's disease mouse model overexpressing wild-type human αSyn, we find that the L444P/+ mutation exacerbates hippocampal synaptic αSyn accumulation, synaptic and cognitive impairment in young Gba1L444P/+:Thy1-αSyn double mutant animals. With age, Thy1-αSyn mice manifest motor symptoms, and the double mutant mice exhibit more exacerbated synaptic and motor impairment than the Thy1-αSyn mice. Taken together, our results suggest that heterozygous L444P GBA1 mutation alone perturbs hippocampal synaptic structure and function, imposing a subclinical pathological burden for cognitive impairment. When co-existing αSyn overexpression is present, heterozygous L444P GBA1 mutation interacts with αSyn pathology to accelerate Parkinson's disease-related cognitive impairment and motor symptoms.
Collapse
Affiliation(s)
- Wudu Lado
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Audrey Yuen Chang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Movement Disorders Division, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Serge Przedborski
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Tkachenko K, González-Sáiz JM, Pizarro C. Untargeted Lipidomic Reveals Potential Biomarkers in Plasma Samples for the Discrimination of Patients Affected by Parkinson's Disease. Molecules 2025; 30:850. [PMID: 40005161 PMCID: PMC11857942 DOI: 10.3390/molecules30040850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Nowadays, the diagnosis of Parkinson's disease (PD) remains essentially clinical, based on the subjective observations of clinicians. In addition, misdiagnosis with other neuro disorders, such as Alzheimer's (AD), can occur. Herein, an untargeted lipidomic analysis of 75 plasma samples was performed to identify lipid species capable of discriminating between these two neuro groups. Therefore, PLS-DA and OPLS-DA analysis revealed significant differences in patient profiles in the sphingolipid and glycerophospholipid categories. As a result, a putative lipid biomarker panel was developed, which included HexCer (40:1; O2) and PC (O-32:0), with an area under the receiver operating characteristic curve (AUC) > 80, respectively. This panel was effective in discriminating between diseased and healthy subjects, but most importantly, it could discriminate between two neurodegenerative disorders that can present similar symptoms, namely PD and AD. Together, these findings suggest that the dysregulated metabolism of lipids plays a critical role in AD and PD pathology and may represent a valuable clinical tool for their diagnosis. Thus, further targeted studies are encouraged to better understand the underlying mechanisms of PD and confirm the diagnostic potency of the identified lipid metabolites.
Collapse
Affiliation(s)
| | | | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain; (K.T.); (J.M.G.-S.)
| |
Collapse
|
3
|
Menozzi E, Schapira AHV. Prospects for Disease Slowing in Parkinson Disease. Annu Rev Pharmacol Toxicol 2025; 65:237-258. [PMID: 39088860 DOI: 10.1146/annurev-pharmtox-022124-033653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The increasing prevalence of Parkinson disease (PD) highlights the need to develop interventions aimed at slowing or halting its progression. As a result of sophisticated disease modeling in preclinical studies, and refinement of specific clinical/genetic/pathological profiles, our understanding of PD pathogenesis has grown over the years, leading to the identification of several targets for disease modification. This has translated to the development of targeted therapies, many of which have entered clinical trials. Nonetheless, up until now, none of these treatments have satisfactorily shown disease-modifying effects in PD. In this review, we present the most up-to-date disease-modifying pharmacological interventions in the clinical trial pipeline for PD. We focus on agents that have reached more advanced stages of clinical trials testing, highlighting both positive and negative results, and critically reflect on strengths, weaknesses, and challenges of current disease-modifying therapeutic avenues in PD.
Collapse
Affiliation(s)
- Elisa Menozzi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom;
| | - Anthony H V Schapira
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom;
| |
Collapse
|
4
|
Xu Z, He S, Begum MM, Han X. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Antioxid Redox Signal 2024; 41:1073-1099. [PMID: 39575748 PMCID: PMC11971557 DOI: 10.1089/ars.2024.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Significance: Lipids, which constitute the highest portion (over 50%) of brain dry mass, are crucial for brain integrity, energy homeostasis, and signaling regulation. Emerging evidence revealed that lipid profile alterations and abnormal lipid metabolism occur during normal aging and in different forms of neurodegenerative diseases. Moreover, increasing genome-wide association studies have validated new targets on lipid-associated pathways involved in disease development. Myelin, the protective sheath surrounding axons, is crucial for efficient neural signaling transduction. As the primary site enriched with lipids, impairments of myelin are increasingly recognized as playing significant and complex roles in various neurodegenerative diseases, beyond simply being secondary effects of neuronal loss. Recent Advances: With advances in the lipidomics field, myelin lipid alterations and their roles in contributing to or reflecting the progression of diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others, have recently caught great attention. Critical Issues: This review summarizes recent findings of myelin lipid alterations in the five most common neurodegenerative diseases and discusses their implications in disease pathogenesis. Future Directions: By highlighting myelin lipid abnormalities in neurodegenerative diseases, this review aims to encourage further research focused on lipids and the development of new lipid-oriented therapeutic approaches in this area. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Mst Marium Begum
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Smith T, Knudsen KJ, Ritchie SA. A novel inducible animal model for studying chronic plasmalogen deficiency associated with Alzheimer's disease. Brain Res 2024; 1843:149132. [PMID: 39053687 DOI: 10.1016/j.brainres.2024.149132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Plasmalogens are vinyl-ether glycerophospholipids critical for the structure and function of neuronal membranes. Deficient plasmalogen levels are associated with neurodegenerative diseases, particularly Alzheimer's disease (AD), which has led to the hypothesis that plasmalogen deficiency might drive disease onset and progression. However, the lack of a suitable animal model with late-onset plasmalogen deficiency has prevented testing of this hypothesis. The goal of this project was therefore to develop and characterize a mouse model capable of undergoing a plasmalogen deficiency only in adulthood, mirroring the chronic decline thought to occur in AD. We report here the creation of a novel animal model containing a tamoxifen-inducible knockout of the Gnpat gene encoding the first step in the plasmalogen biosynthetic pathway. Tamoxifen treatment in adult animals resulted in a significant reduction of plasmalogens in both the circulation and tissues as early as four weeks. By four months, changes in behavior and nerve function were observed, with strong correlations between residual brain plasmalogen levels, hyperactivity, and latency. The model will be useful for further elucidating the role of plasmalogens in AD and evaluating plasmalogen therapies.
Collapse
Affiliation(s)
- Tara Smith
- Med-Life Discoveries LP, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
6
|
Carrillo F, Palomba NP, Ghirimoldi M, Didò C, Fortunato G, Khoso S, Giloni T, Santilli M, Bocci T, Priori A, Pietracupa S, Modugno N, Barberis E, Manfredi M, Signorelli P, Esposito T. Multiomics approach discloses lipids and metabolites profiles associated to Parkinson's disease stages and applied therapies. Neurobiol Dis 2024; 202:106698. [PMID: 39427845 DOI: 10.1016/j.nbd.2024.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Profiling circulating lipids and metabolites in Parkinson's disease (PD) patients could be useful not only to highlight new pathways affected in PD condition but also to identify sensitive and effective biomarkers for early disease detection and potentially effective therapeutic interventions. In this study we adopted an untargeted omics approach in three groups of patients (No L-Dopa, L-Dopa and DBS) to disclose whether long-term levodopa treatment with or without deep brain stimulation (DBS) could reflect a characteristic lipidomic and metabolomic signature at circulating level. Our findings disclosed a wide up regulation of the majority of differentially regulated lipid species that increase with disease progression and severity. We found a relevant modulation of triacylglycerols and acyl-carnitines, together with an altered profile in adiponectin and leptin, that can differentiate the DBS treated group from the others PD patients. We found a highly significant increase of exosyl ceramides (Hex2Cer) and sphingoid bases (SPB) in PD patients mainly in DBS group (p < 0.0001), which also resulted in a highly accurate diagnostic performance. At metabolomic level, we found a wide dysregulation of pathways involved in the biosynthesis and metabolism of several amino acids. The most interesting finding was the identification of a specific modulation of L-glutamic acid in the three groups of patients. L-glutamate levels increased slightly in No L-Dopa and highly in L-Dopa patients while decreased in DBS, suggesting that DBS therapy might have a beneficial effect on the glutamatergic cascade. All together, these data provide novel insights into the molecular and metabolic alterations underlying PD therapy and might be relevant for PD prediction, diagnosis and treatment.
Collapse
Affiliation(s)
- Federica Carrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | | | - Marco Ghirimoldi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Camilla Didò
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Shahzaib Khoso
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | | | | | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Sara Pietracupa
- IRCCS INM Neuromed, Pozzilli, IS, Italy; Department of Human Neuroscience, Sapienza University of Rome, Italy
| | | | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy; Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Paola Signorelli
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Biochemistry Laboratory, IRCCS Policlinico San Donato, Milano Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy; IRCCS INM Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
7
|
Dai L, Liu M, Ke W, Chen L, Fang X, Zhang Z. Lysosomal dysfunction in α-synuclein pathology: molecular mechanisms and therapeutic strategies. Cell Mol Life Sci 2024; 81:382. [PMID: 39223418 PMCID: PMC11368888 DOI: 10.1007/s00018-024-05419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In orchestrating cell signaling, facilitating plasma membrane repair, supervising protein secretion, managing waste elimination, and regulating energy consumption, lysosomes are indispensable guardians that play a crucial role in preserving intracellular homeostasis. Neurons are terminally differentiated post-mitotic cells. Neuronal function and waste elimination depend on normal lysosomal function. Converging data suggest that lysosomal dysfunction is a critical event in the etiology of Parkinson's disease (PD). Mutations in Glucosylceramidase Beta 1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) confer an increased risk for the development of parkinsonism. Furthermore, lysosomal dysfunction has been observed in the affected neurons of sporadic PD (sPD) patients. Given that lysosomal hydrolases actively contribute to the breakdown of impaired organelles and misfolded proteins, any compromise in lysosomal integrity could incite abnormal accumulation of proteins, including α-synuclein, the major component of Lewy bodies in PD. Clinical observations have shown that lysosomal protein levels in cerebrospinal fluid may serve as potential biomarkers for PD diagnosis and as signs of lysosomal dysfunction. In this review, we summarize the current evidence regarding lysosomal dysfunction in PD and discuss the intimate relationship between lysosomal dysfunction and pathological α-synuclein. In addition, we discuss therapeutic strategies that target lysosomes to treat PD.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Miao Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
8
|
Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, Cohen ME, Revel-Vilk S, Goker-Alpan O, Becker-Cohen M, Hassin-Baer S, Svenningsson P, Rolfs A, Zimran A. GBA1-Associated Parkinson's Disease Is a Distinct Entity. Int J Mol Sci 2024; 25:7102. [PMID: 39000225 PMCID: PMC11241486 DOI: 10.3390/ijms25137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GBA1-associated Parkinson's disease (GBA1-PD) is increasingly recognized as a distinct entity within the spectrum of parkinsonian disorders. This review explores the unique pathophysiological features, clinical progression, and genetic underpinnings that differentiate GBA1-PD from idiopathic Parkinson's disease (iPD). GBA1-PD typically presents with earlier onset and more rapid progression, with a poor response to standard PD medications. It is marked by pronounced cognitive impairment and a higher burden of non-motor symptoms compared to iPD. Additionally, patients with GBA1-PD often exhibit a broader distribution of Lewy bodies within the brain, accentuating neurodegenerative processes. The pathogenesis of GBA1-PD is closely associated with mutations in the GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase). In this review, we discuss two mechanisms by which GBA1 mutations contribute to disease development: 'haploinsufficiency,' where a single functional gene copy fails to produce a sufficient amount of GCase, and 'gain of function,' where the mutated GCase acquires harmful properties that directly impact cellular mechanisms for alpha-synuclein degradation, leading to alpha-synuclein aggregation and neuronal cell damage. Continued research is advancing our understanding of how these mechanisms contribute to the development and progression of GBA1-PD, with the 'gain of function' mechanism appearing to be the most plausible. This review also explores the implications of GBA1 mutations for therapeutic strategies, highlighting the need for early diagnosis and targeted interventions. Currently, small molecular chaperones have shown the most promising clinical results compared to other agents. This synthesis of clinical, pathological, and molecular aspects underscores the assertion that GBA1-PD is a distinct clinical and pathobiological PD phenotype, necessitating specific management and research approaches to better understand and treat this debilitating condition.
Collapse
Affiliation(s)
- Aliaksandr Skrahin
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
| | | | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Mikhal E. Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA
| | | | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chaim Sheba Medical Center, 5262101 Tel-Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel-Aviv, Israel
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Basal and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Arndt Rolfs
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Medical Faculty, University of Rostock, 18055 Rostock, Germany
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
9
|
Brody EM, Seo Y, Suh E, Amari N, Hartstone WG, Skrinak RT, Zhang H, Diaz-Ortiz ME, Weintraub D, Tropea TF, Van Deerlin VM, Chen-Plotkin AS. GPNMB Biomarker Levels in GBA1 Carriers with Lewy Body Disorders. Mov Disord 2024; 39:1065-1070. [PMID: 38610104 PMCID: PMC11209810 DOI: 10.1002/mds.29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Eliza M. Brody
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yunji Seo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Noor Amari
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Whitney G. Hartstone
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - R. Tyler Skrinak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hanwen Zhang
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maria E. Diaz-Ortiz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Weintraub
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas F. Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vivianna M. Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alice S. Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Liu C, Su Y, Ma X, Wei Y, Qiao R. How close are we to a breakthrough? The hunt for blood biomarkers in Parkinson's disease diagnosis. Eur J Neurosci 2024; 59:2563-2576. [PMID: 38379501 DOI: 10.1111/ejn.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Parkinson's disease (PD), being the second largest neurodegenerative disease, poses challenges in early detection, resulting in a lack of timely treatment options to effectively manage the disease. By the time clinical diagnosis becomes possible, more than 60% of dopamine neurons in the substantia nigra (SN) of patients have already degenerated. Therefore, early diagnosis or identification of warning signs is crucial for the prompt and timely beginning of the treatment. However, conducting invasive or complex diagnostic procedures on asymptomatic patients can be challenging, making routine blood tests a more feasible approach in such cases. Numerous studies have been conducted over an extended period to search for effective diagnostic biomarkers in blood samples. However, thus far, no highly effective biomarkers have been confirmed. Besides classical proteins like α-synuclein (α-syn), phosphorylated α-syn and oligomeric α-syn, other molecules involved in disease progression should also be given equal attention. In this review, we will not only discuss proposed biomarkers that are currently under investigation but also delve into the mechanisms underlying the disease, focusing on processes such as α-syn misfolding, intercellular transmission and the crossing of the blood-brain barrier (BBB). Our aim is to provide an updated overview of molecules based on these processes that may potentially serve as blood biomarkers.
Collapse
Affiliation(s)
- Cheng Liu
- Peking University Third Hospital, Beijing, China
| | - Yang Su
- Peking University Third Hospital, Beijing, China
| | - Xiaolong Ma
- Peking University Third Hospital, Beijing, China
| | - Yao Wei
- Peking University Third Hospital, Beijing, China
| | - Rui Qiao
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Flores-Leon M, Outeiro TF. More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol 2023; 146:369-385. [PMID: 37421475 PMCID: PMC10412683 DOI: 10.1007/s00401-023-02601-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The accumulation of proteinaceous inclusions in the brain is a common feature among neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The main neuropathological hallmark of PD and DLB are inclusions, known as Lewy bodies (LBs), enriched not only in α-synuclein (aSyn), but also in lipid species, organelles, membranes, and even nucleic acids. Furthermore, several genetic risk factors for PD are mutations in genes involved in lipid metabolism, such as GBA1, VSP35, or PINK1. Thus, it is not surprising that mechanisms that have been implicated in PD, such as inflammation, altered intracellular and vesicular trafficking, mitochondrial dysfunction, and alterations in the protein degradation systems, may be also directly or indirectly connected through lipid homeostasis. In this review, we highlight and discuss the recent evidence that suggests lipid biology as important drivers of PD, and which require renovated attention by neuropathologists. Particularly, we address the implication of lipids in aSyn accumulation and in the spreading of aSyn pathology, in mitochondrial dysfunction, and in ER stress. Together, this suggests we should broaden the view of PD not only as a proteinopathy but also as a lipidopathy.
Collapse
Affiliation(s)
- Manuel Flores-Leon
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
13
|
Qiu J, Wei L, Su Y, Tang Y, Peng G, Wu Y, He Y, Liu H, Guo W, Wu Z, Xu P, Mo M. Lipid Metabolism Disorder in Cerebrospinal Fluid Related to Parkinson's Disease. Brain Sci 2023; 13:1166. [PMID: 37626522 PMCID: PMC10452343 DOI: 10.3390/brainsci13081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Abnormal accumulation of lipids is found in dopamine neurons and resident microglia in the substantia nigra of patients with Parkinson's disease (PD). The accumulation of lipids is an important risk factor for PD. Previous studies have mainly focussed on lipid metabolism in peripheral blood, but little attention has been given to cerebrospinal fluid (CSF). We drew the lipidomic signature in CSF from PD patients and evaluated the role of lipids in CSF as biomarkers for PD diagnosis. METHODS Based on lipidomic approaches, we investigated and compared lipid metabolism in CSF from PD patients and healthy controls without dyslipidaemia in peripheral blood and explored the relationship of lipids between CSF and serum by Pearson correlation analysis. RESULTS A total of 231 lipid species were detected and classified into 13 families in the CSF. The lipid families, including phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol ester (CE), had significantly increased expression compared with the control. Hierarchical clustering was performed to distinguish PD patients based on the significantly changed expression of 34 lipid species. Unsupervised and supervised methods were used to refine this classification. A total of 12 lipid species, including 3-hydroxy-dodecanoyl-carnitine, Cer(d18:1/24:1), CE(20:4), CE(22:6), PC(14:0/18:2), PC(O-18:3/20:2), PC(O-20:2/24:3), SM(d18:0/16:0), SM(d18:2/14:0), SM(d18:2/24:1), SM(d18:1/20:1) and SM(d18:1/12:0), were selected to draw the lipidomic signature of PD. Correlation analysis was performed and showed that the CE family and CE (22:6) in CSF had a positive association with total cholesterol in the peripheral blood from PD patients but not from healthy controls. CONCLUSIONS Our results revealed that the lipidomic signature in CSF may be considered a potential biomarker for PD diagnosis, and increased CE, PC and SM in CSF may reveal pathological changes in PD patients, such as blood-brain barrier leakage.
Collapse
Affiliation(s)
- Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yimin Wu
- Department of General Medicine, Fengxian Community Health Service Center, Shanghai 210499, China;
| | - Yan He
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Zhuohu Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| |
Collapse
|
14
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
15
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
16
|
Menozzi E, Toffoli M, Schapira AHV. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol Ther 2023; 246:108419. [PMID: 37080432 DOI: 10.1016/j.pharmthera.2023.108419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.2 to 30 according to variant severity. GBA1 variants which do not cause GD in homozygosis can also increase PD risk. Patients with PD carrying GBA1 variants show a more rapidly progressive phenotype compared to non-carriers, emphasising the need for disease modifying treatments targeting the GBA1 pathway. Several mechanisms secondary to GCase dysfunction are potentially responsible for the pathological changes leading to PD. Misfolded GCase proteins induce endoplasmic reticulum stress and subsequent unfolded protein response and impair the autophagy-lysosomal pathway. This results in α-synuclein accumulation and spread, and promotes neurodegenerative changes. Preclinical evidence also shows that products of GCase activity can promote accumulation of α-synuclein, however there is no convincing evidence of substrate accumulation in GBA1-PD brains. Altered lipid homeostasis secondary to loss of GCase activity could also contribute to PD pathology. Treatments that target the GBA1 pathway could reverse these pathological processes and halt/slow the progression of PD. These range from augmentation of GCase activity via GBA1 gene therapy, restoration of normal intracellular GCase trafficking via molecular chaperones, and substrate reduction therapy. This review discusses the pathways associated with GBA1-PD and related novel GBA1-targeted interventions for PD treatment.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
17
|
Ma R, Bai J, Huang Y, Wang Z, Xu Y, Huang Y, Zhong K, Huang Y, Gao H, Bu Q. Purification and Identification of Novel Antioxidant Peptides from Hydrolysates of Peanuts ( Arachis hypogaea) and Their Neuroprotective Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37036935 DOI: 10.1021/acs.jafc.2c06075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Peanut (Arachis hypogaea) peptides have various functional activities and a high utilization value. This study aims to isolate and characterize antioxidant peptides from peanut protein hydrolysates and further evaluate their neuroprotection against oxidative damage to PC12 cells induced by 6-hydroxydopamine (6-OHDA). After the peanut protein was hydrolyzed with pepsin and purified using ultrafiltration and gel chromatography, six peptides were identified and sequenced by high-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Out of these six peptides, Pro-Gly-Cys-Pro-Ser-Thr (PGCPST) exhibited a desirable antioxidant capacity, as determined using the 1,1-diphenyl-2-picrylhydrazyl, 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and hydroxyl radical scavenging assays. Moreover, our results indicated that the peptide PGCPST effectively increased the cell viability and reduced the cell apoptosis in 6-OHDA-induced PC12. RNA sequencing further showed that the neuroprotective effect of the peptide PGCPST was mediated via sphingolipid metabolism-related pathways. With further research efforts, the peptide PGCPST was expected to develop into a new neuroprotective agent.
Collapse
Affiliation(s)
- Rui Ma
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jinrong Bai
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yuting Huang
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Zhiqiu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yongju Xu
- Industrial Crops Research Institute Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Yan Huang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhong
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yina Huang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qian Bu
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
18
|
Senkevich K, Rudakou U, Gan-Or Z. Genetic mechanism vs genetic subtypes: The example of GBA. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:155-170. [PMID: 36803808 DOI: 10.1016/b978-0-323-85555-6.00016-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Genetic variants in GBA, encoding the lysosomal enzyme glucocerebrosidase (GCase), are common risk factors for Parkinson's disease (PD). Genotype-phenotype studies have demonstrated that different types of GBA variants have differential effects on the phenotype. Variants could be classified as mild or severe depending on the type of Gaucher disease they cause in the biallelic state. It was shown that severe GBA variants, as compared to mild variants, are associated with higher risk of PD, earlier age at onset, and faster progression of motor and nonmotor symptoms. The observed difference in phenotype might be caused by a diversity of cellular mechanisms related to the particular variants. The lysosomal function of GCase is thought to play a significant role in the development of GBA-associated PD, and other mechanisms such as endoplasmic reticulum retention, mitochondrial dysfunction, and neuroinflammation have also been suggested. Moreover, genetic modifiers such as LRRK2, TMEM175, SNCA, and CTSB can either affect GCase activity or modulate risk and age at onset of GBA-associated PD. To achieve ideal outcomes with precision medicine, therapies will have to be tailored to individuals with specific variants, potentially in combination with known modifiers.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
19
|
Smith LJ, Bolsinger MM, Chau KY, Gegg ME, Schapira AHV. The GBA variant E326K is associated with alpha-synuclein aggregation and lipid droplet accumulation in human cell lines. Hum Mol Genet 2023; 32:773-789. [PMID: 36130205 PMCID: PMC9941838 DOI: 10.1093/hmg/ddac233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Sequence variants or mutations in the GBA gene are numerically the most important risk factor for Parkinson disease (PD). The GBA gene encodes for the lysosomal hydrolase enzyme, glucocerebrosidase (GCase). GBA mutations often reduce GCase activity and lead to the impairment of the autophagy-lysosomal pathway, which is important in the turnover of alpha-synuclein, accumulation of which is a key pathological hallmark of PD. Although the E326K variant is one of the most common GBA variants associated with PD, there is limited understanding of its biochemical effects. We have characterized homozygous and heterozygous E326K variants in human fibroblasts. We found that E326K variants did not cause a significant loss of GCase protein or activity, endoplasmic reticulum (ER) retention or ER stress, in contrast to the L444P GBA mutation. This was confirmed in human dopaminergic SH-SY5Y neuroblastoma cell lines overexpressing GCase with either E326K or L444P protein. Despite no loss of the GCase activity, a significant increase in insoluble alpha-synuclein aggregates in E326K and L444P mutants was observed. Notably, SH-SY5Y overexpressing E326K demonstrated a significant increase in the lipid droplet number under basal conditions, which was exacerbated following treatment with the fatty acid oleic acid. Similarly, a significant increase in lipid droplet formation following lipid loading was observed in heterozygous and homozygous E326K fibroblasts. In conclusion, the work presented here demonstrates that the E326K mutation behaves differently to the common loss of function GBA mutations; however, lipid dyshomeostasis and alpha-synuclein pathology are still evident.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Magdalena M Bolsinger
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Division of Medicine, Friedrich-Alexander University Erlangen-Nurnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
20
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Qiu J, Peng G, Tang Y, Li S, Liu Z, Zheng J, Wang Y, Liu H, Wei L, Su Y, Lin Y, Dai W, Zhang Z, Chen X, Ding L, Guo W, Zhu X, Xu P, Mo M. Lipid profiles in the cerebrospinal fluid of rats with 6-hydroxydopamine-induced lesions as a model of Parkinson's disease. Front Aging Neurosci 2023; 14:1077738. [PMID: 36742201 PMCID: PMC9895836 DOI: 10.3389/fnagi.2022.1077738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disease with characteristic pathological abnormalities, including the loss of dopaminergic (DA) neurons, a dopamine-depleted striatum, and microglial activation. Lipid accumulation exhibits a close relationship with these pathologies in PD. Methods Here, 6-hydroxydopamine (6-OHDA) was used to construct a rat model of PD, and the lipid profile in cerebrospinal fluid (CSF) obtained from model rats was analyzed using lipidomic approaches. Results Establishment of this PD model was confirmed by apomorphine-induced rotation behaviors, loss of DA neurons, depletion of dopamine in the striatum, and microglial activation after 6-OHDA-induced lesion generation. Unsupervised and supervised methods were employed for lipid analysis. A total of 172 lipid species were identified in CSF and subsequently classified into 18 lipid families. Lipid families, including eicosanoids, triglyceride (TG), cholesterol ester (CE), and free fatty acid (FFA), and 11 lipid species exhibited significantly altered profiles 2 weeks after 6-OHDA administration, and significant changes in eicosanoids, TG, CE, CAR, and three lipid species were noted 5 weeks after 6-OHDA administration. During the period of 6-OHDA-induced lesion formation, the lipid families and species showed concentration fluctuations related to the recovery of behavior and nigrostriatal abnormalities. Correlation analysis showed that the levels of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) exhibited positive relationships with apomorphine-induced rotation behaviors and negative relationships with tyrosine hydroxylase (TH) expression in the midbrain. Conclusion These results revealed that non-progressive nigrostriatal degeneration induced by 6-OHDA promotes the expression of an impairment-related lipidomic signature in CSF, and the level of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) in CSF may reveal pathological changes in the midbrain after 6-OHDA insult.
Collapse
Affiliation(s)
- Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyin Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zengfu Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiayun Zheng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Internal Medicine, Huilai People’s Hospital, Jieyang, China
| |
Collapse
|
22
|
Oizumi H, Sugimura Y, Totsune T, Kawasaki I, Ohshiro S, Baba T, Kimpara T, Sakuma H, Hasegawa T, Kawahata I, Fukunaga K, Takeda A. Plasma sphingolipid abnormalities in neurodegenerative diseases. PLoS One 2022; 17:e0279315. [PMID: 36525454 PMCID: PMC9757566 DOI: 10.1371/journal.pone.0279315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In recent years, there has been increasing evidence that several lipid metabolism abnormalities play an important role in the pathogenesis of neurodegenerative diseases. However, it is still unclear which lipid metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an unbiased method that can be used to explore lipid metabolism abnormalities in neurodegenerative diseases. Plasma lipidomics in neurodegenerative diseases has been performed only in idiopathic Parkinson's disease (IPD) and Alzheimer's disease (AD), and comprehensive studies are needed to clarify the pathogenesis. METHODS In this study, we investigated plasma lipids using lipidomics in individuals with neurodegenerative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in those with IPD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear palsy (PSP) and CNs. RESULTS The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with plasma LacCer levels in all enrolled groups. CONCLUSION S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingolipids that are biosynthesized from ceramide. Recent studies have suggested that elevated GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that elevated LacCer levels induce neurodegeneration by neuroinflammation. In the present study, we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in those with neurodegenerative diseases, which is a new finding indicating the importance of abnormal sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Yoko Sugimura
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Tomoko Totsune
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Iori Kawasaki
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Saki Ohshiro
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Teiko Kimpara
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Hiroaki Sakuma
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
- Department of Cognitive and Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
23
|
Zafar S, Noor A, Younas N, Shafiq M, Schmitz M, Wurster I, Brockmann K, Gasser T, Zerr I. SWATH Mass Spectrometry-Based CSF Proteome Profile of GBA-Linked Parkinson's Disease Patients. Int J Mol Sci 2022; 23:ijms232214166. [PMID: 36430645 PMCID: PMC9699576 DOI: 10.3390/ijms232214166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
β-glucocerebrosidase (GBA)-associated mutations are a significant risk factor for Parkinson's disease (PD) that aggravate the disease pathology by upregulating the deposition of α-Synuclein (α-Syn). The resultant clinical profile varies for PD patients without GBA mutations. The current study aimed to identify the proteomic targets involved in the pathogenic pathways leading to the differential clinical presentation of GBA-associated PD. CSF samples (n = 32) were obtained from PD patients with GBA mutations (n = 22), PD patients without GBA mutations (n = 7), and healthy controls that were carriers of GBA mutations (n = 3). All samples were subjected to in-gel tryptic digestion followed by the construction of the spectral library and quantitative SWATH-based analysis. CSF α-Syn levels were reduced in both PDIdiopathic and PDGBA cases. Our SWATH-based mass spectrometric analysis detected 363 proteins involved in immune response, stress response, and cell signaling in various groups. Intergroup analysis showed that 52 proteins were significantly up- or downregulated in various groups. Of these 52 targets, 20 proteins were significantly altered in PDGBA cases only while 2 showed different levels in PDIdiopathic patients. Our results show that the levels of several pathologically relevant proteins, including Contactin-1, Selenium-binding protein 1, Adhesion G Protein-Coupled Receptor, and Apolipoprotein E are significantly different among the sporadic and genetic variants of PD and hint at aggravated synaptic damage, oxidative stress, neuronal loss, and aggregation of α-Syn in PDGBA cases.
Collapse
Affiliation(s)
- Saima Zafar
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
- Correspondence: ; Tel.: +49-551-39-65398
| | - Aneeqa Noor
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
| | - Neelam Younas
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Schmitz
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Isabel Wurster
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany
| | - Inga Zerr
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
24
|
López de Frutos L, Almeida F, Murillo-Saich J, Conceição VA, Guma M, Queheberger O, Giraldo P, Miltenberger-Miltenyi G. Serum Phospholipid Profile Changes in Gaucher Disease and Parkinson's Disease. Int J Mol Sci 2022; 23:ijms231810387. [PMID: 36142296 PMCID: PMC9499334 DOI: 10.3390/ijms231810387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Alterations in the levels of serum sphingolipids and phospholipids have been reported in Gaucher disease and in Parkinson's disease, suggesting a potential role of these lipids as biomarkers. This project's objective is to detect novel associations and novel candidate biomarkers in the largest Spanish Gaucher and Parkinson diseases of the Iberian Peninsula. For that, 278 participants were included: 100 sporadic Parkinson's patients, 70 Gaucher patients, 15 GBA1-mutation-carrier Parkinson's patients and 93 controls. A serum lipidomics array including 10 phospholipid groups, 368 species, was performed using high-performance liquid chromatography-mass spectrometry. Lipid levels were compared between groups via multiple-regression analyses controlling for clinical and demographic parameters. Additionally, lipid levels were compared within the Gaucher and Parkinson's groups controlling for medication and/or disease severity. Results were controlled for robustness by filtering of non-detectable lipid values. There was an increase in the levels of phosphatidylcholine, with a simultaneous decrease in lyso-phosphatidylcholine, in the Gaucher, Parkinson's and GBA1-mutation-carrier Parkinson's patients vs. controls. Phosphatidylethanolamine, lyso- and plasmalogen-phosphatidylethanolamine were also increased in Gaucher and Parkinson's. Gaucher patients also showed an increase in lyso-phosphatidylserine and phosphatidylglycerol. While in the Gaucher and Parkinson's groups, velaglucerase alpha and dopamine agonists, respectively, showed positive associations with the lipid changes, miglustat treatment in Gaucher patients normalized the altered phosphatidylcholine/lyso-phosphatidylcholine ratio. In conclusion, Gaucher and Parkinson's patients showed changes in various serum phospholipid levels when compared with healthy controls, further supporting the role of such lipids in disease development and, possibly, as putative biomarkers. This hypothesis was reinforced by the normalizing effect of miglustat, and by controlling for data robustness, even though the limited number of participants, especially in the sub-distribution by treatment groups in GD requires validation in a larger number of patients.
Collapse
Affiliation(s)
- Laura López de Frutos
- Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), 50006 Zaragoza, Spain
- GIIS-012, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - Francisco Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649004 Lisbon, Portugal
| | | | - Vasco A. Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649004 Lisbon, Portugal
| | - Monica Guma
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA Medical Center, San Diego, CA 92093, USA
- Department of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Oswald Queheberger
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pilar Giraldo
- Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), 50006 Zaragoza, Spain
- Correspondence: (P.G.); (G.M.-M.); Tel.: +34-670-285-339 (P.G.); +351-21-799-9435 (G.M.-M.)
| | - Gabriel Miltenberger-Miltenyi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649004 Lisbon, Portugal
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649004 Lisbon, Portugal
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
- Genetics Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, 4835-044 Guimarães, Portugal
- Correspondence: (P.G.); (G.M.-M.); Tel.: +34-670-285-339 (P.G.); +351-21-799-9435 (G.M.-M.)
| |
Collapse
|
25
|
Vieira SRL, Schapira AHV. Glucocerebrosidase mutations and Parkinson disease. J Neural Transm (Vienna) 2022; 129:1105-1117. [PMID: 35932311 PMCID: PMC9463283 DOI: 10.1007/s00702-022-02531-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The discovery of glucocerebrosidase (GBA1) mutations as the greatest numerical genetic risk factor for the development of Parkinson disease (PD) resulted in a paradigm shift within the research landscape. Efforts to elucidate the mechanisms behind GBA1-associated PD have highlighted shared pathways in idiopathic PD including the loss and gain-of-function hypotheses, endoplasmic reticulum stress, lipid metabolism, neuroinflammation, mitochondrial dysfunction and altered autophagy-lysosomal pathway responsible for degradation of aggregated and misfolded a-synuclein. GBA1-associated PD exhibits subtle differences in phenotype and disease progression compared to idiopathic counterparts notably an earlier age of onset, faster motor decline and greater frequency of non-motor symptoms (which also constitute a significant aspect of the prodromal phase of the disease). GBA1-targeted therapies have been developed and are being investigated in clinical trials. The most notable are Ambroxol, a small molecule chaperone, and Venglustat, a blood-brain-barrier-penetrant substrate reduction therapy agent. It is imperative that further studies clarify the aetiology of GBA1-associated PD, enabling the development of a greater abundance of targeted therapies in this new era of precision medicine.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK.
| |
Collapse
|
26
|
Ma M, Moulton MJ, Lu S, Bellen HJ. 'Fly-ing' from rare to common neurodegenerative disease mechanisms. Trends Genet 2022; 38:972-984. [PMID: 35484057 PMCID: PMC9378361 DOI: 10.1016/j.tig.2022.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
Advances in genome sequencing have enabled researchers and clinicians to probe vast numbers of human variants to distinguish pathogenic from benign variants. Model organisms have been crucial in variant assessment and in delineating the molecular mechanisms of some of the diseases caused by these variants. The fruit fly, Drosophila melanogaster, has played a valuable role in this endeavor, taking advantage of its genetic technologies and established biological knowledge. We highlight the utility of the fly in studying the function of genes associated with rare neurological diseases that have led to a better understanding of common disease mechanisms. We emphasize that shared themes emerge among disease mechanisms, including the importance of lipids, in two prominent neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Nguyen K, Sanchez CL, Brammer-Robbins E, Pena-Delgado C, Kroyter N, El Ahmadie N, Watkins JM, Aristizabal-Henao JJ, Bowden JA, Souders CL, Martyniuk CJ. Neurotoxicity assessment of QoI strobilurin fungicides azoxystrobin and trifloxystrobin in human SH-SY5Y neuroblastoma cells: Insights from lipidomics and mitochondrial bioenergetics. Neurotoxicology 2022; 91:290-304. [PMID: 35700754 DOI: 10.1016/j.neuro.2022.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/01/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Strobilurin fungicides are quinone outside inhibitors (QoI) used to treat fungal pathogens for agricultural and residential use. Here, we compared the potential for neurotoxicity of the widely used strobilurins, azoxystrobin (AZS) and trifloxystrobin (TFS), in differentiated human SH-SY5Y cells. Fungicides did not include cytotoxicity up to 200 µM but both induced loss of cell viability at 48 h, with TFS showing slightly higher toxicity that AZS. Caspase 3/7 activity was induced in SH-SY5Y cells by both fungicides at 48 h (50 µM for AZS and 25 µM for TFS). ATP levels were reduced following a 24-hour exposure to > 25 µM AZS and > 6.25 µM TFS and both fungicides rapidly impaired oxidative respiration (~12.5 µM for AZS and ~3.125 µM TFS) and decreased oligomycin-induced ATP production, maximal respiration, and mitochondrial spare capacity. AZS at 100 µM showed a continual impairment of mitochondrial membrane potential (MMP) between 4 and 48 h while TFS at > 50 µM decreased MMP at 24 h. Taken together, TFS exerted higher mitochondrial toxicity at lower concentrations compared to AZS in SH-SY5Y cells. To discern toxicity mechanisms of strobilurin fungicides, lipidomics was conducted in SH-SY5Y cells following exposure to 6.25 µM and 25 µM AZS, and a total of 1595 lipids were detected, representing 49 different lipid classes. Lipid classes with the largest proportion of lipids detected in SH-SY5Y cells included triglycerides (17%), phosphatidylethanolamines (8%), ether-linked triglycerides (8%), phosphatidylcholines (7%), ether-linked phosphatidylethanolamines (6%), and diacylglycerols (5%). Together, these 5 lipid classes accounted for over 50% of the total lipids measured in SH-SY5Y cells. Lipids that were increased by AZS included acyl carnitine, which plays a role in long chain fatty acid utilization for mitochondrial β-oxidation, as well as non-modified, ether linked, and oxidized triacylglycerols, suggesting compensatory upregulation of triglyceride biosynthesis. The ceramide HexCer-NS, linked to neurodegenerative diseases, was decreased in abundance following AZS exposure. In summary, strobilurin fungicides rapidly inhibit mitochondrial oxidative respiration and alter the abundance of several lipids in neuronal cells, relevant for understanding environmental exposure risks related to their neurotoxicity.
Collapse
Affiliation(s)
- Khaai Nguyen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Christina L Sanchez
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Brammer-Robbins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Carlos Pena-Delgado
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Noa Kroyter
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Nader El Ahmadie
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Jacqueline M Watkins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Juan J Aristizabal-Henao
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; BERG LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
28
|
Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiol Dis 2022; 166:105663. [DOI: 10.1016/j.nbd.2022.105663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
|
29
|
Lipid level alteration in human and cellular models of alpha synuclein mutations. NPJ Parkinsons Dis 2022; 8:52. [PMID: 35468903 PMCID: PMC9039073 DOI: 10.1038/s41531-022-00313-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Lipid profiles in biological fluids from patients with Parkinson's disease (PD) are increasingly investigated in search of biomarkers. However, the lipid profiles in genetic PD remain to be determined, a gap of knowledge of particular interest in PD associated with mutant α-synuclein (SNCA), given the known relationship between this protein and lipids. The objective of this research is to identify serum lipid composition from SNCA A53T mutation carriers and to compare these alterations to those found in cells and transgenic mice carrying the same genetic mutation. We conducted an unbiased lipidomic analysis of 530 lipid species from 34 lipid classes in serum of 30 participants with SNCA mutation with and without PD and 30 healthy controls. The primary analysis was done between 22 PD patients with SNCA+ (SNCA+/PD+) and 30 controls using machine-learning algorithms and traditional statistics. We also analyzed the lipid composition of human clonal-cell lines and tissue from transgenic mice overexpressing the same SNCA mutation. We identified specific lipid classes that best discriminate between SNCA+/PD+ patients and healthy controls and found certain lipid species, mainly from the glycerophosphatidylcholine and triradylglycerol classes, that are most contributory to this discrimination. Most of these alterations were also present in human derived cells and transgenic mice carrying the same mutation. Our combination of lipidomic and machine learning analyses revealed alterations in glycerophosphatidylcholine and triradylglycerol in sera from PD patients as well as cells and tissues expressing mutant α-Syn. Further investigations are needed to establish the pathogenic significance of these α-Syn-associated lipid changes.
Collapse
|
30
|
GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022; 11:cells11081261. [PMID: 35455941 PMCID: PMC9029385 DOI: 10.3390/cells11081261] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease (PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset (AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dysfunction, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein. This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of glycosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses the pathways associated with GBA-PD and highlights potential treatments which may act to target GCase and prevent neurodegeneration.
Collapse
|
31
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
32
|
Estes RE, Lin B, Khera A, Davis MY. Lipid Metabolism Influence on Neurodegenerative Disease Progression: Is the Vehicle as Important as the Cargo? Front Mol Neurosci 2022; 14:788695. [PMID: 34987360 PMCID: PMC8721228 DOI: 10.3389/fnmol.2021.788695] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative diseases are characterized by abnormal protein aggregates, including the two most common neurodegenerative diseases Alzheimer’s disease (AD) and Parkinson’s disease (PD). In the global search to prevent and treat diseases, most research has been focused on the early stages of the diseases, including how these pathogenic protein aggregates are initially formed. We argue, however, that an equally important aspect of disease etiology is the characteristic spread of protein aggregates throughout the nervous system, a key process in disease progression. Growing evidence suggests that both alterations in lipid metabolism and dysregulation of extracellular vesicles (EVs) accelerate the spread of protein aggregation and progression of neurodegeneration, both in neurons and potentially in surrounding glia. We will review how these two pathways are intertwined and accelerate the progression of AD and PD. Understanding how lipid metabolism, EV biogenesis, and EV uptake regulate the spread of pathogenic protein aggregation could reveal novel therapeutic targets to slow or halt neurodegenerative disease progression.
Collapse
Affiliation(s)
| | - Bernice Lin
- VA Puget Sound Health Care System, Seattle, WA, United States.,Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Arnav Khera
- VA Puget Sound Health Care System, Seattle, WA, United States
| | - Marie Ynez Davis
- VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Neurology, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Kurzawa-Akanbi M, Tammireddy S, Fabrik I, Gliaudelytė L, Doherty MK, Heap R, Matečko-Burmann I, Burmann BM, Trost M, Lucocq JM, Gherman AV, Fairfoul G, Singh P, Burté F, Green A, McKeith IG, Härtlova A, Whitfield PD, Morris CM. Altered ceramide metabolism is a feature in the extracellular vesicle-mediated spread of alpha-synuclein in Lewy body disorders. Acta Neuropathol 2021; 142:961-984. [PMID: 34514546 PMCID: PMC8568874 DOI: 10.1007/s00401-021-02367-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Mutations in glucocerebrosidase (GBA) are the most prevalent genetic risk factor for Lewy body disorders (LBD)-collectively Parkinson's disease, Parkinson's disease dementia and dementia with Lewy bodies. Despite this genetic association, it remains unclear how GBA mutations increase susceptibility to develop LBD. We investigated relationships between LBD-specific glucocerebrosidase deficits, GBA-related pathways, and α-synuclein levels in brain tissue from LBD and controls, with and without GBA mutations. We show that LBD is characterised by altered sphingolipid metabolism with prominent elevation of ceramide species, regardless of GBA mutations. Since extracellular vesicles (EV) could be involved in LBD pathogenesis by spreading disease-linked lipids and proteins, we investigated EV derived from post-mortem cerebrospinal fluid (CSF) and brain tissue from GBA mutation carriers and non-carriers. EV purified from LBD CSF and frontal cortex were heavily loaded with ceramides and neurodegeneration-linked proteins including alpha-synuclein and tau. Our in vitro studies demonstrate that LBD EV constitute a "pathological package" capable of inducing aggregation of wild-type alpha-synuclein, mediated through a combination of alpha-synuclein-ceramide interaction and the presence of pathological forms of alpha-synuclein. Together, our findings indicate that abnormalities in ceramide metabolism are a feature of LBD, constituting a promising source of biomarkers, and that GBA mutations likely accelerate the pathological process occurring in sporadic LBD through endolysosomal deficiency.
Collapse
|
34
|
Glucosylceramide in cerebrospinal fluid of patients with GBA-associated and idiopathic Parkinson's disease enrolled in PPMI. NPJ Parkinsons Dis 2021; 7:102. [PMID: 34811369 PMCID: PMC8608962 DOI: 10.1038/s41531-021-00241-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Protein-coding variants in the GBA gene modulate susceptibility and progression in ~10% of patients with Parkinson’s disease (PD). GBA encodes the β-glucocerebrosidase enzyme that hydrolyzes glucosylceramide. We hypothesized that GBA mutations will lead to glucosylceramide accumulation in cerebrospinal fluid (CSF). Glucosylceramide, ceramide, sphingomyelin, and lactosylceramide levels were measured by liquid chromatography-tandem mass spectrometry in CSF of 411 participants from the Parkinson’s Progression Markers Initiative (PPMI) cohort, including early stage, de novo PD patients with abnormal dopamine transporter neuroimaging and healthy controls. Forty-four PD patients carried protein-coding GBA variants (GBA-PD) and 227 carried wild-type alleles (idiopathic PD). The glucosylceramide fraction was increased (P = 0.0001), and the sphingomyelin fraction (a downstream metabolite) was reduced (P = 0.0001) in CSF of GBA-PD patients compared to healthy controls. The ceramide fraction was unchanged, and lactosylceramide was below detection limits. We then used the ratio of glucosylceramide to sphingomyelin (the GlcCer/SM ratio) to explore whether these two sphingolipid fractions altered in GBA-PD were useful for stratifying idiopathic PD patients. Idiopathic PD patients in the top quartile of GlcCer/SM ratios at baseline showed a more rapid decline in Montreal Cognitive Assessment scores during longitudinal follow-up compared to those in the lowest quartile with a P-value of 0.036. The GlcCer/SM ratio was negatively associated with α-synuclein levels in CSF of PD patients. This study highlights glucosylceramide as a pathway biomarker for GBA-PD patients and the GlcCer/SM ratio as a potential stratification tool for clinical trials of idiopathic PD patients. Our sphingolipids data together with the clinical, imaging, omics, and genetic characterization of PPMI will contribute a useful resource for multi-modal biomarkers development.
Collapse
|
35
|
Chen J, Liu C, Ye S, Lu R, Zhu H, Xu J. UPLC-MS/MS-based plasma lipidomics reveal a distinctive signature in systemic lupus erythematosus patients. MedComm (Beijing) 2021; 2:269-278. [PMID: 34766146 PMCID: PMC8491212 DOI: 10.1002/mco2.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Global lipidomics is of considerable utility for exploring altered lipid profiles and unique diagnostic biomarkers in diseases. We aim to apply ultra-performance liquid chromatography-tandem mass spectrometry to characterize the lipidomics profile in systemic lupus erythematosus (SLE) patients and explore the underlying pathogenic pathways using the lipidomics approach. Plasma samples from 18 SLE patients, 20 rheumatoid arthritis (RA) patients, and 20 healthy controls (HC) were collected. A total of 467 lipids molecular features were annotated from each sample. Orthogonal partial least square-discriminant analysis, K-mean clustering analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated disrupted lipid metabolism in SLE patients, especially in phospholipid, glycerol, and sphingolipid metabolism. The area under curve (AUC) of lipid metabolism biomarkers was better than SLE inflammation markers that ordinarily used in the clinic. Proposed model of monoglyceride (MG) (16:0), MG (18:0), phosphatidylethanolamine (PE) (18:3-16:0), PE (16:0-20:4), and phosphatidylcholine (PC) (O-16:2-18:3) yielded AUC 1.000 (95% CI, 1.000-1.000), specificity 100% and sensitivity 100% in the diagnosis of SLE from HC. A panel of three lipids molecular PC (18:3-18:1), PE (20:3-18:0), PE (16:0-20:4) permitted to accurately diagnosis of SLE from RA, with AUC 0.921 (95% CI, 0.828-1.000), 70% specificity, and 100% sensitivity. The plasma lipidomics signatures could serve as an efficient and accurate tool for early diagnosis and provide unprecedented insight into the pathogenesis of SLE.
Collapse
Affiliation(s)
- Jiaxi Chen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University Taizhou China
| | - Chong Liu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University Taizhou China
| | - Shenyi Ye
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University Taizhou China
| | - Ruyue Lu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University Taizhou China
| | - Hongguo Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University Taizhou China
| | - Jiaqin Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University Taizhou China
| |
Collapse
|
36
|
Emekli I, Tepgeç F, Samancı B, Toksoy G, Hasanoğulları Kına G, Tüfekçioğlu Z, Başaran S, Bilgiç B, Gürvit IH, Emre M, Uyguner ZO, Hanagasi HA. Clinical and molecular genetic findings of hereditary Parkinson's patients from Turkey. Parkinsonism Relat Disord 2021; 93:35-39. [PMID: 34781237 DOI: 10.1016/j.parkreldis.2021.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The majority of Parkinson's disease (PD) ensue late-onset with a complex spectrum of environmental and genetic risk factors. Awareness of genetic causes in patients with PD is essential for genetic counseling and future genotype-oriented therapeutic developments. METHODS Large pathogenic changes in eight PD-related genes and small pathogenic sequence variants in 22 PD-related genes were investigated simultaneously in 82 PD patients from 79 families where clinical evaluations were performed. The phenotypic characteristics of the patients with molecular changes were examined for genotype-phenotype relations. RESULTS Pathogenic variants in SNCA, PRKN, DJ-1, FBXO7, and GBA genes were determined in 25 patients from 24 families (24/79, 30%). Associated variants were found in PRKN in 14, SNCA in three, FBXO7 in two, and DJ-1 in one patient. A novel homozygous deletion (c.491delT, p.(V164Dfs*13) (SCV001733595)) leading to protein truncation in the PRKN gene was identified in two patients from the same family. Furthermore, heterozygous GBA gene variants were detected in five patients from different families. CONCLUSION It has been shown that the most common cause of genetically transmitted PD is the PRKN gene, while LRRK2 does not play an essential role in this selected population. It has been suggested that even if the autosomal recessive inheritance is expected, genes with autosomal dominant effects such as SNCA should not be overlooked and suggested for investigation. Our study is also the first for evaluating the pathogenic GBA variants' frequency in PD patients from Turkey.
Collapse
Affiliation(s)
- Inci Emekli
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
| | - Fatih Tepgeç
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Bedia Samancı
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | | | - Zeynep Tüfekçioğlu
- Department of Neurology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Seher Başaran
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Başar Bilgiç
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - I Hakan Gürvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Murat Emre
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Hasmet A Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| |
Collapse
|
37
|
Senkevich K, Rudakou U, Gan-Or Z. New therapeutic approaches to Parkinson's disease targeting GBA, LRRK2 and Parkin. Neuropharmacology 2021; 202:108822. [PMID: 34626666 DOI: 10.1016/j.neuropharm.2021.108822] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is defined as a complex disorder with multifactorial pathogenesis, yet a more accurate definition could be that PD is not a single entity, but rather a mixture of different diseases with similar phenotypes. Attempts to classify subtypes of PD have been made based on clinical phenotypes or biomarkers. However, the most practical approach, at least for a portion of the patients, could be to classify patients based on genes involved in PD. GBA and LRRK2 mutations are the most common genetic causes or risk factors of PD, and PRKN is the most common cause of autosomal recessive form of PD. Patients carrying variants in GBA, LRRK2 or PRKN differ in some of their clinical characteristics, pathology and biochemical parameters. Thus, these three PD-associated genes are of special interest for drug development. Existing therapeutic approaches in PD are strictly symptomatic, as numerous clinical trials aimed at modifying PD progression or providing neuroprotection have failed over the last few decades. The lack of precision medicine approach in most of these trials could be one of the reasons why they were not successful. In the current review we discuss novel therapeutic approaches targeting GBA, LRRK2 and PRKN and discuss different aspects related to these genes and clinical trials.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
38
|
Comparative Transcriptome Analysis in Monocyte-Derived Macrophages of Asymptomatic GBA Mutation Carriers and Patients with GBA-Associated Parkinson's Disease. Genes (Basel) 2021; 12:genes12101545. [PMID: 34680941 PMCID: PMC8535749 DOI: 10.3390/genes12101545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations of the GBA gene, encoding for lysosomal enzyme glucocerebrosidase (GCase), are the greatest genetic risk factor for Parkinson’s disease (PD) with frequency between 5% and 20% across the world. N370S and L444P are the two most common mutations in the GBA gene. PD carriers of severe mutation L444P in the GBA gene is characterized by the earlier age at onset compared to N370S. Not every carrier of GBA mutations develop PD during one’s lifetime. In the current study we aimed to find common gene expression signatures in PD associated with mutation in the GBA gene (GBA-PD) using RNA-seq. We compared transcriptome of monocyte-derived macrophages of 5 patients with GBA-PD (4 L444P/N, 1 N370S/N) and 4 asymptomatic GBA mutation carriers (GBA-carriers) (3 L444P/N, 1 N370S/N) and 4 controls. We also conducted comparative transcriptome analysis for L444P/N only GBA-PD patients and GBA-carriers. Revealed deregulated genes in GBA-PD independently of GBA mutations (L444P or N370S) were involved in immune response, neuronal function. We found upregulated pathway associated with zinc metabolism in L444P/N GBA-PD patients. The potential important role of DUSP1 in the pathogenesis of GBA-PD was suggested.
Collapse
|
39
|
Parkinson's Disease-Related Genes and Lipid Alteration. Int J Mol Sci 2021; 22:ijms22147630. [PMID: 34299248 PMCID: PMC8305702 DOI: 10.3390/ijms22147630] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a complex and progressive neurodegenerative disorder with a prevalence of approximately 0.5–1% among those aged 65–70 years. Although most of its clinical manifestations are due to a loss of dopaminergic neurons, the PD etiology is largely unknown. PD is caused by a combination of genetic and environmental factors, and the exact interplay between genes and the environment is still debated. Several biological processes have been implicated in PD, including mitochondrial or lysosomal dysfunctions, alteration in protein clearance, and neuroinflammation, but a common molecular mechanism connecting the different cellular alterations remains incompletely understood. Accumulating evidence underlines a significant role of lipids in the pathological pathways leading to PD. Beside the well-described lipid alteration in idiopathic PD, this review summarizes the several lipid alterations observed in experimental models expressing PD-related genes and suggests a possible scenario in relationship to the molecular mechanisms of neuronal toxicity. PD could be considered a lipid-induced proteinopathy, where alteration in lipid composition or metabolism could induce protein alteration—for instance, alpha-synuclein accumulation—and finally neuronal death.
Collapse
|
40
|
Macías-García D, Periñán MT, Muñoz-Delgado L, Jimenez-Jaraba MV, Labrador-Espinosa MÁ, Jesús S, Buiza-Rueda D, Méndez-Del Barrio C, Adarmes-Gómez A, Gómez-Garre P, Mir P. Serum lipid profile among sporadic and familial forms of Parkinson's disease. NPJ Parkinsons Dis 2021; 7:59. [PMID: 34272400 PMCID: PMC8285472 DOI: 10.1038/s41531-021-00206-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Brain cholesterol metabolism has been described as altered in Parkinson's disease (PD) patients. Serum lipid levels have been widely studied in PD with controversial results among different populations and age groups. The present study is aimed at determining if the serum lipid profile could be influenced by the genetic background of PD patients. We included 403 PD patients (342 sporadic PD patients, 30 GBA-associated PD patients, and 31 LRRK2-associated PD patients) and 654 healthy controls (HCs). Total cholesterol, HDL, LDL, and triglycerides were measured in peripheral blood. Analysis of covariance adjusting for sex and age (ANCOVA) and post hoc tests were applied to determine the differences within lipid profiles among the groups. Multivariate ANCOVA revealed significant differences among the groups within cholesterol and LDL levels. GBA-associated PD patients had significantly lower levels of total cholesterol and LDL compared to LRRK2-associated PD patients and HCs. The different serum cholesterol levels in GBA-associated PD might be related to diverse pathogenic mechanisms. Our results support the hypothesis of lipid metabolism disruption as one of the main PD pathogenic mechanisms in patients with GBA-associated PD. Further studies would be necessary to explore their clinical implications.
Collapse
Grants
- PI14/01823, PI16/01575, PI18/01898, PI19/01576 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CM18/00142 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI-0471-2013, PE-0210-2018, PI-0459-2018, PE-0186-2019 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- B-0007-2019 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- FPU16/05061 Ministerio de Educación, Cultura y Deporte (Ministry of Education, Culture and Sports, Spain)
- Spanish Ministry of Science and Innovation [RTC2019-007150-1]
Collapse
Affiliation(s)
- Daniel Macías-García
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Teresa Periñán
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Valle Jimenez-Jaraba
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Ángel Labrador-Espinosa
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Medicina Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dolores Buiza-Rueda
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carlota Méndez-Del Barrio
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Departamento de Medicina Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
41
|
Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci Rep 2021; 11:13562. [PMID: 34193885 PMCID: PMC8245424 DOI: 10.1038/s41598-021-92112-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/14/2020] [Indexed: 12/04/2022] Open
Abstract
Motor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.
Collapse
|
42
|
Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021; 11:945. [PMID: 34202192 PMCID: PMC8301871 DOI: 10.3390/biom11070945] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a bioactive sphingolipid involved in numerous cellular processes. In addition to being the precursor of complex sphingolipids, ceramides can act as second messengers, especially when they are generated at the plasma membrane of cells. Its metabolic dysfunction may lead to or be a consequence of an underlying disease. Recent reports on transcriptomics and electrospray ionization mass spectrometry analysis have demonstrated the variation of specific levels of sphingolipids and enzymes involved in their metabolism in different neurodegenerative diseases. In the present review, we highlight the most relevant discoveries related to ceramide and neurodegeneration, with a special focus on Parkinson's disease.
Collapse
Affiliation(s)
- Antía Custodia
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Marta Aramburu-Núñez
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Adrián Posado-Fernández
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Ana Gómez-Larrauri
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
- Respiratory Department, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| |
Collapse
|
43
|
Menozzi E, Schapira AHV. Exploring the Genotype-Phenotype Correlation in GBA-Parkinson Disease: Clinical Aspects, Biomarkers, and Potential Modifiers. Front Neurol 2021; 12:694764. [PMID: 34248830 PMCID: PMC8264189 DOI: 10.3389/fneur.2021.694764] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Variants in the glucocerebrosidase (GBA) gene are the most common genetic risk factor for Parkinson disease (PD). These include pathogenic variants causing Gaucher disease (GD) (divided into “severe,” “mild,” or “complex”—resulting from recombinant alleles—based on the phenotypic effects in GD) and “risk” variants, which are not associated with GD but nevertheless confer increased risk of PD. As a group, GBA-PD patients have more severe motor and nonmotor symptoms, faster disease progression, and reduced survival compared with noncarriers. However, different GBA variants impact variably on clinical phenotype. In the heterozygous state, “complex” and “severe” variants are associated with a more aggressive and rapidly progressive disease. Conversely, “mild” and “risk” variants portend a more benign course. Homozygous or compound heterozygous carriers usually display severe phenotypes, akin to heterozygous “complex” or “severe” variants carriers. This article reviews genotype–phenotype correlations in GBA-PD, focusing on clinical and nonclinical aspects (neuroimaging and biochemical markers), and explores other disease modifiers that deserve consideration in the characterization of these patients.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
44
|
Association of gender and age at onset with glucocerebrosidase associated Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 2021; 42:2261-2271. [PMID: 33837876 DOI: 10.1007/s10072-021-05230-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Glucocerebrosidase (GBA) gene has been proved to be a risk factor for the development of Parkinson's disease (PD). However, the gender effect in the prevalence of GBA-associated PD (GBA-PD) is still controversial. And there is no conclusion whether the age at onset (AAO) of PD is different between carriers and non-carriers of GBA. To clarify the association between gender and AAO in GBA-PD, we conducted a systematic review and meta-analysis. PubMed, Web of Science, and Embase were retrieved to obtain potentially related studies. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the association between gender and GBA-PD. And the weighted mean difference (WMD) with 95% CIs was employed to assess the difference of AAO between carriers and non-carriers of GBA. A total of twenty-eight studies involving 16,488 PD patients were included in this meta-analysis. The results showed the prevalence of female patients was higher in GBA-PD [OR: 1.19, (95% CI, 1.07-1.32), P = 0.001]. Meanwhile, GBA carriers had younger age at PD onset than GBA non-carriers [WMD: 2.87, (95% CI, 2.48-3.27), P < 0.001]. Results of subgroup analysis showed the prevalence of women in GBA-PD was higher than men in North American and European PD patients, while the gender difference was not significant in other areas around the world, suggesting an ethnic specificity of gender effect for GBA-PD. Our results indicate the higher female prevalence with ethnic specificity and younger AAO of GBA carriers in GBA-PD.
Collapse
|
45
|
Abstract
Life expectancy, and longevity have been increasing in recent years. However, this is, in most cases, accompanied by age-related diseases. Thus, it became essential to better understand the mechanisms inherent to aging, and to establish biomarkers that characterize this physiological process. Among all biomolecules, lipids appear to be a good target for the study of these biomarkers. In fact, some lipids have already been associated with age-related diseases. With the development of analytical techniques such as Mass Spectrometry, and Nuclear Magnetic Resonance, Lipidomics has been increasingly used to study pathological, and physiological states of an organism. Thus, the study of serum, and plasma lipidome in centenarians, and elderly individuals without age-related diseases can be a useful tool for the identification of aging biomarkers, and to understand physiological aging, and longevity. This review focus on the importance of lipids as biomarkers of aging, and summarize the changes in the lipidome that have been associated with aging, and longevity.
Collapse
|
46
|
Castellanos DB, Martín-Jiménez CA, Rojas-Rodríguez F, Barreto GE, González J. Brain lipidomics as a rising field in neurodegenerative contexts: Perspectives with Machine Learning approaches. Front Neuroendocrinol 2021; 61:100899. [PMID: 33450200 DOI: 10.1016/j.yfrne.2021.100899] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimeŕs, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field.
Collapse
Affiliation(s)
- Daniel Báez Castellanos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Cynthia A Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E Barreto
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
47
|
Senkevich KA, Kopytova AE, Usenko TS, Emelyanov AK, Pchelina SN. Parkinson's Disease Associated with GBA Gene Mutations: Molecular Aspects and Potential Treatment Approaches. Acta Naturae 2021; 13:70-78. [PMID: 34377557 PMCID: PMC8327146 DOI: 10.32607/actanaturae.11031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disease. To date, genome-wide association studies have identified more than 70 loci associated with the risk of PD. Variants in the GBA gene encoding glucocerebrosidase are quite often found in PD patients in all populations across the world, which justifies intensive investigation of this gene. A number of biochemical features have been identified in patients with GBA-associated Parkinson's disease (GBA-PD). In particular, these include decreased activity of glucocerebrosidase and accumulation of the glucosylceramide substrate. These features were the basis for putting forward a hypothesis about treatment of GBA-PD using new strategies aimed at restoring glucocerebrosidase activity and reducing the substrate concentration. This paper discusses the molecular and genetic mechanisms of GBA-PD pathogenesis and potential approaches to the treatment of this form of the disease.
Collapse
Affiliation(s)
- K. A. Senkevich
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, 188300 Russia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, 197022 Russia
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada
| | - A. E. Kopytova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, 188300 Russia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, 197022 Russia
| | - T. S. Usenko
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, 188300 Russia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, 197022 Russia
| | - A. K. Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, 188300 Russia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, 197022 Russia
| | - S. N. Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, 188300 Russia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, 197022 Russia
- Institute of Experimental Medicine, St. Petersburg, 197376 Russia
| |
Collapse
|
48
|
Kulabukhova DG, Garaeva LA, Emelyanov AK, Senkevich KA, Gracheva EV, Miliukhina IV, Varfolomeeva EY, Timofeeva AA, Schwartsman AL, Shtam TA, Pchelina SN. Plasma Exosomes in Inherited Forms of Parkinson’s Disease. Mol Biol 2021. [DOI: 10.1134/s002689332101009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Gusev EI, Katunina EA, Martinov MY, Blokhin VE, Kalinkin AL, Alesenko AV, Nodel MR, Malykhina EA, Titova NV, Katunin DA, Shupik MA, Gutner UA, Maloshitskaya OA, Sokolov SA, Kucheryanu VG, Pavlova EN, Ugrumov MV. [Development of early diagnosis of Parkinson's disease based on the search for biomarkers such as premotor symptoms and changes in blood]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:7-17. [PMID: 33459535 DOI: 10.17116/jnevro20201201217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine changes in the chemical composition of blood plasma in subjects at risk of Parkinson's disease (PD) at the prodromal stage compared with age control. MATERIAL AND METHODS Subjects at risk were selected for the presence of characteristic premotor symptoms, including impairments of sleep, olfaction and constipation.The risk group included 12 people, the control group - 8 people. RESULTS Among seven catecholamines and their metabolites detected in the blood, only the concentration of L-dioxiphenylalanine (L-DOPA) changed (decreased) in subjects at risk compared with the control. A decrease in the concentration of L-DOPA is considered as a manifestation (marker) of selective degeneration of central and peripheral catecholaminergic neurons in PD. In contrast to L-DOPA, the concentration of seven of the twelve detected sphingomyelins in the blood of the subjects at risk increased. Given that a change in the metabolism of sphingomyelins is associated with processes such as apoptosis, autophagy, and synucleinopathy, an increase in their concentration in the blood of patients at risk is considered as a manifestation of systemic general degeneration of central and peripheral neurons. Finally, in the blood of subjects at risk, we found a trend towards a decrease in the concentration of urates, which are endogenous neuroprotectors. CONCLUSION The changes in the level of L-DOPA, sphingmyelins and urates in the blood of subjects at risk may serve as diagnostic markers of PD at the prodromal stage.
Collapse
Affiliation(s)
- E I Gusev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E A Katunina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - M Yu Martinov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V E Blokhin
- Koltsov Institute of Developmental Biology RAS, Moscow, Russia
| | - A L Kalinkin
- Medical Research and Education Center of Lomonosov Moscow State University, Moscow, Russia
| | - A V Alesenko
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - M R Nodel
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E A Malykhina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - N V Titova
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - D A Katunin
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - M A Shupik
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - U A Gutner
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | | | - S A Sokolov
- Lomonosov Moscow State University, Moscow, Russia
| | - V G Kucheryanu
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - E N Pavlova
- Koltsov Institute of Developmental Biology RAS, Moscow, Russia
| | - M V Ugrumov
- Koltsov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
50
|
Altered level of plasma exosomes in patients with Gaucher disease. Eur J Med Genet 2020; 63:104038. [PMID: 32822875 DOI: 10.1016/j.ejmg.2020.104038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023]
Abstract
Mutations in the glucocerebrosidase gene (GBA) cause Gaucher disease (GD), the lysosomal storage disorder (LSD), and are the most common genetic risk factor of Parkinson's disease (PD). Lysosome functionality plays a critical role for secretion of extracellular vesicles (EVs) and their content. Here we compared EVs from the blood plasma of 8 GD patients and 8 controls in terms of amounts, size distribution, and composition of their protein cargo. EVs were isolated via sequential centrifugation and characterized by сryo-electron microscopy (cryo-EM), nanoparticle tracking analysis (NTA), and dynamic light scattering (DLS). The presence of exosomal markers HSP70 and tetrasponins were analyzed by Western blot and flow cytometry. Protein profiling was performed by mass-spectrometry (shotgun analysis). Here, for the first time we reported an increased size and altered morphology in exosomes derived from blood plasma of GD patients. An increased size of plasma exosomes from GD patients compared to controls was demonstrated by cryo-EM and DLS (р<0.0001, p < 0.001, respectively) and confirmed by mode size detected by NTA (p < 0.02). Cryo-EM demonstrated an increased number of double and multilayer vesicles in plasma EVs from GD patients. We found that the EVs were enriched with the surface exosomal markers (CD9, СD63, CD81) and an exosome-associated protein HSP70 in case of the patients with the disease. Proteomic profiling of exosomal proteins did not reveal any proteins associated with PD pathogenesis. Thus, we showed that lysosomal dysfunction in GD patients lead to a striking alteration of plasma exosomes in size and morphology.
Collapse
|