1
|
Zhao W, Wang X, Liu Y, Lu L, Ding Y, Zhang T. Timosaponin AⅢ inhibits ectopic lipid deposition and enhances the browning of white adipose tissue. Eur J Pharmacol 2025; 998:177506. [PMID: 40074140 DOI: 10.1016/j.ejphar.2025.177506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
Timosaponin AⅢ(TAⅢ), derived from the Chinese medicinal herb Anemarrhena asphodeloides Bunge, has been reported to have a range of pharmacological effects including improvement of learning and memory deficits, anti-tumor, hypoglycemic effect and anti-hypertension. This study explored the therapeutic effects and preliminary mechanisms of TAⅢ in improving insulin resistance in ob/ob mice. We found that treatment with 10 mg kg-1·d-1 of TAⅢ reduced the expression of SREBPs and alleviated ectopic lipid deposition by decreasing DAG accumulation in liver. The decrease of DAG further inhibited the membrane translocation of PKC-ε, releasing its inhibition of phosphorylation at Ser307 of IRS1, and ultimately enhancing the AKT signaling response to insulin stimulation. In addition, TAⅢ promoted the browning of iWAT by activating the PGC1α-UCP1 axis on ob/ob mice, thereby enhancing fatty acid oxidation and increasing energy consumption, thus reducing its interference with insulin signaling. TAⅢ worked by enhancing the function of adipose tissue and inhibited lipid synthesis. These actions collectively ameliorated metabolic disturbances associated with insulin resistance. Therefore, we preliminarily concluded that TAⅢ improved metabolic disturbances related to insulin resistance. However, further research is needed, additional studies are necessary to validate these potential mechanisms.
Collapse
Affiliation(s)
- Wenjun Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lu Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Cai Z, Zhong Q, Zhang D, Feng Y, Wang Q, Yang Y, Xu Y, Liang C, Liu Z, Cai K. Z-Spectral MRI Quantifies the Mass and Metabolic Activity of Adipose Tissues With Fat-Water-Fraction and Amide-Proton-Transfer Contrasts. J Magn Reson Imaging 2025; 61:1905-1913. [PMID: 39215496 PMCID: PMC11868463 DOI: 10.1002/jmri.29598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is metabolically activatable and plays an important role in obesity and metabolic diseases. With reduced fat-water-fraction (FWF) compared with white adipose tissue (WAT), BAT mass and its functional activation may be quantified with Z-spectra MRI, with built-in FWF and the metabolic amide proton transfer (APT) contrasts. PURPOSE To investigate if Z-spectral MRI can quantify the mass and metabolic activity of adipose tissues. STUDY TYPE Prospective. SUBJECTS Seven groups of 8-week-old male rats, including two groups (n = 7 per group) for in vivo MRI study and five groups (n = 5 per group) for ex vivo validation; 12 young and healthy volunteers with 6 male and 6 female. FIELD STRENGTH/SEQUENCE The 7 T small animal and 3 T clinical systems, T2-weighted imaging, Rapid Acquisition with Relaxation Enhancement (RARE) readout based chemical exchange saturation transfer (CEST) Z-spectral MRI sequence. ASSESSMENT Quantified FWF and APT from Z-spectra in rats before and after norepinephrine (NE) stimulation and in healthy human subjects; ex vivo measurements of total proteins in BAT from rats. STATISTICAL TESTS Two-tailed unpaired Student's t-tests and repeated measures ANOVA. P-value <0.05 was considered significant. RESULTS Decreased FWF (from 39.6% ± 7.2% before NE injection to 16.4% ± 7.2% 120 minutes after NE injection, P < 0.0001) and elevated APT (from 1.1% ± 0.5% before NE injection to 2.9% ± 0.5% 120 minutes after NE injection, P < 0.0001) signals in BAT were observed with in vivo Z-spectral MRI in rats injected with NE at 7 T MRI. At clinical 3 T, Z-spectral MRI was used to quantify the FWF (58.5% ± 7.2% in BAT and 73.7% ± 6.5% in WAT with P < 0.0001) and APT (2.6% ± 0.8% in BAT and 0.9% ± 0.3% in WAT with P < 0.0001) signals in healthy volunteers. APT signals of BAT were negatively correlated with the BMI in humans (r = 0.71). DATA CONCLUSION Endogenous Z-spectral MRI was demonstrated to simultaneously quantify BAT mass and function based on its FWF and APT contrasts. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE 1.
Collapse
Affiliation(s)
- Zimeng Cai
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daming Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan, China
| | - Qian Wang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yuanbo Yang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | | | - Changhong Liang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Zaiyi Liu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Kejia Cai
- Radiology Department, University of Illinois at Chicago, Chicago, Illinois, USA
- Biomedical Engineering Department, University of llinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Brzęk P, Selewestruk P, Sadowska J, Gębczyński AK, Książek A, Kalinovich A, Nedergaard J, Konarzewski M. Divergent selection for basal metabolic rate in mice affects the abundance of UCP1 protein: implications for translational studies. J Physiol 2025; 603:319-336. [PMID: 39723882 DOI: 10.1113/jp286669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Low basal metabolic rate (BMR) is a risk factor for obesity, whereas elevation of non-shivering thermogenesis (NST) is a promising means to combat obesity. Because heat generated by NST covers thermogenic needs not fulfilled by BMR, one can expect the presence of a negative relationship between both parameters. Understanding of the mechanisms underlying this relationship is therefore important for interpretation of the results of translational experiments and the development of anti-obesity treatments. We studied two lines of laboratory mice divergently selected for high or low level of BMR, raised at 23°C and subsequently acclimated to different ambient temperatures (30, 23 and 4°C). Mice selected for low BMR accumulated more fat but simultaneously showed higher NST capacity and more uncoupling protein-1 (UCP1) in interscapular brown adipose tissue (iBAT), to compensate for their lower heat production through BMR. The between-line difference in UCP1 protein abundance was significant even in mice acclimated to 30°C when the level of UCP1 is very low. Differences in NST capacity between selected lines and acclimation temperatures were explained by UCP1 iBAT abundance. Our results reveal that BMR is inversely correlated with UCP1 protein abundance and NST, even after acclimation to thermoneutrality. Thus, low values of BMR can increase both obesity risk and the magnitude of NST, i.e. the process whose activation has been proposed to mitigate obesity risk. All these effects should be taken into account in the design and interpretation of translational studies on mice models of metabolic diseases. KEY POINTS: Basal metabolic rate (BMR) and non-shivering thermogenesis (NST) based on the activity of uncoupling protein-1 (UCP1) are two main sources of heat in laboratory mice. Both BMR and UCP1 can affect obesity risk in laboratory rodents and humans. Here we studied BMR, NST, and the abundance of UCP1 in laboratory mice selected divergently towards either high or low BMR. We showed that BMR is negatively correlated with UCP1 abundance and this effect is not removed even after acclimation to thermoneutrality. The pattern described reveals that BMR can affect not only obesity risk but also the magnitude of UCP1-mediated NST. Since activation of NST was proposed to mitigate obesity risk, variation in BMR should be taken into account in translational studies of mouse models of metabolic diseases.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Białystok, Poland
| | | | - Julita Sadowska
- Faculty of Biology, University of Białystok, Białystok, Poland
| | | | - Aneta Książek
- Faculty of Biology, University of Białystok, Białystok, Poland
| | - Anastasia Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
4
|
Cai Z, Zhong Q, Feng Y, Wang Q, Zhang Z, Wei C, Yin Z, Liang C, Liew CW, Kazak L, Cypess AM, Liu Z, Cai K. Non-invasive mapping of brown adipose tissue activity with magnetic resonance imaging. Nat Metab 2024; 6:1367-1379. [PMID: 39054361 PMCID: PMC11272596 DOI: 10.1038/s42255-024-01082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Thermogenic brown adipose tissue (BAT) has a positive impact on whole-body metabolism. However, in vivo mapping of BAT activity typically relies on techniques involving ionizing radiation, such as [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) and computed tomography (CT). Here we report a noninvasive metabolic magnetic resonance imaging (MRI) approach based on creatine chemical exchange saturation transfer (Cr-CEST) contrast to assess in vivo BAT activity in rodents and humans. In male rats, a single dose of the β3-adrenoceptor agonist (CL 316,243) or norepinephrine, as well as cold exposure, triggered a robust elevation of the Cr-CEST MRI signal, which was consistent with the [18F]FDG PET and CT data and 1H nuclear magnetic resonance measurements of creatine concentration in BAT. We further show that Cr-CEST MRI detects cold-stimulated BAT activation in humans (both males and females) using a 3T clinical scanner, with data-matching results from [18F]FDG PET and CT measurements. This study establishes Cr-CEST MRI as a promising noninvasive and radiation-free approach for in vivo mapping of BAT activity.
Collapse
Affiliation(s)
- Zimeng Cai
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Qian Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Zuoman Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cailv Wei
- School of Medicine, Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Chong Wee Liew
- Physiology and Biophysics Department, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Jurado-Fasoli L, Sanchez-Delgado G, Di X, Yang W, Kohler I, Villarroya F, Aguilera CM, Hankemeier T, Ruiz JR, Martinez-Tellez B. Cold-induced changes in plasma signaling lipids are associated with a healthier cardiometabolic profile independently of brown adipose tissue. Cell Rep Med 2024; 5:101387. [PMID: 38262411 PMCID: PMC10897514 DOI: 10.1016/j.xcrm.2023.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Cold exposure activates brown adipose tissue (BAT) and potentially improves cardiometabolic health through the secretion of signaling lipids by BAT. Here, we show that 2 h of cold exposure in young adults increases the levels of omega-6 and omega-3 oxylipins, the endocannabinoids (eCBs) anandamide and docosahexaenoylethanolamine, and lysophospholipids containing polyunsaturated fatty acids. Contrarily, it decreases the levels of the eCBs 1-LG and 2-LG and 1-OG and 2-OG, lysophosphatidic acids, and lysophosphatidylethanolamines. Participants overweight or obese show smaller increases in omega-6 and omega-3 oxylipins levels compared to normal weight. We observe that only a small proportion (∼4% on average) of the cold-induced changes in the plasma signaling lipids are slightly correlated with BAT volume. However, cold-induced changes in omega-6 and omega-3 oxylipins are negatively correlated with adiposity, glucose homeostasis, lipid profile, and liver parameters. Lastly, a 24-week exercise-based randomized controlled trial does not modify plasma signaling lipid response to cold exposure.
Collapse
Affiliation(s)
- Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - Xinyu Di
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Wei Yang
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Isabelle Kohler
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Francesc Villarroya
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Concepcion M Aguilera
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain; Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain
| | - Thomas Hankemeier
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain.
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain.
| |
Collapse
|
6
|
Jurado-Fasoli L, Sanchez-Delgado G, Alcantara JMA, Acosta FM, Sanchez-Sanchez R, Labayen I, Ortega FB, Martinez-Tellez B, Ruiz JR. Adults with metabolically healthy overweight or obesity present more brown adipose tissue and higher thermogenesis than their metabolically unhealthy counterparts. EBioMedicine 2024; 100:104948. [PMID: 38184936 PMCID: PMC10808934 DOI: 10.1016/j.ebiom.2023.104948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND There is a subset of individuals with overweight/obesity characterized by a lower risk of cardiometabolic complications, the so-called metabolically healthy overweight/obesity (MHOO) phenotype. Despite the relatively higher levels of subcutaneous adipose tissue and lower visceral adipose tissue observed in individuals with MHOO than individuals with metabolically unhealthy overweight/obesity (MUOO), little is known about the differences in brown adipose tissue (BAT). METHODS This study included 53 young adults (28 women) with a body mass index (BMI) ≥25 kg/m2 which were classified as MHOO (n = 34) or MUOO (n = 19). BAT was assessed through a static 18F-FDG positron emission tomography/computed tomography scan after a 2-h personalized cooling protocol. Energy expenditure, skin temperature, and thermal perception were assessed during a standardized mixed meal test (3.5 h) and a 1-h personalized cold exposure. Body composition was assessed by dual-energy x-ray absorptiometry, energy intake was determined during an ad libitum meal test and dietary recalls, and physical activity levels were determined by a wrist-worn accelerometer. FINDINGS Participants with MHOO presented higher BAT volume (+124%, P = 0.008), SUVmean (+63%, P = 0.001), and SUVpeak (+133%, P = 0.003) than MUOO, despite having similar BAT mean radiodensity (P = 0.354). In addition, individuals with MHOO exhibited marginally higher meal-induced thermogenesis (P = 0.096) and cold-induced thermogenesis (+158%, P = 0.050). Moreover, MHOO participants showed higher supraclavicular skin temperature than MUOO during the first hour of the postprandial period and during the cold exposure, while no statistically significant differences were observed in other skin temperature parameters. We observed no statistically significant differences between MHOO and MUOO in thermal perception, body composition, outdoor ambient temperature exposure, resting metabolic rate, energy intake, or physical activity levels. INTERPRETATION Adults with MHOO present higher BAT volume and activity than MUOO. The higher meal- and cold-induced thermogenesis and cold-induced supraclavicular skin temperature are compatible with a higher BAT activity. Overall, these results suggest that BAT presence and activity might be linked to a healthier phenotype in young adults with overweight or obesity. FUNDING See acknowledgments section.
Collapse
Affiliation(s)
- Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Andalucía, Spain.
| | - Guillermo Sanchez-Delgado
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain; Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - Juan M A Alcantara
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Department of Health Sciences, "Institute for Sustainability & Food Chain Innovation", Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Francisco M Acosta
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain; Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship, University of Turku, 20014, Turku, Finland; MediCity/PET Preclinical Laboratory, University of Turku, Turku PET Centre, Turku, Finland
| | - Rocio Sanchez-Sanchez
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain; Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Idoia Labayen
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Department of Health Sciences, "Institute for Sustainability & Food Chain Innovation", Public University of Navarre, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain.
| |
Collapse
|
7
|
Bjorkman SH, Marti A, Jena J, García-Peña LM, Weatherford ET, Kato K, Koneru J, Chen J, Sood A, Potthoff MJ, Adams CM, Abel ED, Pereira RO. ATF4 expression in thermogenic adipocytes is required for cold-induced thermogenesis in mice via FGF21-independent mechanisms. Sci Rep 2024; 14:1563. [PMID: 38238383 PMCID: PMC10796914 DOI: 10.1038/s41598-024-52004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.
Collapse
Affiliation(s)
- Sarah H Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Alex Marti
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Jayashree Jena
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Eric T Weatherford
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Kevin Kato
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Jivan Koneru
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Jason Chen
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Ayushi Sood
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Matthew J Potthoff
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher M Adams
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Renata O Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Weidlinger S, Winterberger K, Pape J, Weidlinger M, Janka H, von Wolff M, Stute P. Impact of estrogens on resting energy expenditure: A systematic review. Obes Rev 2023; 24:e13605. [PMID: 37544655 DOI: 10.1111/obr.13605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
The fear of weight gain is one of the main reasons for women not to initiate or to early discontinue hormonal contraception or menopausal hormone therapy. Resting energy expenditure is by far the largest component and the most important determinant of total energy expenditure. Given that low resting energy expenditure is a confirmed predictive factor for weight gain and consecutively for the development of obesity, research into the influence of sex steroids on resting energy expenditure is a particularly exciting area. The objective of this systematic review was to evaluate the effects of medication with natural and synthetic estrogens on resting energy expenditure in healthy normal weight and overweight women. Through complex systematic literature searches, a total of 10 studies were identified that investigated the effects of medication with estrogens on resting energy expenditure. Our results demonstrate that estrogen administration increases resting energy expenditure by up to +208 kcal per day in the context of contraception and by up to +222 kcal per day in the context of menopausal hormone therapy, suggesting a preventive effect of circulating estrogen levels and estrogen administration on weight gain and obesity development.
Collapse
Affiliation(s)
- Susanna Weidlinger
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Katja Winterberger
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Janna Pape
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | | | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, Bern, Switzerland
| | - Michael von Wolff
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Petra Stute
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Bjorkman SH, Marti A, Jena J, Garcia Pena LM, Weatherford ET, Kato K, Koneru J, Chen J, Sood A, Potthoff MJ, Adams CM, Abel ED, Pereira RO. ATF4 Expression in Thermogenic Adipocytes is Required for Cold-Induced Thermogenesis in Mice via FGF21-Independent Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531964. [PMID: 36945390 PMCID: PMC10028960 DOI: 10.1101/2023.03.09.531964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially via upregulation of FGF21. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis by generating mice selectively lacking either Atf4 ( ATF4 BKO ) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum -fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue (WAT). Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum -fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis by activating amino acid metabolism in BAT in a FGF21-independent manner.
Collapse
|
10
|
Sixtus RP, Gray C, Berry MJ, Dyson RM. Preterm-born individuals: a vulnerable population at risk of cardiovascular morbidity and mortality during thermal extremes? Exp Physiol 2023; 108:1011-1025. [PMID: 37084061 PMCID: PMC10988436 DOI: 10.1113/ep091152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
NEW FINDINGS What is the topic of this review? Thermal extremes disproportionately affect populations with cardiovascular conditions. Preterm birth, across all gestational age ranges below 37 weeks, has been identified as a non-modifiable risk factor for cardiovascular disease. The hypothesis is presented that individuals born preterm are at an increased risk of cardiovascular morbidity and mortality during thermal extremes. What advances does it highlight? Cardiovascular stress tests performed in preterm-born populations, from infancy through adulthood, highlight a progression of cardiovascular dysfunction accelerating through adolescence and adulthood. This dysfunction has many similarities with populations known to be at risk in thermal extremes. ABSTRACT Preterm-born individuals are a uniquely vulnerable population. Preterm exposure to the extrauterine environment and the (mal)adaptations that occur during the transitional period can result in alterations to their macro- and micro-physiological state. The physiological adaptations that increase survival in the short term may place those born preterm on a trajectory of lifelong dysfunction and later-life decompensation. Cardiovascular compensation in children and adolescents, which masks this trajectory of dysfunction, is overcome under stress, such that the functional cardiovascular capacity is reduced and recovery impaired following physiological stress. This has implications for their response to thermal stress. As the Anthropocene introduces greater changes in our environment, thermal extremes will impact vulnerable populations as yet unidentified in the climate change context. Here, we present the hypothesis that individuals born preterm are a vulnerable population at an increased risk of cardiovascular morbidity and mortality during thermal extremes.
Collapse
Affiliation(s)
- Ryan Phillip Sixtus
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Clint Gray
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Mary Judith Berry
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Rebecca Maree Dyson
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
11
|
Valenzuela PL, Carrera-Bastos P, Castillo-García A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol 2023; 20:475-494. [PMID: 36927772 DOI: 10.1038/s41569-023-00847-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/18/2023]
Abstract
The prevalence of obesity has reached pandemic proportions, and now approximately 25% of adults in Westernized countries have obesity. Recognized as a major health concern, obesity is associated with multiple comorbidities, particularly cardiometabolic disorders. In this Review, we present obesity as an evolutionarily novel condition, summarize the epidemiological evidence on its detrimental cardiometabolic consequences and discuss the major mechanisms involved in the association between obesity and the risk of cardiometabolic diseases. We also examine the role of potential moderators of this association, with evidence for and against the so-called 'metabolically healthy obesity phenotype', the 'fatness but fitness' paradox or the 'obesity paradox'. Although maintenance of optimal cardiometabolic status should be a primary goal in individuals with obesity, losing body weight and, particularly, excess visceral adiposity seems to be necessary to minimize the risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre ("i + 12"), Madrid, Spain.
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain.
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre ("i + 12"), Madrid, Spain
- Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| |
Collapse
|
12
|
Hropot T, Herman R, Janez A, Lezaic L, Jensterle M. Brown Adipose Tissue: A New Potential Target for Glucagon-like Peptide 1 Receptor Agonists in the Treatment of Obesity. Int J Mol Sci 2023; 24:ijms24108592. [PMID: 37239935 DOI: 10.3390/ijms24108592] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose tissue can be divided into white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, according to the differences in morphology. WAT acts as a buffer for increased energy intake and decreased energy expenditure during the development of obesity, resulting in visceral and ectopic WAT accumulation. These WAT depots are strongly associated with chronic systemic inflammation, insulin resistance, and cardiometabolic risk related to obesity. They represent a primary weight loss target in anti-obesity management. Second-generation anti-obesity medications glucagon-like peptide-1 receptor agonists (GLP-1RAs) cause weight loss and improve body composition by reducing visceral and ectopic fat depots of WAT, resulting in improved cardiometabolic health. Recently, the understanding of the physiological significance of BAT beyond its primary function in generating heat through non-shivering thermogenesis has been expanded. This has raised scientific and pharmaceutical interest in the manipulation of BAT to further enhance weight reduction and body weight maintenance. This narrative review focuses on the potential impact of GLP-1 receptor agonism on BAT, particularly in human clinical studies. It provides an overview of the role of BAT in weight management and highlights the need for further research to elucidate the mechanisms by which GLP-1RAs affect energy metabolism and weight loss. Despite encouraging preclinical data, limited clinical evidence supports the notion that GLP-1RAs contribute to BAT activation.
Collapse
Affiliation(s)
- Tim Hropot
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, 1000 Ljubljana, Slovenia
| | - Rok Herman
- Department for Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Janez
- Department for Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Luka Lezaic
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department for Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Jensterle
- Department for Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Tan X, Zhu T, Zhang L, Fu L, Hu Y, Li H, Li C, Zhang J, Liang B, Liu J. miR-669a-5p promotes adipogenic differentiation and induces browning in preadipocytes. Adipocyte 2022; 11:120-132. [PMID: 35094659 PMCID: PMC8803067 DOI: 10.1080/21623945.2022.2030570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major global health issue that contributes to the occurrence of metabolic disorders. Based on this fact, understanding the underlying mechanisms and to uncover promising therapeutic approaches for obesity have attracted intense investigation. Brown adipose tissue (BAT) can help burns excess calories. Therefore, promoting White adipose tissue (WAT) browning and BAT activation is an attractive strategy for obesity treatment. MicroRNAs (miRNAs) are small, non-coding RNAs, which are involved in regulation of adipogenic processes and metabolic functions. Evidence is accumulating that miRNAs are important regulators for both brown adipocyte differentiation and white adipocyte browning. Here we report that the expression of miR-669a-5p increases during the adipogenic differentiation of 3T3-L1 and C3H10T1/2 adipocytes. miR-669a-5p supplementation promotes adipogenic differentiation and causes browning of 3T3-L1 and C3H10T1/2 cells. Moreover, the expression of miR-669a-5p is upregulated in iWAT of mice exposed to cold. These data demonstrate that miR-669a-5p plays a role in regulating adipocyte differentiation and fat browning.Abbreviations: Acadl: long-chain acyl-Coenzyme A dehydrogenase; Acadm: medium-chain acyl-Coenzyme A dehydrogenase; Acadvl: very long-chain acyl-Coenzyme A dehydrogenase, very long chain; Aco2: mitochondrial aconitase 2; BAT: brown adipose tissue; Bmper: BMP-binding endothelial regulator; Cpt1-b:carnitine palmitoyltransferase 1b; Cpt2: carnitine palmitoyltransferase 2; Crat: carnitine acetyltransferase; Cs: citrate synthase; C2MC: Chromosome 2 miRNA cluster; DMEM: Dulbecco's modified Eagle medium; eWAT: epididymal white adipose tissue; ETC: electron transport chain; FAO: fatty acid oxidation; Fabp4:fatty acid binding protein 4; FBS: fetal bovine serum; Hadha: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; Hadhb: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta; HFD: high fat diet; Idh3a: isocitrate dehydrogenase 3 alpha; iWAT: inguinal subcutaneous white adipose tissue; Lpl: lipoprotein lipase; Mdh2: malate dehydrogenase 2; NBCS: NewBorn Calf Serum; mt-Nd1: mitochondrial NADH dehydrogenase 1; Ndufb8:ubiquinone oxidoreductase subunit B8; Nrf1: nuclear respiratory factor 1; Pgc1α: peroxisome proliferative activated receptor gamma coactivator 1 alpha; Pgc1b: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; Pparγ: peroxisome proliferator activated receptor gamma; Prdm16: PR domain containing 16; Rgs4: regulator of G-protein signaling 4; Sdhb: succinate dehydrogenase complex, subunit B; Sdhc: succinate dehydrogenase complex, subunit C; Sdhd: succinate dehydrogenase complex, subunit D; Sh3d21: SH3 domain containing 21; Sfmbt2: Scm-like with four mbt domains 2; TG: triglyceride; TCA: tricarboxylic acid cycle; Tfam: transcription factor A, mitochondrial; TMRE: tetramethylrhodamine, methyl ester; Ucp1: uncoupling protein 1; Uqcrc2: ubiquinol cytochrome c reductase core protein 2; WAT: White adipose tissue.
Collapse
Affiliation(s)
- Xiaoqiong Tan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Ying Hu
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jing Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
14
|
Association of apolipoprotein M and sphingosine-1-phosphate with brown adipose tissue after cold exposure in humans. Sci Rep 2022; 12:18753. [PMID: 36335116 PMCID: PMC9637161 DOI: 10.1038/s41598-022-21938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
The HDL-associated apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) may control energy metabolism. ApoM deficiency in mice is associated with increased vascular permeability, brown adipose tissue (BAT) mass and activity, and protection against obesity. In the current study, we explored the connection between plasma apoM/S1P levels and parameters of BAT as measured via 18F-FDG PET/CT after cold exposure in humans. Fixed (n = 15) vs personalized (n = 20) short-term cooling protocols decreased and increased apoM (- 8.4%, P = 0.032 vs 15.7%, P < 0.0005) and S1P (- 41.0%, P < 0.0005 vs 19.1%, P < 0.005) plasma levels, respectively. Long-term cooling (n = 44) did not affect plasma apoM or S1P levels. Plasma apoM and S1P did not correlate significantly to BAT volume and activity in the individual studies. However, short-term studies combined, showed that increased changes in plasma apoM correlated with BAT metabolic activity (β: 0.44, 95% CI [0.06-0.81], P = 0.024) after adjusting for study design but not BAT volume (β: 0.39, 95% CI [- 0.01-0.78], P = 0.054). In conclusion, plasma apoM and S1P levels are altered in response to cold exposure and may be linked to changes in BAT metabolic activity but not BAT volume in humans. This contrasts partly with observations in animals and highlights the need for further studies to understand the biological role of apoM/S1P complex in human adipose tissue and lipid metabolism.
Collapse
|
15
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
16
|
Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, Alcantara JMA, Amaro-Gahete FJ, Martinez-Avila WD, Merchan-Ramirez E, Muñoz-Hernandez V, Osuna-Prieto FJ, Jurado-Fasoli L, Xu H, Ortiz-Alvarez L, Arias-Tellez MJ, Mendez-Gutierrez A, Labayen I, Ortega FB, Schönke M, Rensen PCN, Aguilera CM, Llamas-Elvira JM, Gil Á, Ruiz JR. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun 2022; 13:5259. [PMID: 36097264 PMCID: PMC9467993 DOI: 10.1038/s41467-022-32502-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/02/2022] [Indexed: 01/06/2023] Open
Abstract
Exercise modulates both brown adipose tissue (BAT) metabolism and white adipose tissue (WAT) browning in murine models. Whether this is true in humans, however, has remained unknown. An unblinded randomized controlled trial (ClinicalTrials.gov ID: NCT02365129) was therefore conducted to study the effects of a 24-week supervised exercise intervention, combining endurance and resistance training, on BAT volume and activity (primary outcome). The study was carried out in the Sport and Health University Research Institute and the Virgen de las Nieves University Hospital of the University of Granada (Spain). One hundred and forty-five young sedentary adults were assigned to either (i) a control group (no exercise, n = 54), (ii) a moderate intensity exercise group (MOD-EX, n = 48), or (iii) a vigorous intensity exercise group (VIG-EX n = 43) by unrestricted randomization. No relevant adverse events were recorded. 97 participants (34 men, 63 women) were included in the final analysis (Control; n = 35, MOD-EX; n = 31, and VIG-EX; n = 31). We observed no changes in BAT volume (Δ Control: −22.2 ± 52.6 ml; Δ MOD-EX: −15.5 ± 62.1 ml, Δ VIG-EX: −6.8 ± 66.4 ml; P = 0.771) or 18F-fluorodeoxyglucose uptake (SUVpeak Δ Control: −2.6 ± 3.1 ml; Δ MOD-EX: −1.2 ± 4.8, Δ VIG-EX: −2.2 ± 5.1; p = 0.476) in either the control or the exercise groups. Thus, we did not find any evidence of an exercise-induced change on BAT volume or activity in young sedentary adults. Exercise modulates brown adipose tissue (BAT) metabolism in murine models. Here the authors report that there is no evidence that 24 weeks of supervised exercise training modulates BAT volume or function in young sedentary adults in the ACTIBATE randomized controlled trial.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Wendy D Martinez-Avila
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Elisa Merchan-Ramirez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Victoria Muñoz-Hernandez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Analytical Chemistry, University of Granada, Granada, Spain.,Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Lucas Jurado-Fasoli
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - María J Arias-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Nutrition, Faculty of Medicine, University of Chile, Independence, 1027, Santiago, Chile
| | - Andrea Mendez-Gutierrez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Campus de Arrosadía, 31008, Pamplona, Spain
| | - Francisco B Ortega
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - José M Llamas-Elvira
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,Nuclear Medicine Service, Virgen de las Nieves University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.
| |
Collapse
|
17
|
Tanaka R, Fuse-Hamaoka S, Kuroiwa M, Kurosawa Y, Endo T, Kime R, Yoneshiro T, Hamaoka T. The Effects of 10-Week Strength Training in the Winter on Brown-like Adipose Tissue Vascular Density. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10375. [PMID: 36012011 PMCID: PMC9408462 DOI: 10.3390/ijerph191610375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
There is no evidence of the effect of exercise training on human brown-like adipose tissue vascular density (BAT-d). Here, we report whether whole-body strength training (ST) in a cold environment increased BAT-d. The participants were 18 men aged 20-31 years. They were randomly assigned to two groups: one that performed ST twice a week at 75% intensity of one-repetition maximum for 10 weeks during winter (EX; n = 9) and a control group that did not perform ST (CT; n = 9). The total hemoglobin concentration in the supraclavicular region determined by time-resolved near-infrared spectroscopy was used as a parameter of BAT-d. ST volume (Tvol) was defined as the mean of the weight × repetition × sets of seven training movements. The number of occasions where the room temperature was lower than the median (NRcold) was counted as an index of potential cold exposure during ST. There was no significant between-group difference in BAT-d. Multiple regression analysis using body mass index, body fat percentage, NRcold, and Tvol as independent variables revealed that NRcold and Tvol were determined as predictive of changes in BAT-d. An appropriate combination of ST with cold environments could be an effective strategy for modulating BAT.
Collapse
Affiliation(s)
- Riki Tanaka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Sayuri Fuse-Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Tasuki Endo
- Faculty of Science and Technology, Meijo University, Nagoya 468-8502, Japan
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Takeshi Yoneshiro
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
18
|
Acosta FM, Sanchez-Delgado G, Martinez-Tellez B, Osuna-Prieto FJ, Mendez-Gutierrez A, Aguilera CM, Gil A, Llamas-Elvira JM, Ruiz JR. A larger brown fat volume and lower radiodensity are related to a greater cardiometabolic risk, especially in young men. Eur J Endocrinol 2022; 187:171-183. [PMID: 36149276 DOI: 10.1530/eje-22-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Brown adipose tissue (BAT) is important in the maintenance of cardiometabolic health in rodents. Recent reports appear to suggest the same in humans, although if this is true remains elusive partly because of the methodological bias that affected previous research. This cross-sectional work reports the relationships of cold-induced BAT volume, activity (peak standardized uptake, SUVpeak), and mean radiodensity (an inverse proxy of the triacylglycerols content) with the cardiometabolic and inflammatory profile of 131 young adults, and how these relationships are influenced by sex and body weight. DESIGN This is a cross-sectional study. METHODS Subjects underwent personalized cold exposure for 2 h to activate BAT, followed by static 18F-fluorodeoxyglucose PET-CT scanning to determine BAT variables. Information on cardiometabolic risk (CMR) and inflammatory markers was gathered, and a CMR score and fatty liver index (FLI) were calculated. RESULTS In men, BAT volume was positively related to homocysteine and liver damage markers concentrations (independently of BMI and seasonality) and the FLI (all P ≤ 0.05). In men, BAT mean radiodensity was negatively related to the glucose and insulin concentrations, alanine aminotransferase activity, insulin resistance, total cholesterol/HDL-C, LDL-C/HDL-C, the CMR score, and the FLI (all P ≤ 0.02). In women, it was only negatively related to the FLI (P < 0.001). These associations were driven by the results for the overweight and obese subjects. No relationship was seen between BAT and inflammatory markers (P > 0.05). CONCLUSIONS A larger BAT volume and a lower BAT mean radiodensity are related to a higher CMR, especially in young men, which may support that BAT acts as a compensatory organ in states of metabolic disruption.
Collapse
Affiliation(s)
- Francisco M Acosta
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Guillermo Sanchez-Delgado
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Borja Martinez-Tellez
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Francisco J Osuna-Prieto
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, 'José Mataix Verdú' Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBNISCIII), Madrid, Spain
| | - Concepcion M Aguilera
- Department of Biochemistry and Molecular Biology II, 'José Mataix Verdú' Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBNISCIII), Madrid, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, 'José Mataix Verdú' Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBNISCIII), Madrid, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Services, 'Virgen de las Nieves' University Hospital, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
| |
Collapse
|
19
|
Torres Irizarry VC, Jiang Y, He Y, Xu P. Hypothalamic Estrogen Signaling and Adipose Tissue Metabolism in Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:898139. [PMID: 35757435 PMCID: PMC9218066 DOI: 10.3389/fendo.2022.898139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity has become a global epidemic, and it is a major risk factor for other metabolic disorders such as type 2 diabetes and cardiometabolic disease. Accumulating evidence indicates that there is sex-specific metabolic protection and disease susceptibility. For instance, in both clinical and experimental studies, males are more likely to develop obesity, insulin resistance, and diabetes. In line with this, males tend to have more visceral white adipose tissue (WAT) and less brown adipose tissue (BAT) thermogenic activity, both leading to an increased incidence of metabolic disorders. This female-specific fat distribution is partially mediated by sex hormone estrogens. Specifically, hypothalamic estrogen signaling plays a vital role in regulating WAT distribution, WAT beiging, and BAT thermogenesis. These regulatory effects on adipose tissue metabolism are primarily mediated by the activation of estrogen receptor alpha (ERα) in neurons, which interacts with hormones and adipokines such as leptin, ghrelin, and insulin. This review discusses the contribution of adipose tissue dysfunction to obesity and the role of hypothalamic estrogen signaling in preventing metabolic diseases with a particular focus on the VMH, the central regulator of energy expenditure and glucose homeostasis.
Collapse
Affiliation(s)
- Valeria C. Torres Irizarry
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yuwei Jiang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Ma H, He C, Li L, Gao P, Lu Z, Hu Y, Wang L, Zhao Y, Cao T, Cui Y, Zheng H, Yang G, Yan Z, Liu D, Zhu Z. TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation. Int J Obes (Lond) 2022; 46:1544-1555. [PMID: 35589963 DOI: 10.1038/s41366-022-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential channel 5 (TRPC5) is predominantly distributed in the brain, especially in the central amygdala (CeA), which is closely associated with pain and addiction. Although mounting evidence indicates that the CeA is related to energy homeostasis, the possible regulatory effect of TRPC5 in the CeA on metabolism remains unclear. Here, we reported that the expression of TRPC5 in the CeA of mice was increased under a high-fat diet (HFD). Specifically, the deleted TRPC5 protein in the CeA of mice using adeno-associated virus resisted HFD-induced weight gain, accompanied by increased food intake. Furthermore, the energy expenditure of CeA-specific TRPC5 deletion mice (TRPC5 KO) was elevated due to augmented white adipose tissue (WAT) browning and brown adipose tissue (BAT) activity. Mechanistically, deficiency of TRPC5 in the CeA boosted nonshivering thermogenesis under cold stimulation by stimulating sympathetic nerves, as the β3-adrenoceptor (Adrb3) antagonist SR59230A blocked the effect of TRPC5 KO on this process. In summary, TRPC5 deletion in the CeA alleviated the metabolic deterioration of mice fed a HFD, and these phenotypic improvements were correlated with the increased sympathetic distribution and activity of adipose tissue.
Collapse
Affiliation(s)
- Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China. .,Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
21
|
Christoffersen BØ, Sanchez‐Delgado G, John LM, Ryan DH, Raun K, Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity (Silver Spring) 2022; 30:841-857. [PMID: 35333444 PMCID: PMC9310705 DOI: 10.1002/oby.23374] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
New appetite-regulating antiobesity treatments such as semaglutide and agents under investigation such as tirzepatide show promise in achieving weight loss of 15% or more. Energy expenditure, fat oxidation, and lean mass preservation are important determinants of weight loss and weight-loss maintenance beyond appetite regulation. This review discusses prior failures in clinical development of weight-loss drugs targeting energy expenditure and explores novel strategies for targeting energy expenditure: mitochondrial proton leak, uncoupling, dynamics, and biogenesis; futile calcium and substrate cycling; leptin for weight maintenance; increased sympathetic nervous system activity; and browning of white fat. Relevant targets for preserving lean mass are also reviewed: growth hormone, activin type II receptor inhibition, and urocortin 2 and 3. We endorse moderate modulation of energy expenditure and preservation of lean mass in combination with efficient appetite reduction as a means of obtaining a significant, safe, and long-lasting weight loss. Furthermore, we suggest that the regulatory guidelines should be revisited to focus more on the quality of weight loss and its maintenance rather than the absolute weight loss. Commitment to this research focus both from a scientific and from a regulatory point of view could signal the beginning of the next era in obesity therapies.
Collapse
Affiliation(s)
| | | | - Linu Mary John
- Global Obesity and Liver Disease ResearchGlobal Drug DiscoveryNovo Nordisk A/SMåløvDenmark
| | - Donna H. Ryan
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Kirsten Raun
- Global Obesity and Liver Disease ResearchGlobal Drug DiscoveryNovo Nordisk A/SMåløvDenmark
| | - Eric Ravussin
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
22
|
Jurado‐Fasoli L, Di X, Kohler I, Osuna‐Prieto FJ, Hankemeier T, Krekels E, Harms AC, Yang W, Garcia‐Lario JV, Fernández‐Veledo S, Ruiz JR, Rensen PCN, Martinez‐Tellez B. Omega-6 and omega-3 oxylipins as potential markers of cardiometabolic risk in young adults. Obesity (Silver Spring) 2022; 30:50-61. [PMID: 34898010 PMCID: PMC9299871 DOI: 10.1002/oby.23282] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Omega-6 and omega-3 oxylipins are known to play a role in inflammation and cardiometabolic diseases in preclinical models. The associations between plasma levels of omega-6 and omega-3 polyunsaturated fatty acid-derived oxylipins and body composition and cardiometabolic risk factors in young adults were assessed. METHODS Body composition, brown adipose tissue, traditional serum cardiometabolic risk factors, inflammatory markers, and a panel of 83 oxylipins were analyzed in 133 young adults (age 22.1[SD 2.2] years, 67% women). RESULTS Plasma levels of four omega-6 oxylipins (15-HeTrE, 5-HETE, 14,15-EpETrE, and the oxidative stress-derived 8,12-iso-iPF2α -VI) correlated positively with adiposity, prevalence of metabolic syndrome, fatty liver index, and homeostatic model assessment of insulin resistance index and lipid parameters. By contrast, the plasma levels of three omega-3 oxylipins (14,15-DiHETE, 17,18-DiHETE, and 19,20-DiHDPA) were negatively correlated with adiposity, prevalence of metabolic syndrome, fatty liver index, homeostatic model assessment of insulin resistance index, and lipid parameters. The panel of seven oxylipins predicted adiposity better than traditional inflammatory markers such as interferon gamma or tumor necrosis factor-alpha. Pathway analyses revealed that individuals with obesity had higher plasma levels of omega-6 and lower plasma levels of omega-3 oxylipins than normal-weight individuals. CONCLUSION Plasma levels of seven omega-6 and omega-3 oxylipins may have utility as early markers of cardiometabolic risk in young adults.
Collapse
Affiliation(s)
- Lucas Jurado‐Fasoli
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH)Department of Physical Education and SportsFaculty of Sport SciencesSport and Health University Research Institute (iMUDS)University of GranadaGranadaSpain
| | - Xinyu Di
- Department of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug Research (LACDR)Leiden UniversityLeidenthe Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical ChemistryVrije Universiteit AmsterdamAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdamthe Netherlands
- Center for Analytical Sciences AmsterdamAmsterdamthe Netherlands
| | - Francisco J. Osuna‐Prieto
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH)Department of Physical Education and SportsFaculty of Sport SciencesSport and Health University Research Institute (iMUDS)University of GranadaGranadaSpain
- Department of Analytical ChemistryUniversity of GranadaGranadaSpain
- Research and Development of Functional Food Centre (CIDAF)GranadaSpain
| | - Thomas Hankemeier
- Department of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug Research (LACDR)Leiden UniversityLeidenthe Netherlands
| | - Elke Krekels
- Department of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug Research (LACDR)Leiden UniversityLeidenthe Netherlands
| | - Amy C. Harms
- Department of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug Research (LACDR)Leiden UniversityLeidenthe Netherlands
| | - Wei Yang
- Department of Systems Biomedicine and PharmacologyLeiden Academic Centre for Drug Research (LACDR)Leiden UniversityLeidenthe Netherlands
| | | | - Sonia Fernández‐Veledo
- Departament of Endocrinology and Nutrition and Research UnitUniversity Hospital of Tarragona Joan XXIII‐Institut d ´Investigació Sanitària Pere Virgili (IISPV)TarragonaSpain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)‐Instituto de Salud Carlos IIIMadridSpain
| | - Jonatan R. Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH)Department of Physical Education and SportsFaculty of Sport SciencesSport and Health University Research Institute (iMUDS)University of GranadaGranadaSpain
| | - Patrick C. N. Rensen
- Department of MedicineDivision of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Centrethe Netherlands
| | - Borja Martinez‐Tellez
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH)Department of Physical Education and SportsFaculty of Sport SciencesSport and Health University Research Institute (iMUDS)University of GranadaGranadaSpain
- Department of MedicineDivision of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Centrethe Netherlands
| |
Collapse
|
23
|
MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021; 10:cells10123374. [PMID: 34943882 PMCID: PMC8699674 DOI: 10.3390/cells10123374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding RNA (18–24 nt long) that fine-tune gene expression at the post-transcriptional level. With the advent of “multi-omics” analysis and sequencing approaches, they have now been implicated in every facet of basic molecular networks, including metabolism, homeostasis, and cell survival to aid cellular machinery in adapting to changing environmental cues. Many animals must endure harsh environmental conditions in nature, including cold/freezing temperatures, oxygen limitation (anoxia/hypoxia), and food or water scarcity, often requiring them to revamp their metabolic organization, frequently on a seasonal or life stage basis. MicroRNAs are important regulatory molecules in such processes, just as they are now well-known to be involved in many human responses to stress or disease. The present review outlines the role of miRNAs in natural animal models of environmental stress and adaptation including torpor/hibernation, anoxia/hypoxia tolerance, and freeze tolerance. We also discuss putative medical applications of advances in miRNA biology including organ preservation for transplant, inflammation, ageing, metabolic disorders (e.g., obesity), mitochondrial dysfunction (mitoMirs) as well as specialized miRNA subgroups respective to low temperature (CryomiRs) and low oxygen (OxymiRs). The review also covers differential regulation of conserved and novel miRNAs involved at cell, tissue, and stress specific levels across multiple species and their roles in survival. Ultimately, the species-specific comparison and conserved miRNA responses seen in evolutionarily disparate animal species can help us to understand the complex miRNA network involved in regulating and reorganizing metabolism to achieve diverse outcomes, not just in nature, but in human health and disease.
Collapse
|
24
|
Sanchez-Delgado G, Martinez-Tellez B, Acosta FM, Virtue S, Vidal-Puig A, Gil A, Llamas-Elvira JM, Ruiz JR. Brown Adipose Tissue Volume and Fat Content Are Positively Associated With Whole-Body Adiposity in Young Men-Not in Women. Diabetes 2021; 70:1473-1485. [PMID: 33858825 DOI: 10.2337/db21-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 11/13/2022]
Abstract
Human brown adipose tissue (BAT) volume has consistently been claimed to be inversely associated with whole-body adiposity. However, recent advances in the assessment of human BAT suggest that previously reported associations may have been biased. The present cross-sectional study investigates the association of BAT volume, mean radiodensity, and 18F-fluorodeoxyglucose (18F-FDG) uptake (assessed via a static positron emission tomography [PET]-computed tomography [CT] scan after a 2-h personalized cold exposure) with whole-body adiposity (measured by DXA) in 126 young adults (42 men and 84 women; mean ± SD BMI 24.9 ± 4.7 kg/m2). BAT volume, but not 18F-FDG uptake, was positively associated with BMI, fat mass, and visceral adipose tissue (VAT) mass in men but not in women. These associations were independent of the date when the PET-CT was performed, insulin sensitivity, and body surface area. BAT mean radiodensity, an inverse proxy of BAT fat content, was negatively associated with BMI, fat mass, and VAT mass in men and in women. These results refute the widely held belief that human BAT volume is reduced in obese persons, at least in young adults, and suggest that it might even be the opposite in young men.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Francisco M Acosta
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Samuel Virtue
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Antonio Vidal-Puig
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain
- CIBEROBN, Carlos III Health Institute, Madrid, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Services, "Virgen de las Nieves" University Hospital, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
25
|
Pereira RO, Marti A, Olvera AC, Tadinada SM, Bjorkman SH, Weatherford ET, Morgan DA, Westphal M, Patel PH, Kirby AK, Hewezi R, Bùi Trân W, García-Peña LM, Souvenir RA, Mittal M, Adams CM, Rahmouni K, Potthoff MJ, Abel ED. OPA1 deletion in brown adipose tissue improves thermoregulation and systemic metabolism via FGF21. eLife 2021; 10:e66519. [PMID: 33944779 PMCID: PMC8128440 DOI: 10.7554/elife.66519] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, which is activated independently of BAT thermogenic function.
Collapse
Affiliation(s)
- Renata O Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Alex Marti
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Angela Crystal Olvera
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Satya Murthy Tadinada
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Sarah Hartwick Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Roy J. and Lucille A. Carver College of MedicineIowa CityUnited States
| | - Eric Thomas Weatherford
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Michael Westphal
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Pooja H Patel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Ana Karina Kirby
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Rana Hewezi
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - William Bùi Trân
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Rhonda A Souvenir
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Monika Mittal
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Christopher M Adams
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Kamal Rahmouni
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Matthew J Potthoff
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
26
|
Malinská H, Hüttl M, Miklánková D, Trnovská J, Zapletalová I, Poruba M, Marková I. Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. Int J Mol Sci 2021; 22:ijms22094527. [PMID: 33926097 PMCID: PMC8123580 DOI: 10.3390/ijms22094527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian hormone deficiency leads to increased body weight, visceral adiposity, fatty liver and disorders associated with menopausal metabolic syndrome. To better understand the underlying mechanisms of these disorders in their early phases of development, we investigated the effect of ovariectomy on lipid and glucose metabolism. Compared to sham-operated controls, ovariectomized Wistar female rats markedly increased whole body and visceral adipose tissue weight (p ˂ 0.05) and exhibited insulin resistance in peripheral tissues. Severe hepatic triglyceride accumulation (p ˂ 0.001) after ovariectomy preceded changes in both serum lipids and glucose intolerance, reflecting alterations in some CYP proteins. Increased CYP2E1 (p ˂ 0.05) and decreased CYP4A (p ˂ 0.001) after ovariectomy reduced fatty acid oxidation and induced hepatic steatosis. Decreased triglyceride metabolism and secretion from the liver contributed to hepatic triglyceride accumulation in response to ovariectomy. In addition, interscapular brown adipose tissue of ovariectomized rats exhibited decreased fatty acid oxidation (p ˂ 0.01), lipogenesis (p ˂ 0.05) and lipolysis (p ˂ 0.05) despite an increase in tissue weight. The results provide evidence that impaired hepatic triglycerides and dysregulation of some CYP450 proteins may have been involved in the development of hepatic steatosis. The low metabolic activity of brown adipose tissue may have contributed to visceral adiposity as well as triglyceride accumulation during the postmenopausal period.
Collapse
Affiliation(s)
- Hana Malinská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
- Correspondence: ; Tel.: +420-261-365-369; Fax: +420-261-363-027
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Jaroslava Trnovská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Iveta Zapletalová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| |
Collapse
|
27
|
Zhou E, Li Z, Nakashima H, Liu C, Ying Z, Foks AC, Berbée JFP, van Dijk KW, Rensen PCN, Wang Y. Hepatic Scavenger Receptor Class B Type 1 Knockdown Reduces Atherosclerosis and Enhances the Antiatherosclerotic Effect of Brown Fat Activation in APOE*3-Leiden.CETP Mice. Arterioscler Thromb Vasc Biol 2021; 41:1474-1486. [PMID: 33567866 DOI: 10.1161/atvbaha.121.315882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Animals
- Apolipoprotein E3/genetics
- Apolipoprotein E3/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Biomarkers/blood
- Cholesterol Ester Transfer Proteins/genetics
- Cholesterol Ester Transfer Proteins/metabolism
- Dioxoles/pharmacology
- Disease Models, Animal
- Gene Knockdown Techniques
- Humans
- Lipids/blood
- Lipolysis/drug effects
- Liver/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Plaque, Atherosclerotic
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Scavenger Receptors, Class B/deficiency
- Scavenger Receptors, Class B/genetics
- Mice
Collapse
Affiliation(s)
- Enchen Zhou
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
| | - Zhuang Li
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
| | - Hiroyuki Nakashima
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
| | - Cong Liu
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
| | - Zhixiong Ying
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (A.C.F.)
| | - Jimmy F P Berbée
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
- Department of Human Genetics (K.W.v.D.), Leiden University Medical Center, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
- Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, China (P.C.N.R., Y.W.)
| | - Yanan Wang
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine (E.Z., Z.L., H.N., C.L., Z.Y., J.F.P.B., KW.v.D., P.C.N.R., Y.W.), Leiden University Medical Center, The Netherlands
- Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, China (P.C.N.R., Y.W.)
| |
Collapse
|
28
|
Abstract
When harvesting corn, corn silk was discarded as waste, including the compounds isolated and identified from corn silk such as flavonoids, sterols, alkaloids, polysaccharides, organic acids, volatile oils, trace elements, and multivitamins. It not only pollutes the environment but also wastes resources. In this paper, extraction methods commonly used for extracting flavonoids from corn silk were reviewed, such as reagent method, enzymatic method, microwave, supercritical CO2 extraction, ultrasonic, and microwave-assisted ultrasonic. Flavonoids are natural antioxidants and have application value in scavenging free radicals, inhibiting bacteria, and regulating blood lipids. The in vitro biological activities of flavonoids from corn silk extracted by different extraction methods were also compared.
Collapse
|
29
|
Distribution of Brown Adipose Tissue Radiodensity in Young Adults: Implications for Cold [ 18F]FDG-PET/CT Analyses. Mol Imaging Biol 2021; 22:425-433. [PMID: 31147900 DOI: 10.1007/s11307-019-01381-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Nowadays, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET)/X-ray computed tomography (CT) is considered the best available technique to in vivo determination of human BAT volume. The most used Hounsfield unit (HU) threshold for BAT quantification is from - 250 to - 50 HU. Therefore, the main objective of the present study is (i) to examine the influence of SUV and HU thresholds on BAT quantification by [18F]FDG-PET/CT scan, (ii) to identify the proportion of BAT which is not detected by [18F]FDG-PET/CT scan when limiting the range between - 10 and - 50 HU, and (iii) to describe the distribution of BAT radiodensity by weight status and sex in young healthy individuals. PROCEDURES We measured 125 individuals after a personalized cooling protocol with a static [18F]FDG-PET/CT scan. We quantified BAT using different combination of threshold in every single HU for all participants. RESULTS We observed that the SUV threshold influences BAT quantification by [18F]FDG-PET/CT scans more than the HU range. We found that the range from - 50 to - 10 HU had the highest proportion of total BAT volume (43.2 %), which represents 41.4 % of the total BAT metabolic activity in our cohort. We also observed that BAT volume was not different between categories of body mass index, as well as BAT activity (SUVmean). In addition, BAT was less dense in women than in men, although the BAT activity (SUVmean) was higher in all ranges of HU. We also observed that the radiodensity of BAT located in the cervical area was mainly in the range from - 50 to - 10 HU. CONCLUSION Therefore, all future human studies using static [18F]FDG-PET/CT scans should include BAT in the radiodensity range from - 50 to - 10 HU.
Collapse
|
30
|
Xu H, Martinez-Nicolas A, Martinez-Avila WD, Alcantara JMA, Corral-Perez J, Jimenez-Pavon D, Acosta FM, Ruiz JR, Martinez-Tellez B. Impact of an intermittent and localized cooling intervention on skin temperature, sleep quality and energy expenditure in free-living, young, healthy adults. J Therm Biol 2021; 97:102875. [PMID: 33863439 DOI: 10.1016/j.jtherbio.2021.102875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Where people live and work together it is not always possible to modify the ambient temperature; ways must therefore be found that allow individuals to feel thermally comfortable in such settings. The Embr Wave® is a wrist-worn device marketed as a 'personal thermostat' that can apply a local cooling stimulus to the skin. The aim of the present study was to determine the effect of an intermittent mild cold stimulus of 25 °C for 15-20 s every 5 min over 3.5 days under free-living conditions on 1) skin temperature, 2) perception of skin temperature, 3) sleep quality and 4) resting energy expenditure (REE) in young, healthy adults. Ten subjects wore the device for 3.5 consecutive days. This intervention reduced distal skin temperature after correcting for personal ambient temperature (P < 0.05), but did not affect the subjects' the perception of skin temperature, sleep quality or REE (all P ≥ 0.051). Thus, this intermittent mild cold regime can reduce distal skin temperature, and wearing it under free-living conditions for 3.5 days does not seem to impair the perception of skin temperature and sleep quality or modify REE.
Collapse
Affiliation(s)
- Huiwen Xu
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus de Cartuja s.n, 18071, Granada, Spain; PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Wendy D Martinez-Avila
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Juan Corral-Perez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, University of Cadiz, Cadiz, Spain
| | - David Jimenez-Pavon
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, University of Cadiz, Cadiz, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
31
|
Jurado-Fasoli L, Merchan-Ramirez E, Martinez-Tellez B, Acosta FM, Sanchez-Delgado G, Amaro-Gahete FJ, Muñoz Hernandez V, Martinez-Avila WD, Ortiz-Alvarez L, Xu H, Arias Téllez MJ, Ruiz-López MD, Llamas-Elvira JM, Gil Á, Labayen I, Ruiz JR. Association between dietary factors and brown adipose tissue volume/ 18F-FDG uptake in young adults. Clin Nutr 2020; 40:1997-2008. [PMID: 32994069 DOI: 10.1016/j.clnu.2020.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the association between usual dietary factors (dietary energy density, nutrient intake, food group consumption, and dietary pattern) and brown adipose tissue (BAT) volume/18F-fluorodeoxyglucose (18F-FDG) uptake after personalized cold exposure in young healthy adults. METHODS A total of 122 young adults (n = 82 women; 22.0 ± 2.1 years old; 24.8 ± 4.8 kg/m2) took part in this cross-sectional study. Dietary factors were measured via a food frequency questionnaire and three non-consecutive 24 h recalls. Dietary energy density (foods and caloric beverages included) and macronutrient intakes were subsequently estimated using EvalFINUT® software, food group consumption was estimated from the food frequency questionnaire, and different dietary patterns and quality indices were determined according to the reference methods. BAT volume, BAT 18F-FDG uptake, and skeletal muscle 18F-FDG uptake were assessed by static 18F-FDG positron-emission tomography and computed tomography (PET-CT) scans after a 2 h personalized exposure to cold. RESULTS A direct association was detected between dietary energy density and BAT Standardized Uptake Value (SUV)mean (β = 0.215; R2 = 0.044; P = 0.022), and between ethanol consumption and BAT volume (β = 0.215; R2 = 0.044; P = 0.022). The a priori Mediterranean dietary pattern was inversely associated with BAT SUVmean and SUVpeak (β = -0.273; R2 = 0.075; P = 0.003 and β = -0.255; R2 = 0.066; P = 0.005 respectively). In addition, the diet quality index for a Mediterranean diet and a pro-inflammatory dietary pattern (as determined via the dietary inflammatory index) were directly associated with BAT SUVmean and SUVpeak (SUVmean: β = 0.238; R2 = 0.053; P = 0.013 and β = 0.256; R2 = 0.052; P = 0.012 respectively; SUVpeak: β = 0.278; R2 = 0.073; P = 0.003 and β = 0.248; R2 = 0.049; P = 0.016 respectively). After controlling for multiplicity and possible confounders (sex, the evaluation wave and BMI), all the detected associations persisted. CONCLUSION Dietary factors are slightly associated with BAT volume and/or 18F-FDG uptake after a personalized cold exposure in young adults. Our results provide an overall picture of the potential relationships between dietary factors and BAT-related variables in humans.
Collapse
Affiliation(s)
- Lucas Jurado-Fasoli
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; EFFECTS 262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, 18071, Granada, Spain.
| | - Elisa Merchan-Ramirez
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Borja Martinez-Tellez
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Francisco M Acosta
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Francisco J Amaro-Gahete
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; EFFECTS 262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, 18071, Granada, Spain
| | - Victoria Muñoz Hernandez
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Wendy D Martinez-Avila
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; Department of Biochemistry and Molecular Biology II, University of Granada, 18071, Granada, Spain
| | - Huiwen Xu
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; Department of Biochemistry and Molecular Biology II, University of Granada, 18071, Granada, Spain
| | - María José Arias Téllez
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; Department of Nutrition, Faculty of Medicine, University of Chile, Independence, 1027, Santiago, Chile
| | - María Dolores Ruiz-López
- Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of Granada, Campus de Cartuja, s.n, 18071, Granada, Spain; Iberoamerican Nutrition Foundation (FINUT), Av. Del Conocimiento 12, 3 (a) pta, Armilla, 18016, Granada, Spain; Institute of Nutrition and Food Technology "José Mataix," Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18100, Granada, Spain
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071, Granada, Spain; Iberoamerican Nutrition Foundation (FINUT), Av. Del Conocimiento 12, 3 (a) pta, Armilla, 18016, Granada, Spain; Institute of Nutrition and Food Technology "José Mataix," Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18100, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Campus de Arrosadía, 31008, Pamplona, Spain
| | - Jonatan R Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18007, Granada, Spain; Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| |
Collapse
|
32
|
Challenging energy balance - during sensitivity to food reward and modulatory factors implying a risk for overweight - during body weight management including dietary restraint and medium-high protein diets. Physiol Behav 2020; 221:112879. [PMID: 32199999 DOI: 10.1016/j.physbeh.2020.112879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 02/03/2023]
Abstract
Energy balance is a key concept in the etiology and prevalence of obesity and its co-morbidities, as well as in the development of possible treatments. If energy intake exceeds energy expenditure, a positive energy balance develops and the risk for overweight, obesity, and its co-morbidities increases. Energy balance is determined by energy homeostasis, and challenged by sensitivity to food reward, and to modulatory factors such as circadian misalignment, high altitude, environmental temperature, and physical activity. Food reward and circadian misalignment increase the risk for overweight and obesity, while high altitude, changes in environmental temperature, or physical activity modulate energy balance in different directions. Modulations by hypobaric hypoxia, lowering environmental temperature, or increasing physical activity have been hypothesized to contribute to body weight loss and management, yet no clear evidence has been shown. Dietary approach as part of a lifestyle approach for body weight management should imply reduction of energy intake including control of food reward, thereby sustaining satiety and fat free body mass, sustaining energy expenditure. Green tea catechins and capsaicin in red pepper in part meet these requirements by sustaining energy expenditure and increasing fat oxidation, while capsaicin also suppresses hunger and food intake. Protein intake of at least 0,8 g/kg body weight meets these requirements in that it, during decreased energy intake, increases food intake control including control of food reward, and counteracts adaptive thermogenesis. Prevention of overweight and obesity is underscored by dietary restraint, implying control of sensitivity to challenges to energy balance such as food reward and circadian misalignment. Treatment of overweight and obesity may be possible using a medium-high protein diet (0,8-1,2 g/kg), together with increased dietary restraint, while controlling challenges to energy balance.
Collapse
|
33
|
Acosta FM, Sanchez-Delgado G, Martinez-Tellez B, Migueles JH, Amaro-Gahete FJ, Rensen PCN, Llamas-Elvira JM, Blondin DP, Ruiz JR. Sleep duration and quality are not associated with brown adipose tissue volume or activity-as determined by 18F-FDG uptake, in young, sedentary adults. Sleep 2020; 42:5549537. [PMID: 31555815 PMCID: PMC6930133 DOI: 10.1093/sleep/zsz177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/21/2019] [Indexed: 12/23/2022] Open
Abstract
Study Objectives Short sleep duration and sleep disturbances have been related to obesity and metabolic disruption. However, the behavioral and physiological mechanisms linking sleep and alterations in energy balance and metabolism are incompletely understood. In rodents, sleep regulation is closely related to appropriate brown adipose tissue (BAT) thermogenic activity, but whether the same is true in humans has remained unknown. The present work examines whether sleep duration and quality are related to BAT volume and activity (measured by 18F-FDG) and BAT radiodensity in humans. Methods A total of 118 healthy adults (69% women, 21.9 ± 2.2 years, body mass index: 24.9 ± 4.7 kg/m2) participated in this cross-sectional study. Sleep duration and other sleep variables were measured using a wrist-worn accelerometer for seven consecutive days for 24 hours per day. The Pittsburgh Sleep Quality Index was used to assess sleep quality. All participants then underwent a personalized cold exposure to determine their BAT volume, activity, and radiodensity (a proxy of the intracellular triglyceride content), using static positron emission tomography combined with computed tomography (PET/CI) scan. Results Neither sleep duration nor quality was associated with BAT volume or activity (the latter represented by the mean and peak standardized 18F-FDG uptake values) or radiodensity (all p > .1). The lack of association remained after adjusting the analyses for sex, date of PET/CT, and body composition. Conclusions Although experiments in rodent models indicate a strong relationship to exist between sleep regulation and BAT function, it seems that sleep duration and quality may not be directly related to the BAT variables examined in the present work. Clinical Trial Registration NCT02365129 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Francisco M Acosta
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jairo H Migueles
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jose M Llamas-Elvira
- Nuclear Medicine Services, "Virgen de las Nieves" University Hospital, Granada, Spain
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Pharmacology-Physiology, Université de Sherbrooke and Centre de Recherche du Centre hospitalier universitaire de Sherbrooke, Quebec, Canada
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
34
|
Neuschwander-Tetri BA. Therapeutic Landscape for NAFLD in 2020. Gastroenterology 2020; 158:1984-1998.e3. [PMID: 32061596 DOI: 10.1053/j.gastro.2020.01.051] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Lifestyle modifications focused on healthy eating and regular exercise are the primary recommendations for patients with nonalcoholic steatohepatitis (NASH). However, for multiple societal, psychological, physical, genetic, and epigenetic reasons, the ability of people to adopt and sustain such changes is challenging and typically not successful. To end the epidemic of NASH and prevent its complications, including cirrhosis and hepatocellular carcinoma, pharmacological interventions are now being evaluated in clinical trials. Treatments include drugs targeting energy intake, energy disposal, lipotoxic liver injury, and the resulting inflammation and fibrogenesis that lead to cirrhosis. It is likely that patients develop the phenotype of NASH by multiple mechanisms, and thus the optimal treatments of NASH will likely evolve to personalized therapy once we understand the mechanistic underpinnings of NASH in each patient. Reviewed here is the treatment landscape in this rapidly evolving field with an emphasis on drugs in Phase 2 and Phase 3 trials.
Collapse
|
35
|
Tanaka R, Fuse S, Kuroiwa M, Amagasa S, Endo T, Ando A, Kime R, Kurosawa Y, Hamaoka T. Vigorous-Intensity Physical Activities Are Associated with High Brown Adipose Tissue Density in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2796. [PMID: 32325644 PMCID: PMC7216014 DOI: 10.3390/ijerph17082796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022]
Abstract
Brown adipose tissue (BAT) plays a role in adaptive thermogenesis in response to cold environments and dietary intake via sympathetic nervous system (SNS) activation. It is unclear whether physical activity increases BAT density (BAT-d). Two-hundred ninety-eight participants (age: 41.2 ± 12.1 (mean ± standard deviation), height: 163.6 ± 8.3 cm, weight: 60.2 ± 11.0 kg, body mass index (BMI): 22.4 ± 3.0 kg/m2, body fat percentage: 25.4 ± 7.5%) without smoking habits were categorized based on their physical activity levels (a group performing physical activities including walking and moderate physical activity (WM) and a group performing WM + vigorous-intensity physical activities (VWM)). We measured the total hemoglobin concentration ([Total-Hb]) in the supraclavicular region, an index of BAT-d, and anthropometric parameters. [Total-Hb] was significantly higher in VWM than WM for all participant groups presumably owing to SNS activation during vigorous-intensity physical activities, and unrelated to the amount of total physical activity levels. Furthermore, multiple regression analysis revealed that BAT-d was related to visceral fat area and VWM in men and related to body fat percentage in women. We conclude that vigorous-intensity physical activities are associated with high BAT-d in humans, especially in men.
Collapse
Affiliation(s)
- Riki Tanaka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Sayuri Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Shiho Amagasa
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Akira Ando
- Japan Institute of Sports Sciences, Tokyo 115-0056, Japan;
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| |
Collapse
|
36
|
21st Century Advances in Multimodality Imaging of Obesity for Care of the Cardiovascular Patient. JACC Cardiovasc Imaging 2020; 14:482-494. [PMID: 32305476 DOI: 10.1016/j.jcmg.2020.02.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Although obesity is typically defined by body mass index criteria, this does not differentiate true body fatness, as this includes both body fat and muscle. Therefore, other fat depots may better define cardiometabolic and cardiovascular disease (CVD) risk imposed by obesity. Data from translational, epidemiological, and clinical studies over the past 3 decades have clearly demonstrated that accumulation of adiposity in the abdominal viscera and within tissue depots lacking physiological adipose tissue storage capacity (termed "ectopic fat") is strongly associated with the development of a clinical syndrome characterized by atherogenic dyslipidemia, hyperinsulinemia/glucose intolerance/type 2 diabetes mellitus, hypertension, atherosclerosis, and abnormal cardiac remodeling and heart failure. This state-of-the-art paper discusses the impact of various body fat depots on cardiometabolic parameters and CVD risk. Specifically, it reviews novel and emerging imaging techniques to evaluate adiposity and the risk of cardiometabolic diseases and CVD.
Collapse
|
37
|
Sanchez-Delgado G, Acosta FM, Martinez-Tellez B, Finlayson G, Gibbons C, Labayen I, Llamas-Elvira JM, Gil A, Blundell JE, Ruiz JR. Brown adipose tissue volume and 18F-fluorodeoxyglucose uptake are not associated with energy intake in young human adults. Am J Clin Nutr 2020; 111:329-339. [PMID: 31826235 PMCID: PMC6997092 DOI: 10.1093/ajcn/nqz300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/13/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Several studies have explored the role of human brown adipose tissue (BAT) in energy expenditure. However, the link between BAT and appetite regulation needs to be more rigorously examined. OBJECTIVES We aimed to investigate the associations of BAT volume and 18F-fluordeoxyglucose (18F-FDG) uptake after a personalized cold exposure with energy intake and appetite-related sensations in young healthy humans. METHODS A total of 102 young adults (65 women; age: 22.08 ± 2.17 y; BMI: 25.05 ± 4.93 kg/m 2) took part in this cross-sectional study. BAT volume, BAT 18F-FDG uptake, and skeletal muscle 18F-FDG uptake were assessed by means of static 18F-FDG positron-emission tomography and computed tomography scans after a 2-h personalized exposure to cold. Energy intake was estimated via an objectively measured ad libitum meal and three nonconsecutive 24-h dietary recalls. Appetite-related sensations (i.e., hunger and fullness) were recorded by visual analog scales before and after a standardized breakfast (energy content = 50% of basal metabolic rate) and the ad libitum meal. Body composition was assessed by a whole-body DXA scan. RESULTS BAT volume and 18F-FDG uptake were not associated with quantified ad libitum energy intake (all P > 0.088), nor with habitual energy intake estimated from the 24-h dietary recalls (all P > 0.683). Lean mass was positively associated with both the energy intake from the ad libitum meal (β: 17.612, R2 = 0.213; P < 0.001) and the habitual energy intake (β: 16.052, R2 = 0.123; P = 0.001). Neither the interaction BAT volume × time elapsed after meal consumption nor that of BAT 18F-FDG uptake × time elapsed after meal consumption had any significant influence on appetite-related sensations after breakfast or after meal consumption (all P > 0.3). CONCLUSIONS Neither BAT volume, nor BAT 18F-FDG uptake after cold stimulation, are related to appetite regulation in young adults. These results suggest BAT plays no important role in the regulation of energy intake in humans.This trial was registered at clinicaltrials.gov as NCT02365129.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain,Address correspondence to GS-D (e-mail: )
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Graham Finlayson
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Catherine Gibbons
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Idoia Labayen
- ELIKOS Research Group, Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Department of Health Sciences, Public University of Navarra, Pamplona, Spain
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain,Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain,Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - John E Blundell
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
38
|
Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020; 11:145. [PMID: 32373062 PMCID: PMC7176868 DOI: 10.3389/fendo.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 is a neurological sleep-wake disorder caused by the destruction of orexin (hypocretin)-producing neurons. These neurons are particularly located in the lateral hypothalamus and have widespread projections throughout the brain, where they are involved, e.g., in the regulation of the sleep-wake cycle and appetite. Interestingly, a higher prevalence of obesity has been reported in patients with narcolepsy type 1 compared to healthy controls, despite a normal to decreased food intake and comparable physical activity. This suggests the involvement of tissues implicated in total energy expenditure, including skeletal muscle, liver, white adipose tissue (WAT), and brown adipose tissue (BAT). Recent evidence from pre-clinical studies with orexin knock-out mice demonstrates a crucial role for the orexin system in the functionality of brown adipose tissue (BAT), probably through multiple pathways. Since BAT is a highly metabolically active organ that combusts fatty acids and glucose toward heat, thereby contributing to energy metabolism, this raises the question of whether BAT plays a role in the development of obesity and related metabolic diseases in narcolepsy type 1. BAT is densely innervated by the sympathetic nervous system that activates BAT, for instance, following cold exposure. The sympathetic outflow toward BAT is mainly mediated by the dorsomedial, ventromedial, arcuate, and paraventricular nuclei in the hypothalamus. This review focuses on the current knowledge on the role of the orexin system in the control of energy balance, with specific focus on BAT metabolism and adiposity in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Maaike E. Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Maaike E. Straat
| | - Mink S. Schinkelshoek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Gerrit Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
39
|
Li H, Shen L, Zhang L, Yan B, Sun T, Guo F, Yin X. Reduced Beige Adipogenic Potential in Subcutaneous Adipocytes Derived from Obese Chinese Individuals. Diabetes Metab Syndr Obes 2020; 13:2551-2562. [PMID: 32765034 PMCID: PMC7373414 DOI: 10.2147/dmso.s248112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Thermogenesis function has made brown/beige adipocyte an attractive target for obesity. Human brown adipose tissue activity is impaired in obesity in vivo. The present study aims to compare the differences in beige adipocyte differentiation potential of subcutaneous adipose tissue derived from normal weight and obese Chinese individuals in vitro. METHODS Adipose-derived stem cells (ADSCs) isolated from subcutaneous fat tissues of normal weight (NW) and obese (OB) groups were induced to differentiate into mature adipocyte with white adipocyte (WA)- and beige adipocyte (BA)-induction treatment. The expression of beige adipocyte marker protein UCP-1 and specific thermogenic genes was detected in differentiated adipocytes via Western blot and rt PCR, and the adipocyte mitochondrial function and lipolysis ability were also measured by oxygen consumption rate (OCR) and glycerol release rate, respectively. RESULTS Either with WA-induction or BA-induction, the expression of UCP-1 and beige adipocyte-specific thermogenic genes in differentiated adipocytes was higher in the NW compared to the OB group, followed by higher OCR and lipolysis ability in NW group than OB group. With BA-induction, expression of UCP-1 and thermogenic genes increased significantly, followed by the increasement in adipocytes OCR and lipolysis rate in NW group compared with WA-induction treatment, but no significant difference was observed in OB group. CONCLUSION Compromised beige adipocyte differentiation plasticity was found in subcutaneous white adipose tissue derived from obese Chinese individuals, which may be due part to the downregulation of β3-adrenergic receptor expression in adipocytes. Discovery of therapeutic agents to active brown adipose tissue through specific pathways could provide a promising approach for treating obesity in the future.
Collapse
Affiliation(s)
- Han Li
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Lin Shen
- Shandong First Medical University, Taian, Shandong271000, People’s Republic of China
| | - Lei Zhang
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Bing Yan
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Tao Sun
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Feng Guo
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Xiao Yin
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
- Correspondence: Xiao Yin Email
| |
Collapse
|
40
|
Qureshi K, Neuschwander-Tetri BA. The molecular basis for current targets of NASH therapies. Expert Opin Investig Drugs 2019; 29:151-161. [PMID: 31847612 DOI: 10.1080/13543784.2020.1703949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Nonalcoholic steatohepatitis (NASH) is a leading cause of liver disease in children and adults, a major contributor to health-care expenditures, and now a leading reason for liver transplantation. Adopting lifestyle modifications with regular exercise and a focus on healthy eating habits is the primary recommendation. However, patients are often unable to achieve and sustain such changes for a variety of social, physical, psychological and genetic reasons. Thus, treatments that can prevent and reverse NASH and its associated fibrosis are a major focus of current drug development.Areas covered: This review covers the current understanding of lipotoxic liver injury in the pathogenesis of NASH and how lifestyle modification and the spectrum of drugs currently in clinical trials address the many pathways leading to the phenotype of NASH.Expert opinion: Contrary to the frequently expressed nihilistic view of our understanding of NASH and disappointment with clinical trial results, much is known about the pathogenesis of NASH and there is much reason to be optimistic that effective therapies will be identified in the next 5-10 years. Achieving this will require continued refinement of clinical trial endpoints, continued engagement of trial sponsors and regulatory authorities, and continued participation of dedicated patients in clinical trials.
Collapse
Affiliation(s)
- Kamran Qureshi
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MO, USA
| | | |
Collapse
|
41
|
Jimenez‐Pavon D, Corral‐Perez J, Sánchez‐Infantes D, Villarroya F, Ruiz JR, Martinez‐Tellez B. Infrared Thermography for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review. Obesity (Silver Spring) 2019; 27:1932-1949. [PMID: 31691547 PMCID: PMC6899990 DOI: 10.1002/oby.22635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Brown adipose tissue (BAT) is a thermogenic tissue with potential as a therapeutic target in the treatment of obesity and related metabolic disorders. The most used technique for quantifying human BAT activity is the measurement of 18 F-fluorodeoxyglucose uptake via a positron emission tomography/computed tomography scan following exposure to cold. However, several studies have indicated the measurement of the supraclavicular skin temperature (SST) by infrared thermography (IRT) to be a less invasive alternative. This work reviews the state of the art of this latter method as a means of determining BAT activity in humans. METHODS The data sources for this review were PubMed, Web of Science, and EBSCOhost (SPORTdiscus), and eligible studies were those conducted in humans. RESULTS In most studies in which participants were first cooled, an increase in IRT-measured SST was noted. However, only 5 of 24 such studies also involved a nuclear technique that confirmed increased activity in BAT, and only 2 took into account the thickness of the fat layer when measuring SST by IRT. CONCLUSIONS More work is needed to understand the involvement of tissues other than BAT in determining IRT-measured SST; at present, IRT cannot determine whether any increase in SST is due to increased BAT activity.
Collapse
Affiliation(s)
- David Jimenez‐Pavon
- MOVE‐IT Research Group, Department of Physical Education, Faculty of Education SciencesUniversity of CádizCádizSpain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of CádizCádizSpain
| | - Juan Corral‐Perez
- MOVE‐IT Research Group, Department of Physical Education, Faculty of Education SciencesUniversity of CádizCádizSpain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of CádizCádizSpain
| | - David Sánchez‐Infantes
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBadalonaBarcelonaSpain
- Biomedical Research Center (Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
| | - Francesc Villarroya
- Biomedical Research Center (Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
- Department of Biochemistry and Molecular BiomedicineInstitute of BiomedicineBarcelonaSpain
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesSport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
| | - Borja Martinez‐Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesSport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenthe Netherlands
| |
Collapse
|
42
|
Symonds ME, Farhat G, Aldiss P, Pope M, Budge H. Brown adipose tissue and glucose homeostasis - the link between climate change and the global rise in obesity and diabetes. Adipocyte 2019; 8:46-50. [PMID: 30463471 PMCID: PMC6768202 DOI: 10.1080/21623945.2018.1551689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There is increasing evidence that the global rise in temperature is contributing to the onset of diabetes, which could be mediated by a concomitant reduction in brown fat activity. Brown (and beige) fat are characterised as possessing a unique mitochondrial protein uncoupling protein (UCP)1 that when activated can rapidly generate large amounts of heat. Primary environmental stimuli of UCP1 include cold-exposure and diet, leading to increased activity of the sympathetic nervous system and large amounts of lipid and glucose being oxidised by brown fat. The exact contribution remains controversial, although recent studies indicate that the amount of brown and beige fat in adult humans has been greatly underestimated. We therefore review the potential mechanisms by which glucose could be utilised within brown and beige fat in adult humans and the extent to which these are sensitive to temperature and diet. This includes the potential contribution from the peridroplet and cytoplasmic mitochondrial sub-fractions recently identified in brown fat, and whether a proportion of glucose oxidation could be UCP1-independent. It is thus predicted that as new methods are developed to assess glucose metabolism by brown fat, a more accurate determination of the thermogenic and non-thermogenic functions could be feasible in humans.
Collapse
Affiliation(s)
- Michael E. Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Grace Farhat
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool, UK
| | - Peter Aldiss
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mark Pope
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
43
|
Kuipers EN, Held NM, In Het Panhuis W, Modder M, Ruppert PMM, Kersten S, Kooijman S, Guigas B, Houtkooper RH, Rensen PCN, Boon MR. A single day of high-fat diet feeding induces lipid accumulation and insulin resistance in brown adipose tissue in mice. Am J Physiol Endocrinol Metab 2019; 317:E820-E830. [PMID: 31386566 DOI: 10.1152/ajpendo.00123.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brown adipose tissue (BAT) catabolizes glucose and fatty acids to produce heat and thereby contributes to energy expenditure. Long-term high-fat diet (HFD) feeding results in so-called 'whitening' of BAT characterized by increased lipid deposition, mitochondrial dysfunction, and reduced fat oxidation. The aim of the current study was to unravel the rate and related mechanisms by which HFD induces BAT whitening and insulin resistance. Wild-type mice were fed a HFD for 0, 1, 3, or 7 days. Within 1 day of HFD, BAT weight and lipid content were increased. HFD also immediately reduced insulin-stimulated glucose uptake by BAT, indicating rapid induction of insulin resistance. This was accompanied by a tendency toward a reduced uptake of triglyceride-derived fatty acids by BAT. Mitochondrial mass and Ucp1 expression were unaltered, whereas after 3 days of HFD, markers of mitochondrial dynamics suggested induction of a more fused mitochondrial network. Additionally, HFD also increased macrophage markers in BAT after 3 days of HFD. Counterintuitively, the switch to HFD was accompanied by an acute rise in core body temperature. We showed that a single day of HFD feeding is sufficient to induce the first signs of whitening and insulin resistance in BAT, which reduces the uptake of glucose and triglyceride-derived fatty acids. BAT whitening and insulin resistance are likely sustained by reduced mitochondrial oxidation due to changes in mitochondrial dynamics and macrophage infiltration, respectively. Likely, the switch to HFD swiftly induces thermogenesis in other metabolic organs, which allows attenuation of BAT thermogenesis.
Collapse
Affiliation(s)
- Eline N Kuipers
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ntsiki M Held
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Wietse In Het Panhuis
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Melanie Modder
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Philip M M Ruppert
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Pereira RO, McFarlane SI. The Role of Brown Adipose Tissue in Cardiovascular Disease Protection: Current Evidence and Future Directions. ACTA ACUST UNITED AC 2019; 4. [PMID: 31650091 PMCID: PMC6812533 DOI: 10.15344/2456-8007/2019/136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Renata O Pereira
- Department of Internal Medicine - Endocrinology and Metabolism, FOE Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Samy I McFarlane
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NYC 11203, USA
| |
Collapse
|
45
|
Carbone S, Del Buono MG, Ozemek C, Lavie CJ. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Prog Cardiovasc Dis 2019; 62:327-333. [PMID: 31442513 DOI: 10.1016/j.pcad.2019.08.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/29/2022]
Abstract
The epidemic of obesity contributes to the burden of type 2 diabetes mellitus (T2DM) in the United States and worldwide. Importantly, obesity is not only preventable but can be treated, particularly with lifestyle modifications to forestall T2DM in those with excess adiposity. The mechanisms linking obesity to T2DM are numerous and involve adipose tissue remodeling as a result of unhealthy behaviors, including unhealthy diet, reduced physical activity (PA) and exercise training (ET), and increased sedentary behaviors. Taken together, these factors markedly reduce cardiorespiratory fitness (CRF), one of the strongest predictors for cardiovascular outcomes and all-cause mortality in the general population, but also in those with T2DM. In this review we describe the mechanisms leading to adipose tissue remodeling resulting in obesity, as well as the mechanisms linking excess adiposity to insulin resistance and, in turn, T2DM. We then present the therapeutic strategies that can be implemented in obesity to prevent T2DM, with a brief discussion on weight loss, and greater emphasis on PA and ET. We finally present the evidence to support the beneficial effects of such strategies in patients with established T2DM and discuss the importance of achieving improvements in CRF in this population to potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Salvatore Carbone
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, United States of America; VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States of America.
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Cemal Ozemek
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Carl J Lavie
- Department of Cardiovascular Disease, John Ochsner Heart and Vascular Institute, Ochsner Clinical School, the University of Queensland School of Medicine, New Orleans, LA, United States of America
| |
Collapse
|
46
|
Janssen LGM, Jauhiainen M, Olkkonen VM, Haridas PAN, Nahon KJ, Rensen PCN, Boon MR. Short-Term Cooling Increases Plasma ANGPTL3 and ANGPTL8 in Young Healthy Lean Men but Not in Middle-Aged Men with Overweight and Prediabetes. J Clin Med 2019; 8:jcm8081214. [PMID: 31416197 PMCID: PMC6723119 DOI: 10.3390/jcm8081214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/16/2023] Open
Abstract
Angiopoietin-like proteins (ANGPTLs) regulate triglyceride (TG)-rich lipoprotein distribution via inhibiting TG hydrolysis by lipoprotein lipase in metabolic tissues. Brown adipose tissue combusts TG-derived fatty acids to enhance thermogenesis during cold exposure. It has been shown that cold exposure regulates ANGPTL4, but its effects on ANGPTL3 and ANGPTL8 in humans have not been elucidated. We therefore investigated the effect of short-term cooling on plasma ANGPTL3 and ANGPTL8, besides ANGPTL4. Twenty-four young, healthy, lean men and 20 middle-aged men with overweight and prediabetes were subjected to 2 h of mild cooling just above their individual shivering threshold. Before and after short-term cooling, plasma ANGPTL3, ANGPTL4, and ANGPTL8 were determined by ELISA. In young, healthy, lean men, short-term cooling increased plasma ANGPTL3 (+16%, p < 0.05), ANGPTL4 (+15%, p < 0.05), and ANGPTL8 levels (+28%, p < 0.001). In middle-aged men with overweight and prediabetes, short-term cooling only significantly increased plasma ANGPTL4 levels (+15%, p < 0.05), but not ANGPTL3 (230 ± 9 vs. 251 ± 13 ng/mL, p = 0.051) or ANGPTL8 (2.2 ± 0.5 vs. 2.3 ± 0.5 μg/mL, p = 0.46). We show that short-term cooling increases plasma ANGPTL4 levels in men, regardless of age and metabolic status, but only overtly increases ANGPTL3 and ANGPTL8 levels in young, healthy, lean men.
Collapse
Affiliation(s)
- Laura G M Janssen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - Kimberly J Nahon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
47
|
Acosta FM, Martinez-Tellez B, Blondin DP, Haman F, Rensen PCN, Llamas-Elvira JM, Martinez-Nicolas A, Ruiz JR. Relationship between the Daily Rhythm of Distal Skin Temperature and Brown Adipose Tissue 18F-FDG Uptake in Young Sedentary Adults. J Biol Rhythms 2019; 34:533-550. [PMID: 31389278 PMCID: PMC6732824 DOI: 10.1177/0748730419865400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study examines whether the daily rhythm of distal skin temperature (DST) is associated with brown adipose tissue (BAT) metabolism as determined by 18F-fluorodeoxyglucose (18F-FDG) uptake in young adults. Using a wireless thermometer (iButton) worn on the nondominant wrist, DST was measured in 77 subjects (26% male; age 22 ± 2 years; body mass index 25.2 ± 4.8 kg/m2) for 7 consecutive days. The temperatures to which they were habitually exposed over the day were also recorded. The interday stability of DST was calculated from the collected data, along with the intraday variability and relative amplitude; the mean temperature of the 5 and 10 consecutive hours with the maximum and minimum DST values, respectively; and when these hours occurred. Following exposure to cold, BAT volume and mean and peak standardized 18F-FDG uptake (SUVmean and SUVpeak) were determined for each subject via static 18F-FDG positron emission tomography/computed tomography scanning. Relative amplitude and the time at which the 10 consecutive hours of minimum DST values occurred were positively associated with BAT volume, SUVmean, and SUVpeak (p ≤ 0.02), whereas the mean DST of that period was inversely associated with the latter BAT variables (p ≤ 0.01). The interday stability and intraday variability of the DST were also associated (directly and inversely, respectively) with BAT SUVpeak (p ≤ 0.02 for both). All of these associations disappeared, however, when the analyses were adjusted for the ambient temperature to which the subjects were habitually exposed. Thus, the relationship between the daily rhythm of DST and BAT activity estimated by 18F-FDG uptake is masked by environmental and likely behavioral factors. Of note is that those participants exposed to the lowest ambient temperature showed 3 to 5 times more BAT volume and activity compared with subjects who were exposed to a warmer ambient temperature.
Collapse
Affiliation(s)
- Francisco M Acosta
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Pharmacology-Physiology, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Servicio de Medicina Nuclear, Granada, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
48
|
Martinez-Tellez B, Sanchez-Delgado G, Amaro-Gahete FJ, Acosta FM, Ruiz JR. Relationships between cardiorespiratory fitness/muscular strength and 18F-fluorodeoxyglucose uptake in brown adipose tissue after exposure to cold in young, sedentary adults. Sci Rep 2019; 9:11314. [PMID: 31383929 PMCID: PMC6683147 DOI: 10.1038/s41598-019-47918-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
Humans have metabolically active brown adipose tissue (BAT). However, what is the relation between exercise or physical activity with this tissue remains controversial. Therefore, the main aim of the present study is to examine whether cardiorespiratory fitness and muscular strength are associated with brown adipose tissue (BAT) volume and activity after exposure to cold in young, sedentary adults. Cardiorespiratory fitness was determined in 119 young, healthy, sedentary adults (68% women, age 21.9 ± 2.1 years, body mass index 25 ± 4.8 kg/m2) via the maximum treadmill exercise test, and their muscular strength assessed by the handgrip strength test and the 1-repetition maximum bench and leg press tests. Some days later, all subjects were exposed to 2 h of personalized exposure to cold and their cold-induced BAT volume and activity determined by a combination of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and computed tomography scan. Cardiorespiratory fitness was associated with neither the BAT volume nor BAT activity (P ≥ 0.05). However, handgrip strength with respect to lean body mass was positively (though weakly) associated with BAT activity as represented by the 18F-FDG mean standardised uptake value (SUV) (β = 3.595, R2 = 0.039, P = 0.031) and SUVpeak value (β = 15.314, R2 = 0.037, P = 0.035). The above relationships remained after adjusting for several confounders. No other associations were found. Handgrip strength with respect to lean body mass is positively associated with BAT activity (SUVmean and SUVpeak) in young adults after exposure to cold - but only weakly. Further studies are needed to reveal the relationship between muscular fitness and human BAT characteristics.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Medicine, division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
49
|
Blázquez-Medela AM, Jumabay M, Boström KI. Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obes Rev 2019; 20:648-658. [PMID: 30609449 PMCID: PMC6447448 DOI: 10.1111/obr.12822] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/02/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023]
Abstract
The bone morphogenetic proteins (BMPs) belong to the same superfamily as related to transforming growth factor β (TGFβ), growth and differentiation factors (GDFs), and activins. They were initially described as inducers of bone formation but are now known to be involved in morphogenetic activities and cell differentiation throughout the body, including the development of adipose tissue and adipogenic differentiation. BMP4 and BMP7 are the most studied BMPs in adipose tissue, with major roles in white adipogenesis and brown adipogenesis, respectively, but other BMPs such as BMP2, BMP6, and BMP8b as well as some inhibitors and modulators have been shown to also affect adipogenesis. It has become ever more important to understand adipose regulation, including the BMP pathways, in light of the strong links between obesity and metabolic and cardiovascular disease. In this review, we summarize the available information on BMP signaling in adipose tissue using preferentially articles that have appeared in the last decade, which together demonstrate the importance of BMP signaling in adipose biology.
Collapse
Affiliation(s)
- Ana M Blázquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States.,Molecular Biology Institute, UCLA, Los Angeles, California, United States
| |
Collapse
|
50
|
Martinez-Tellez B, Perez-Bey A, Sanchez-Delgado G, Acosta FM, Corral-Perez J, Amaro-Gahete FJ, Alcantara JMA, Castro-Piñero J, Jimenez-Pavon D, Llamas-Elvira JM, Ruiz JR. Concurrent validity of supraclavicular skin temperature measured with iButtons and infrared thermography as a surrogate marker of brown adipose tissue. J Therm Biol 2019; 82:186-196. [PMID: 31128647 DOI: 10.1016/j.jtherbio.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Brown adipose tissue (BAT) thermogenic activity is commonly assessed with a positron emission tomography with computed tomography scan (PET/CT). This technique has several limitations and alternative techniques are needed. Supraclavicular skin temperature measured with iButtons and infrared thermography (IRT) has been proposed as an indirect marker of BAT activity. We studied the concurrent validity of skin temperature measured with iButtons vs. IRT and the association of supraclavicular skin temperature measured with iButtons and IRT with BAT. We measured skin temperature upon a shivering threshold test with iButtons and IRT in 6 different regions in 12 participants (n = 2 men). On a separate day, we determined supraclavicular skin temperature with an iButton and IRT after 2 h of a personalized cooling protocol. Thereafter, we quantified BAT volume and activity by PET/CT. We observed that the absolute differences between the devices were statistically different from 0 (all P < 0.05) after the shivering threshold test. Moreover, we did not find any association between supraclavicular skin temperature measured with iButtons or IRT and BAT 18F-FDG activity (r = -0.213; P = 0.530 and r = -0.079; P = 0.817). However, we observed a negative association of supraclavicular skin temperature measured by IRT with BAT 18F-FDG volume (r = -0.764; P = 0.006), but not with supraclavicular skin temperature measured with iButtons (r = -0.546; P = 0.082). In light of these results, we concluded that the measurement of skin temperature obtained by iButtons and IRT are not comparable. Furthermore, it seems that supraclavicular skin temperature is not associated with BAT 18F-FDG activity, but it appears to be negatively associated with BAT 18F-FDG volume in the case of IRT.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain; Department of Medicine, Division of Endocrinology, And Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Alejandro Perez-Bey
- Galeno Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Juan Corral-Perez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education, Sciences, University of Cádiz, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jose Castro-Piñero
- Galeno Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
| | - David Jimenez-Pavon
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education, Sciences, University of Cádiz, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Service, "Virgen de las Nieves" University Hospital, Granada, Spain; Nuclear Medicine Service, Biohealth Research Institute (ibs. GRANADA), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|