1
|
Xu KY, Li M, Yu WH, Li X, Zeng Y, Xie FL, Zhou YH, Xu PS, Pu CC, Xie BB, Yu LT, Luo C. Reg3A Overexpression Facilitates Hepatic Metastasis by Altering Cell Adhesion in LoVo Colon Cancer Cells. DNA Cell Biol 2024; 43:298-310. [PMID: 38771249 DOI: 10.1089/dna.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
- Ke-Yi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mao Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wei-Hong Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuan Zeng
- Department of Clinical Pharmacology and Bioanalytics, Pfizer (China) Research and Development Co., Ltd., Shanghai, China
| | - Fei-Lu Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yi-Han Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Pin-Shen Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chun-Cheng Pu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bing-Bing Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lu-Ting Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Chen Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Antibody Engineering Laboratory, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Gonzalez P, Dos Santos A, Darnaud M, Moniaux N, Rapoud D, Lacoste C, Nguyen TS, Moullé VS, Deshayes A, Amouyal G, Amouyal P, Bréchot C, Cruciani-Guglielmacci C, Andréelli F, Magnan C, Faivre J. Antimicrobial protein REG3A regulates glucose homeostasis and insulin resistance in obese diabetic mice. Commun Biol 2023; 6:269. [PMID: 36918710 PMCID: PMC10015038 DOI: 10.1038/s42003-023-04616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.
Collapse
Affiliation(s)
- Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Valentine S Moullé
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | | | | | | | | | - Fabrizio Andréelli
- Sorbonne Université, INSERM, NutriOmics team, Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, 75013, France
| | - Christophe Magnan
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France.
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University Department (DMU) Biology, Genetics, Pharmacy, Paul-Brousse Hospital, Villejuif, 94800, France.
| |
Collapse
|
3
|
Hill JH, Massaquoi MS, Sweeney EG, Wall ES, Jahl P, Bell R, Kallio K, Derrick D, Murtaugh LC, Parthasarathy R, Remington SJ, Round JL, Guillemin K. BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases β cell mass. Cell Metab 2022; 34:1779-1791.e9. [PMID: 36240759 PMCID: PMC9633563 DOI: 10.1016/j.cmet.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand β cells, whereas the pore-forming host defense protein, Reg3, stimulates β cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for β cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.
Collapse
Affiliation(s)
- Jennifer Hampton Hill
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Elena S Wall
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Jahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Kallio
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel Derrick
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - S James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
4
|
Frazier K, Kambal A, Zale EA, Pierre JF, Hubert N, Miyoshi S, Miyoshi J, Ringus DL, Harris D, Yang K, Carroll K, Hermanson JB, Chlystek JS, Overmyer KA, Cham CM, Musch MW, Coon JJ, Chang EB, Leone VA. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction. Cell Host Microbe 2022; 30:809-823.e6. [PMID: 35439436 PMCID: PMC9281554 DOI: 10.1016/j.chom.2022.03.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
Abstract
Gut microbial diurnal oscillations are important diet-dependent drivers of host circadian rhythms and metabolism ensuring optimal energy balance. However, the interplay between diet, microbes, and host factors sustaining intestinal oscillations is complex and poorly understood. Here, using a mouse model, we report the host C-type lectin antimicrobial peptide Reg3γ works with key ileal microbes to orchestrate these interactions in a bidirectional manner and does not correlate with the intestinal core circadian clock. High-fat diet is the primary driver of microbial oscillators that impair host metabolic homeostasis, resulting in arrhythmic host Reg3γ expression that secondarily drives abundance and oscillation of key gut microbes. This illustrates transkingdom coordination of biological rhythms primarily influenced by diet and reciprocal sensor-effector signals between host and microbial components, ultimately driving metabolism. Restoring the gut microbiota's capacity to sense dietary signals mediated by specific host factors such as Reg3γ could be harnessed to improve metabolic dysfunction.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Amal Kambal
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Elizabeth A Zale
- Infectious Diseases Division, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joseph F Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathaniel Hubert
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sawako Miyoshi
- Department of General Medicine, Kyorin University School of Medicine, Tokyo 1818611, Japan
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo 1818611, Japan
| | - Daina L Ringus
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dylan Harris
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Karen Yang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Katherine Carroll
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John S Chlystek
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Candace M Cham
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mark W Musch
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Yan J, Chen Q, Tian L, Li K, Lai W, Bian L, Han J, Jia R, Liu X, Xi Z. Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota-host co-metabolites and intestinal barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153279. [PMID: 35074372 DOI: 10.1016/j.scitotenv.2022.153279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
The wide use of TiO2 particles in food and the high exposure risk to children have prompted research into the health risks of TiO2. We used the microbiome and targeted metabolomics to explore the potential mechanism of intestinal toxicity of foodborne TiO2 micro-/nanoparticles after oral exposure for 28 days in juvenile mice. Results showed that the gut microbiota-including the abundance of Bacteroides, Bifidobacterium, Lactobacillus, and Prevotella-changed dynamically during exposure. The organic inflammatory response was activated, and lipopolysaccharide levels increased. Intestinal toxicity manifested as increased mucosal permeability, impaired intestinal barrier, immune damage, and pathological changes. The expression of antimicrobial peptides, occludin, and ZO-1 significantly reduced, while that of JNK2 and Src/pSrc increased. Compared with micro-TiO2 particles, the nano-TiO2 particles had strong toxicity. Fecal microbiota transplant confirmed the key role of gut microbiota in intestinal toxicity. The levels of gut microbiota-host co-metabolites, including pyroglutamic acid, L-glutamic acid, phenylacetic acid, and 3-hydroxyphenylacetic acid, changed significantly. Significant changes were observed in the glutathione and propanoate metabolic pathways. There was a significant correlation between the changes in gut microbiota, metabolites, and intestinal cytokine levels. These, together with the intestinal barrier damage signaling pathway, constitute the network mechanism of the intestinal toxicity of TiO2 particles.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Rui Jia
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| |
Collapse
|
6
|
O'Reilly EL, Horvatić A, Kuleš J, Gelemanović A, Mrljak V, Huang Y, Brady N, Chadwick CC, Eckersall PD, Ridyard A. Faecal proteomics in the identification of biomarkers to differentiate canine chronic enteropathies. J Proteomics 2021; 254:104452. [PMID: 34958965 DOI: 10.1016/j.jprot.2021.104452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022]
Abstract
Canine chronic enteropathy (CCE) is a collective term used to describe a group of idiopathic enteropathies of dogs that result in a variety of clinical manifestations of intestinal dysfunction. Clinical stratification into food-responsive enteropathy (FRE) or non-food responsive chronic inflammatory enteropathy (CIE), is made retrospectively based on response to treatments. Faecal extracts from those with a FRE (n = 5) and those with non-food responsive chronic inflammatory enteropathies (CIE) (n = 6) were compared to a healthy control group (n = 14) by applying TMT-based quantitative proteomic approach. Many of the proteins with significant differential abundance between groups were pancreatic or intestinal enzymes with pancreatitis-associated protein (identified as REG3α) and pancreatic M14 metallocarboxypeptidase proteins carboxypeptidase A1 and B identified as being of significantly increased abundance in the CCE group. The reactome analysis revealed the recycling of bile acids and salts and their metabolism to be present in the FRE group, suggesting a possible dysbiotic aetiology. Several acute phase proteins were significantly more abundant in the CCE group with the significant increase in haptoglobin in the CIE group especially notable. Further research of these proteins is needed to fully assess their clinical utility as faecal biomarkers for differentiating CCE cases. SIGNIFICANCE: The identification and characterisation of biomarkers that differentiate FRE from other forms of CIE would prove invaluable in streamlining clinical decision-making and would avoid costly and invasive investigations and delays in implementing effective treatment. Many of the proteins described here, as canine faecal proteins for the first time, have been highlighted in previous human and murine inflammatory bowl disease (IBD) studies initiating a new chapter in canine faecal biomarker research, where early and non-invasive biomarkers for early clinical stratification of CCE cases are needed. Pancreatitis-associated protein, pancreatic M14 metallocarboxypeptidase along with carboxypeptidase A1 and B are identified as being of significantly increased abundance in the CCE groups. Several acute phase proteins, were significantly more abundant in the CCE group notably haptoglobin in dogs with inflammatory enteropathy. The recognition of altered bile acid metabolism in the reactome analysis in the FRE group is significant in CCE which is a complex condition incorporating of immunological, dysbiotic and faecal bile acid dysmetabolism. Both proteomics and immunoassays will enable the characterisation of faecal APPs as well as other inflammatory and immune mediators, and the utilisation of assays, validated for use in analysis of faeces of veterinary species will enable clinical utilisation of faecal matrix to be fully realised.
Collapse
Affiliation(s)
- Emily L O'Reilly
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK. Emily.O'
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia; Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Josipa Kuleš
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Yixin Huang
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK.
| | - Nicola Brady
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK.
| | | | - P David Eckersall
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK; Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Alison Ridyard
- School of Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
7
|
Klüber P, Meurer SK, Lambertz J, Schwarz R, Zechel-Gran S, Braunschweig T, Hurka S, Domann E, Weiskirchen R. Depletion of Lipocalin 2 (LCN2) in Mice Leads to Dysbiosis and Persistent Colonization with Segmented Filamentous Bacteria. Int J Mol Sci 2021; 22:ijms222313156. [PMID: 34884961 PMCID: PMC8658549 DOI: 10.3390/ijms222313156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Lipocalin 2 (LCN2) mediates key roles in innate immune responses. It has affinity for many lipophilic ligands and binds various siderophores, thereby limiting bacterial growth by iron sequestration. Furthermore, LCN2 protects against obesity and metabolic syndrome by interfering with the composition of gut microbiota. Consequently, complete or hepatocyte-specific ablation of the Lcn2 gene is associated with higher susceptibility to bacterial infections. In the present study, we comparatively profiled microbiota in fecal samples of wild type and Lcn2 null mice and show, in contrast to previous reports, that the quantity of DNA in feces of Lcn2 null mice is significantly lower than that in wild type mice (p < 0.001). By using the hypervariable V4 region of the 16S rDNA gene and Next-Generation Sequencing methods, we found a statistically significant change in 16 taxonomic units in Lcn2-/- mice, including eight gender-specific deviations. In particular, members of Clostridium, Escherichia, Helicobacter, Lactococcus, Prevotellaceae_UCG-001 and Staphylococcus appeared to expand in the intestinal tract of knockout mice. Interestingly, the proportion of Escherichia (200-fold) and Staphylococcus (10-fold) as well as the abundance of intestinal bacteria encoding the LCN2-sensitive siderphore enterobactin (entA) was significantly increased in male Lcn2 null mice (743-fold, p < 0.001). This was accompanied by significant higher immune cell infiltration in the ileum as demonstrated by increased immunoreactivity against the pan-leukocyte protein CD45, the lymphocyte transcription factor MUM-1/IRF4, and the macrophage antigen CD68/Macrosialin. In addition, we found a higher expression of mucosal mast cell proteases indicating a higher number of those innate immune cells. Finally, the ileum of Lcn2 null mice displayed a high abundance of segmented filamentous bacteria, which are intimately associated with the mucosal cell layer, provoking epithelial antimicrobial responses and affecting T-helper cell polarization.
Collapse
Affiliation(s)
- Patrick Klüber
- German Centre for Infection Research, Institute of Medical Microbiology, Justus-Liebig-University, D-35392 Giessen, Germany; (P.K.); (S.Z.-G.)
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
| | - Jessica Lambertz
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
| | - Roman Schwarz
- Labor Mönchengladbach, Medical Care Centre, D-41169 Mönchengladbach, Germany;
| | - Silke Zechel-Gran
- German Centre for Infection Research, Institute of Medical Microbiology, Justus-Liebig-University, D-35392 Giessen, Germany; (P.K.); (S.Z.-G.)
| | - Till Braunschweig
- Institute of Pathology, RWTH Aachen University Hospital, D-52074 Aachen, Germany;
| | - Sabine Hurka
- Institute for Insect Biotechnology, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Eugen Domann
- German Centre for Infection Research, Institute of Hygiene and Environmental Medicine, Justus-Liebig-University, D-35392 Giessen, Germany
- Correspondence: (E.D.); (R.W.); Tel.: +49-(0)641-99-41280 (E.D.); +49-(0)241-80-88683 (R.W.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
- Correspondence: (E.D.); (R.W.); Tel.: +49-(0)641-99-41280 (E.D.); +49-(0)241-80-88683 (R.W.)
| |
Collapse
|
8
|
Cao Y, Tian Y, Liu Y, Su Z. Reg3β: A Potential Therapeutic Target for Tissue Injury and Inflammation-Associated Disorders. Int Rev Immunol 2021; 41:160-170. [PMID: 33426979 DOI: 10.1080/08830185.2020.1869731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since regenerating islet-derived 3β (Reg3β) was first reported, various studies have been conducted to explore the involvement of Reg3β in a gamut of maladies, such as diabetes, pancreatitis, pancreatic ductal adenocarcinoma, and extrapancreatic maladies such as inflammatory bowel disease, acute liver failure, and myocardial infarction. Surprisingly, there is currently no systematic review of Reg3β. Therefore, we summarize the structural characteristics, transcriptional regulation, putative receptors, and signaling pathways of Reg3β. The exact functional roles in various diseases, especially gastrointestinal and liver diseases, are also discussed. Reg3β plays multiple roles in promoting proliferation, inducing differentiation, preventing apoptosis, and resisting bacteria. The present review may provide new directions for the diagnosis and treatment of gastrointestinal, liver, and pancreatic diseases.
Collapse
Affiliation(s)
- Yuwen Cao
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Laboratory Center, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China.,Laboratory Center, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Samykannu G, Vijayababu P, Antonyraj CB, Narayanan S. Structural investigation of APRs to improve the solubility of outer membrane protease (PgtE) from Salmonella enterica serotype typhi- A multi-constraint approach. Biochem Biophys Rep 2020; 21:100693. [PMID: 31872081 PMCID: PMC6911951 DOI: 10.1016/j.bbrep.2019.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 11/14/2022] Open
Abstract
Outer membrane proteins were playing a crucial role on the several functions controlled by cell membranes even though they are not naturally expressed at higher levels. In order to obtain biologically active protein, the denaturation of these inclusion bodies must be optimized using chaotropic agents. Hence, this study focuses on improving the yield of Outer Membrane Protease (PgtE) from Salmonella enterica serotype Typhi (S. Typhi) using chaotropes and additives. Denaturation methods were tried with various pH, detergents, and reducing agents were used to optimize the solubility of PgtE with biologically active form. Due to the aggregation, we failed to achieve the maximum yield of PgtE. Consequently, we predicted 9 Aggregation Prone Regions (APRs) in PgtE, which are mutated by known structural Gatekeepers. We calculated the Aggregation Index (AI) of PgtE with 10 mM of aspartic acid as an additive in optimized buffer. In addition, the mutations at specific positions within the protein structure can act as APRs suppressors without affecting protein stability with CABS flex dynamics. The multiple sequence analysis demonstrate that aspartic acid is appropriate denaturing additive for other Gram-negative pathogens of Omptin family.
Collapse
Affiliation(s)
- Gopinath Samykannu
- Structural Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Princy Vijayababu
- Structural Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | | | - Sundarabaalaji Narayanan
- Structural Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
10
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
11
|
Celi P, Verlhac V, Pérez Calvo E, Schmeisser J, Kluenter AM. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Tropini C, Moss EL, Merrill BD, Ng KM, Higginbottom SK, Casavant EP, Gonzalez CG, Fremin B, Bouley DM, Elias JE, Bhatt AS, Huang KC, Sonnenburg JL. Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota. Cell 2018; 173:1742-1754.e17. [PMID: 29906449 PMCID: PMC6061967 DOI: 10.1016/j.cell.2018.05.008] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/26/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
Osmotic diarrhea is a prevalent condition in humans caused by food intolerance, malabsorption, and widespread laxative use. Here, we assess the resilience of the gut ecosystem to osmotic perturbation at multiple length and timescales using mice as model hosts. Osmotic stress caused reproducible extinction of highly abundant taxa and expansion of less prevalent members in human and mouse microbiotas. Quantitative imaging revealed decimation of the mucus barrier during osmotic perturbation, followed by recovery. The immune system exhibited temporary changes in cytokine levels and a lasting IgG response against commensal bacteria. Increased osmolality prevented growth of commensal strains in vitro, revealing one mechanism contributing to extinction. Environmental availability of microbiota members mitigated extinction events, demonstrating how species reintroduction can affect community resilience. Our findings (1) demonstrate that even mild osmotic diarrhea can cause lasting changes to the microbiota and host and (2) lay the foundation for interventions that increase system-wide resilience.
Collapse
Affiliation(s)
- Carolina Tropini
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eli Lin Moss
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan Douglas Merrill
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katharine Michelle Ng
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Kyle Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ellen Pun Casavant
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Brayon Fremin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Donna Michelle Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua Eric Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ami Siddharth Bhatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Justin Laine Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Darnaud M, Dos Santos A, Gonzalez P, Augui S, Lacoste C, Desterke C, De Hertogh G, Valentino E, Braun E, Zheng J, Boisgard R, Neut C, Dubuquoy L, Chiappini F, Samuel D, Lepage P, Guerrieri F, Doré J, Bréchot C, Moniaux N, Faivre J. Enteric Delivery of Regenerating Family Member 3 alpha Alters the Intestinal Microbiota and Controls Inflammation in Mice With Colitis. Gastroenterology 2018; 154:1009-1023.e14. [PMID: 29133078 DOI: 10.1053/j.gastro.2017.11.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/28/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Paneth cell dysfunction causes deficiencies in intestinal C-type lectins and antimicrobial peptides, which leads to dysbiosis of the intestinal microbiota, alters the mucosal barrier, and promotes development of inflammatory bowel diseases. We investigated whether transgenic (TG) expression of the human regenerating family member 3 alpha gene (REG3A) alters the fecal microbiota and affects development of colitis in mice. METHODS We performed studies with C57BL/6 mice that express human regenerating family member 3 alpha (hREG3A) in hepatocytes, via the albumin gene promoter. In these mice, hREG3A travels via the bile to the intestinal lumen. Some mice were given dextran sodium sulfate (DSS) to induce colitis. Feces were collected from mice and the composition of the microbiota was analyzed by 16S ribosomal RNA sequencing. The fecal microbiome was also analyzed from mice that express only 1 copy of human REG3A transgene but were fed feces from control mice (not expressing hREG3A) as newborns. Mice expressing hREG3A were monitored for DSS-induced colitis after cohousing or feeding feces from control mice. Colitis was induced in another set of control and hREG3A-TG mice by administration of trinitrobenzene sulfonic acid; some mice were given intrarectal injections of the hREG3A protein. Colon tissues were collected from mice and analyzed by histology and immunohistochemistry to detect mucin 2, as well as by 16S ribosomal RNA fluorescence in situ hybridization, transcriptional analyses, and quantitative polymerase chain reaction. We measured levels of reactive oxygen species (ROS) in bacterial cultures and fecal microbiota using 2',7'-dichlorofluorescein diacetate and flow cytometry. RESULTS The fecal microbiota of mice that express hREG3A had a significant shift in composition, compared with control mice, with enrichment of Clostridiales (Ruminococcaceae, Lachnospiraceae) and depletion of Bacteroidetes (Prevotellaceae); the TG mice developed less-severe colitis following administration of DSS than control mice, associated with preserved gut barrier integrity and reduced bacterial translocation, epithelial inflammation, and oxidative damage. A similar shift in the composition of the fecal microbiota occurred after a few months in TG mice heterozygous for REG3A that harbored a wild-type maternal microbiota at birth; these mice developed less-severe forms of colitis following DSS administration. Cohoused and germ-free mice fed feces from REG3A-TG mice and given DSS developed less-severe forms of colitis and had reduced lipopolysaccharide activation of the toll-like receptor 4 and increased survival times compared with mice not fed feces from REG3A-TG mice. REG3A TG mice developed only mild colonic inflammation after exposure to 2,4,6-trinitrobenzene sulfonic acid, compared with control mice. Control mice given intrarectal hREG3A and exposed to 2,4,6-trinitrobenzene sulfonic acid showed less colon damage and inflammation than mice not given intrarectal hREG3A. Fecal samples from REG3A-TG mice had lower levels of ROS than feces from control mice during DSS administration. Addition of hREG3A to bacterial cultures reduced levels of ROS and increased survival of oxygen-sensitive commensal bacteria (Faecalibacterium prausnitzii and Roseburia intestinalis). CONCLUSIONS Mice with hepatocytes that express hREG3A, which travels to the intestinal lumen, are less sensitive to colitis than control mice. We found hREG3A to alter the colonic microbiota by decreasing levels of ROS. Fecal microbiota from REG3A-TG mice protect non-TG mice from induction of colitis. These findings indicate a role for reduction of oxidative stress in preserving the gut microbiota and its ability to prevent inflammation.
Collapse
Affiliation(s)
- Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Sandrine Augui
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Christophe Desterke
- University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Gert De Hertogh
- Department of Imaging and Pathology, Unit of Translational Cell and Tissue Research, University of Leuven, Leuven, Belgium
| | - Emma Valentino
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Emilie Braun
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Jinzi Zheng
- CEA, DSV, Institut d'Imagerie Biomédicale, Orsay, France; INSERM, U1023, Université Paris-Sud, Orsay, France
| | - Raphael Boisgard
- CEA, DSV, Institut d'Imagerie Biomédicale, Orsay, France; INSERM, U1023, Université Paris-Sud, Orsay, France
| | - Christel Neut
- LIRIC-U995, University Lille, Inserm, CHU Lille, Lille, France
| | | | - Franck Chiappini
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Didier Samuel
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Patricia Lepage
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Francesca Guerrieri
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Roma, Italy
| | - Joel Doré
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Christian Bréchot
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Pasteur Institute, Paris, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif, France.
| |
Collapse
|
14
|
Bonjoch L, Gironella M, Iovanna JL, Closa D. REG3β modifies cell tumor function by impairing extracellular vesicle uptake. Sci Rep 2017; 7:3143. [PMID: 28600520 PMCID: PMC5466682 DOI: 10.1038/s41598-017-03244-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are nano-sized membrane vesicles containing proteins and nucleic acids, which act as intercellular messengers. They play an important role in a variety of physiological processes, as well as in pathological situations such as inflammation or cancer. Here, we show that in the case of pancreatic ductal adenocarcinoma (PDAC), the healthy pancreatic tissue surrounding the tumor releases REG3β, a lectin that binds to the glycoproteins present in the surface of EVs, thus interfering with their uptake and internalization by target cells. In vitro, the disruption of the signaling mediated by EVs due to the presence of REG3β, prevents the EV-induced phenotypic switch in macrophages, inhibits the increased cell migration of cancer cells and reverses a number of metabolomic changes promoted by EVs. In vivo, the uptake of REG3β+ EVs by tumor cells is significantly impaired. Furthermore, it results in an increase of circulating REG3β+ EVs in blood of pancreatic cancer patients. Our findings highlight the effect of a lectin released by the healthy pancreatic tissue surrounding the tumor in modulating the EV-mediated interactions between different cell types in PDAC.
Collapse
Affiliation(s)
- Laia Bonjoch
- Dept Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Meritxell Gironella
- Gastrointestinal and Pancreatic Oncology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut National De La Santé Et De La Recherche Médicale (INSERM) Unit 1068, Centre National De La Recherche Scientifique (CNRS) Unit 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13273, Marseille, Cedex 09, France
| | - Daniel Closa
- Dept Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
| |
Collapse
|
15
|
Bergman P, Seyedoleslami Esfahani S, Engström Y. Drosophila as a Model for Human Diseases—Focus on Innate Immunity in Barrier Epithelia. Curr Top Dev Biol 2017; 121:29-81. [DOI: 10.1016/bs.ctdb.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
McAleer JP, Nguyen NLH, Chen K, Kumar P, Ricks DM, Binnie M, Armentrout RA, Pociask DA, Hein A, Yu A, Vikram A, Bibby K, Umesaki Y, Rivera A, Sheppard D, Ouyang W, Hooper LV, Kolls JK. Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:97-107. [PMID: 27217583 PMCID: PMC4912941 DOI: 10.4049/jimmunol.1502566] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/25/2016] [Indexed: 12/18/2022]
Abstract
Commensal microbiota are critical for the development of local immune responses. In this article, we show that gut microbiota can regulate CD4 T cell polarization during pulmonary fungal infections. Vancomycin drinking water significantly decreased lung Th17 cell numbers during acute infection, demonstrating that Gram-positive commensals contribute to systemic inflammation. We next tested a role for RegIIIγ, an IL-22-inducible antimicrobial protein with specificity for Gram-positive bacteria. Following infection, increased accumulation of Th17 cells in the lungs of RegIIIγ(-/-) and Il22(-/-) mice was associated with intestinal segmented filamentous bacteria (SFB) colonization. Although gastrointestinal delivery of rRegIIIγ decreased lung inflammatory gene expression and protected Il22(-/-) mice from weight loss during infection, it had no direct effect on SFB colonization, fungal clearance, or lung Th17 immunity. We further show that vancomycin only decreased lung IL-17 production in mice colonized with SFB. To determine the link between gut microbiota and lung immunity, serum-transfer experiments revealed that IL-1R ligands increase the accumulation of lung Th17 cells. These data suggest that intestinal microbiota, including SFB, can regulate pulmonary adaptive immune responses.
Collapse
Affiliation(s)
- Jeremy P McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Nikki L H Nguyen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Pawan Kumar
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - David M Ricks
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Matthew Binnie
- Division of Respirology, Department of Medicine, University of Toronto, Ontario M5B 1W8, Canada
| | - Rachel A Armentrout
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Derek A Pociask
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Aaron Hein
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Amy Yu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Yoshinori Umesaki
- Yakult Central Institute for Microbiological Research, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Amariliz Rivera
- Department of Pediatrics, Center for Immunity and Inflammation, New Jersey Medical School, Newark, NJ 07101
| | - Dean Sheppard
- Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080; and
| | - Lora V Hooper
- Department of Immunology, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224;
| |
Collapse
|
17
|
Spencer JD, Jackson AR, Li B, Ching CB, Vonau M, Easterling RS, Schwaderer AL, McHugh KM, Becknell B. Expression and Significance of the HIP/PAP and RegIIIγ Antimicrobial Peptides during Mammalian Urinary Tract Infection. PLoS One 2015; 10:e0144024. [PMID: 26658437 PMCID: PMC4675559 DOI: 10.1371/journal.pone.0144024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022] Open
Abstract
Recent evidence indicates that antimicrobial peptides (AMPs) serve key roles in defending the urinary tract against invading uropathogens. To date, the individual contribution of AMPs to urinary tract host defense is not well defined. In this study, we identified Regenerating islet-derived 3 gamma (RegIIIγ) as the most transcriptionally up-regulated AMP in murine bladder transcriptomes following uropathogenic Escherichia coli (UPEC) infection. We confirmed induction of RegIIIγ mRNA during cystitis and pyelonephritis by quantitative RT-PCR. Immunoblotting demonstrates increased bladder and urinary RegIIIγ protein levels following UPEC infection. Immunostaining localizes RegIIIγ protein to urothelial cells of infected bladders and kidneys. Human patients with UTI have increased urine concentrations of the orthologous Hepatocarcinoma-Intestine-Pancreas / Pancreatitis Associated Protein (HIP/PAP) compared to healthy controls. Recombinant RegIIIγ protein does not demonstrate bactericidal activity toward UPEC in vitro, but does kill Staphylococcus saprophyticus in a dose-dependent manner. Kidney and bladder tissue from RegIIIγ knockout mice and wild-type mice contain comparable bacterial burden following UPEC and Gram-positive UTI. Our results demonstrate that RegIIIγ and HIP/PAP expression is induced during human and murine UTI. However, their specific function in the urinary tract remains uncertain.
Collapse
Affiliation(s)
- John David Spencer
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| | - Ashley R. Jackson
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Birong Li
- Center for Clinical and Translational Research, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| | - Christina B. Ching
- Division of Urology, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Martin Vonau
- Department of Pediatrics and Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | | | - Andrew L. Schwaderer
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| | - Kirk M. McHugh
- Department of Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Molecular and Human Genetics, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| | - Brian Becknell
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| |
Collapse
|
18
|
The role of IL-10 in microbiome-associated immune modulation and disease tolerance. Cytokine 2015; 75:291-301. [DOI: 10.1016/j.cyto.2014.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
|
19
|
Soler L, Miller I, Nöbauer K, Carpentier S, Niewold T. Identification of the major regenerative III protein (RegIII) in the porcine intestinal mucosa as RegIIIγ, not RegIIIα. Vet Immunol Immunopathol 2015; 167:51-6. [PMID: 26187439 DOI: 10.1016/j.vetimm.2015.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 12/13/2022]
Abstract
During the last years, an antimicrobial protein from the RegIII family has been consistently identified as one of the main up-regulated mRNA transcripts in the pig small intestinal mucosa during different infections such as enterotoxigenic Escherichia coli (ETEC). This transcript has been mainly referred to in the literature as pancreatitis-associated protein (PAP/RegIIIα). However, the identity of this transcript has not been confirmed, and no evidence of its expression at the protein level is available in the literature, because the absence of a specific antibody. In this study, we first unequivocally identified the PAP/RegIII family protein mainly expressed in ETEC infected pig intestine as RegIIIγ by 2D-DIGE and MALDI-TOF/TOF. This shows that the pig differs from species like human and mice in that RegIIIγ (and not RegIIIα) might be the major RegIII isotype during intestinal infection. Immunoblotting analysis with a specifically generated polyclonal rabbit antibody revealed that pig RegIIIγ is expressed throughout the intestinal tract, but most abundantly in the ileum. Although a higher abundance of mRNA was paralleled by higher protein abundance, a lack of linear relationship was found between RegIIIγ mRNA and protein abundances in the jejunal mucosa, the latter most pronounced in the case of natural infection. This may be related to the secretory nature of RegIIIγ. This would mean that the antimicrobial protein RegIIIγ is a good candidate as a non-invasive faecal intestinal health biomarker in swine.
Collapse
Affiliation(s)
- L Soler
- Livestock-Nutrition-Quality Division, Biosystems Department, Faculty of Biosciences Engineering, KU Leuven, Kasteelpark Arenberg 30, Heverlee 3001, Belgium
| | - I Miller
- Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - K Nöbauer
- VetCore, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - S Carpentier
- Division of Crop Biotechnics, O&N II Herestraat 49 - Box 901, Leuven 3000, Belgium
| | - T Niewold
- Livestock-Nutrition-Quality Division, Biosystems Department, Faculty of Biosciences Engineering, KU Leuven, Kasteelpark Arenberg 30, Heverlee 3001, Belgium.
| |
Collapse
|
20
|
Sovran B, Loonen LMP, Lu P, Hugenholtz F, Belzer C, Stolte EH, Boekschoten MV, van Baarlen P, Kleerebezem M, de Vos P, Dekker J, Renes IB, Wells JM. IL-22-STAT3 pathway plays a key role in the maintenance of ileal homeostasis in mice lacking secreted mucus barrier. Inflamm Bowel Dis 2015; 21:531-42. [PMID: 25636123 DOI: 10.1097/mib.0000000000000319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Muc2-deficient mice show no signs of ileal pathology but the mechanisms remained unknown. METHODS Wild-type (WT), Muc2, and Muc2 mice were killed at 2, 4, and 8 weeks of age. Total RNA from ileum was used for full genome transcriptome analysis and qPCR. Microbiota composition was determined using a mouse intestinal chip (MITChip). Morphological and immunohistological studies were performed on segments of ileum. RESULTS The ileum was colonized by more diverse microbiota in young (week 4) WT than in Muc2 mice, and composition was influenced by genotype. Weaning was associated with major changes in the transcriptome of all mice, and the highest number of differentially expressed genes compared with adults, reflecting temporal changes in microbiota. Although the spatial compartmentalization of bacteria was compromised in Muc2 mice, gene set enrichment analysis revealed a downregulation of Toll-like receptor, immune, and chemokine signaling pathways compared to WT mice. The predicted effects of enhanced IL-22 signaling were identified in the Muc2 transcriptome as the upregulation of epithelial cell proliferation altered expression of mitosis and cell-cycle control pathways. This is consistent with increased villus length and number of Ki67 epithelial cells in Muc2 mice. Additionally, expression of the network of IL-22 regulated defense genes, including Fut2, Reg3β, Reg3γ, Relmb, and the Defensin Defb46 were increased in Muc2 mice. CONCLUSIONS These findings highlight a role for the IL-22-STAT3 pathway in maintaining ileal homeostasis when the mucus barrier is compromised and its potential as a target for novel therapeutic strategies in inflammatory bowel disease.
Collapse
Affiliation(s)
- Bruno Sovran
- *Top Institute Food and Nutrition, Wageningen, the Netherlands; †Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University and Research Center, Wageningen, the Netherlands; ‡Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, the Netherlands; §Department of Pediatrics, Academic Medical Center, Amsterdam, the Netherlands; ‖Department of Agrotechnology and Food Sciences, Laboratory of Microbiology, Wageningen University and Research Center, Wageningen, the Netherlands; ¶Department of Agrotechnology and Food Sciences, Division of Human Nutrition, Wageningen University and Research Center, Wageningen, the Netherlands; **NIZO food research, Ede, the Netherlands; ††University Medical Center of Groningen, Groningen, the Netherlands; and ‡‡Nutricia Research, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The mammalian gastrointestinal tract is home to a dense community of resident bacteria and is also exposed to microorganisms from the external environment. The epithelial surface of the intestine plays a critical role in host protection by producing a diverse repertoire of antimicrobial proteins that directly kill or hinder the growth of microorganisms. Here we discuss the general principles that govern the mechanisms of action of epithelial antimicrobial proteins, regulation of antimicrobial protein expression and activity, and in vivo functions of intestinal antimicrobial proteins. We also consider how altered antimicrobial protein expression and function can contribute to disease and how these endogenous antibiotics might be harnessed for the benefit of human health.
Collapse
|
22
|
Hajishengallis G, Russell MW. Innate Humoral Defense Factors. Mucosal Immunol 2015. [PMCID: PMC7149745 DOI: 10.1016/b978-0-12-415847-4.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although innate immunity came into the research spotlight in the late 1990s when its instructive role in the adaptive immune response was recognized, innate humoral defense factors have a much older history. The exocrine secretions of the body contain a plethora of distinct soluble factors (lysozyme, lactoferrin, peroxidases, proline-rich proteins, histatins, etc.) that protect the body from mucosal microbial pathogens. More recent studies have established that the humoral arm of innate immunity contains a heterogeneous group of pattern-recognition molecules (e.g., pentraxins, collectins, and ficolins), which perform diverse host-defense functions, such as agglutination and neutralization, opsonization, control of inflammation, and complement activation and regulation. These pattern-recognition molecules, which act as functional predecessors of antibodies (“ante-antibodies”), and the classic soluble innate defense factors form an integrated system with complementary specificity, action, and tissue distribution, and they are the subject of this chapter.
Collapse
|
23
|
Bowcutt R, Forman R, Glymenaki M, Carding SR, Else KJ, Cruickshank SM. Heterogeneity across the murine small and large intestine. World J Gastroenterol 2014; 20:15216-15232. [PMID: 25386070 PMCID: PMC4223255 DOI: 10.3748/wjg.v20.i41.15216] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/18/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed.
Collapse
|
24
|
Stockinger S, Duerr CU, Fulde M, Dolowschiak T, Pott J, Yang I, Eibach D, Bäckhed F, Akira S, Suerbaum S, Brugman M, Hornef MW. TRIF signaling drives homeostatic intestinal epithelial antimicrobial peptide expression. THE JOURNAL OF IMMUNOLOGY 2014; 193:4223-34. [PMID: 25210121 DOI: 10.4049/jimmunol.1302708] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent results indicate a significant contribution of innate immune signaling to maintain mucosal homeostasis, but the precise underlying signal transduction pathways are ill-defined. By comparative analysis of intestinal epithelial cells isolated from conventionally raised and germ-free mice, as well as animals deficient in the adaptor molecules MyD88 and TRIF, the TLR3 and TLR4, as well as the type I and III IFN receptors, we demonstrate significant TLR-mediated signaling under homeostatic conditions. Surprisingly, homeostatic expression of Reg3γ and Paneth cell enteric antimicrobial peptides critically relied on TRIF and, in part, TLR3 but was independent of IFN receptor signaling. Reduced antimicrobial peptide expression was associated with significantly lower numbers of Paneth cells and a reduced Paneth cell maturation and differentiation factor expression in TRIF mutant compared with wild-type epithelium. This phenotype was not transferred to TRIF-sufficient germ-free animals during cohousing. Low antimicrobial peptide expression in TRIF-deficient mice caused reduced immediate killing of orally administered bacteria but was not associated with significant alterations in the overall composition of the enteric microbiota. The phenotype was rapidly restored in a TRIF-independent fashion after transient epithelial damage. Our results identify TRIF signaling as a truly homeostatic pathway to maintain intestinal epithelial barrier function revealing fundamental differences in the innate immune signaling between mucosal homeostasis and tissue repair.
Collapse
Affiliation(s)
- Silvia Stockinger
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany; Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Claudia U Duerr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany
| | - Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany
| | - Tamas Dolowschiak
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany; Institute of Microbiology, Swiss Federal Institute of Technology Zürich, 8093 Zürich, Switzerland
| | - Johanna Pott
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany
| | - Ines Yang
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany
| | - Daniel Eibach
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany
| | - Fredrik Bäckhed
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Sahlgrenska University Hospital, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Sebastian Suerbaum
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany
| | - Martijn Brugman
- Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mathias W Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, D-30625 Hannover, Germany;
| |
Collapse
|
25
|
Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang QX, Hooper LV. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 2013; 505:103-7. [PMID: 24256734 PMCID: PMC4160023 DOI: 10.1038/nature12729] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 10/02/2013] [Indexed: 12/12/2022]
Abstract
Human body surface epithelia coexist in close association with complex
bacterial communities and are protected by a variety of antibacterial proteins.
C-type lectins of the RegIII family are bactericidal proteins that limit direct
contact between bacteria and the intestinal epithelium and thus promote
tolerance to the intestinal microbiota1,2. RegIII lectins
recognize their bacterial targets by binding peptidoglycan
carbohydrate1,3 but the mechanism by which they kill
bacteria is unknown. Here we elucidate the mechanistic basis for RegIII
bactericidal activity. Here we show that human RegIIIα
(hRegIIIα, also known as HIP/PAP) binds membrane phospholipids and kills
bacteria by forming a hexameric membrane-permeabilizing oligomeric pore. We
derive a three-dimensional model of the hRegIIIα pore by docking the
hRegIIIα crystal structure into a cryo-electron microscopic map of the
pore complex, and show that the model accords with experimentally determined
properties of the pore. Lipopolysaccharide inhibits hRegIIIα
pore-forming activity, explaining why hRegIIIα is bactericidal for
Gram-positive but not Gram-negative bacteria. Our findings identify C-type
lectins as mediators of membrane attack in the mucosal immune system, and
provide detailed insight into an antibacterial mechanism that promotes mutualism
with the resident microbiota.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hui Zheng
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mehabaw G Derebe
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Keith M Callenberg
- Department of Biological Sciences, University of Pittsburgh, and Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania 15261, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Darcy Rollins
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel C Propheter
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Josep Rizo
- Department of Biochemistry and Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael Grabe
- 1] Department of Biological Sciences, University of Pittsburgh, and Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania 15261, USA [2] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143, USA
| | - Qiu-Xing Jiang
- 1] Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2]
| | - Lora V Hooper
- 1] Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] The Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [3]
| |
Collapse
|
26
|
Barroso L, Abhyankar M, Noor Z, Read K, Pedersen K, White R, Fox C, Petri WA, Lyerly D. Expression, purification, and evaluation of recombinant LecA as a candidate for an amebic colitis vaccine. Vaccine 2013; 32:1218-24. [PMID: 23827311 DOI: 10.1016/j.vaccine.2013.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/06/2013] [Accepted: 06/19/2013] [Indexed: 11/25/2022]
Abstract
Entamoeba histolytica, which causes amebic colitis and liver abscess, is considered a major enteric pathogen in residents and travelers to developing countries where the disease is endemic. Interaction of this protozoan parasite with the intestine is mediated through the binding of the trophozoite stage to intestinal mucin and epithelium via a galactose and N-acetyl-d-galactosamine (Gal/GalNAc) lectin comprised of a disulfide linked heavy (ca. 180 kDa) and light chain (ca. 35 kDa) and a noncovalently bound intermediate subunit (ca. 150 kDa). Our efforts to develop a vaccine against this pathogen have focused on an internal 578 amino acid fragment, designated LecA, located within the cysteine-rich region of the heavy chain subunit because: (i) it is a major target of adherence-blocking antibodies of seropositive individuals and (ii) vaccination with his-tagged LecA provides protection in animal models. We developed a purification process for preparing highly purified non-tagged LecA using a codon-optimized gene expressed in Escherichia coli. The process consisted of: (i) cell lysis, collection and washing of inclusion bodies; (ii) solubilization and refolding of denatured LecA; and (iii) a polishing gel filtration step. The purified fragment existed primarily as a random coil with β-sheet structure, contained low endotoxin and nucleic acid, was highly immunoreactive, and elicited antibodies that recognized native lectin and that inhibited in vitro adherence of trophozoites to CHO cells. Immunization of CBA mice with LecA resulted in significant protection against cecal colitis. Our procedure yields sufficient amounts of highly purified LecA for future studies on stability, immunogenicity, and protection with protein-adjuvant formulations.
Collapse
Affiliation(s)
- L Barroso
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - M Abhyankar
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - Z Noor
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - K Read
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - K Pedersen
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - R White
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - C Fox
- Infectious Disease Research Institute, Seattle, WA, USA
| | - W A Petri
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - D Lyerly
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA.
| |
Collapse
|
27
|
Zenewicz LA, Yin X, Wang G, Elinav E, Hao L, Zhao L, Flavell RA. IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5306-12. [PMID: 23585682 PMCID: PMC3646987 DOI: 10.4049/jimmunol.1300016] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IL-22 is a good candidate to play a critical role in regulating gut microbiota because it is an important inducer of antimicrobial peptides and mucins in the gut. However, whether IL-22 participates in immune homeostasis by way of modulating gut microbiota remains to be elucidated. In this study, we find, through 16S rRNA gene-pyrosequencing analysis, that healthy IL-22-deficient mice had altered colonic microbiota, notably with decreased abundance of some genera, including Lactobacillus, and increased levels of others. Mice harboring this altered microbiota exhibited more severe disease during experimentally induced colitis. Interestingly, this altered gut microbiota can be transmitted to cohoused wild-type animals along with the increased susceptibility to this colitis, indicating an important role for IL-22 in shaping the homeostatic balance between immunity and colonic microbiota for host health.
Collapse
Affiliation(s)
- Lauren A. Zenewicz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Xiaochen Yin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Guoyang Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Eran Elinav
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Liming Hao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai, 200240 China
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
28
|
Choi SM, McAleer JP, Zheng M, Pociask DA, Kaplan MH, Qin S, Reinhart TA, Kolls JK. Innate Stat3-mediated induction of the antimicrobial protein Reg3γ is required for host defense against MRSA pneumonia. ACTA ACUST UNITED AC 2013; 210:551-61. [PMID: 23401489 PMCID: PMC3600913 DOI: 10.1084/jem.20120260] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
STAT3-mediated induction of Reg3γ enhances bacteriostatic and bactericidal activity to pulmonary Staphylococcus aureus. Pulmonary Staphylococcus aureus (SA) infections are a public health concern and a major complication of hyper-IgE syndrome, caused by mutations in STAT3. In contrast to previous findings of skin infection, we observed that clearance of SA from the lung did not require T, B, or NK cells but did require Stat3 activation. Immunohistochemistry showed robust Stat3 phosphorylation in the lung epithelium. We identified that a critical Stat3 target gene in lung epithelium is Reg3g (regenerating islet-derived 3 γ), a gene which is highly expressed in gastrointestinal epithelium but whose role in pulmonary host defense is uncharacterized. Stat3 regulated Reg3g transcription through direct binding at the Reg3g promoter region. Recombinant Reg3γ bound to SA and had both bacteriostatic and bactericidal activity in a dose-dependent fashion. Stat3 inhibition in vivo reduced Reg3g transcripts in the lung, and more importantly, recombinant Reg3γ rescued mice from defective SA clearance. These findings reveal an antibacterial function for lung epithelium through Stat3-mediated induction of Reg3γ.
Collapse
Affiliation(s)
- Sun-Mi Choi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Petropavlovskaia M, Daoud J, Zhu J, Moosavi M, Ding J, Makhlin J, Assouline-Thomas B, Rosenberg L. Mechanisms of action of islet neogenesis-associated protein: comparison of the full-length recombinant protein and a bioactive peptide. Am J Physiol Endocrinol Metab 2012; 303:E917-27. [PMID: 22850686 PMCID: PMC3469614 DOI: 10.1152/ajpendo.00670.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Islet neogenesis-associated protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas as a factor inducing formation of new duct-associated islets. A bioactive portion of INGAP, INGAP(104-118) peptide (INGAP-P), has been shown to have neogenic and insulin-potentiating activity in numerous studies, including recent phase 2 clinical trials that demonstrated improved glucose homeostasis in both type 1 and type 2 diabetic patients. Aiming to improve INGAP-P efficacy and to understand its mechanism of action, we cloned the full-length protein (rINGAP) and compared the signaling events induced by the protein and the peptide in RIN-m5F cells that respond to INGAP with an increase in proliferation. Here, we show that, although both rINGAP and INGAP-P signal via the Ras/Raf/ERK pathway, rINGAP is at least 100 times more efficient on a molar basis than INGAP-P. For either ligand, ERK1/2 activation appears to be pertussis toxin sensitive, suggesting involvement of a G protein-coupled receptor(s). However, there are clear differences between the peptide and the protein in interactions with the cell surface and in the downstream signaling. We demonstrate that fluorescent-labeled rINGAP is characterized by clustering on the membrane and by slow internalization (≤5 h), whereas INGAP-P does not cluster and is internalized within minutes. Signaling by rINGAP appears to involve Src, in contrast to INGAP-P, which appears to activate Akt in addition to the Ras/Raf/ERK1/2 pathway. Thus our data suggest that interactions of INGAP with the cell surface are important to consider for further development of INGAP as a pharmacotherapy for diabetes.
Collapse
Affiliation(s)
- Maria Petropavlovskaia
- Department of Surgery, the Research Institute of the McGill University Health Center, McGill University, Montreal, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Miki T, Holst O, Hardt WD. The bactericidal activity of the C-type lectin RegIIIβ against Gram-negative bacteria involves binding to lipid A. J Biol Chem 2012; 287:34844-55. [PMID: 22896700 DOI: 10.1074/jbc.m112.399998] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RegIIIβ is a member of the C-type lectin family called RegIII. It is known to bind peptidoglycan, and its bactericidal activity shapes the interactions with commensal and pathogenic gut bacteria. However, little is known about its carbohydrate recognition specificity and the bactericidal mechanism, particularly against Gram-negative bacteria. Here, we show that RegIIIβ can bind directly to LPS by recognizing the carbohydrate moiety of lipid A via a novel motif that is indispensable for its bactericidal activity. This bactericidal activity of RegIIIβ could be inhibited by preincubation with LPS, lipid A, or gentiobiose. The latter is a disaccharide composed of two units of β-(1→6)-linked d-glucose and resembles the carbohydrate moiety of lipid A. Therefore, this structural element may form a key target site recognized by RegIIIβ. Using point-mutated RegIIIβ proteins, we found that amino acid residues in two structural motifs termed "loop 1" and "loop 2," are important for peptidoglycan and lipid A binding (Arg-135, Asp-142) and for the bactericidal activity (Glu-134, Asn-136, Asp-142). Thus, the ERN motif and residue Asp-142 in the loop 2 are of critical importance for RegIIIβ function. This provides novel insights into the carbohydrate recognition specificity of RegIIIβ and explains its bactericidal activity against Gram-negative bacteria.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Institute of Microbiology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Kaiser P, Diard M, Stecher B, Hardt WD. The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen's virulence factors, and the host's mucosal immune response. Immunol Rev 2012; 245:56-83. [PMID: 22168414 DOI: 10.1111/j.1600-065x.2011.01070.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mammalian intestine is colonized by a dense microbial community, the microbiota. Homeostatic and symbiotic interactions facilitate the peaceful co-existence between the microbiota and the host, and inhibit colonization by most incoming pathogens ('colonization resistance'). However, if pathogenic intruders overcome colonization resistance, a fierce, innate inflammatory defense can be mounted within hours, the adaptive arm of the immune system is initiated, and the pathogen is fought back. The molecular nature of the homeostatic interactions, the pathogen's ability to overcome colonization resistance, and the triggering of native and adaptive mucosal immune responses are still poorly understood. To study these mechanisms, the streptomycin mouse model for Salmonella diarrhea is of great value. Here, we review how S. Typhimurium triggers mucosal immune responses by active (virulence factor elicited) and passive (MyD88-dependent) mechanisms and introduce the S. Typhimurium mutants available for focusing on either response. Interestingly, mucosal defense turns out to be a double-edged sword, limiting pathogen burdens in the gut tissue but enhancing pathogen growth in the gut lumen. This model allows not only studying the molecular pathogenesis of Salmonella diarrhea but also is ideally suited for analyzing innate defenses, microbe handling by mucosal phagocytes, adaptive secretory immunoglobulin A responses, probing microbiota function, and homeostatic microbiota-host interactions. Finally, we discuss the general need for defined assay conditions when using animal models for enteric infections and the central importance of littermate controls.
Collapse
Affiliation(s)
- Patrick Kaiser
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
32
|
Guimarães AJ, de Cerqueira MD, Nosanchuk JD. Surface architecture of histoplasma capsulatum. Front Microbiol 2011; 2:225. [PMID: 22121356 PMCID: PMC3220077 DOI: 10.3389/fmicb.2011.00225] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022] Open
Abstract
The dimorphic fungal pathogen Histoplasma capsulatum is the most frequent cause of clinically significant fungal pneumonia in humans. H. capsulatum virulence is achieved, in part, through diverse and dynamic alterations to the fungal cell surface. Surface components associated with H. capsulatum pathogenicity include carbohydrates, lipids, proteins, and melanins. Here, we describe the various structures comprising the cell surface of H. capsulatum that have been associated with virulence and discuss their involvement in the pathobiology of disease.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Imunology, Albert Einstein College of Medicine of Yeshiva University Bronx, NY, USA
| | | | | |
Collapse
|
33
|
Hassanain E, Huan C, Mueller CM, Stanek A, Quan W, Viterbo D, Bluth MH, Zenilman ME. Pancreatitis-associated proteins' regulation of inflammation is correlated with their ability to aggregate. Pancreas 2011; 40:1151-1153. [PMID: 21926556 DOI: 10.1097/mpa.0b013e3182218006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Salmonella-induced mucosal lectin RegIIIβ kills competing gut microbiota. PLoS One 2011; 6:e20749. [PMID: 21694778 PMCID: PMC3111430 DOI: 10.1371/journal.pone.0020749] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/12/2011] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammation induces alterations of the gut microbiota and promotes overgrowth of the enteric pathogen Salmonella enterica by largely unknown mechanisms. Here, we identified a host factor involved in this process. Specifically, the C-type lectin RegIIIβ is strongly upregulated during mucosal infection and released into the gut lumen. In vitro, RegIIIβ kills diverse commensal gut bacteria but not Salmonella enterica subspecies I serovar Typhimurium (S. Typhimurium). Protection of the pathogen was attributable to its specific cell envelope structure. Co-infection experiments with an avirulent S. Typhimurium mutant and a RegIIIβ-sensitive commensal E. coli strain demonstrated that feeding of RegIIIβ was sufficient for suppressing commensals in the absence of all other changes inflicted by mucosal disease. These data suggest that RegIIIβ production by the host can promote S. Typhimurium infection by eliminating inhibitory gut microbiota.
Collapse
|
35
|
Viterbo D, Zenilman ME, Bluth MH. Comparison of His and GST tagged versions of recombinant pancreatitis associated protein 2 in modulation of inflammatory responses. Inflamm Res 2010; 59:827-35. [PMID: 20396928 DOI: 10.1007/s00011-010-0194-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/08/2010] [Accepted: 03/29/2010] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN Pancreatitis associated proteins (PAP) are highly upregulated in acute pancreatitis and other inflammatory states and have been shown to possess immunomodulatory properties. However, continued study of PAP has been hampered by the ability to effectively isolate appropriate amounts of protein from pancreatic juice or efficient generation of recombinant proteins. Here we describe two different methods for generating recombinant PAP2 protein (rPAP2), using either His or GST tagged bacterial methodology with comparison of function. METHODS His or GST tagged rPAP2 were generated, cultured with clonal (NR8383) macrophages and compared with respect to inflammatory cytokine expression (IL-1alpha, IL-1beta, IL-6, and TNF-alpha) and bacterial (E. coli) agglutination. Significance was determined by student's t test (P<0.05). RESULTS PAP2His treatment induced a 3.6, 2.8, 13.0, 3.5 fold induction of IL-1alpha, IL-1beta, TNF-alpha and IL-6, respectively; similar cytokine expression changes were observed with PAP2GST treatment (3.9, 2.6, 12.2, and 3.0 fold induction of IL-1alpha, IL-1beta, TNF-alpha and IL-6, respectively) (P<0.05). Further, incubation with recombinant PAP2 led to a time dependent increase in bacterial aggregates which was absent in controls. CONCLUSIONS These data demonstrate that both methods maintain functional immunomodulatory integrity for PAP2 and provide the ability to generate sufficient quantities to further study structure and function.
Collapse
Affiliation(s)
- Domenico Viterbo
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
36
|
Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc Natl Acad Sci U S A 2010; 107:7722-7. [PMID: 20382864 DOI: 10.1073/pnas.0909449107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RegIII proteins are secreted C-type lectins that kill Gram-positive bacteria and play a vital role in antimicrobial protection of the mammalian gut. RegIII proteins bind their bacterial targets via interactions with cell wall peptidoglycan but lack the canonical sequences that support calcium-dependent carbohydrate binding in other C-type lectins. Here, we use NMR spectroscopy to determine the molecular basis for peptidoglycan recognition by HIP/PAP, a human RegIII lectin. We show that HIP/PAP recognizes the peptidoglycan carbohydrate backbone in a calcium-independent manner via a conserved "EPN" motif that is critical for bacterial killing. While EPN sequences govern calcium-dependent carbohydrate recognition in other C-type lectins, the unusual location and calcium-independent functionality of the HIP/PAP EPN motif suggest that this sequence is a versatile functional module that can support both calcium-dependent and calcium-independent carbohydrate binding. Further, we show HIP/PAP binding affinity for carbohydrate ligands depends on carbohydrate chain length, supporting a binding model in which HIP/PAP molecules "bind and jump" along the extended polysaccharide chains of peptidoglycan, reducing dissociation rates and increasing binding affinity. We propose that dynamic recognition of highly clustered carbohydrate epitopes in native peptidoglycan is an essential mechanism governing high-affinity interactions between HIP/PAP and the bacterial cell wall.
Collapse
|
37
|
Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 2010; 10:131-44. [PMID: 20098461 DOI: 10.1038/nri2707] [Citation(s) in RCA: 907] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single layer of epithelial cells lines the small and large intestines and functions as a barrier between commensal bacteria and the rest of the body. Ligation of Toll-like receptors (TLRs) on intestinal epithelial cells by bacterial products promotes epithelial cell proliferation, secretion of IgA into the gut lumen and expression of antimicrobial peptides. As described in this Review, this establishes a microorganism-induced programme of epithelial cell homeostasis and repair in the intestine. Dysregulation of this process can result in chronic inflammatory and over-exuberant repair responses, and it is associated with the development of colon cancer. Thus, dysregulated TLR signalling by intestinal epithelial cells may explain how colonic bacteria and inflammation promote colorectal cancer.
Collapse
|
38
|
Hu G, Shen J, Cheng L, Xiang D, Zhang Z, He M, Lu H, Zhu S, Wu M, Yu Y, Wang X, Han W. Purification of a bioactive recombinant human Reg IV expressed in Escherichia coli. Protein Expr Purif 2010; 69:186-90. [DOI: 10.1016/j.pep.2009.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 07/26/2009] [Accepted: 07/27/2009] [Indexed: 01/27/2023]
|
39
|
Reiff C, Delday M, Rucklidge G, Reid M, Duncan G, Wohlgemuth S, Hörmannsperger G, Loh G, Blaut M, Collie-Duguid E, Haller D, Kelly D. Balancing inflammatory, lipid, and xenobiotic signaling pathways by VSL#3, a biotherapeutic agent, in the treatment of inflammatory bowel disease. Inflamm Bowel Dis 2009; 15:1721-36. [PMID: 19639558 DOI: 10.1002/ibd.20999] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The interleukin 10 knockout mouse (IL10-KO) is a model of human inflammatory bowel disease (IBD) used to study host microbial interactions and the action of potential therapeutics. Using Affymetrix data analysis, important signaling pathways and transcription factors relevant to gut inflammation and antiinflammatory probiotics were identified. METHODS Affymetrix microarray analysis on both wildtype (WT) and IL10-KO mice orally administered with and without the probiotic VSL#3 was performed and the results validated by real-time polymerase chain reaction (PCR), immunocytochemistry, proteomics, and histopathology. Changes in metabolically active bacteria were assessed with denaturing gradient gel electrophoresis (DGGE). RESULTS Inflammation in IL10-KO mice was characterized by differential regulation of inflammatory, nuclear receptor, lipid, and xenobiotic signaling pathways. Probiotic intervention resulted in downregulation of CXCL9 (fold change [FC] = -3.98, false discovery rate [FDR] = 0.019), CXCL10 (FC = -4.83, FDR = 0.0008), CCL5 (FC = -3.47, FDR = 0.017), T-cell activation (Itgal [FC = -4.72, FDR = 0.00009], Itgae [FC = -2.54 FDR = 0.0044]) and the autophagy gene IRGM (FC = -1.94, FDR = 0.01), a recently identified susceptibility gene in human IBD. Consistent with a marked reduction in integrins, probiotic treatment decreased the number of CCL5+ CD3+ double-positive T cells and upregulated galectin2, which triggers apoptosis of activated T cells. Importantly, genes associated with lipid and PPAR signaling (PPARalpha [FC = 2.36, FDR = 0.043], PPARGC1alpha [FC = 2.58, FDR = 0.016], Nr1d2 [FC = 3.11, FDR = 0.0067]) were also upregulated. Altered microbial diversity was noted in probiotic-treated mice. CONCLUSIONS Bioinformatics analysis revealed important immune response, phagocytic and inflammatory pathways dominated by elevation of T-helper cell 1 type (TH1) transcription factors in IL10-KO mice. Probiotic intervention resulted in a site-specific reduction of these pathways but importantly upregulated PPAR, xenobiotic, and lipid signaling genes, potential antagonists of NF-kappaB inflammatory pathways.
Collapse
Affiliation(s)
- C Reiff
- Rowett Institute of Nutrition and Health, Aberdeen University, Aberdeen, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Spehlmann ME, Dann SM, Hruz P, Hanson E, McCole DF, Eckmann L. CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. THE JOURNAL OF IMMUNOLOGY 2009; 183:3332-43. [PMID: 19675161 DOI: 10.4049/jimmunol.0900600] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal disease in young children, yet symptoms and duration are highly variable for unknown reasons. Citrobacter rodentium, a murine model pathogen that shares important functional features with EPEC, colonizes mice in colon and cecum and causes inflammation, but typically little or no diarrhea. We conducted genome-wide microarray studies to define mechanisms of host defense and disease in C. rodentium infection. A significant fraction of the genes most highly induced in the colon by infection encoded CXC chemokines, particularly CXCL1/2/5 and CXCL9/10, which are ligands for the chemokine receptors CXCR2 and CXCR3, respectively. CD11b(+) dendritic cells were the major producers of CXCL1, CXCL5, and CXCL9, while CXCL2 was mainly induced in macrophages. Infection of gene-targeted mice revealed that CXCR3 had a significant but modest role in defense against C. rodentium, whereas CXCR2 had a major and indispensable function. CXCR2 was required for normal mucosal influx of neutrophils, which act as direct antibacterial effectors. Moreover, CXCR2 loss led to severe diarrhea and failure to express critical components of normal ion and fluid transport, including ATPase beta(2)-subunit, CFTR, and DRA. The antidiarrheal functions were unique to CXCR2, since other immune defects leading to increased bacterial load and inflammation did not cause diarrhea. Thus, CXCR2-dependent processes, particularly mucosal neutrophil influx, not only contribute to host defense against C. rodentium, but provide protection against infection-associated diarrhea.
Collapse
Affiliation(s)
- Martina E Spehlmann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
41
|
Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem J 2009; 420:335-43. [PMID: 19254208 DOI: 10.1042/bj20090005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PAP (pancreatitis-associated protein) is a 16 kDa lectin-like protein, which becomes robustly up-regulated in the pancreatic juice during acute pancreatitis. Trypsin cleaves the N-terminus of PAP, which in turn forms insoluble fibrils. PAP and its paralogue, the pancreatic stone protein, induce bacterial aggregation and, more recently, PAP was shown to bind to the peptidoglycan of Gram-positive bacteria and exert a direct bactericidal effect. However, the role of N-terminal processing in the antibacterial function of PAP has remained unclear. In the present study, we demonstrate that N-terminal cleavage of PAP by trypsin at the Arg37-Ile38 peptide bond or by elastase at the Ser35-Ala36 peptide bond is a prerequisite for binding to the peptidoglycan of the Gram-positive bacterium Bacillus subtilis. The tryptic site in PAP was also efficiently cleaved by nprE (extracellular neutral metalloprotease) secreted from B. subtilis. Trypsin-mediated processing of PAP resulted in the formation of the characteristic insoluble PAP species, whereas elastase-processed PAP remained soluble. N-terminally processed PAP induced rapid aggregation of B. subtilis without significant bacterial killing. The bacteria-aggregating activities of trypsin-processed and elastase-processed PAP were comparable. In contrast with previous reports, the Gram-negative Escherichia coli bacterium was not aggregated. We conclude that N-terminal processing is necessary for the peptidoglycan binding and bacteria-aggregating activity of PAP and that trypsin-processed and elastase-processed forms are functionally equivalent. The observations also extend the complement of proteases capable of PAP processing, which now includes trypsins, pancreatic elastases and bacterial zinc metalloproteases of the thermolysin type.
Collapse
|
42
|
Abe R, Kudou M, Tanaka Y, Arakawa T, Tsumoto K. Immobilized metal affinity chromatography in the presence of arginine. Biochem Biophys Res Commun 2009; 381:306-10. [DOI: 10.1016/j.bbrc.2009.01.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/13/2009] [Indexed: 11/28/2022]
|
43
|
Mukherjee S, Partch CL, Lehotzky RE, Whitham CV, Chu H, Bevins CL, Gardner KH, Hooper LV. Regulation of C-type lectin antimicrobial activity by a flexible N-terminal prosegment. J Biol Chem 2008; 284:4881-8. [PMID: 19095652 PMCID: PMC2643518 DOI: 10.1074/jbc.m808077200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Members of the RegIII family of intestinal C-type lectins are directly antibacterial proteins that play a vital role in maintaining host-bacterial homeostasis in the mammalian gut, yet little is known about the mechanisms that regulate their biological activity. Here we show that the antibacterial activities of mouse RegIIIgamma and its human ortholog, HIP/PAP, are tightly controlled by an inhibitory N-terminal prosegment that is removed by trypsin in vivo. NMR spectroscopy revealed a high degree of conformational flexibility in the HIP/PAP inhibitory prosegment, and mutation of either acidic prosegment residues or basic core protein residues disrupted prosegment inhibitory activity. NMR analyses of pro-HIP/PAP variants revealed distinctive colinear backbone amide chemical shift changes that correlated with antibacterial activity, suggesting that prosegment-HIP/PAP interactions are linked to a two-state conformational switch between biologically active and inactive protein states. These findings reveal a novel regulatory mechanism governing C-type lectin biological function and yield new insight into the control of intestinal innate immunity.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Immunology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 2008; 105:20858-63. [PMID: 19075245 DOI: 10.1073/pnas.0808723105] [Citation(s) in RCA: 757] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium is in direct contact with a vast microbiota, yet little is known about how epithelial cells defend the host against the heavy bacterial load. To address this question we studied Paneth cells, a key small intestinal epithelial lineage. We found that Paneth cells directly sense enteric bacteria through cell-autonomous MyD88-dependent toll-like receptor (TLR) activation, triggering expression of multiple antimicrobial factors. Paneth cells were essential for controlling intestinal barrier penetration by commensal and pathogenic bacteria. Furthermore, Paneth cell-intrinsic MyD88 signaling limited bacterial penetration of host tissues, revealing a role for epithelial MyD88 in maintaining intestinal homeostasis. Our findings establish that gut epithelia actively sense enteric bacteria and play an essential role in maintaining host-microbial homeostasis at the mucosal interface.
Collapse
|
45
|
Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008; 455:804-7. [PMID: 18724361 DOI: 10.1038/nature07250] [Citation(s) in RCA: 489] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/14/2008] [Indexed: 12/22/2022]
Abstract
Infection with antibiotic-resistant bacteria, such as vancomycin-resistant Enterococcus (VRE), is a dangerous and costly complication of broad-spectrum antibiotic therapy. How antibiotic-mediated elimination of commensal bacteria promotes infection by antibiotic-resistant bacteria is a fertile area for speculation with few defined mechanisms. Here we demonstrate that antibiotic treatment of mice notably downregulates intestinal expression of RegIIIgamma (also known as Reg3g), a secreted C-type lectin that kills Gram-positive bacteria, including VRE. Downregulation of RegIIIgamma markedly decreases in vivo killing of VRE in the intestine of antibiotic-treated mice. Stimulation of intestinal Toll-like receptor 4 by oral administration of lipopolysaccharide re-induces RegIIIgamma, thereby boosting innate immune resistance of antibiotic-treated mice against VRE. Compromised mucosal innate immune defence, as induced by broad-spectrum antibiotic therapy, can be corrected by selectively stimulating mucosal epithelial Toll-like receptors, providing a potential therapeutic approach to reduce colonization and infection by antibiotic-resistant microbes.
Collapse
Affiliation(s)
- Katharina Brandl
- Infectious Diseases Service, Department of Medicine, Immunology Program, Sloan-Kettering Institute, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nakakido M, Tanaka Y, Mitsuhori M, Kudou M, Ejima D, Arakawa T, Tsumoto K. Structure-based analysis reveals hydration changes induced by arginine hydrochloride. Biophys Chem 2008; 137:105-9. [PMID: 18725174 DOI: 10.1016/j.bpc.2008.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 11/29/2022]
Abstract
Arginine hydrochloride has been used to suppress protein aggregation during refolding and in various other applications. We investigated the structure of hen egg-white lysozyme (HEL) and solvent molecules in arginine hydrochloride solution by X-ray crystallography. Neither the backbone nor side-chain structure of HEL was altered by the presence of arginine hydrochloride. In addition, no stably bound arginine molecules were observed. The number of hydration water molecules, however, changed with the arginine hydrochloride concentration. We suggest that arginine hydrochloride suppresses protein aggregation by altering the hydration structure and the transient binding of arginine molecules that could not be observed.
Collapse
Affiliation(s)
- Makoto Nakakido
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
George MD, Wehkamp J, Kays RJ, Leutenegger CM, Sabir S, Grishina I, Dandekar S, Bevins CL. In vivo gene expression profiling of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues. BMC Genomics 2008; 9:209. [PMID: 18457593 PMCID: PMC2394537 DOI: 10.1186/1471-2164-9-209] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 05/05/2008] [Indexed: 01/20/2023] Open
Abstract
Background The small intestinal epithelium mediates vital functions of nutrient absorption and host defense. The spatial organization of the epithelial cells along the crypt-villus axis segregates them into regions of specialized function. However, the differences in transcriptional programming and the molecular machinery that governs the migration, adhesion, and differentiation of intestinal epithelial cell lineages in humans remain under-explored. To increase our understanding of these mechanisms, we have evaluated gene expression patterns of ileal epithelial cells isolated by laser capture microdissection from either the villus epithelial or crypt cell regions of healthy human small intestinal mucosa. Expression profiles in villus and crypt epithelium were determined by DNA microarray, quantitative real-time PCR, and immunohistochemistry based methods. The expression levels of selected epithelial biomarkers were also compared between gastrointestinal tissues. Results Previously established biomarkers as well as a novel and distinct set of genes believed to be linked to epithelial cell motility, adhesion, and differentiation were found to be enriched in each of the two corresponding cell populations (GEO accession: GSE10629). Additionally, high baseline expression levels of innate antimicrobials, alpha defensin 5 (HD5) and regenerating islet-derived 3 alpha (Reg3A), were detected exclusively within the small bowel crypt, most notably in the ileum in comparison to other sites along the gastrointestinal tract. Conclusion The elucidation of differential gene expression patterns between crypt and villus epithelial cell lineages in human ileal tissue provides novel insights into the molecular machinery that mediates their functions and spatial organization. Moreover, our findings establish an important framework of knowledge for future investigations of human gastrointestinal diseases.
Collapse
Affiliation(s)
- Michael D George
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hayashi K, Motoyama S, Sugiyama T, Izumi JI, Anbai A, Nanjo H, Watanabe H, Maruyama K, Minamiya Y, Koyota S, Koizumi Y, Takasawa S, Murata K, Ogawa JI. REG Ialpha is a reliable marker of chemoradiosensitivity in squamous cell esophageal cancer patients. Ann Surg Oncol 2008; 15:1224-31. [PMID: 18259819 DOI: 10.1245/s10434-008-9810-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/09/2007] [Accepted: 12/10/2007] [Indexed: 01/28/2023]
Abstract
BACKGROUND A reliable marker of chemoradiosensitivity that would enable appropriate and individualized treatment of thoracic squamous cell esophageal cancer has long been sought. We investigated whether regenerating gene (REG) Ialpha is such a marker. METHODS We assessed expression of REG Ialpha in untreated endoscopic biopsy specimens and examined the correlation between REG Ialpha expression and the clinical responses to definitive chemoradiotherapy and prognosis. We also examined the relationship between REG Ialpha expression in the resected tumor and the prognosis of patients who received esophagectomy for thoracic squamous cell esophageal cancer. RESULTS Among the 42 patients treated with definitive chemoradiotherapy, 8 of the 23 REG I-positive patients (35%) showed complete responses to chemoradiotherapy, while only one of the 19 REG I-negative patients did so. The survival rate among the REG I-positive patients was significantly better than among the REG I-negative patients. For the 76 patients treated surgically, there was no significant difference in the survival rates among the REG I-positive and REG I-negative patients. CONCLUSIONS REG Ialpha expression in squamous cell esophageal carcinoma may be a reliable marker of chemoradiosensitivity. We anticipate that it will enable us to provide more appropriate and individualized treatment to patients of advanced esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Kaori Hayashi
- Department of Surgery, Akita University School of Medicine, 1-1-1 Hondo, Akita, Japan, 010-8543
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Castellarin ML, Petropavlovskaia M, Lipsett MA, Rosenberg L. The identification and sequence analysis of a new Reg3gamma and Reg2 in the Syrian golden hamster. ACTA ACUST UNITED AC 2007; 1769:579-85. [PMID: 17673309 DOI: 10.1016/j.bbaexp.2007.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 06/04/2007] [Accepted: 06/15/2007] [Indexed: 11/16/2022]
Abstract
The regenerating (Reg) genes are associated with tissue repair and have been directly implicated in pancreatic beta-cell regeneration. A hamster Reg3, Islet neogenesis associated protein (INGAP), has been shown to possess anti-diabetic properties in rodent models. Although several Reg3 proteins have been identified in other species, INGAP is the only Reg3 found in hamsters. To identify new Reg3 genes in the hamster pancreas we employed homology reverse transcription polymerase chain reaction (RT-PCR) using degenerate Reg3 primers, followed by rapid amplification of cDNA ends (RACE). We report here the discovery of a new hamster Reg3 gene of 765 nucleotides (nt) that encodes a 174-amino acid (aa) protein. This protein sequence was identified as a novel hamster Reg3gamma with 78% and 75% identity to the rat Reg3gamma and mouse Reg3gamma protein, respectively. We also fully sequenced the previously reported partial sequence of the hamster Reg1 gene coding region using RACE to yield a 756-nt transcript that encodes a deduced 173 aa protein. This protein was identified as hamster Reg2, rather than Reg1 as was initially reported, with an 81% identity to mouse Reg2. The spatial gene expression patterns of the hamster Reg genes, analyzed by RT-PCR, were similarly distributed with low level expression being found globally throughout the body. Mice and hamsters are the only species known to carry either of the functional INGAP or Reg2 genes. It remains to be determined whether these genes bestow mice and hamsters with special regenerative abilities in the pancreas.
Collapse
Affiliation(s)
- Mauro L Castellarin
- Research Institute of The McGill University Health Centre and The Department of Surgery, McGill University, C9-128 The Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | | | | | | |
Collapse
|
50
|
Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. ACTA ACUST UNITED AC 2007; 204:1891-900. [PMID: 17635956 PMCID: PMC2118673 DOI: 10.1084/jem.20070563] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen that causes systemic infection by traversing the intestinal mucosa. Although MyD88-mediated signals are essential for defense against systemic L. monocytogenes infection, the role of Toll-like receptor and MyD88 signaling in intestinal immunity against this pathogen has not been defined. We show that clearance of L. monocytogenes from the lumen of the distal small intestine is impaired in MyD88−/− mice. The distal ileum of wild-type (wt) mice expresses high levels of RegIIIγ, which is a bactericidal lectin that is secreted into the bowel lumen, whereas RegIIIγ expression in MyD88−/− mice is nearly undetectable. In vivo depletion of RegIIIγ from the small intestine of wt mice diminishes killing of luminal L. monocytogenes, whereas reconstitution of MyD88-deficient mice with recombinant RegIIIγ enhances intestinal bacterial clearance. Experiments with bone marrow chimeric mice reveal that MyD88-mediated signals in nonhematopoietic cells induce RegIIIγ expression in the small intestine, thereby enhancing bacterial killing. Our findings support a model of MyD88-mediated epithelial conditioning that protects the intestinal mucosa against bacterial invasion by inducing RegIIIγ.
Collapse
Affiliation(s)
- Katharina Brandl
- Infectious Diseases Service, Department of Medicine, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|