1
|
Wingert J, Meinhardt E, Sasipong N, Pott M, Lederer C, de la Torre C, Sticht C, Most P, Katus HA, Frey N, Raake PWJ, Schlegel P. Cardiomyocyte-specific RXFP1 overexpression protects against pressure overload-induced cardiac dysfunction independently of relaxin. Biochem Pharmacol 2024; 225:116305. [PMID: 38768763 DOI: 10.1016/j.bcp.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) prevalence is rising due to reduced early mortality and demographic change. Relaxin (RLN) mediates protective effects in the cardiovascular system through Relaxin-receptor 1 (RXFP1). Cardiac overexpression of RXFP1 with additional RLN supplementation attenuated HF in the pressure-overload transverse aortic constriction (TAC) model. Here, we hypothesized that robust transgenic RXFP1 overexpression in cardiomyocytes (CM) protects from TAC-induced HF even in the absence of RLN. Hence, transgenic mice with a CM-specific overexpression of human RXFP1 (hRXFP1tg) were generated. Receptor functionality was demonstrated by in vivo hemodynamics, where the administration of RLN induced positive inotropy strictly in hRXFP1tg. An increase in phospholamban-phosphorylation at serine 16 was identified as a molecular correlate. hRXFP1tg were protected from TAC without additional RLN administration, presenting not only less decline in systolic left ventricular (LV) function but also abrogated LV dilation and pulmonary congestion compared to WT mice. Molecularly, transgenic hearts exhibited not only a significantly attenuated fetal and fibrotic gene activation but also demonstrated less fibrotic tissue and CM hypertrophy in histological sections. These protective effects were evident in both sexes. Similar cardioprotective effects of hRXFP1tg were detectable in a RLN-knockout model, suggesting an alternative mechanism of receptor activation through intrinsic activity, alternative endogenous ligands or crosstalk with other receptors. In summary, CM-specific RXFP1 overexpression provides protection against TAC even in the absence of endogenous RLN. This suggests RXFP1 overexpression as a potential therapeutic approach for HF, offering baseline protection with optional RLN supplementation for specific activation.
Collapse
Affiliation(s)
- J Wingert
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - E Meinhardt
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - N Sasipong
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - M Pott
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - C Lederer
- Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
| | - C de la Torre
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - C Sticht
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - P Most
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - H A Katus
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - N Frey
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - P W J Raake
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany; Department of Internal Medicine I, University Hospital Augsburg, Augsburg University, Germany
| | - P Schlegel
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
2
|
Relaxin-3 Ameliorates Diabetic Cardiomyopathy by Inhibiting Endoplasmic Reticulum Stress. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9380283. [PMID: 36203531 PMCID: PMC9532149 DOI: 10.1155/2022/9380283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022]
Abstract
Background This study is aimed at investigating whether relaxin-3 exhibits protective effects against cardiomyopathy in diabetic rats by suppressing ERS. Methods Eighty male SD rats were randomly divided into two groups: controls (n = 20) and diabetes (n = 60). The streptozotocin-treated rats were randomly divided into three groups: diabetic group (DM), low-dose relaxin-3 group (0.2 μg/kg/d), and high-dose relaxin-3 group (2 μg/kg/d). The myocardial tissues and collagen fiber were observed by hematoxylin and eosin (H&E) and Masson staining. Serum brain natriuretic peptide (BNP), troponin (TNI), myoglobin, interleukin (IL-17), interleukin (IL)-1α, and tumor necrosis factor (TNF)-α were determined by ELISA. The protein expression of glucose regulatory protein 78 (GRP78) and C/EBP homologous protein (CHOP) in the heart tissue of each group was detected by Western blot analysis. Results (1) HE and Masson staining indicated that relaxin-3 could attenuate myocardial lesions and myocardial collagen volume fraction. (2) BNP, TnI, and myoglobin in the DM group at four and eight weeks were significantly higher than in the controls (P < 0.01). The relaxin-3-treated groups showed significantly reduced serum BNP, TnI, and myoglobin levels compared with the DM group (P < 0.05). (3) IL-17, IL-1α, and TNF-α levels in the DM rats at 4 weeks were higher than in the controls (P < 0.05). Low or high dose of relaxin-3-treated groups showed reduced serum IL-17 and TNF-α levels compared with the DM group at four and eight weeks (P < 0.05). (4) CHOP and GRP78 protein expression was increased in the DM group at four and eight weeks compared with the controls (P < 0.01), and small and large doses of relaxin-3 significantly reduced GRP78 and CHOP protein expression. Conclusions Exogenous relaxin-3 ameliorates diabetic cardiomyopathy by inhibiting ERS in diabetic rats.
Collapse
|
3
|
Relaxin does not prevent development of hypoxia-induced pulmonary edema in rats. Pflugers Arch 2022; 474:1053-1067. [PMID: 35778581 PMCID: PMC9492557 DOI: 10.1007/s00424-022-02720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Acute hypoxia impairs left ventricular (LV) inotropic function and induces development of pulmonary edema (PE). Enhanced and uneven hypoxic pulmonary vasoconstriction is an important pathogenic factor of hypoxic PE. We hypothesized that the potent vasodilator relaxin might reduce hypoxic pulmonary vasoconstriction and prevent PE formation. Furthermore, as relaxin has shown beneficial effects in acute heart failure, we expected that relaxin might also improve LV inotropic function in hypoxia. Forty-two rats were exposed over 24 h to normoxia or hypoxia (10% N2 in O2). They were infused with either 0.9% NaCl solution (normoxic/hypoxic controls) or relaxin at two doses (15 and 75 μg kg−1 day−1). After 24 h, hemodynamic measurements and bronchoalveolar lavage were performed. Lung tissue was obtained for histological and immunohistochemical analyses. Hypoxic control rats presented significant depression of LV systolic pressure by 19% and of left and right ventricular contractility by about 40%. Relaxin did not prevent the hypoxic decrease in LV inotropic function, but re-increased right ventricular contractility. Moreover, hypoxia induced moderate interstitial PE and inflammation in the lung. Contrasting to our hypothesis, relaxin did not prevent hypoxia-induced pulmonary edema and inflammation. In hypoxic control rats, PE was similarly distributed in the apical and basal lung lobes. In relaxin-treated rats, PE index was 35–40% higher in the apical than in the basal lobe, which is probably due to gravity effects. We suggest that relaxin induced exaggerated vasodilation, and hence pulmonary overperfusion. In conclusion, the results show that relaxin does not prevent but rather may aggravate PE formation.
Collapse
|
4
|
Relaxin-2 as a Potential Biomarker in Cardiovascular Diseases. J Pers Med 2022; 12:jpm12071021. [PMID: 35887517 PMCID: PMC9317583 DOI: 10.3390/jpm12071021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
The pleiotropic hormone relaxin-2 plays a pivotal role in the physiology and pathology of the cardiovascular system. Relaxin-2 exerts relevant regulatory functions in cardiovascular tissues through the specific receptor relaxin family peptide receptor 1 (RXFP1) in the regulation of cardiac metabolism; the induction of vasodilatation; the reversion of fibrosis and hypertrophy; the reduction of inflammation, oxidative stress, and apoptosis; and the stimulation of angiogenesis, with inotropic and chronotropic effects as well. Recent preclinical and clinical outcomes have encouraged the potential use of relaxin-2 (or its recombinant form, known as serelaxin) as a therapeutic strategy during cardiac injury and/or in patients suffering from different cardiovascular disarrangements, especially heart failure. Furthermore, relaxin-2 has been proposed as a promising biomarker of cardiovascular health and disease. In this review, we emphasize the relevance of the endogenous hormone relaxin-2 as a useful diagnostic biomarker in different backgrounds of cardiovascular pathology, such as heart failure, atrial fibrillation, myocardial infarction, ischemic heart disease, aortic valve disease, hypertension, and atherosclerosis, which could be relevant in daily clinical practice and could contribute to comprehending the specific role of relaxin-2 in cardiovascular diseases.
Collapse
|
5
|
Devarakonda T, Mauro AG, Cain C, Das A, Salloum FN. Cardiac Gene Therapy With Relaxin Receptor 1 Overexpression Protects Against Acute Myocardial Infarction. JACC Basic Transl Sci 2022; 7:53-63. [PMID: 35128209 PMCID: PMC8807852 DOI: 10.1016/j.jacbts.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022]
Abstract
AAV9 vectors can upregulate Rxfp1 mRNA in murine heart after intravenous injection. RXFP1 upregulation sensitizes the left ventricle to relaxin-induced inotropy. RXFP1 overexpression protects heart from ischemia-reperfusion injury.
Relaxin is a pleiotropic hormone shown to confer cardioprotection in several preclinical models of cardiac ischemia-reperfusion injury. In the present study, the effects of up-regulating relaxin family peptide receptor 1 (RXFP1) via adeno-associated virus serotype 9 (AAV9) vectors were investigated in a mouse model of myocardial infarction. AAV9-RXFP1 vectors were generated and injected in adult male CD1 mice. Up-regulation of Rxfp1 was confirmed via quantitative polymerase chain reaction, and overexpressing animals showed increased sensitivity to relaxin-induced ventricular inotropic response. Overexpressing animals also demonstrated reduced infarct size and preserved cardiac function 24 hours after ischemia-reperfusion. Up-regulation of RXFP1 via AAV9 vectors has potential therapeutic utility in preventing adverse remodeling after myocardial infarction.
Collapse
Key Words
- AAV, adeno-associated virus
- CMV, cytomegalovirus
- GLS, global longitudinal strain
- IR, ischemia-reperfusion
- LV function
- LV, left ventricular
- MAPK, mitogen-activated protein kinase
- MI, myocardial infarction
- PV, pressure-volume
- RXFP1
- RXFP1, relaxin family peptide receptor 1
- SIRO, simulated ischemia and reoxygenation
- VEC, empty vector
- eNOS, endothelial nitric oxide synthase
- gene therapy
- ischemia-reperfusion injury
- mRNA, messenger ribonucleic acid
- relaxin
Collapse
Affiliation(s)
- Teja Devarakonda
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Adolfo G. Mauro
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chad Cain
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Fadi N. Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
- Address for correspondence: Dr Fadi N. Salloum, Division of Cardiology, Box 980204, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, Virginia 23298, USA.
| |
Collapse
|
6
|
Martins RC, Pintalhão M, Leite-Moreira A, Castro-Chaves P. Relaxin and the Cardiovascular System: from Basic Science to Clinical Practice. Curr Mol Med 2021; 20:167-184. [PMID: 31642776 DOI: 10.2174/1566524019666191023121607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/07/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
The peptide hormone relaxin was originally linked to reproductive physiology, where it is believed to mediate systemic and renal hemodynamic adjustments to pregnancy. Recently, its broad range of effects in the cardiovascular system has been the focus of intensive research regarding its implications under pathological conditions and potential therapeutic potential. An understanding of the multitude of cardioprotective actions prompted the study of serelaxin, recombinant human relaxin-2, for the treatment of acute heart failure. Despite early promising results from phase II studies, recently revealed RELAX-AHF-2 outcomes were rather disappointing and the treatment for acute heart failure remains an unmet medical need. This article reviews the physiologic actions of relaxin on the cardiovascular system and its relevance in the pathophysiology of cardiovascular disease. We summarize the most updated clinical data and discuss future directions of serelaxin for the treatment of acute heart failure. This should encourage additional work to determine how can relaxin's beneficial effects be exploited for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Rafael Clara Martins
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Cardiovascular Research Centre, Porto, Portugal.,Internal Medicine Department, São João Hospital Centre, Porto, Portugal
| | - Mariana Pintalhão
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Cardiovascular Research Centre, Porto, Portugal.,Internal Medicine Department, São João Hospital Centre, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Cardiovascular Research Centre, Porto, Portugal.,Cardiothoracic Surgery Department, São João Hospital Centre, Porto, Portugal
| | - Paulo Castro-Chaves
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Cardiovascular Research Centre, Porto, Portugal.,Internal Medicine Department, São João Hospital Centre, Porto, Portugal
| |
Collapse
|
7
|
Yang K, Liu J, Zhang X, Ren Z, Gao L, Wang Y, Lin W, Ma X, Hao M, Kuang H. H3 Relaxin Alleviates Migration, Apoptosis and Pyroptosis Through P2X7R-Mediated Nucleotide Binding Oligomerization Domain-Like Receptor Protein 3 Inflammasome Activation in Retinopathy Induced by Hyperglycemia. Front Pharmacol 2020; 11:603689. [PMID: 33584279 PMCID: PMC7873867 DOI: 10.3389/fphar.2020.603689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction: P2X7R excitation-interrelated NLRP3 inflammasome activation induced by high glucose contributes to the pathogenesis of diabetic retinopathy (DR). Relaxin-3 is a bioactive peptide with a structure similar to insulin, which has been reported to be effective in diabetic cardiomyopathy models in vivo and in vitro. However, it is not known whether relaxin-3 has a beneficial impact on DR, and the underlying mechanisms of the effect are also remain unknown. Methods and Results: The retinas of male streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats were characterized. Human retinal microvascular endothelial cells (HRMECs) were used to evaluate the anti-inflammatory, antiapoptotic, antipyroptotic and anti-migration effects of H3 relaxin by transmission electron microscopy, wound-healing assay, transwell assay, flow cytometry, cytokine assays and western-blot analysis. After H3 relaxin treatment, changes of the ultrastructure and expression of NLRP3 inflammasome related proteins in the retinas of rats were compared with those in the diabetic group. In vitro, H3 relaxin played a beneficial role that decreased cell inflammation, apoptosis, pyroptosis and migration stimulated by advanced glycation end products (AGEs). Moreover, inhibition of P2X7R and NLRP3 inflammasome activation decreased NLRP3 inflammasome-mediated injury that similar to the effects of H3 relaxin. H3 relaxin suppressed the stimulation of apoptosis, pyroptosis and migration of HRMECs in response to AGEs mediated by P2X7R activation of the NLRP3 inflammasome. Conclusion: Our findings provide new insights into the mechanisms of the inhibitory effect of H3 relaxin on AGE-induced retinal injury, including migration, apoptosis and pyroptosis, mediated by P2X7R-dependent activation of the NLRP3 inflammasome in HRMECs.
Collapse
Affiliation(s)
- Kelaier Yang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiannan Liu
- The Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziqi Ren
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Wang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
The effect of nutraceuticals on multiple signaling pathways in cardiac fibrosis injury and repair. Heart Fail Rev 2020; 27:321-336. [PMID: 32495263 DOI: 10.1007/s10741-020-09980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cardiac fibrosis is one of the most common pathological conditions caused by different heart diseases, including myocardial infarction and diabetic cardiomyopathy. Cardiovascular disease is one of the major causes of mortality worldwide. Cardiac fibrosis is caused by different processes, including inflammatory reactions and oxidative stress. The process of fibrosis begins by changing the balance between production and destruction of extracellular matrix components and stimulating the proliferation and differentiation of cardiac fibroblasts. Many studies have focused on finding drugs with less adverse effects for the treatment of cardiovascular disease. Some studies show that nutraceuticals are effective in preventing and treating diseases, including cardiovascular disease, and that they can reduce the risk. However, big clinical studies to prove the therapeutic properties of all these substances and their adverse effects are lacking so far. Therefore, in this review, we tried to summarize the knowledge on pathways and mechanisms of several nutraceuticals which have shown their usefulness in the prevention of cardiac fibrosis.
Collapse
|
9
|
Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020; 8:e1194. [PMID: 32100955 PMCID: PMC7196478 DOI: 10.1002/mgg3.1194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Relaxin/relaxin family peptide receptor 1 (RXFP1) signaling is important for both normal physiology and disease. Strong preclinical evidence supports relaxin as a potent antifibrotic molecule. However, relaxin‐based therapy failed in clinical trial in patients with systemic sclerosis. We and others have discovered that aberrant expression of RXFP1 may contribute to the abnormal relaxin/RXFP1 signaling in different diseases. Reduced RXFP1 expression and alternative splicing transcripts with potential functional consequences have been observed in fibrotic tissues. A relative decrease in RXFP1 expression in fibrotic tissues—specifically lung and skin—may explain a potential insensitivity to relaxin. In addition, receptor dimerization also plays important roles in relaxin/RXFP1 signaling. Methods This review describes the tissue specific expression, characteristics of the splicing variants, and homo/heterodimerization of RXFP1 in both normal physiological function and human diseases. We discuss the potential implications of these molecular features for developing therapeutics to restore relaxin/RXFP1 signaling and to harness relaxin's potential antifibrotic effects. Results Relaxin/RXFP1 signaling is important in both normal physiology and in human diseases. Reduced expression of RXFP1 in fibrotic lung and skin tissues surrenders both relaxin/RXFP1 signaling and their responsiveness to exogenous relaxin treatments. Alternative splicing and receptor dimerization are also important in regulating relaxin/RXFP1 signaling. Conclusions Understanding the molecular mechanisms that drive aberrant expression of RXFP1 in disease and the functional roles of alternative splicing and receptor dimerization will provide insight into therapeutic targets that may restore the relaxin responsiveness of fibrotic tissues.
Collapse
Affiliation(s)
- Ting-Yun Chen
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiangning Tan
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Kass
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
You X, Guo ZF, Cheng F, Yi B, Yang F, Liu X, Zhu N, Zhao X, Yan G, Ma XL, Sun J. Transcriptional up-regulation of relaxin-3 by Nur77 attenuates β-adrenergic agonist-induced apoptosis in cardiomyocytes. J Biol Chem 2018; 293:14001-14011. [PMID: 30006349 DOI: 10.1074/jbc.ra118.003099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
The relaxin family peptides have been shown to exert several beneficial effects on the heart, including anti-apoptosis, anti-fibrosis, and anti-hypertrophy activity. Understanding their regulation might provide new opportunities for therapeutic interventions, but the molecular mechanism(s) coordinating relaxin expression in the heart remain largely obscured. Previous work demonstrated a role for the orphan nuclear receptor Nur77 in regulating cardiomyocyte apoptosis. We therefore investigated Nur77 in the hopes of identifying novel relaxin regulators. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) data indicated that ectopic expression of orphan nuclear receptor Nur77 markedly increased the expression of latexin-3 (RLN3), but not relaxin-1 (RLN1), in neonatal rat ventricular cardiomyocytes (NRVMs). Furthermore, we found that the β-adrenergic agonist isoproterenol (ISO) markedly stimulated RLN3 expression, and this stimulation was significantly attenuated in Nur77 knockdown cardiomyocytes and Nur77 knockout hearts. We showed that Nur77 significantly increased RLN3 promoter activity via specific binding to the RLN3 promoter, as demonstrated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Furthermore, we found that Nur77 overexpression potently inhibited ISO-induced cardiomyocyte apoptosis, whereas this protective effect was significantly attenuated in RLN3 knockdown cardiomyocytes, suggesting that Nur77-induced RLN3 expression is an important mediator for the suppression of cardiomyocyte apoptosis. These findings show that Nur77 regulates RLN3 expression, therefore suppressing apoptosis in the heart, and suggest that activation of Nur77 may represent a useful therapeutic strategy for inhibition of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Xiaohua You
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Zhi-Fu Guo
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Fang Cheng
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Bing Yi
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Fan Yang
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Xinzhu Liu
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Ni Zhu
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guijun Yan
- the Reproductive Medicine Center, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 211166, China
| | - Xin-Liang Ma
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Jianxin Sun
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China, .,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| |
Collapse
|
11
|
Maruyama S, Wu CL, Yoshida S, Zhang D, Li PH, Wu F, Parker Duffen J, Yao R, Jardin B, Adham IM, Law R, Berger J, Di Marchi R, Walsh K. Relaxin Family Member Insulin-Like Peptide 6 Ameliorates Cardiac Fibrosis and Prevents Cardiac Remodeling in Murine Heart Failure Models. J Am Heart Assoc 2018; 7:e008441. [PMID: 29887522 PMCID: PMC6220528 DOI: 10.1161/jaha.117.008441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND The insulin/insulin-like growth factor/relaxin family represents a group of structurally related but functionally diverse proteins. The family member relaxin-2 has been evaluated in clinical trials for its efficacy in the treatment of acute heart failure. In this study, we assessed the role of insulin-like peptide 6 (INSL6), another member of this protein family, in murine heart failure models using genetic loss-of-function and protein delivery methods. METHODS AND RESULTS Insl6-deficient and wild-type (C57BL/6N) mice were administered angiotensin II or isoproterenol via continuous infusion with an osmotic pump or via intraperitoneal injection once a day, respectively, for 2 weeks. In both models, Insl6-knockout mice exhibited greater cardiac systolic dysfunction and left ventricular dilatation. Cardiac dysfunction in the Insl6-knockout mice was associated with more extensive cardiac fibrosis and greater expression of fibrosis-associated genes. The continuous infusion of chemically synthesized INSL6 significantly attenuated left ventricular systolic dysfunction and cardiac fibrosis induced by isoproterenol infusion. Gene expression profiling suggests liver X receptor/retinoid X receptor signaling is activated in the isoproterenol-challenged hearts treated with INSL6 protein. CONCLUSIONS Endogenous Insl6 protein inhibits cardiac systolic dysfunction and cardiac fibrosis in angiotensin II- and isoproterenol-induced cardiac stress models. The administration of recombinant INSL6 protein could have utility for the treatment of heart failure and cardiac fibrosis.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Fibrosis
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Intercellular Signaling Peptides and Proteins
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Liver X Receptors/genetics
- Liver X Receptors/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/metabolism
- Myocardium/pathology
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Signal Transduction
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Sonomi Maruyama
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
| | - Chia-Ling Wu
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
| | - Sumiko Yoshida
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
| | - Dongying Zhang
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
| | - Pei-Hsuan Li
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
| | - Fangzhou Wu
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Jennifer Parker Duffen
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
| | - Rouan Yao
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
| | - Blake Jardin
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
| | - Ibrahim M Adham
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ronald Law
- New Frontier Science, Takeda Pharmaceuticals International Co, Cambridge, MA
| | - Joel Berger
- New Frontier Science, Takeda Pharmaceuticals International Co, Cambridge, MA
| | | | - Kenneth Walsh
- Molecular Cardiology, Whitaker Cardiovascular Institute Boston University School of Medicine, Boston, MA
- Center for Hematovascular Biology, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
12
|
Zhang X, Fu Y, Li H, Shen L, Chang Q, Pan L, Hong S, Yin X. H3 relaxin inhibits the collagen synthesis via ROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose. J Cell Mol Med 2018; 22:1816-1825. [PMID: 29314607 PMCID: PMC5824385 DOI: 10.1111/jcmm.13464] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022] Open
Abstract
Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the collagen synthesis by activation of the NLRP3 inflammasome, leading to caspase‐1 activation, interleukin‐1β (IL‐1β) and IL‐18 secretion in neonatal rat cardiac fibroblasts. Moreover, we used a high‐glucose model with neonatal rat cardiac fibroblasts and showed that the activation of ROS and P2X7R was augmented and that ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation was critical for the collagen synthesis. Inhibition of ROS and P2X7R decreased NLRP3 inflammasome‐mediated collagen synthesis, similar to the effects of H3 relaxin. Furthermore, H3 relaxin reduced the collagen synthesis via ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation in response to HG. These results provide a mechanism by which H3 relaxin alleviates NLRP3 inflammasome‐mediated collagen synthesis through the inhibition of ROS and P2X7R under HG conditions and suggest that H3 relaxin represents a potential drug for alleviating cardiac fibrosis in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Fu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- The Department of Cardiology, The Fifth hospital of Harbin, Harbin, China
| | - Li Shen
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Chang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liya Pan
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siting Hong
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinhua Yin
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Feijóo-Bandín S, Aragón-Herrera A, Rodríguez-Penas D, Portolés M, Roselló-Lletí E, Rivera M, González-Juanatey JR, Lago F. Relaxin-2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives. Front Physiol 2017; 8:599. [PMID: 28868039 PMCID: PMC5563388 DOI: 10.3389/fphys.2017.00599] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Despite the great effort of the medical community during the last decades, cardiovascular diseases remain the leading cause of death worldwide, increasing their prevalence every year mainly due to our new way of life. In the last years, the study of new hormones implicated in the regulation of energy metabolism and inflammation has raised a great interest among the scientific community regarding their implications in the development of cardiometabolic diseases. In this review, we will summarize the main actions of relaxin, a pleiotropic hormone that was previously suggested to improve acute heart failure and that participates in both metabolism and inflammation regulation at cardiovascular level, and will discuss its potential as future therapeutic target to prevent/reduce cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Miguel Rivera
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - José R. González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| |
Collapse
|
14
|
Zhang X, Pan L, Yang K, Fu Y, Liu Y, Chen W, Ma X, Yin X. Alterations of relaxin and its receptor system components in experimental diabetic cardiomyopathy rats. Cell Tissue Res 2017; 370:297-304. [PMID: 28776188 DOI: 10.1007/s00441-017-2662-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
High glucose induces apoptosis of cardiomyocytes and fibrosis of cardiac fibroblasts, contributing to diabetic cardiomyopathy. In this work, we explore the production of relaxin alterations and the significance of their receptor system components in the hearts of experimental diabetic cardiomyopathy rats. We measured rat relaxin-1 (equivalent to human relaxin-2), relaxin-3, RXFP1 and RXFP3 mRNA expression in the hearts of experimental diabetic cardiomyopathy rats. Neonatal rat ventricular myocytes (NRVMs) and cardiac fibroblasts were treated with 5.5 mmol/l normal glucose (NG) and 33 mmol/l high glucose (HG) for 0, 6, 12, 24, 48 and 72 h. Rat relaxin-1, relaxin-3, RXFP1 and RXFP3 mRNA expression were determined by real-time PCR. In the present study, we offer the first evidence that Relaxin-1 mRNA significantly increased and Relaxin-3 mRNA expression decreased at 4 and 8 weeks after STZ in the hearts of diabetic rats. In addition, significant down regulation of the mRNA expression of RXFP1 and RXFP3 was observed at 4 w after STZ; however, the mRNA expression levels of RXFP1 and RXFP3 were increased at 8 weeks after STZ. Apoptotic NRVMs induced by high glucose generate a decreased level of relaxin-1 and RXFP1. In HG-administered cardiac fibroblasts, Relaxin-1 mRNA was significantly increased and relaxin-3 mRNA was significantly decreased. Additionally, the mRNA expression of RXFP1 was decreased, and the mRNA expression of RXFP3 was increased. This results showed that an important role of relaxin-2, relaxin-3 and their receptors system in the regulation of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Road, NanGang District, Harbin, Heilongjiang Province, 150001, China
| | - Liya Pan
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Road, NanGang District, Harbin, Heilongjiang Province, 150001, China
| | - Kelaier Yang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Fu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Road, NanGang District, Harbin, Heilongjiang Province, 150001, China
| | - Yue Liu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Road, NanGang District, Harbin, Heilongjiang Province, 150001, China
| | - Wenjia Chen
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Road, NanGang District, Harbin, Heilongjiang Province, 150001, China
| | - Xiao Ma
- The Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue-Fu Road, Nan-Gang District, Harbin, Heilongjiang, 150086, China.
| | - Xinhua Yin
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Road, NanGang District, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
15
|
McCarthy JC, Aronovitz M, DuPont JJ, Calamaras TD, Jaffe IZ, Blanton RM. Short-Term Administration of Serelaxin Produces Predominantly Vascular Benefits in the Angiotensin II/L-NAME Chronic Heart Failure Model. ACTA ACUST UNITED AC 2017; 2:285-296. [PMID: 30062150 PMCID: PMC6034497 DOI: 10.1016/j.jacbts.2017.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022]
Abstract
Temporary administration of recombinant relaxin-2 (serelaxin) in patients hospitalized with HF was associated with improved mortality 6 months after discharge. The specific effects of serelaxin on vascular and myocardial structure and function in HF have not been studied. In mice subjected to continuous 28-day heart failure stimulus of AngII and L-NAME, serelaxin was administered for 3 days (days 7 to 9), and both the acute effects during serelaxin infusion and the delayed effects after termination of serelaxin on cardiovascular structure and function were studied. Temporary serelaxin improved vascular fibrosis and myocardial capillary density and reduced resistance vessel constriction to potassium chloride during administration. These effects unexpectedly persisted 19 days after discontinuation of serelaxin, despite continued exposure to AngII/L-NAME. Serelaxin did not alter cardiac hypertrophy, geometry, or dysfunction at either time point. These findings support that serelaxin predominantly affects vascular structure and function in the setting of HF.
In patients hospitalized with acute heart failure, temporary serelaxin infusion reduced 6-month mortality through unknown mechanisms. This study therefore explored the cardiovascular effects of temporary serelaxin administration in mice subjected to the angiotensin II (AngII)/L-NG-nitroarginine methyl ester (L-NAME) heart failure model, both during serelaxin infusion and 19 days post–serelaxin infusion. Serelaxin administration did not alter AngII/L-NAME-induced cardiac hypertrophy, geometry, or dysfunction. However, serelaxin-treated mice had reduced perivascular left ventricular fibrosis and preserved left ventricular capillary density at both time points. Furthermore, resistance vessels from serelaxin-treated mice displayed decreased potassium chloride–induced constriction and reduced aortic fibrosis. These findings suggest that serelaxin improves outcomes in patients through vascular-protective effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert M. Blanton
- Address for correspondence: Dr. Robert M. Blanton, Tufts Medical Center, 800 Washington Street, Box 80 Boston, Massachusetts 02111.
| |
Collapse
|
16
|
Abstract
Fibrosis is a major player in cardiovascular disease, both as a contributor to the development of disease, as well as a post-injury response that drives progression. Despite the identification of many mechanisms responsible for cardiovascular fibrosis, to date no treatments have emerged that have effectively reduced the excess deposition of extracellular matrix associated with fibrotic conditions. Novel treatments have recently been identified that hold promise as potential therapeutic agents for cardiovascular diseases associated with fibrosis, as well as other fibrotic conditions. The purpose of this review is to provide an overview of emerging antifibrotic agents that have shown encouraging results in preclinical or early clinical studies, but have not yet been approved for use in human disease. One of these agents is bone morphogenetic protein-7 (BMP7), which has beneficial effects in multiple models of fibrotic disease. Another approach discussed involves altering the levels of micro-RNA (miR) species, including miR-29 and miR-101, which regulate the expression of fibrosis-related gene targets. Further, the antifibrotic potential of agonists of the peroxisome proliferator-activated receptors will be discussed. Finally, evidence will be reviewed in support of the polypeptide hormone relaxin. Relaxin is long known for its extracellular remodeling properties in pregnancy, and is rapidly emerging as an effective antifibrotic agent in a number of organ systems. Moreover, relaxin has potent vascular and renal effects that make it a particularly attractive approach for the treatment of cardiovascular diseases. In each case, the mechanism of action and the applicability to various fibrotic diseases will be discussed.
Collapse
Affiliation(s)
- Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, OmahaNE, United States
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,The Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, OmahaNE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, OmahaNE, United States
| |
Collapse
|
17
|
Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes. Sci Rep 2017; 7:39604. [PMID: 28067255 PMCID: PMC5220363 DOI: 10.1038/srep39604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis.
Collapse
|
18
|
Zheng G, Cai J, Chen X, Chen L, Ge W, Zhou X, Zhou H. Relaxin Ameliorates Renal Fibrosis and Expression of Endothelial Cell Transition Markers in Rats of Isoproterenol-Induced Heart Failure. Biol Pharm Bull 2017; 40:960-966. [DOI: 10.1248/bpb.b16-00882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gaoshu Zheng
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| | - Jiejie Cai
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University
| | - Xingxing Chen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| | - Lingzhi Chen
- Department of Clinical Laboratory, Wenzhou Central Hospital
| | - Wenhua Ge
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| | - Xi Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
19
|
Wang D, Zhu H, Yang Q, Sun Y. Effects of relaxin on cardiac fibrosis, apoptosis, and tachyarrhythmia in rats with myocardial infarction. Biomed Pharmacother 2016; 84:348-355. [PMID: 27668534 DOI: 10.1016/j.biopha.2016.09.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022] Open
Abstract
Relaxin is safe and efficient to use for treating acute heart failure. However, the electrophysiological and arrhythmogenic effects of relaxin in an experimental healing infarction model remain unknown. In this study, a rat model with myocardial infarction (MI) received relaxin (0.5mg/kg per day) or vehicle (sodium acetate) infusion via implantable mini-pumps for 2 weeks. Thereafter, hemodynamic measurement, electrophysiological study, histological examination, and immunofluorescence labeling were performed. Relaxin treatment significantly attenuated tachyarrhythmia inducibility and cardiac dysfunction in healing infarcted heart. Epicardial monophasic action potentials showed that relaxin significantly reduced the dispersion of action potential duration in postinfarcted hearts. Histological study revealed that relaxin significantly reduced myocardial apoptosis and cardiac fibrotic collagen deposition. Western blot revealed that relaxin treatment significantly suppressed the protein expression levels of TGFβ1, α-SMA, and type I collagen. Furthermore, abnormal alterations of Connexin 43, including reduction and lateralization, were significantly attenuated by relaxin treatment at the infarcted border zone. This study provides strong evidence that continuous relaxin intervention ameliorates cardiac fibrosis and apoptosis, attenuates remodeling of gap junction and focal heterogeneity of repolarization, and reduces vulnerability to tachyarrhythmias.
Collapse
Affiliation(s)
- Deguo Wang
- Department of Gerontology, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241001, PR China.
| | - Hongjun Zhu
- Department of Cardiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, PR China
| | - Qing Yang
- Department of Gerontology, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241001, PR China
| | - Yirun Sun
- Department of Gerontology, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241001, PR China
| |
Collapse
|
20
|
Pintalhao M, Castro‐Chaves P, Vasques‐Novoa F, Gonçalves F, Mendonça L, Fontes‐Carvalho R, Lourenço P, Almeida P, Leite‐Moreira A, Bettencourt P. Relaxin serum levels in acute heart failure are associated with pulmonary hypertension and right heart overload. Eur J Heart Fail 2016; 19:218-225. [DOI: 10.1002/ejhf.611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 01/05/2023] Open
Affiliation(s)
- Mariana Pintalhao
- Department of Physiology and Cardiothoracic SurgeryFaculty of Medicine, University of Porto Portugal
- Internal Medicine DepartmentSão João Hospital Centre Porto Portugal
- Cardiovascular Research Centre Portugal
| | - Paulo Castro‐Chaves
- Department of Physiology and Cardiothoracic SurgeryFaculty of Medicine, University of Porto Portugal
- Internal Medicine DepartmentSão João Hospital Centre Porto Portugal
- Cardiovascular Research Centre Portugal
| | - Francisco Vasques‐Novoa
- Department of Physiology and Cardiothoracic SurgeryFaculty of Medicine, University of Porto Portugal
- Internal Medicine DepartmentSão João Hospital Centre Porto Portugal
- Cardiovascular Research Centre Portugal
| | - Francisco Gonçalves
- Department of Physiology and Cardiothoracic SurgeryFaculty of Medicine, University of Porto Portugal
| | - Luís Mendonça
- Department of Physiology and Cardiothoracic SurgeryFaculty of Medicine, University of Porto Portugal
- Cardiovascular Research Centre Portugal
| | - Ricardo Fontes‐Carvalho
- Department of Physiology and Cardiothoracic SurgeryFaculty of Medicine, University of Porto Portugal
- Cardiovascular Research Centre Portugal
- Cardiology DepartmentGaia Hospital Centre Gaia Portugal
| | - Patrícia Lourenço
- Internal Medicine DepartmentSão João Hospital Centre Porto Portugal
- Cardiovascular Research Centre Portugal
| | - Pedro Almeida
- Cardiology DepartmentSão João Hospital Centre Porto Portugal
| | - Adelino Leite‐Moreira
- Department of Physiology and Cardiothoracic SurgeryFaculty of Medicine, University of Porto Portugal
- Cardiovascular Research Centre Portugal
- Cardiothoracic Surgery DepartmentSão João Hospital Centre Porto Portugal
| | - Paulo Bettencourt
- Internal Medicine DepartmentSão João Hospital Centre Porto Portugal
- Cardiovascular Research Centre Portugal
- Department of Medicine, Faculty of MedicineUniversity of Porto Portugal
| |
Collapse
|
21
|
Sarwar M, Du XJ, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system. Br J Pharmacol 2016; 174:933-949. [PMID: 27239943 DOI: 10.1111/bph.13523] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The insulin-like peptide relaxin, originally identified as a hormone of pregnancy, is now known to exert a range of pleiotropic effects including vasodilatory, anti-fibrotic, angiogenic, anti-apoptotic and anti-inflammatory effects in both males and females. Relaxin produces these effects by binding to a cognate receptor RXFP1 and activating a variety of signalling pathways including cAMP, cGMP and MAPKs as well as by altering gene expression of TGF-β, MMPs, angiogenic growth factors and endothelin receptors. The peptide has been shown to be effective in halting or reversing many of the adverse effects including fibrosis in animal models of cardiovascular disease including ischaemia/reperfusion injury, myocardial infarction, hypertensive heart disease and cardiomyopathy. Relaxin given to humans is safe and produces favourable haemodynamic changes. Serelaxin, the recombinant form of relaxin, is now in extended phase III clinical trials for the treatment of acute heart failure. Previous clinical studies indicated that a 48 h infusion of relaxin improved 180 day mortality, yet the mechanism underlying this effect is not clear. This article provides an overview of the cellular mechanism of effects of relaxin and summarizes its beneficial actions in animal models and in the clinic. We also hypothesize potential mechanisms for the clinical efficacy of relaxin, identify current knowledge gaps and suggest new ways in which relaxin could be useful therapeutically. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Mohsin Sarwar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Thomas B Dschietzig
- Immundiagnostik AG, Bensheim, Germany.,Campus Mitte, Medical Clinic for Cardiology and Angiology, Charité-University Medicine Berlin, Berlin, Germany.,Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Bensheim, Germany
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| |
Collapse
|
22
|
|
23
|
Carillon J, Gauthier A, Barial S, Tournier M, Gayrard N, Lajoix AD, Jover B. Relaxin and atrial natriuretic peptide pathways participate in the anti-fibrotic effect of a melon concentrate in spontaneously hypertensive rats. Food Nutr Res 2016; 60:30985. [PMID: 27079780 PMCID: PMC4832218 DOI: 10.3402/fnr.v60.30985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/04/2016] [Accepted: 03/17/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In spontaneously hypertensive rats (SHR), a model of human essential hypertension, oxidative stress is involved in the development of cardiac hypertrophy and fibrosis associated with hypertension. Dietary supplementation with agents exhibiting antioxidant properties could have a beneficial effect in remodeling of the heart. We previously demonstrated a potent anti-hypertrophic effect of a specific melon (Cucumis melo L.) concentrate with antioxidant properties in spontaneously hypertensive rats. Relaxin and atrial natriuretic peptide (ANP) were reported to reduce collagen deposition and fibrosis progression in various experimental models. OBJECTIVE The aim of the present investigation was to test the hypothesis that, beside reduction in oxidative stress, the melon concentrate may act through relaxin, its receptor (relaxin/insulin-like family peptide receptor 1, RXFP1), and ANP in SHR. DESIGN AND RESULTS The melon concentrate, given orally during 4 days, reduced cardiomyocyte size (by 25%) and totally reversed cardiac collagen content (Sirius red staining) in SHR but not in their normotensive controls. Treatment with the melon concentrate lowered cardiac nitrotyrosine-stained area (by 45%) and increased by 17-19% the cardiac expression (Western blot) of superoxide dismutase (SOD) and glutathione peroxidase. In addition, plasma relaxin concentration was normalized while cardiac relaxin (Western blot) was lowered in treated SHR. Cardiac relaxin receptor level determined by immunohistochemical analysis increased only in treated SHR. Similarly, the melon concentrate reversed the reduction of plasma ANP concentration and lowered its cardiac expression. CONCLUSIONS The present results demonstrate that reversal of cardiac fibrosis by the melon concentrate involves antioxidant defenses, as well as relaxin and ANP pathways restoration. It is suggested that dietary SOD supplementation could be a useful additional strategy against cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Julie Carillon
- EA7288 Université de Montpellier, Montpellier, France.,Bionov Research, Montpellier, France
| | | | - Sandy Barial
- EA7288 Université de Montpellier, Montpellier, France
| | | | | | | | - Bernard Jover
- EA7288 Université de Montpellier, Montpellier, France;
| |
Collapse
|
24
|
Díez J, Ruilope LM. Serelaxin for the treatment of acute heart failure: a review with a focus on end-organ protection. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 2:119-30. [PMID: 27418970 PMCID: PMC4853824 DOI: 10.1093/ehjcvp/pvv046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
Abstract
Acute heart failure (AHF) is a complex clinical syndrome characterized by fluid overload and haemodynamic abnormalities (short-term clinical consequences) and the development of end-organ damage (long-term consequences). Current therapies for the treatment of AHF, such as loop diuretics and vasodilators, help to relieve haemodynamic imbalance and congestion, but have not been shown to prevent (and may even contribute to) end-organ damage, or to provide long-term clinical benefit. Serelaxin is the recombinant form of human relaxin-2, a naturally occurring hormone involved in mediating haemodynamic changes during pregnancy. Preclinical and clinical studies have investigated the effects mediated by serelaxin and the suitability of this agent for the treatment of patients with AHF. Data suggest that serelaxin acts via multiple pathways to improve haemodynamics at the vascular, cardiac, and renal level and provide effective congestion relief. In addition, this novel agent may protect the heart, kidneys, and liver from damage by inhibiting inflammation, oxidative stress, cell death, and tissue fibrosis, and stimulating angiogenesis. Serelaxin may therefore improve both short- and long-term outcomes in patients with AHF. In this review, we examine the unique mechanisms underlying the potential benefits of serelaxin for the treatment of AHF, in particular, those involved in mediating end-organ protection.
Collapse
Affiliation(s)
- Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research and Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, University of Navarra, Av. Pío XII 55, Pamplona 31008, Spain
| | - Luis M Ruilope
- Research Institute, Hypertension Unit, Hospital 12 de Octubre and Department of Public Health and Preventive Medicine, University Autónoma, Madrid, Spain
| |
Collapse
|
25
|
Tietjens J, Teerlink JR. Serelaxin and acute heart failure. Heart 2015; 102:95-9. [DOI: 10.1136/heartjnl-2014-306786] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/02/2015] [Indexed: 01/11/2023] Open
|
26
|
Raleigh JMV, Toldo S, Das A, Abbate A, Salloum FN. Relaxin' the Heart: A Novel Therapeutic Modality. J Cardiovasc Pharmacol Ther 2015; 21:353-62. [PMID: 26589290 DOI: 10.1177/1074248415617851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
The peptide hormone relaxin has traditionally been linked to the maternal adaptation of the cardiovascular system during the first trimester of pregnancy. By promoting nitric oxide formation through different molecular signaling events, relaxin has been proposed as a pleiotropic and cardioprotective hormone in the setting of many cardiovascular diseases. In fact, preclinical studies were able to demonstrate that relaxin promotes vasodilatation and angiogenesis, ameliorates ischemia/reperfusion injury, and regulates extracellular matrix turnover and remodeling. In the RELAX-AHF phase 3 clinical trial, serelaxin (recombinant human relaxin) was shown to be safe, and it exerted survival benefits in patients with acute heart failure. RELAX-AHF-2 is currently ongoing, and it aims to address a larger population and evaluate harder clinical outcomes. Besides heart failure, acute myocardial infarction, peripheral arterial disease, and stable coronary disease could be target diseases for treatment with serelaxin in future clinical trials.
Collapse
Affiliation(s)
- Juan M Valle Raleigh
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefano Toldo
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS, Wang LX, Gao Z, Zhang HQ, Huang WJ, Zhou H. Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4599-611. [PMID: 26316699 PMCID: PMC4541540 DOI: 10.2147/dddt.s85399] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Relaxin (RLX) can prevent cardiac fibrosis. We aimed to investigate the possible mechanism and signal transduction pathway of RLX inhibiting cardiac fibrosis. METHODS Isoproterenol (5 mg·kg(-1)·d(-1)) was used to establish the cardiac fibrosis model in rats, which were administered RLX. The cardiac function, related targets of cardiac fibrosis, and endothelial-mesenchymal transition (EndMT) were measured. Transforming growth factor β (TGF-β) was used to induce EndMT in human umbilical vein endothelial cells, which were pretreated with RLX, 200 ng·mL(-1), then with the inhibitor of Notch. Transwell cell migration was used to evaluate cell migration. CD31 and vimentin content was determined by immunofluorescence staining and Western blot analysis. Notch protein level was examined by Western blot analysis. RESULTS RLX improved cardiac function in rats with cardiac fibrosis; it reduced the content of collagen I and III, increased the microvascular density of the myocardium, and suppressed the EndMT in heart tissue. In vitro, RLX decreased the mobility of human umbilical vein endothelial cells induced by TGF-β, increased the expression of endothelial CD31, and decreased vimentin content. Compared to TGF-β and RLX co-culture alone, TGF-β + RLX + Notch inhibitor increased cell mobility and the EndMT, but decreased the levels of Notch-1, HES-1, and Jagged-1 proteins. CONCLUSION RLX may inhibit the cardiac fibrosis via EndMT by Notch-mediated signaling.
Collapse
Affiliation(s)
- X Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - X Chen
- Wenzhou Medical University, Wenzhou, People's Republic of China
| | - J J Cai
- Wenzhou Medical University, Wenzhou, People's Republic of China
| | - L Z Chen
- Department of Clinical Laboratory, Wenzhou Central Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Y S Gong
- Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - L X Wang
- Department of Respiratory Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Z Gao
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - H Q Zhang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - W J Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - H Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
28
|
Abstract
PURPOSE Relaxin, a new drug for heart failure therapy, exerts its cardiac actions through relaxin family peptide receptor 1 (RXFP1). Factors regulating RXFP1 expression remain unknown. We have investigated effects of activation of adrenoceptors (AR), an important modulator in the development and prognosis of heart failure, on expression of RXFP1 in rat cardiomyocytes and mouse left ventricles (LV). METHODS Expression of RXFP1 at mRNA (real-time PCR) and protein levels (immunoblotting) was measured in cardiomyocytes treated with α- and β-AR agonists or antagonists. RXFP1 expression was also determined in the LV of transgenic mouse strains with cardiac-restricted overexpression of α1A-, α1B- or β2-AR. Specific inhibitors were used to explore signal pathways involved in α1-AR mediated regulation of RXFP1 in cardiomyocytes. RESULTS In cultured cardiomyocytes, α1-AR stimulation resulted in 2-3 fold increase in RXFP1 mRNA (P < 0.001), which was blocked by specific inhibitors for protein kinase C (PKC) or mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK). Activation of β1-, but not β2-AR, significantly inhibited RXFP1 expression (P < 0.001). Relative to respective wild-type controls, RXFP1 mRNA levels in the LV of mice overexpressing α1A- or α1B-AR were increased by 3- or 10-fold, respectively, but unchanged in β2-AR transgenic hearts. Upregulation by α1-AR stimulation RXFP1 expression was confirmed at protein levels both in vitro and in vivo. CONCLUSIONS Expression of RXFP1 was up-regulated by α1-AR but suppressed by β-AR, mainly β1-AR subtype, in cardiomyocytes. Future studies are warranted to characterize the functional significance of such regulation, especially in the setting of heart failure.
Collapse
|
29
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 PMCID: PMC4394689 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Cyclic AMP/physiology
- Humans
- International Agencies
- Ligands
- Models, Molecular
- Pharmacology/trends
- Pharmacology, Clinical/trends
- Protein Isoforms/agonists
- Protein Isoforms/chemistry
- Protein Isoforms/classification
- Protein Isoforms/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/chemistry
- Receptors, Peptide/classification
- Receptors, Peptide/metabolism
- Relaxin/agonists
- Relaxin/analogs & derivatives
- Relaxin/antagonists & inhibitors
- Relaxin/metabolism
- Second Messenger Systems
- Societies, Scientific
- Terminology as Topic
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
30
|
Zhang X, Ma X, Zhao M, Zhang B, Chi J, Liu W, Chen W, Fu Y, Liu Y, Yin X. H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes. Biochimie 2014; 108:59-67. [PMID: 25446652 DOI: 10.1016/j.biochi.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
Abstract
High concentrations of glucose induce cardiomyocyte apoptosis, and contribute to diabetic cardiomyopathy. Relaxin-2 and relaxin-3 are two members of the relaxin peptide family that are cardioprotective. However, it remains unknown whether relaxin-2 or relaxin-3 can regulate apoptosis in high glucose treated-neonatal rat ventricular myocytes (NRVMs). In cultured NRVMs, 33 mmol/l high glucose (HG) increased apoptosis in a time-dependent manner. HG-increased the protein expression of cleaved caspase-8 and -9, two initiators of the extrinsic and intrinsic pathways of apoptosis, Caspase-3 was attenuated by human recombinant relaxin-2 (H2 relaxin) or relaxin-3 (H3 relaxin), indicating that H2 and H3 relaxin inhibited HG-induced apoptosis. Furthermore, endoplasmic reticulum stress (ERS) markers CHOP and caspase-12 were markedly increased in HG-treated NRVMs, leading to apoptosis; this effect was also effectively attenuated by H2 relaxin or H3 relaxin. Treatment of NRVMs with HG reduced autophagy which cannot be adjusted by H2 relaxin or H3 relaxin. In conclusion, HG-induced apoptosis in NRVMs was mediated, in part, by the activation of the extrinsic and intrinsic pathways of apoptosis and ERS, all inhibited by H2 relaxin or H3 relaxin.
Collapse
Affiliation(s)
- Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Xiao Ma
- The Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Zhao
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Bo Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Jinyu Chi
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Wenxiu Liu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Wenjia Chen
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Yu Fu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Yue Liu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Xinhua Yin
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
31
|
Dschietzig TB. Recombinant human relaxin-2: (how) can a pregnancy hormone save lives in acute heart failure? Am J Cardiovasc Drugs 2014; 14:343-55. [PMID: 24934696 DOI: 10.1007/s40256-014-0078-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute heart failure (AHF) syndrome, characterized by pulmonary and/or venous congestion owing to increased cardiac filling pressures with or without diminished cardiac output, is still associated with high post-discharge mortality and hospitalization rates. Many novel and promising therapeutic approaches, among them endothelin-1, vasopressin and adenosine antagonists, calcium sensitization, and recombinant B-type natriuretic hormone, have failed in large studies. Likewise, the classic drugs, vasodilators, diuretics, and inotropes, have never been shown to lower mortality.The phase III trial RELAX-AHF tested recombinant human relaxin-2 (rhRlx) and found it to improve clinical symptoms moderately, to be neutral regarding the combination of death and hospitalization at day 60, to be safe, and to lower mortality at day 180. This review focuses on basic research and pre-clinical findings that may account for the benefit of rhRlx in AHF. The drug combines short-term hemodynamic advantages, such as moderate blood pressure decline and functional endothelin-1 antagonism, with a wealth of protective effects harboring long-term benefits, such as anti-inflammatory, anti-fibrotic, and anti-oxidative actions. These pleiotropic effects are exerted through a complex and intricate signaling cascade involving the relaxin-family peptide receptor-1, the glucocorticoid receptor, nitric oxide, and a cell type-dependent variety of kinases and transcription factors.
Collapse
|
32
|
Kiriazis H, Tugiono N, Xu Q, Gao XM, Jennings NL, Ming Z, Su Y, Klenowski P, Summers RJ, Kaumann A, Molenaar P, Du XJ. Chronic activation of the low affinity site of β1-adrenoceptors stimulates haemodynamics but exacerbates pressure-overload cardiac remodelling. Br J Pharmacol 2014; 170:352-65. [PMID: 23750586 DOI: 10.1111/bph.12272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/22/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. EXPERIMENTAL APPROACH C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg(-1)·day(-1)). Cardiac function was assessed by echocardiography and micromanometry. KEY RESULTS (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4-8 or 4-12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. CONCLUSIONS AND IMPLICATIONS β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure.
Collapse
Affiliation(s)
- Helen Kiriazis
- Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Vic., Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li AH, Liu PP, Villarreal FJ, Garcia RA. Dynamic changes in myocardial matrix and relevance to disease: translational perspectives. Circ Res 2014; 114:916-27. [PMID: 24577970 DOI: 10.1161/circresaha.114.302819] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cardiac extracellular matrix (ECM) provides the architectural scaffold to support efficient contraction and relaxation of cardiomyocytes. The elegant design of the ECM facilitates optimal force transduction, electric transmission, intercellular communication, and metabolic exchange within the myocardial microenvironment. In the setting of increased wall stress, injury, or disease, the ECM can undergo a series of dynamic changes that lead to favorable chamber remodeling and functional adaptation. Over time, sustained matrix remodeling can impair diastolic and systolic function caused by excess deposition of interstitial fibrous tissue. These pathological alterations in ECM structure/function are considered central to the evolution of adverse cardiac remodeling and the development of heart failure. This review discusses the complex dynamics of the cardiac ECM in the setting of myocardial infarction, pressure overload, and volume overload. We also summarize the current status of ECM biomarkers that may have clinical value in prognosticating cardiac disease progression in patients. Finally, we discuss the most current status of drugs under evaluation for use in cardiac fibrosis.
Collapse
Affiliation(s)
- Ai-Hsien Li
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (A.-H.L., P.P.L.); University of Toronto, Heart & Stroke/Lewar Centre of Excellence, Toronto, Ontario, Canada (P.P.L.); University of California, San Diego, School of Medicine (F.J.V., R.A.G.); and Bristol-Myers Squibb Company, Pennington, NJ (R.A.G.)
| | | | | | | |
Collapse
|
34
|
Bennett RG, Heimann DG, Singh S, Simpson RL, Tuma DJ. Relaxin decreases the severity of established hepatic fibrosis in mice. Liver Int 2014; 34:416-26. [PMID: 23870027 PMCID: PMC3843971 DOI: 10.1111/liv.12247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/09/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Hepatic fibrosis is characterized by excess collagen deposition, decreased extracellular matrix degradation and activation of the hepatic stellate cells. The hormone relaxin has shown promise in the treatment of fibrosis in a number of tissues, but the effect of relaxin on established hepatic fibrosis is unknown. The aim of this study was to determine the effect of relaxin on an in vivo model after establishing hepatic fibrosis METHODS Male mice were made fibrotic by carbon tetrachloride treatment for 4 weeks, followed by treatment with two doses of relaxin (25 or 75 μg/kg/day) or vehicle for 4 weeks, with continued administration of carbon tetrachloride. RESULTS Relaxin significantly decreased total hepatic collagen and smooth muscle actin content at both doses, and suppressed collagen I expression at the higher dose. Relaxin increased the expression of the matrix metalloproteinases MMP13 and MMP3, decreased the expression of MMP2 and tissue inhibitor of metalloproteinase 2 (TIMP2) and increased the overall level of collagen-degrading activity. Relaxin decreased TGFβ-induced Smad2 nuclear localization in mouse hepatic stellate cells. CONCLUSIONS The results suggest that relaxin reduced collagen deposition and HSC activation in established hepatic fibrosis despite the presence of continued hepatic insult. This reduced fibrosis was associated with increased expression of the fibrillar collagen-degrading enzyme MMP13, decreased expression of TIMP2, and enhanced collagen-degrading activity, and impaired TGFβ signalling, consistent with relaxin's effects on activated fibroblastic cells. The results suggest that relaxin may be an effective treatment for the treatment of established hepatic fibrosis.
Collapse
Affiliation(s)
- Robert G. Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, USA
| | - Dean G. Heimann
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Sudhir Singh
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, USA
| | - Ronda L. Simpson
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Dean J. Tuma
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
35
|
Zhao Z, Ng CY, Liu T, Li H, Li G. Relaxin as novel strategy in the management of atrial fibrillation: potential roles and future perspectives. Int J Cardiol 2014; 171:e72-e73. [PMID: 24373631 DOI: 10.1016/j.ijcard.2013.11.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/30/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Zhiqiang Zhao
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Chee Yuan Ng
- Department of Cardiology, Loma Linda University Medical Center, CA, United States
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Hongmin Li
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China.
| |
Collapse
|
36
|
Abstract
Over the past few decades, research on the peptide hormone, relaxin, has significantly improved our understanding of its biological actions under physiological and diseased conditions. This has facilitated the conducting of clinical trials to explore the use of serelaxin (human recombinant relaxin). Acute heart failure (AHF) is a very difficult to treat clinical entity, with limited success so far in developing new drugs to combat it. A recent phase-III RELAX-AHF trial using serelaxin therapy given during hospitalization revealed acute (ameliorated dyspnea) and chronic (improved 180-day survival) effects. Although these findings support a substantial improvement by serelaxin therapy over currently available therapies for AHF, they also raise key questions and stimulate new hypotheses. To facilitate the development of serelaxin as a new drug for heart disease, joint efforts of clinicians, research scientists and pharmacological industries are necessary to study these questions and hypotheses. In this review, after providing a brief summary of clinical findings and the pathophysiology of AHF, we present a working hypothesis of the mechanisms responsible for the observed efficacy of serelaxin in AHF patients. The existing clinical and preclinical data supporting our hypotheses are summarized and discussed. The development of serelaxin as a drug provides an excellent example of the bilateral nature of translational research.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Monash University
| | | | | | | |
Collapse
|
37
|
Lu D, Insel PA. Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis. Am J Physiol Cell Physiol 2013; 306:C779-88. [PMID: 24352335 DOI: 10.1152/ajpcell.00381.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tissue fibrosis occurs as a result of the dysregulation of extracellular matrix (ECM) synthesis. Tissue fibroblasts, resident cells responsible for the synthesis and turnover of ECM, are regulated via numerous hormonal and mechanical signals. The release of intracellular nucleotides and their resultant autocrine/paracrine signaling have been shown to play key roles in the homeostatic maintenance of tissue remodeling and in fibrotic response post-injury. Extracellular nucleotides signal through P2 nucleotide and P1 adenosine receptors to activate signaling networks that regulate the proliferation and activity of fibroblasts, which, in turn, influence tissue structure and pathologic remodeling. An important component in the signaling and functional responses of fibroblasts to extracellular ATP and adenosine is the expression and activity of ectonucleotideases that attenuate nucleotide-mediated signaling, and thereby integrate P2 receptor- and subsequent adenosine receptor-initiated responses. Results of studies of the mechanisms of cellular nucleotide release and the effects of this autocrine/paracrine signaling axis on fibroblast-to-myofibroblast conversion and the fibrotic phenotype have advanced understanding of tissue remodeling and fibrosis. This review summarizes recent findings related to purinergic signaling in the regulation of fibroblasts and the development of tissue fibrosis in the heart, lungs, liver, and kidney.
Collapse
Affiliation(s)
- David Lu
- Department of Pharmacology, University of California, San Diego, La Jolla, California; and
| | | |
Collapse
|
38
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Gu HP, Lin S, Xu M, Yu HY, Du XJ, Zhang YY, Yuan G, Gao W. Up-regulating relaxin expression by G-quadruplex interactive ligand to achieve antifibrotic action. Endocrinology 2012; 153:3692-700. [PMID: 22673230 DOI: 10.1210/en.2012-1114] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Myocardial fibrosis is a key pathological change in a variety of heart diseases contributing to the development of heart failure, arrhythmias, and sudden death. Recent studies have shown that relaxin prevents and reverses cardiac fibrosis. Endogenous expression of relaxin was elevated in the setting of heart disease; the extent of such up-regulation, however, is insufficient to exert compensatory actions, and the mechanism regulating relaxin expression is poorly defined. In the rat relaxin-1 (RLN1, Chr1) gene promoter region we found presence of repeated guanine (G)-rich sequences, which allowed formation and stabilization of G-quadruplexes with the addition of a G-quadruplex interactive ligand berberine. The G-rich sequences and the G-quadruplexes were localized adjacent to the binding motif of signal transducer and activator of transcription (STAT)3, which negatively regulates relaxin expression. Thus, we hypothesized that the formation and stabilization of G-quadruplexes by berberine could influence relaxin expression. We found that berberine-induced formation of G-quadruplexes did increase relaxin gene expression measured at mRNA and protein levels. Formation of G-quadruplexes significantly reduced STAT3 binding to the promoter of relaxin gene. This was associated with consequent increase in the binding of RNA polymerase II and STAT5a to relaxin gene promoter. In cardiac fibroblasts and rats treated with angiotensin II, berberine was found to suppress fibroblast activation, collagen synthesis, and extent of cardiac fibrosis through up-regulating relaxin. The antifibrotic action of berberine in vitro and in vivo was similar to that by exogenous relaxin. Our findings document a novel therapeutic strategy for fibrosis through up-regulating expression of endogenous relaxin.
Collapse
Affiliation(s)
- Hui-Ping Gu
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hossain MA, Chow Suet Man B, Zhao C, Xu Q, Du XJ, Wade JD, Samuel CS. H3 Relaxin Demonstrates Antifibrotic Properties via the RXFP1 Receptor. Biochemistry 2011; 50:1368-75. [DOI: 10.1021/bi1013968] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Qi Xu
- Baker IDI Heart and Diabetes Institute, St. Kilda Road Central, Melbourne, Victoria 8008, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, St. Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | |
Collapse
|
41
|
Jonathan R Dalzell, Colette E Jackson. Novel neurohormonal insights with therapeutic potential in chronic heart failure. Future Cardiol 2010; 6:361-72. [DOI: 10.2217/fca.10.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite considerable therapeutic advances over recent years, chronic heart failure remains associated with significant morbidity and mortality. Further improvements in the treatment of this syndrome are therefore needed and this will require advances in the understanding of its underlying pathophysiology. This article reviews the literature regarding recently identified neurohormonal pathways that are declaring themselves as potential therapeutic targets in chronic heart failure.
Collapse
|
42
|
|
43
|
Walsh SK, Kane KA, Wainwright CL. Mast cells, peptides and cardioprotection - an unlikely marriage? ACTA ACUST UNITED AC 2009; 29:73-84. [PMID: 19566747 DOI: 10.1111/j.1474-8673.2009.00436.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1 Mast cells have classically been regarded as the 'bad guys' in the setting of acute myocardial ischaemia, where their released contents are believed to contribute both to tissue injury and electrical disturbances resulting from ischaemia. Recent evidence suggests, however, that if mast cell degranulation occurs in advance of ischaemia onset, this may be cardioprotective by virtue of the depletion of mast cell contents that can no longer act as instruments of injury when the tissue becomes ischaemic. 2 Many peptides, such as ET-1, adrenomedullin, relaxin and atrial natriuretic peptide, have been demonstrated to be cardioprotective when given prior to the onset of myocardial ischaemia, although their physiological functions are varied and the mechanisms of their cardioprotective actions appear to be diverse and often ill defined. However, one common denominator that is emerging is the ability of these peptides to modulate mast cell degranulation, raising the possibility that peptide-induced mast cell degranulation or stabilization may hold the key to a common mechanism of their cardioprotection. 3 The aim of this review was to consolidate the evidence implying that mast cell degranulation could play both a detrimental and protective role in myocardial ischaemia, depending upon when it occurs, and that this may underlie the cardioprotective effects of a range of diverse peptides that exerts physiological effects within the cardiovascular system.
Collapse
Affiliation(s)
- S K Walsh
- Anu Research Centre, Department of Obstetrics & Gynaecology, University College Cork, Cork University Maternity Hospital, Cork, Ireland
| | | | | |
Collapse
|
44
|
Bennett RG. Relaxin and its role in the development and treatment of fibrosis. Transl Res 2009; 154:1-6. [PMID: 19524867 PMCID: PMC2697124 DOI: 10.1016/j.trsl.2009.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Relaxin, which is a peptide hormone of the insulin superfamily, is involved in the promotion of extracellular matrix remodeling. This property is responsible for many well-known reproductive functions of relaxin. Recent important findings, including the identification of the relaxin receptor and the development of the relaxin-null mouse, have identified new targets and mechanisms for relaxin's actions, which resulted in unprecedented advances in the field. Relaxin has emerged as a natural suppressor of age-related fibrosis in many tissues, which include the skin, lung, kidney, and heart. Furthermore, relaxin has shown efficacy in the prevention and treatment of a variety of models of experimentally induced fibrosis. The intention of this review is to present a summary of recent advances in relaxin research, with a focus on areas of potential translational research on fibrosis in nonreproductive organs.
Collapse
Affiliation(s)
- Robert G Bennett
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebr., USA.
| |
Collapse
|
45
|
Du XJ, Xu Q, Lekgabe E, Gao XM, Kiriazis H, Moore XL, Dart AM, Tregear GW, Bathgate RAD, Samuel CS. Reversal of cardiac fibrosis and related dysfunction by relaxin. Ann N Y Acad Sci 2009; 1160:278-84. [PMID: 19416203 DOI: 10.1111/j.1749-6632.2008.03780.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a hallmark of heart disease, cardiac fibrosis contributes to the development of heart failure and arrhythmias and forms a key therapeutic target. There is a major unmet need for selective, potent, and safe antifibrotic drugs. Earlier studies revealed a cardiac fibrosis phenotype in relaxin-1-deficient mice. Recent studies in several rodent models of cardiac fibrosis have documented reversal of fibrosis by treatment with relaxin peptide or virally mediated relaxin gene delivery. In mice with surgically induced transmural myocardial infarction, relaxin therapy inhibited scar density. In these studies, however, functional benefits achieved by relaxin therapy were limited or less explored. Collectively, there is good experimental evidence that relaxin is able to reverse cardiac fibrosis due to distinct mechanisms. Future research needs to explore functional improvement following fibrosis reversal by relaxin and the usefulness of relaxin in antiarrhythmic or stem cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang P, Li HW, Wang YP, Chen H, Zhang P. Effects of recombinant human relaxin upon proliferation of cardiac fibroblast and synthesis of collagen under high glucose condition. J Endocrinol Invest 2009; 32:242-7. [PMID: 19542742 DOI: 10.1007/bf03346460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cardiac fibrosis is a key component of diabetes and involves the proliferation and differentiation of matrix-producing fibroblasts. We determined the influence of high glucose (HG) conditions on cardiac fibroblasts (CF) functions and the effects of recombinant human (rh) relaxin (RLX) in these responses. We cultured neonatal rat CF in either normal glucose (NG) or HG media. The mRNA of procollagen types I and III, and RLX-1 were assessed by real time PCR and procollagen type I C-terminal peptide (PICP) and procollagen type III amino terminal peptide (PIIINP), matrix metalloproteinases 2 (MMP2), MMP9 were assessed by enzyme linked immunosorbent assay. The results are as follows: a) CF proliferation was significantly increased by HG; rhRLX significantly inhibited HG fibroblast proliferation, while it had no marked effect on CF proliferation in NG. b) CF treated with HG significantly increased the production of PICP and PIIINP. rhRLX had no marked effect on production of PICP and PIIINP in NG. rhRLX blocked the HG-induced increases in collagen synthesis. c) The production of MMP2 and MMP9 is significantly increased by HG. rhRLX decreased overproduction of MMP2 and MMP9 in the presence of HG. d) The RLX- 1 mRNA expression of HG group was higher than in the NG group. We concluded that rhRLX could inhibit both the proliferation of CF and the synthesis of collagen under the HG condition. HG concentration could stimulate the expression of endogenous RLX.
Collapse
Affiliation(s)
- P Wang
- Heart Center Department, the Capital Medical University Affiliated Friendship Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
47
|
Jeyabalan A, Shroff SG, Novak J, Conrad KP. The Vascular Actions of Relaxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 612:65-87. [DOI: 10.1007/978-0-387-74672-2_6] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Xu XL, Ji H, Gu SY, Shao Q, Huang QJ, Cheng YP. Cardioprotective effects of Astragali Radix against isoproterenol-induced myocardial injury in rats and its possible mechanism. Phytother Res 2008; 22:389-94. [PMID: 18058992 DOI: 10.1002/ptr.2332] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of the present study was to investigate the effects of the Chinese medical herb Astragali Radix on myocardial injury in vivo and its possible mechanisms. Myocardial injury in rats was induced by the subcutaneous injection of a high dose of isoproterenol for 10 days, and the therapeutic effects of Astragali Radix were observed. Cardiac hemodynamics, heart coefficient and marker enzymes in serum showed that Astragali Radix prevented isoproterenol-induced myocardial damage. Astragali Radix also improved the antioxidant status by decreasing the lipid peroxidative product malondialdehyde and increasing the activity of the antioxidant enzyme superoxide dismutase. The observed depressions in sarcoplasmic reticulum Ca2+-ATPase mRNA and protein expression as well as Ser(16)-phosphorylated phospholamban protein expression in isoproterenol-treated rats were attenuated by Astragali Radix treatment. Moreover, treatment with Astragali Radix showed higher myocardial cAMP content compared with the isoproterenol-alone group. These results suggest that the antioxidant property and partial prevention of changes in protein and gene expression of cardiac sarcoplasmic reticulum Ca2+ regulatory proteins which may be mediated through the cAMP pathway could help to explain the beneficial effects of Astragali Radix on myocardial injury in vivo.
Collapse
Affiliation(s)
- Xiao-Le Xu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, P. R. China
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Hypertension, atherothrombosis, myocardial infarction, stroke, peripheral vascular disease, and renal failure are the main manifestations of cardiovascular disease (CVD), the leading cause of death and disability in developed countries. Continuing insight into the pathophysiology of CVD can allow identification of effective therapeutic strategies to reduce the occurrence of death and/or severe disabilities. In this context, a healthy endothelium is deemed crucial to proper functioning and maintenance of anatomical integrity of the vascular system in many organs. Of note, epidemiologic studies indicate that the incidence of CVD in women is very low until menopause and increases sharply thereafter. The loss of protection against CVD in post-menopausal women has been chiefly attributed to ovarian steroid deficiency. However, besides steroids, the ovary also produces the peptide hormone relaxin (RLX), which provides potent vasoactive effects which render it the most likely candidate as the elusive physiological shield against CVD in fertile women. In particular, RLX has a specific relaxant effect on peripheral and coronary vasculature, exerted by the stimulation of endogenous nitric oxide (NO) generation by cells of the vascular wall, and can induce angiogenesis. Moreover, RLX inhibits the activation of inflammatory leukocytes and platelets, which play a key role in CVD. Experimental studies performed in vascular and blood cell in vitro and in animal models of vascular dysfunction, as well as pioneer clinical observations, have provided evidence that RLX can prevent and/or improve CVD, thus offering background to clinical trials aimed at exploring the broad therapeutic potential of human recombinant RLX as a new cardiovascular drug.
Collapse
Affiliation(s)
- Daniele Bani
- Department of Anatomy, Histology and Forensic Medicine, Sect. Histology, University of Florence Italy.
| |
Collapse
|
50
|
van der Westhuizen ET, Halls ML, Samuel CS, Bathgate RA, Unemori EN, Sutton SW, Summers RJ. Relaxin family peptide receptors – from orphans to therapeutic targets. Drug Discov Today 2008; 13:640-51. [DOI: 10.1016/j.drudis.2008.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/04/2008] [Accepted: 04/04/2008] [Indexed: 01/11/2023]
|