1
|
Wang Z, Wang CF, Fan H, Bao X, Ashkar F, Li L, Kiang TKL, Wu J. Bioavailability and Metabolism of Bioactive Peptide IRW with Angiotensin-Converting Enzyme 2 (ACE2) Upregulatory Activity in Spontaneously Hypertensive Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8606-8617. [PMID: 38581395 DOI: 10.1021/acs.jafc.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Chu-Fan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Hongbing Fan
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Fatemeh Ashkar
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
2
|
Guo T, Liu B, Zeng R, Lin R, Guo J, Yu G, Xu Y, Tan X, Xie K, Zhou Y. The vasoconstrictor activities of prostaglandin D 2 via the thromboxane prostanoid receptor and E prostanoid receptor-3 outweigh its concurrent vasodepressor effect mainly through D prostanoid receptor-1 ex vivo and in vivo. Eur J Pharmacol 2023; 956:175963. [PMID: 37543159 DOI: 10.1016/j.ejphar.2023.175963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Prostaglandin (PG) D2, a commonly considered vasodilator through D prostanoid receptor-1 (DP1), might also evoke vasoconstriction via acting on the thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2; TP) and/or E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2; EP3). This study aimed to test the above hypothesis in the mouse renal vascular bed (main renal arteries and perfused kidneys) and/or mesenteric resistance arteries and determine how the vasoconstrictor mechanism influences the overall PGD2 effect on systemic blood pressure under in vivo conditions. Experiments were performed on control wild-type (WT) mice and mice with deficiencies in TP (TP-/-) and/or EP3 (EP3-/-). Here we show that PGD2 indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however not only reduced by TP-/- or EP3-/-, but also reversed by TP-/-/EP3-/- in some of the above tissues (mesenteric resistance arteries or perfused kidneys) to dilator reactions that were reduced by non-selective DP antagonism. A slight or mild pressor response was also observed with PGD2 under in vivo conditions, and this was again reversed to a depressor response in TP-/- or TP-/-/EP3-/- mice. Non-selective DP antagonism reduced the PGD2-evoked depressor response in TP-/-/EP3-/- mice as well. These results thus demonstrate that like other PGs, PGD2 activates TP and/or EP3 to evoke vasoconstrictor activities, which can outweigh its concurrent vasodepressor activity mediated mainly through DP1, and hence result in a pressor response, although the response might only be of a slight or mild extent.
Collapse
Affiliation(s)
- Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China.
| | - Ruhui Zeng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Rui Lin
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhai Tan
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Kaiqi Xie
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
3
|
Prangthip P, Panbangred W, Reamtong O. Potential antihypertensive activity of novel peptides from green basil leaves. BMC Complement Med Ther 2023; 23:282. [PMID: 37553559 PMCID: PMC10410819 DOI: 10.1186/s12906-023-04098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Hypertension is among the risk factors of death globally. Novel antihypertensive peptides are alternative choices of antihypertensive assistance. This study aimed to discover novel antihypertensive peptides from green basil leaves. Two bioactive peptides with high angiotensin-converting enzyme inhibition (Asp-Leu-Ser-Ser-Ala-Pro; peptide 1) and antioxidant (Asp-Ser-Val-Ser-Ala-Ser-Pro; peptide 2) activities were gavaged to male Wistar rats induced with NG-nitro-l-arginine methyl-ester (L-NAME). L-NAME-treated rats (HT) had decreased body weights and levels of nitrite and nitrate, which are metabolites of nitric oxide. The levels of their glucose and liver function indicators increased as compared to normal rats. HT rats receiving antihypertensive drugs (HTD) showed higher low-density lipoprotein and low-density lipoprotein/high-density lipoprotein levels than HT rats. Peptide 1 seems to benefit the rat lipid profiles, liver functions, antioxidant, nitrite, nitrate, and angiotensin II peptide levels but not peptide 2. In conclusion, our findings indicate the antihypertensive potential related to vasodilation of peptides from green basil leaves.
Collapse
Affiliation(s)
- Pattaneeya Prangthip
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Song T, Lv M, Zhou M, Huang M, Zheng L, Zhao M. Soybean-Derived Antihypertensive Peptide LSW (Leu-Ser-Trp) Antagonizes the Damage of Angiotensin II to Vascular Endothelial Cells through the Trans-vesicular Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10536-10549. [PMID: 34460247 DOI: 10.1021/acs.jafc.1c02733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An emerging inference is that vascular cells transfer their biological cargo to recipient cells by secretion of extracellular vesicles (EVs). This study explored the effects of EVs produced from VSMCs with Ang II (EVs-A) or LSW + Ang II on HUVECs. The EVs-A increase ROS production, activate inflammation, and upregulate the expression of adhesion molecules. Among the EVs-A, miR-22, miR-143, miR-144, and miR-155 were significantly downregulated, while VSMCs pre-incubated with LSW could produce improved EVs. RNA sequencing revealed differential expression of genes associated with endothelial dysfunction, including the TNF signaling pathway, NOD-like receptor signaling pathway, NF-κB signaling pathway, and fluid shear stress and atherosclerosis pathway. Finally, we found that LSW could improve endothelial function by repairing the expression of miRNAs in VSMCs. It also suggests a potential mechanism for the injury action of endogenous peptide Ang II and protective effects of exogenous peptide LSW on vascular endothelial cells.
Collapse
Affiliation(s)
- Tianyuan Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Miao Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Shobako N. Hypotensive peptides derived from plant proteins. Peptides 2021; 142:170573. [PMID: 34023396 DOI: 10.1016/j.peptides.2021.170573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
Hypertension is a risk factor for arteriosclerosis development and is recognized as a silent killer. Certain processed food materials, digested by protease or through the use of fermentation, have shown exertion of hypotensive effects in human clinical or animal studies, and hypotensive peptides were isolated from them. This review discusses the hypotensive peptides derived from plant proteins, such as grain, soy, vegetables, and seaweeds, and their hypotensive mechanisms. Although angiotensin I-converting enzyme (ACE) inhibition is often noted as one of the mechanisms that may exert antihypertensive effects, ACE inhibitory activity measured by in vitro studies is not associated with the actual hypotensive effect. Thus, this review only highlights the peptide hypotensive effect determined by in vivo studies. This review also discusses the tendency of the amino acid sequence of ACE-inhibitory hypotensive peptides and the possible additional effects of hypotensive peptides independent of ACE inhibition.
Collapse
Affiliation(s)
- Naohisa Shobako
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
6
|
Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021; 20:1150-1187. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Lu Xue
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rongxin Yin
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Przybyła GW, Szychowski KA, Gmiński J. Paracetamol - An old drug with new mechanisms of action. Clin Exp Pharmacol Physiol 2021; 48:3-19. [PMID: 32767405 DOI: 10.1111/1440-1681.13392] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 08/02/2020] [Indexed: 12/26/2022]
Abstract
Paracetamol (acetaminophen) is the most commonly used over-the-counter (OTC) drug in the world. Despite its popularity and use for many years, the safety of its application and its mechanism of action are still unclear. Currently, it is believed that paracetamol is a multidirectional drug and at least several metabolic pathways are involved in its analgesic and antipyretic action. The mechanism of paracetamol action consists in inhibition of cyclooxygenases (COX-1, COX-2, and COX-3) and involvement in the endocannabinoid system and serotonergic pathways. Additionally, paracetamol influences transient receptor potential (TRP) channels and voltage-gated Kv7 potassium channels and inhibits T-type Cav3.2 calcium channels. It also exerts an impact on L-arginine in the nitric oxide (NO) synthesis pathway. However, not all of these effects have been clearly confirmed. Therefore, the aim of our paper was to summarize the current state of knowledge of the mechanism of paracetamol action with special attention to its safety concerns.
Collapse
Affiliation(s)
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
8
|
Wang X, Bhullar KS, Fan H, Liao W, Qiao Y, Su D, Wu J. Regulatory Effects of a Pea-Derived Peptide Leu-Arg-Trp (LRW) on Dysfunction of Rat Aortic Vascular Smooth Muscle Cells against Angiotensin II Stimulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3947-3953. [PMID: 32157879 DOI: 10.1021/acs.jafc.0c00028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vascular oxidative stress, inflammatory response, and proliferation are crucial mediators of vascular dysfunction which contribute to the pathology of hypertension. A tripeptide, LRW (Leu-Arg-Trp), was characterized from pea protein legumin, and its previously studied isomer IRW (Ile-Arg-Trp) was reported to exhibit antihypertensive activity via activation of angiotensin-converting enzyme 2. The objective of the current study was to explore the effects of LRW on vascular stress in vascular smooth muscle cells (VSMCs) under angiotensin II (Ang II)-induced cellular stress. LRW treatment could decrease Ang II-triggered superoxide production, inflammation, and proliferation in VSMCs. The abovementioned advantageous effects appeared to involve the upregulation of the ACE2-Ang-(1-7)-MasR axis and modulation of the nuclear factor-κB pathway. These findings specified the prospective role of LRW as a functional food ingredient or nutraceutical in the prevention of cardiovascular diseases, particularly hypertension and vascular damage.
Collapse
Affiliation(s)
- Xiao Wang
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
| | - Hongbing Fan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
| | - Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
| | - Yongjin Qiao
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Di Su
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
| |
Collapse
|
9
|
Hu C, Liu B, Li H, Wu X, Guo T, Luo W, Zhou Y. Prostaglandin D 2 evokes potent uterine contraction via the F prostanoid receptor in postpartum rats. Eur J Pharmacol 2018; 836:11-17. [PMID: 30107163 DOI: 10.1016/j.ejphar.2018.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/15/2018] [Accepted: 08/10/2018] [Indexed: 02/05/2023]
Abstract
Prostaglandin (PG) D2, a prostanoid known to have hypotensive effect, can evoke increased in vitro prepartum myometrial contraction resulting from up-regulation of the F prostanoid (FP) receptor. The present study further determined postpartum rat uterine responses to PGD2 to evaluate the possibility of the prostanoid becoming a therapeutic for postpartum uterine atony, a major cause of postpartum hemorrhage that can lead to maternal morbidity. In vitro and in vivo postpartum uterine responses to PGD2 were determined and compared to those of prepartum rats. Here we show that in postpartum myometrial strips PGD2 did evoke a contraction sensitive to FP receptor antagonism. Interestingly, this response was not only to a greater extent than that of prepartum rats, but also comparable with the contraction obtained with PGF2α, a therapeutic for postpartum uterine atony but contradicted in conditions including hypertension. Indeed, PGD2 was also found to cause increases of basal uterine contraction under in vivo conditions. Western blots revealed that the expression of FP receptors in postpartum myometrium was higher than that of prepartum rats. Moreover, we noted that the amount of PGD2 produced in postpartum uteri, although lower than that of prepartum rats, was increased compared to non-pregnant conditions. These results thus demonstrate that due to a further up-regulation or high expression of myometrial FP receptors, PGD2 can evoke potent uterine contraction postpartum, and hence the prostanoid, which is naturally synthesized in uterine tissues, could be a potential therapeutic for postpartum uterine atony, especially in settings, such as hypertension.
Collapse
Affiliation(s)
- Chuangjia Hu
- Department of Cardiology, First Affiliated Hospital, Shantou University Medical College, Shantou, China; Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| | - Hui Li
- The Central Laboratory, Shantou University Medical College, Shantou, China
| | - Xiangzhong Wu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Wenhong Luo
- The Central Laboratory, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
10
|
Sasai M, Sun X, Okuda C, Nakato J, Kanamoto R, Ohinata K. Orally active anti-hypertensive peptides found based on enteroendocrine cell responses to a dipeptide library. Biochem Biophys Res Commun 2018; 503:1070-1074. [DOI: 10.1016/j.bbrc.2018.06.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
|
11
|
Di Stefano E, Agyei D, Njoku EN, Udenigwe CC. Plant RuBisCo: An Underutilized Protein for Food Applications. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Elisa Di Stefano
- School of Nutrition Sciences; University of Ottawa; 451 Smyth Road, Ottawa ON K1H 8L1 Canada
| | - Dominic Agyei
- Department of Food Science; University of Otago; 276 Leith Walk, Dunedin 9054 New Zealand
| | - Emmanuel N. Njoku
- National Agency for Food and Drug Administration and Control Zonal Laboratory; Awka-Okigwe Road, Agulu 422102, Anambra State Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences; University of Ottawa; 451 Smyth Road, Ottawa ON K1H 8L1 Canada
- Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie Curie, Ottawa ON K1N 6N5 Canada
| |
Collapse
|
12
|
Chay SY, Salleh A, Sulaiman NF, Zainal Abidin N, Hanafi MA, Zarei M, Saari N. Blood-pressure lowering efficacy of winged bean seed hydrolysate in spontaneously hypertensive rats, peptide characterization and a toxicity study in Sprague-Dawley rats. Food Funct 2018; 9:1657-1671. [PMID: 29469915 DOI: 10.1039/c7fo01769c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Winged bean seed (WBS) is an underutilized tropical crop. The current study evaluates its potential to reduce blood pressure (BP) in spontaneously hypertensive rats and finds that it reduces BP significantly, in a dose-dependent manner. Five peptides with the sequences, RGVFPCLK, TQLDLPTQ, EPALVP, MRSVVT and DMKP, have been characterized in terms of their stability against ACE via in vitro and in silico modelling. All peptides exhibited IC50 values between 0.019 and 6.885 mM and various inhibitory modes, including substrate, prodrug and true inhibitor modes. The toxicity status of non-Current Good Manufacturing Practice (non-CGMP) peptides is evaluated and the results show that such peptides are toxic, and thus are not suitable to be tested in animals, particularly in repeated-dose studies. In short, WBS hydrolysate demonstrated in vitro ACE inhibitory properties and in vivo blood pressure lowering efficacy in rat models, fostering its potential as a functional food ingredient. Non-CGMP grade peptides are toxic and unfit for testing in animal models.
Collapse
Affiliation(s)
- Shyan Yea Chay
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nor Fazila Sulaiman
- Agro-Biotechnology Institute (ABI), HQ MARDI, 43400 Serdang, Selangor, Malaysia
| | - Najib Zainal Abidin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamad Ariff Hanafi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohammad Zarei
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. and Department of Food Science and Technology, College of Agriculture and Natural Resources, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
13
|
Mori Y, Asakura S, Yamamoto A, Odagiri S, Yamada D, Sekiguchi M, Wada K, Sato M, Kurabayashi A, Suzuki H, Kanamoto R, Ohinata K. Characterization of soy‐deprestatin, a novel orally active decapeptide that exerts antidepressant‐like effects
via
gut–brain communication. FASEB J 2018; 32:568-575. [DOI: 10.1096/fj.201700333rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yukiha Mori
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Saho Asakura
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Akane Yamamoto
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Saori Odagiri
- Department of Degenerative Neurological DiseasesNational Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| | - Daisuke Yamada
- Department of Degenerative Neurological DiseasesNational Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological DiseasesNational Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| | - Keiji Wada
- Department of Degenerative Neurological DiseasesNational Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| | - Masaru Sato
- Department of Research and DevelopmentKazusa DNA Research InstitutesKisarazuJapan
| | - Atsushi Kurabayashi
- Department of Research and DevelopmentKazusa DNA Research InstitutesKisarazuJapan
| | - Hideyuki Suzuki
- Department of Research and DevelopmentKazusa DNA Research InstitutesKisarazuJapan
| | - Ryuhei Kanamoto
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kousaku Ohinata
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
14
|
Wang Z, Cui Y, Liu P, Zhao Y, Wang L, Liu Y, Xie J. Small Peptides Isolated from Enzymatic Hydrolyzate of Fermented Soybean Meal Promote Endothelium-Independent Vasorelaxation and ACE Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10844-10850. [PMID: 29172521 DOI: 10.1021/acs.jafc.7b05026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fermentation of soybean is a process in which soy proteins are broken down into small peptides to exert various physiological functions beyond their nutritional value and to improve food source bioactive components responsible for health benefits. Enzymatic hydrolysis could speed up the degradation of proteins during fermentation of soybean, thus resulting in higher peptide production. In the present study, fermented soy meal (fermented with Bacillus subtilis from Douchi) was hydrolyzed by thermolysin, and the water extraction was then separated into four fractions using ultrafiltration membranes. Their vasorelaxation activities were screened, and the most potent fraction was further isolated and purified to obtain four peptides. Briefly, three peptides exerted a dose-dependent vasorelaxation (0.01-4.10 μM) in the phenylephrine preconstricted thoracic aorta ring of Sprague-Dawley rat (relaxation actions were all endothelium-independent), while one peptide induced vasoconstriction. Furthermore, an independent causal relationship between vasorelaxation and angiotensin converting enzyme (ACE) inhibition activities was found.
Collapse
Affiliation(s)
- Zhengquan Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture , Shanghai 201306, China
| | - Yunyun Cui
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Pengyang Liu
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Liping Wang
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Yuan Liu
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation , Shanghai 201306, China
| |
Collapse
|
15
|
Agyei D, Pan S, Acquah C, Bekhit AEDA, Danquah MK. Structure-informed detection and quantification of peptides in food and biological fluids. J Food Biochem 2017; 43:e12482. [PMID: 31353495 DOI: 10.1111/jfbc.12482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
Peptides with biological properties, that is, bioactive peptides, are a class of biomolecules whose health-promoting properties are increasingly being exploited in food and health products. However, research on targeted techniques for the detection and quantification of these peptides is still in its infancy. Such information is needed in order to enhance the biological and chemometric characterization of peptides and their subsequent application in the functional food and pharmaceutical industries. In this review, the role of classic techniques such as electrophoretic, chromatographic, and peptide mass spectrometry in the structure-informed detection and quantitation of bioactive peptides are discussed. Prospects for the use of aptamers in the characterization of bioactive peptides are also discussed. PRACTICAL APPLICATIONS: Although bioactive peptides have huge potential applications in the functional foods and health area, there are limited techniques in enhancing throughput detection, quantification, and characterization of these peptides. This review discusses state-of-the-art techniques relevant in complementing bioactive detection and profiling irrespective of the small number of amino acid units. Insights into challenges, possible remedies and prevailing areas requiring thorough research in the extant literature for food chemists and biotechnologists are also presented.
Collapse
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising 85354, Germany
| | - Caleb Acquah
- Curtin Malaysia Research Institute, Curtin University, Sarawak 98009, Malaysia.,Department of Chemical Engineering, Curtin University, Sarawak 98009, Malaysia
| | | | - Michael K Danquah
- Curtin Malaysia Research Institute, Curtin University, Sarawak 98009, Malaysia.,Department of Chemical Engineering, Curtin University, Sarawak 98009, Malaysia
| |
Collapse
|
16
|
Udenigwe CC, Okolie CL, Qian H, Ohanenye IC, Agyei D, Aluko RE. Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Aoki H, Nakato J, Mizushige T, Iwakura H, Sato M, Suzuki H, Kanamoto R, Ohinata K. Lacto-ghrestatin, a novel bovine milk-derived peptide, suppresses ghrelin secretion. FEBS Lett 2017. [PMID: 28649756 DOI: 10.1002/1873-3468.12731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ghrelin, an endogenous peptide isolated from the stomach, is known to stimulate food intake after peripheral administration. We found that the enzymatic digest of β-lactoglobulin decreases ghrelin secretion from the ghrelin-producing cell line MGN3-1. The peptides present in the digest were comprehensively analyzed using the nanoLC-OrbitrapMS. Among them, we identified that the nonapeptide LIVTQTMKG, corresponding to β-lactoglobulin(1-9), suppresses ghrelin secretion from MGN3-1 cells. We named LIVTQTMKG 'lacto-ghrestatin'. We found that lacto-ghrestatin decreases intracellular cAMP levels and mRNA expression levels of ghrelin production-related genes in MGN3-1 cells. Orally administered lacto-ghrestatin decreases plasma ghrelin levels and food intake in fasted mice. Lacto-ghrestatin is the first food-derived peptide to suppress ghrelin secretion in vitro and in vivo.
Collapse
Affiliation(s)
- Hayato Aoki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | - Junya Nakato
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | - Takafumi Mizushige
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan.,Research Unit for Physiological Chemistry, C-PIER, Kyoto University, Japan
| | - Hiroshi Iwakura
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Japan
| | - Masaru Sato
- Department of Research and Development, Kazusa DNA Research Institutes, Chiba, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institutes, Chiba, Japan
| | - Ryuhei Kanamoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
18
|
Zhao H, Sonada S, Yoshikawa A, Ohinata K, Yoshikawa M. Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors. Peptides 2016; 83:16-20. [PMID: 27475912 DOI: 10.1016/j.peptides.2016.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/01/2016] [Accepted: 07/06/2016] [Indexed: 01/28/2023]
Abstract
Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1mg/kg (ip.) or 1mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Functional Food Science, Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805, Japan
| | - Soushi Sonada
- Department of Functional Food Science, Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805, Japan
| | - Akihiro Yoshikawa
- Department of Functional Food Science, Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805, Japan; Functional Research Laboratory, 8-1 Kitagaito, Ichinobe, Joyo, Kyoto 610-0114, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masaaki Yoshikawa
- Department of Functional Food Science, Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805, Japan; Functional Research Laboratory, 8-1 Kitagaito, Ichinobe, Joyo, Kyoto 610-0114, Japan.
| |
Collapse
|
19
|
Yoshikawa M. Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects. Peptides 2015; 72:208-25. [PMID: 26297549 DOI: 10.1016/j.peptides.2015.07.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
We have found various bioactive peptides derived from animal and plant proteins, which interact with receptors for endogenous bioactive peptides such as opioids, neurotensin, complements C3a and C5a, oxytocin, and formyl peptides etc. Among them, rubiscolin, a δ opioid peptide derived from plant RuBisCO, showed memory-consolidating, anxiolytic-like, and food intake-modulating effects. Soymorphin, a μ opioid peptide derived from β-conglycinin showed anxiolytic-like, anorexigenic, hypoglycemic, and hypotriglyceridemic effects. β-Lactotensin derived from β-lactoglobulin, the first natural ligand for the NTS2 receptor, showed memory-consolidating, anxiolytic-like, and hypocholesterolemic effects. Weak agonist peptides for the complements C3a and C5a receptors were released from many proteins and exerted various central effects. Peptides showing anxiolytic-like antihypertensive and anti-alopecia effects via different types of receptors such as OT, FPR and AT2 were also obtained. Based on these study, new functions and post-receptor mechanisms of receptor commom to endogenous and exogenous bioactive peptides have been clarified.
Collapse
|
20
|
Yamashita Y, Ueda-Wakagi M, Sakamoto M, Tachibana N, Wanezaki S, Kohno M, Ashida H. β-Conglycinin Peptides Improve Glucose Uptake through the AMPK Signaling Pathway in L6 Myotubes. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Sciences, Kobe University
| | - Manabu Ueda-Wakagi
- Department of Agrobioscience, Graduate School of Agricultural Sciences, Kobe University
- National Agriculture and Food Research Organization, National Food Research Institute
| | | | | | | | | | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Sciences, Kobe University
| |
Collapse
|
21
|
Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Int J Mol Sci 2014; 16:256-83. [PMID: 25547491 PMCID: PMC4307246 DOI: 10.3390/ijms16010256] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.
Collapse
|
22
|
Yamada A, Sakurai T, Ochi D, Mitsuyama E, Yamauchi K, Abe F. Antihypertensive effect of the bovine casein-derived peptide Met-Lys-Pro. Food Chem 2014; 172:441-6. [PMID: 25442576 DOI: 10.1016/j.foodchem.2014.09.098] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/13/2014] [Accepted: 09/17/2014] [Indexed: 02/07/2023]
Abstract
The antihypertensive effect of the bovine casein-derived peptide Met-Lys-Pro (MKP) was examined in vitro and in vivo. MKP showed angiotensin I-converting enzyme (ACE)-inhibitory activity in vitro (IC50 = 0.43 μM). An in vivo kinetics study using radiolabeled Met-[1-(14)C]Lys-Pro ((14)C-MKP) showed that orally administered (14)C-MKP to spontaneously hypertensive rats (SHRs) was absorbed and moved into the plasma. In vitro vasoconstriction of thoracic aorta preparations, which was induced by adding angiotensin I, was reduced by prior exposure of MKP. A single oral dose of MKP lowered systolic blood pressure (SBP) of SHRs, and repeated oral administration of MKP for 28 days significantly lowered SBP of SHRs. The results obtained in the present study suggest that orally administrated MKP can be absorbed into the plasma and its ACE-inhibitory activity may contribute to induce the antihypertensive effect in vivo.
Collapse
Affiliation(s)
- Akio Yamada
- Morinaga Milk Industry Co., Ltd, Functional Food Research Department, Food Science & Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan.
| | - Takuma Sakurai
- Morinaga Milk Industry Co., Ltd, Functional Food Research Department, Food Science & Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Daisuke Ochi
- Morinaga Milk Industry Co., Ltd, Functional Food Research Department, Food Science & Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Eri Mitsuyama
- Morinaga Milk Industry Co., Ltd, Functional Food Research Department, Food Science & Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Koji Yamauchi
- Morinaga Milk Industry Co., Ltd, Functional Food Research Department, Food Science & Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Fumiaki Abe
- Morinaga Milk Industry Co., Ltd, Functional Food Research Department, Food Science & Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| |
Collapse
|
23
|
Iwaniak A, Minkiewicz P, Darewicz M. Food-Originating ACE Inhibitors, Including Antihypertensive Peptides, as Preventive Food Components in Blood Pressure Reduction. Compr Rev Food Sci Food Saf 2014; 13:114-134. [DOI: 10.1111/1541-4337.12051] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/25/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Anna Iwaniak
- Univ. of Warmia and Mazury in Olsztyn; Faculty of Food Science, Chair of Food Biochemistry; Pl. Cieszynski 1 10-726 Olsztyn-Kortowo Poland
| | - Piotr Minkiewicz
- Univ. of Warmia and Mazury in Olsztyn; Faculty of Food Science, Chair of Food Biochemistry; Pl. Cieszynski 1 10-726 Olsztyn-Kortowo Poland
| | - Małgorzata Darewicz
- Univ. of Warmia and Mazury in Olsztyn; Faculty of Food Science, Chair of Food Biochemistry; Pl. Cieszynski 1 10-726 Olsztyn-Kortowo Poland
| |
Collapse
|
24
|
Kontani N, Omae R, Kagebayashi T, Kaneko K, Yamada Y, Mizushige T, Kanamoto R, Ohinata K. Characterization of Ile-His-Arg-Phe, a novel rice-derived vasorelaxing peptide with hypotensive and anorexigenic activities. Mol Nutr Food Res 2013; 58:359-64. [DOI: 10.1002/mnfr.201300334] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/17/2013] [Accepted: 07/20/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Noriyasu Kontani
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Ryo Omae
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Tomomi Kagebayashi
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Kentaro Kaneko
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Yuko Yamada
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Takafumi Mizushige
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
- Research Unit for Physiological Chemistry; C-PIER, Kyoto University; Kyoto Japan
| | - Ryuhei Kanamoto
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| |
Collapse
|
25
|
Koyama M, Naramoto K, Nakajima T, Aoyama T, Watanabe M, Nakamura K. Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3013-3021. [PMID: 23432021 DOI: 10.1021/jf305157y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Buckwheat (Fagopyrum esculentum) is rich in antihypertensive compounds. This study investigated the effect of lactic-fermented buckwheat sprouts (neo-FBS) on level, identification, and potency of blood pressure-lowering (BPL) compounds. A single oral dose of 1.0 mg/kg body weight buckwheat sprouts (BS) in spontaneously hypertensive rats did not show significant BPL activity, whereas neo-FBS significantly decreased blood pressure. HPLC of neo-FBS identified two peaks absent in the profile of BS. The peak exhibiting potent BPL activity was fractionated, and six peptides (DVWY, FDART, FQ, VAE, VVG, and WTFR) and tyrosine were identified by LC-MS/MS and Edman degradation. Single oral dose administration of the peptides revealed significant BPL effect of all the peptides, with the most potent being DVWY, FQ, and VVG. DVWY, VAE, and WTFR are novel. This study demonstrates that lactic fermentation of BS produces new, highly potent antihypertensive peptides and increases active compounds GABA and tyrosine already present in BS.
Collapse
Affiliation(s)
- Masahiro Koyama
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | | | | | | | | | | |
Collapse
|
26
|
KURAMOTO S, KANEYOSHI G, MORINAGA Y, MATSUE H, IWAI K. Angiotensin-Converting Enzyme-Inhibitory Peptides Isolated from Pepsin Hydrolyzate of Apios americana Tuber and Their Hypotensive Effects in Spontaneously Hypertensive Rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Kagebayashi T, Kontani N, Yamada Y, Mizushige T, Arai T, Kino K, Ohinata K. Novel CCK-dependent vasorelaxing dipeptide, Arg-Phe, decreases blood pressure and food intake in rodents. Mol Nutr Food Res 2012; 56:1456-63. [DOI: 10.1002/mnfr.201200168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/15/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Tomomi Kagebayashi
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Noriyasu Kontani
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Yuko Yamada
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | | | - Toshinobu Arai
- Research Institute for Science and Engineering; Waseda University; Tokyo; Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering; Waseda University; Tokyo; Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| |
Collapse
|
28
|
Yamada Y, Muraki A, Oie M, Kanegawa N, Oda A, Sawashi Y, Kaneko K, Yoshikawa M, Goto T, Takahashi N, Kawada T, Ohinata K. Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAy mice. Am J Physiol Endocrinol Metab 2012; 302:E433-40. [PMID: 22127231 DOI: 10.1152/ajpendo.00161.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Soymorphin-5 (YPFVV) derived from soybean β-conglycinin β-subunit is a μ-opioid agonist peptide having anxiolytic-like activity. Here, we show that soymorphin-5 improves glucose and lipid metabolism after long-term oral administration to KKAy mice, a type 2 diabetes model animal. Soymorphin-5 inhibited hyperglycemia without an increase in plasma insulin levels in KKAy mice. Soymorphin-5 also decreased plasma and liver triglyceride (TG) levels and liver weight, suggesting that soymorphin-5 improved lipid metabolism. Soymorphin-5 increased plasma adiponectin concentration and liver mRNA expression of AdipoR2, a subtype of adiponectin receptor that is involved in stimulating the peroxisome proliferator-activated receptor (PPAR)α pathway and fatty acid β-oxidation. The expressions of the mRNA of PPARα and its target genes acyl-CoA oxidase, carnitine palmitoyltransferase 1 A, and uncoupling protein-2, in the liver were also increased after oral administration of soymorphin-5. Furthermore, des-Tyr-soymorphin-5 (PFVV) without μ-opioid and anxiolytic-like activities did not decrease blood glucose levels in KKAy mice. These results suggest that μ-opioid peptide soymorphin-5 improves glucose and lipid metabolism via activation of the adiponectin and PPARα system and subsequent increases of β-oxidation and energy expenditure in KKAy mice.
Collapse
Affiliation(s)
- Yuko Yamada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fernández-Musoles R, López-Díez JJ, Torregrosa G, Vallés S, Alborch E, Manzanares P, Salom JB. Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction. Peptides 2010; 31:1926-33. [PMID: 20600419 DOI: 10.1016/j.peptides.2010.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 12/22/2022]
Abstract
Endothelin-converting enzyme (ECE), a key peptidase in the endothelin (ET) system, cleaves inactive big ET-1 to produce active ET-1, which binds to ET(A) receptors to exert its vasoconstrictor and pressor effects. ECE inhibition could be beneficial in the treatment of hypertension. In this study, a set of eight lactoferricin B (LfcinB)-derived peptides, previously characterized in our laboratory as angiotensin-converting enzyme (ACE) inhibitory peptides, was examined for their inhibitory effects on ECE. In vitro inhibitory effects on ECE activity were assessed using both the synthetic fluorogenic peptide substrate V (FPS V) and the natural substrate big ET-1. To study vasoactive effects, an ex vivo functional assay was developed using isolated rabbit carotid artery segments. With FPS V, only four LfcinB-derived peptides induced inhibition of ECE activity, whereas the eight peptides showed ECE inhibitory effects with big ET-1 as substrate. Regarding the ex vivo assays, six LfcinB-derived peptides showed inhibition of big ET-1-induced, ECE-dependent vasoconstriction. A positive correlation between the inhibitory effects of LfcinB-derived peptides on ECE activity when using big ET-1 and the inhibitory effects on ECE-dependent vasoconstriction was shown. ECE-independent vasoconstriction induced by ET-1 was not affected, thus discarding effects of LfcinB-derived peptides on ET(A) receptors or intracellular signal transduction mechanisms. In conclusion, a combined in vitro and ex vivo method to assess the effects of potentially antihypertensive peptides on the ET system has been developed and applied to show the inhibitory effects on ECE-dependent vasoconstriction of six LfcinB-derived peptides, five of which were dual vasopeptidase (ACE/ECE) inhibitors.
Collapse
Affiliation(s)
- Ricardo Fernández-Musoles
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Burjassot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Kaneko K, Iwasaki M, Yoshikawa M, Ohinata K. Orally administered soymorphins, soy-derived opioid peptides, suppress feeding and intestinal transit via gut mu(1)-receptor coupled to 5-HT(1A), D(2), and GABA(B) systems. Am J Physiol Gastrointest Liver Physiol 2010; 299:G799-805. [PMID: 20616303 DOI: 10.1152/ajpgi.00081.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that soymorphins, mu-opioid agonist peptides derived from soy beta-conglycinin beta-subunit, have anxiolytic-like activity. The aim of this study was to investigate the effects of soymorphins on food intake and gut motility, along with their mechanism. We found that soymorphins decreases food intake after oral administration in fasted mice. Orally administered soymorphins suppressed small intestinal transit at lower dose than that of anorexigenic activity. Suppression of food intake and small intestinal transit after oral administration of soymorphins was inhibited by naloxone or naloxonazine, antagonists of mu- or mu(1)-opioid receptor, respectively, after oral but not intraperitoneal administration. The inhibitory activities of small intestinal transit by soymorphins were also inhibited by WAY100135, raclopride, or saclofen, antagonists for serotonin 5-HT(1A), dopamine D(2), or GABA(B) receptor, respectively. We then examined the order of activation of 5-HT(1A), D(2), and GABA(B) receptors, using their agonists and antagonists. The inhibitory effect of 8-hydroxy-2-dipropylaminotetralin hydrobromide, a 5-HT(1A) agonist, after oral administration on small intestinal transit was blocked by raclopride or saclofen. Bromocriptine, a D(2) agonist-induced small intestinal transit suppression, was inhibited by saclofen, but not by WAY100135. Baclofen, a GABA(B) agonist-induced small intestinal transit suppression, was not blocked by WAY100135 or raclopride. These results suggest that 5-HT(1A) activation elicits D(2) followed by GABA(B) activations in small intestinal motility. We conclude that orally administered soymorphins suppress food intake and small intestinal transit via mu(1)-opioid receptor coupled to 5-HT(1A), D(2), and GABA(B) systems.
Collapse
|
31
|
Yamada Y, Iwasaki M, Usui H, Ohinata K, Marczak ED, Lipkowski AW, Yoshikawa M. Rapakinin, an anti-hypertensive peptide derived from rapeseed protein, dilates mesenteric artery of spontaneously hypertensive rats via the prostaglandin IP receptor followed by CCK(1) receptor. Peptides 2010; 31:909-14. [PMID: 20188776 DOI: 10.1016/j.peptides.2010.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
The anti-hypertensive peptide Arg-Ile-Tyr, which was isolated based on its inhibitory activity (IC(50)=28microM) for angiotensin I-converting enzyme (ACE) from the subtilisin digest of rapeseed protein, exhibited vasorelaxing activity (EC(50)=5.1microM) in an endothelium-dependent manner in the mesenteric artery of spontaneously hypertensive rats (SHRs). We named the peptide rapakinin. ACE inhibitors are reported to induce nitric oxide (NO)-dependent vasorelaxation by elevating the endogenous bradykinin level; however, the vasorelaxation induced by 10microM of rapakinin was blocked only insignificantly by HOE140 or N(G)-nitro-l-arginine methyl ester (l-NAME), antagonists of bradykinin B(2) receptor and an inhibitor of NO synthase, respectively. On the other hand, the vasorelaxation induced by 10microM rapakinin was significantly blocked by indomethacin and CAY10441, a cyclooxygenase (COX) inhibitor and an antagonist of the IP receptor, respectively. The vasorelaxing activity of rapakinin was also blocked by lorglumide, an antagonist of the cholecystokinin (CCK) CCK(1) receptor, although rapakinin has no affinity for the IP and CCK(1) receptors. The vasorelaxation induced by 10microM iloprost, an IP receptor agonist, was also blocked by lorglumide, suggesting that CCK-CCK(1) receptor system is activated downstream of the PGI(2)-IP receptor system. The anti-hypertensive activity of rapakinin after oral administration in SHRs was also blocked by CAY10441 and lorglumide. These results suggest that the anti-hypertensive activity of rapakinin might be mediated mainly by the PGI(2)-IP receptor, followed by CCK-CCK(1) receptor-dependent vasorelaxation.
Collapse
Affiliation(s)
- Yuko Yamada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Tanaka M, Watanabe S, Wang Z, Matsumoto K, Matsui T. His-Arg-Trp potently attenuates contracted tension of thoracic aorta of Sprague-Dawley rats through the suppression of extracellular Ca2+ influx. Peptides 2009; 30:1502-7. [PMID: 19465074 DOI: 10.1016/j.peptides.2009.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
In the present study, we primarily attempted to identify di- and tri-peptides showing potent vasodilation in 1.0 microM phenylephrine-contracted thoracic aortas of Sprague-Dawley rats. Synthetic 15 Trp-His (WH) skeleton analogues were used for rat aorta ring's force measurements, since WH was found to be a vasoactive di-peptide so far. Among the synthesized peptides consisted of both His and Trp amino acid residues, His-Arg-Trp (HRW) was found to evoke the most potent vasodilation with an EC50 value of 1.2+/-0.08 mM in an endothelium-independent manner, while no effect was evoked by a mixture of individual amino acids. In addition to the structure of tri-peptides-activity relationship, chemically modified HRW analogues, i.e., 1- or 3-methyl-His-Arg-Trp and His-citrulline-Trp demonstrated the structural importance of tri-peptide to evoke the vasoactivity as following factors: (1) Neutral imidazole and indole groups from His and Trp residues at N- and C-terminals, respectively and (2) basic amino acids at the middle position. In mitogen (10 microM angiotensin II or 50 microM Bay K8644)-stimulated vascular smooth muscle cells, vasoactive HRW (100 microM) caused significant [Ca(2+)](i) reduction to an extent of >30%. Thus, our results suggest that HRW caused vasodilation action via an endothelium-independent mechanism which probably involves the suppression of extracellular Ca2+ influx through voltage-gated l-type Ca2+ channel.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium/metabolism
- Calcium Channels, L-Type
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Imidazoles/pharmacology
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Mitsuru Tanaka
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, 812-8581, Japan.
| | | | | | | | | |
Collapse
|
33
|
Birkenmeier K, Janke I, Schunck WH, Trimpert C, Krieg T, Landsberger M, Völker U, Felix SB, Staudt A. Prostaglandin receptors mediate effects of substances released from ischaemic rat hearts on non-ischaemic cardiomyocytes. Eur J Clin Invest 2008; 38:902-9. [PMID: 19021714 DOI: 10.1111/j.1365-2362.2008.02052.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND After ischaemia and during reperfusion, rat hearts release cardiodepressive substances that are putatively cyclooxygenase-2-dependent. The present study analyses the mechanisms by which these substances mediate their effect downstream of cyclooxygenase-2. MATERIALS AND METHODS After 10 min of global stop-flow ischaemia, isolated rat hearts were reperfused and post-ischaemic coronary effluent was collected over a period of 30 s. Non-ischaemic effluent collected before ischaemia was used as a control. We investigated the effect of the effluents on cell shortening and Ca(++)-metabolism, by application of fluorescence microscopy of field-stimulated adult rat cardiomyocytes incubated with fura-2. Cells were pre-incubated with inhibitors of protein kinase A and C and with antagonists of protein kinase A-dependent prostaglandin receptors. We examined the expression of prostaglandin receptors in cardiomyocytes by Western blotting. RESULTS In contrast to non-ischaemic effluent, post-ischaemic effluent induced reduction of Ca(++) transient and cell shortening in the cardiomyocytes. In contrast to protein kinase C inhibitor Myr-PKC [19-27], the protein kinase A inhibitor Rp-cAMPS completely blocked the effect of post-ischaemic effluent. Furthermore, we determined a cyclic adenosine monophosphate increase in cardiomyocytes that were pre-incubated with post-ischaemic effluent. The antagonist of prostaglandin E-receptor EP2 AH6809 and the antagonist of receptor subtype EP4 AH23848 attenuated the effect of post-ischaemic effluent in contrast to other antagonists of prostaglandin D and I receptors, which did not influence the effect. In lysates of adherend cardiomyocytes, expression of prostaglandin D, E and I receptors was detected by Western blotting. CONCLUSIONS The effect of post-ischaemic effluent is mediated by the protein kinase A-dependent prostaglandin-receptor subtypes EP2 and EP4 downstream of cyclooxygenase-2.
Collapse
Affiliation(s)
- K Birkenmeier
- Klinik für Innere Medizin B, Ernst-Moritz-Amdt-Universität Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|