1
|
Bandini A, Banchi M, Orlandi P, Vaglini F, Alì G, Fontanini G, Ottani A, Giuliani D, Vandini E, Francia G, Carli M, Scarselli M, Bocci G. Melanocortin-4 Receptor Antagonism Inhibits Colorectal and Anaplastic Thyroid Cancer In Vitro and In Vivo. J Clin Med 2025; 14:1165. [PMID: 40004697 PMCID: PMC11856147 DOI: 10.3390/jcm14041165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives MC4R expression and its role in colorectal and anaplastic thyroid cancers, where resistance to therapy and lack of standard treatments remain significant challenges, are poorly understood. This study aimed to investigate MC4R as a potential therapeutic target in these cancers using the selective antagonist ML00253764 (ML), alone and in combination with vinorelbine (VNR) and irinotecan (or its active metabolite SN-38). Methods: Human colorectal adenocarcinoma HT-29, Caco-2, and anaplastic thyroid carcinoma 8305C cell lines were used. MC4R expression was assessed by Real-Time PCR with validated primers (Assay ID Hs00271877_s1), immunofluorescence, and Western blotting. Proliferation and apoptosis assays were conducted with ML, and synergy with VNR and SN-38 was evaluated by Combination Index and Loewe methods. ERK1/2 phosphorylation was measured using an ELISA assay. In vivo studies were conducted by injecting tumor cells into Athymic Nude-Foxn1nu mice, treated with ML, VNR, irinotecan, or their combinations. Results: MC4R expression was confirmed in all cell lines. ML treatment inhibited MC4R, producing antiproliferative and pro-apoptotic effects, with IC50 values of 7667 ± 2144.6 nM (8305C), 806.4 ± 321.8 nM (HT-29), and 2993 ± 1135.2 nM (Caco-2). In combination with VNR and SN-38, ML exhibited significant synergy in vitro and reduced tumor volume in vivo without causing weight loss or adverse effects in mice. Conclusions This study identifies ML as a promising therapeutic agent that, when combined with chemotherapy, may offer a novel strategy for treating colorectal and anaplastic thyroid cancers.
Collapse
Affiliation(s)
- Arianna Bandini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (M.B.); (F.V.); (M.C.); (M.S.)
| | - Marta Banchi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (M.B.); (F.V.); (M.C.); (M.S.)
| | - Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, 56126 Pisa, Italy;
| | - Francesca Vaglini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (M.B.); (F.V.); (M.C.); (M.S.)
| | - Greta Alì
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (G.A.); (G.F.)
| | - Gabriella Fontanini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (G.A.); (G.F.)
| | - Alessandra Ottani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, 41121 Modena, Italy; (A.O.); (D.G.); (E.V.)
| | - Daniela Giuliani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, 41121 Modena, Italy; (A.O.); (D.G.); (E.V.)
| | - Eleonora Vandini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, 41121 Modena, Italy; (A.O.); (D.G.); (E.V.)
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA;
| | - Marco Carli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (M.B.); (F.V.); (M.C.); (M.S.)
| | - Marco Scarselli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (M.B.); (F.V.); (M.C.); (M.S.)
| | - Guido Bocci
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (M.B.); (F.V.); (M.C.); (M.S.)
| |
Collapse
|
2
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
3
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
4
|
Abstract
The 5 known melanocortin receptors (MCs) have established physiological roles. With the exception of MC2, these receptors can behave unpredictably, and since they are more widely expressed than their established roles would suggest, it is likely that they have other poorly characterized functions. The aim of this review is to discuss some of the less well-explored aspects of the 4 enigmatic members of this receptor family (MC1,3-5) and describe how these are multifaceted G protein-coupled receptors (GPCRs). These receptors appear to be promiscuous in that they bind several endogenous agonists (products of the proopiomelanocortin [POMC] gene) and antagonists but with inconsistent relative affinities and effects. We propose that this is a result of posttranslational modifications that determine receptor localization within nanodomains. Within each nanodomain there will be a variety of proteins, including ion channels, modifying proteins, and other GPCRs, that can interact with the MCs to alter the availability of receptor at the cell surface as well as the intracellular signaling resulting from receptor activation. Different combinations of interacting proteins and MCs may therefore give rise to the complex and inconsistent functional profiles reported for the MCs. For further progress in understanding this family, improved characterization of tissue-specific functions is required. Current evidence for interactions of these receptors with a range of partners, resulting in modulation of cell signaling, suggests that each should be studied within the full context of their interacting partners. The role of physiological status in determining this context also remains to be characterized.
Collapse
Affiliation(s)
- Linda Laiho
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanne Fiona Murray
- Correspondence: J. F. Murray, PhD, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9DX, UK.
| |
Collapse
|
5
|
Pereira SC, Martins AD, Monteiro MP, Pinto S, Barros A, Oliveira PF, Alves MG. Expression of obesity-related genes in human spermatozoa affects the outcomes of reproductive treatments. F&S SCIENCE 2021; 2:164-175. [PMID: 35559751 DOI: 10.1016/j.xfss.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To study the abundance of obesity-related gene (ORG) mRNA in human spermatozoa and its association with sperm quality parameters, embryonic development, and pregnancy rates after assisted reproduction treatment (ART). DESIGN Cross-sectional study of spermatozoa ORG mRNA expression, and sperm and embryonic development parameters of infertile couples attending a single ART center. SETTING University, in collaboration with a medically assisted reproduction center. PATIENT(S) One hundred six couples seeking fertility treatment and receiving ART. INTERVENTION(S) Expression of spermatozoa ORG mRNA was assessed by quantitative reverse transcription-polymerase chain reaction. Sperm and embryonic development parameters were measured by board-certified embryologists. Serum β-human chorionic gonadotropin levels and fetal heartbeat detection on ultrasound were used to document biochemical and clinical pregnancy, respectively. MAIN OUTCOME MEASURE(S) Correlations between the abundance of ORG transcripts in spermatozoa and sperm quality, embryonic development, and achievement of pregnancy. RESULTS The abundance of spermatozoa FTO mRNA was positively correlated with total sperm count (r = 0.5030), fertilization rate (r = 0.4854), embryo cleavage rate (r = 0.5705), and high-quality embryo rate (r = 0.6982). The abundance of spermatozoa MC4R transcript was negatively correlated with sperm viability (r = -0.3111) and positively correlated with biochemical pregnancy (r = 0.4420). The abundance of MC4R and GNPDA2 transcripts was higher in spermatozoa of men with asthenozoospermia and teratozoospermia than in those with normozoospermia. CONCLUSION To our knowledge, this is the first report showing that the abundance of MC4R and FTO transcripts in spermatozoa is associated with sperm and embryo quality parameters, as well as pregnancy rates. Overall, these results further support the view that male factors beyond classic sperm quality parameters, namely the abundance of ORG transcripts, also affect the outcome of ART.
Collapse
Affiliation(s)
- Sara C Pereira
- Clinical and Experimental Endocrinology, Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Ana D Martins
- Clinical and Experimental Endocrinology, Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal; Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA) and Laboratório Associado para a Química Verde (LAQV), Department of Chemistry, University of Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Soraia Pinto
- Center for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| | - Alberto Barros
- Center for Reproductive Genetics Professor Alberto Barros, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA) and Laboratório Associado para a Química Verde (LAQV), Department of Chemistry, University of Aveiro, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.
| |
Collapse
|
6
|
Mesoporous polymer network produced from N-vinylpyrrolidone and triethylene glycol dimethacrylate as potential macromolecularly imprinted material and oligopeptide carrier. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Huang XM, Yang WC, Liu Y, Tang DR, Wu T, Sun FY. Mutations in MC4R facilitate the angiogenic activity in patients with orbital venous malformation. Exp Biol Med (Maywood) 2020; 245:956-963. [PMID: 32363922 DOI: 10.1177/1535370220919056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT The detailed molecular mechanism of orbital venous malformation (OVM) is still not clear. Using whole exome sequencing, 4 types of melanocortin 4 receptor (MC4R) mutation were detected in 7 of 27 patients with OVM, and all types of MC4R mutations resulted in the upregulation of MC4R expression. In vitro study indicated that MC4R has impacts on the proliferation, cell cycle, migration, and tube formation of the endothelial cells. Moreover, MC4R mutations altered the downstream signaling, including cAMP concentration and the expression levels of several PI3K/AKT/mTOR downstream genes, including p21, cyclin B1, ITGA10, and ITGA11. MC4R mutations may lead to the pathogenesis of OVM through modulating the downstream signaling to alter the angiogenic activity of endothelial cells.
Collapse
Affiliation(s)
- Xiao-Ming Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.,Orbital Disease Institute, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Wan-Chen Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yang Liu
- Orbital Disease Institute, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Dong-Run Tang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Tong Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Feng-Yuan Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
8
|
Duque-Díaz E, Alvarez-Ojeda O, Coveñas R. Enkephalins and ACTH in the mammalian nervous system. VITAMINS AND HORMONES 2019; 111:147-193. [PMID: 31421699 DOI: 10.1016/bs.vh.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pentapeptides methionine-enkephalin and leucine-enkephalin belong to the opioid family of peptides, and the non-opiate peptide adrenocorticotropin hormone (ACTH) to the melanocortin peptide family. Enkephalins/ACTH are derived from pro-enkephalin, pro-dynorphin or pro-opiomelanocortin precursors and, via opioid and melanocortin receptors, are responsible for many biological activities. Enkephalins exhibit the highest affinity for the δ receptor, followed by the μ and κ receptors, whereas ACTH binds to the five subtypes of melanocortin receptor, and is the only member of the melanocortin family of peptides that binds to the melanocortin-receptor 2 (ACTH receptor). Enkephalins/ACTH and their receptors exhibit a widespread anatomical distribution. Enkephalins are involved in analgesia, angiogenesis, blood pressure, embryonic development, emotional behavior, feeding, hypoxia, limbic system modulation, neuroprotection, peristalsis, and wound repair; as well as in hepatoprotective, motor, neuroendocrine and respiratory mechanisms. ACTH plays a role in acetylcholine release, aggressive behavior, blood pressure, bone maintenance, hyperalgesia, feeding, fever, grooming, learning, lipolysis, memory, nerve injury repair, neuroprotection, sexual behavior, sleep, social behavior, tissue growth and stimulates the synthesis and secretion of glucocorticoids. Enkephalins/ACTH are also involved in many pathologies. Enkephalins are implicated in alcoholism, cancer, colitis, depression, heart failure, Huntington's disease, influenza A virus infection, ischemia, multiple sclerosis, and stress. ACTH plays a role in Addison's disease, alcoholism, cancer, Cushing's disease, dermatitis, encephalitis, epilepsy, Graves' disease, Guillain-Barré syndrome, multiple sclerosis, podocytopathies, and stress. In this review, we provide an updated description of the enkephalinergic and ACTH systems.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Universidad de Santander UDES, Laboratory of Neurosciences, School of Medicine, Bucaramanga, Colombia.
| | - Olga Alvarez-Ojeda
- Universidad Industrial de Santander, Department of Pathology, School of Medicine, Bucaramanga, Colombia
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D, Liu F, Zhang JH, Xia Y, Tang J. The MC 4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 2019; 176:1341-1356. [PMID: 30811584 DOI: 10.1111/bph.14639] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/07/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Inflammasome-mediated pyroptosis is an important neuronal cell death mechanism. Previous studies reported that activation of melanocortin MC4 receptor exerted neuroprotection in several neurological diseases. Here, we have investigated the role of MC4 receptor activation with RO27-3225 in suppressing neuronal pyroptosis after experimental intracerebral haemorrhage (ICH) and the underlying mechanism. EXPERIMENTAL APPROACH One hundred and sixty-nine male CD1 mice were used. ICH was induced by injection of bacterial collagenase into the right-side basal ganglia. RO27-3225, a selective agonist of MC4 receptor, was injected intraperitoneally at 1 hr after ICH. To elucidate the underlying mechanism, we used the specific MC4 receptor antagonist HS024 and NQDI-1, a specific inhibitor of the apoptosis signalling-regulating kinase 1 (ASK1). Neurological tests, Western blot, Fluoro-Jade C, TUNEL, and immunofluorescence staining were conducted. KEY RESULTS Expression of MC4 receptor and the NOD-like receptor family, pyrin domain containing 1 (NLRP1) inflammasome in brain were increased after ICH. RO27-3225 treatment decreased neuronal pyroptosis and neurobehavioural deficits at 24 and 72 hr after ICH. RO27-3225 reduced the expression of p-ASK1, p-JNK, p-p38 MAPK, NLRP1 inflammasome, cleaved caspase-1, and IL-1β after ICH. HS024 pretreatment prevented the effects of RO27-3225. Similar to RO27-3225, NQDI-1 alone improved neurological functions and down-regulated ASK1/JNK/p38MAPK expression after ICH. CONCLUSIONS AND IMPLICATIONS RO27-3225 suppressed NLRP1-dependent neuronal pyroptosis and improved neurological function, possibly mediated by activation of MC4 receptor and inhibition of ASK1/JNK/p38 MAPK signalling pathways, after experimental ICH in mice. The MC4 receptor may be a promising therapeutic target for the management of ICH.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China.,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yuchun Zuo
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Huang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengtao Yu
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Jianhua Peng
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junyi Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Lianhua Zhao
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Doycheva
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - John H Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Jiping Tang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
10
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
11
|
Ramírez D, Saba J, Turati J, Carniglia L, Imsen M, Mohn C, Scimonelli T, Durand D, Caruso C, Lasaga M. NDP-MSH reduces oxidative damage induced by palmitic acid in primary astrocytes. J Neuroendocrinol 2019; 31:e12673. [PMID: 30712280 DOI: 10.1111/jne.12673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Recent findings relate obesity to inflammation in key hypothalamic areas for body weight control. Hypothalamic inflammation has also been related to oxidative stress. Palmitic acid (PA) is the most abundant free fatty acid found in food, and in vitro studies indicate that it triggers a pro-inflammatory response in the brain. Melanocortins are neuropeptides with proven anti-inflammatory and neuroprotective action mediated by melanocortin receptor 4 (MC4R), but little is known about the effect of melanocortins on oxidative stress. The aim of this study was to investigate whether melanocortins could alleviate oxidative stress induced by a high fat diet (HFD) model. We found that NDP-MSH treatment decreased PA-induced reactive oxygen species production in astrocytes, an effect blocked by the MC4R inhibitor JKC363. NDP-MSH abolished nuclear translocation of Nrf2 induced by PA and blocked the inhibitory effect of PA on superoxide dismutase (SOD) activity and glutathione levels while it also per se increased activity of SOD and γ-glutamate cysteine ligase (γ-GCL) antioxidant enzymes. However, HFD reduced hypothalamic MC4R and brain derived neurotrophic factor mRNA levels, thereby preventing the neuroprotective mechanism induced by melanocortins.
Collapse
Affiliation(s)
- Delia Ramírez
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julieta Saba
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan Turati
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudia Mohn
- Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Teresa Scimonelli
- IFEC-CONICET, Pharmacology Department, School of Chemistry, National University of Cordoba, Cordoba, Argentina
| | - Daniela Durand
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Wang W, Guo DY, Lin YJ, Tao YX. Melanocortin Regulation of Inflammation. Front Endocrinol (Lausanne) 2019; 10:683. [PMID: 31649620 PMCID: PMC6794349 DOI: 10.3389/fendo.2019.00683] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
Adrenocorticotropic hormone (ACTH), and α-, β-, and γ-melanocyte-stimulating hormones (α-, β-, γ-MSH), collectively known as melanocortins, together with their receptors (melanocortin receptors), are components of an ancient modulatory system. The clinical use of ACTH in the treatment of rheumatoid arthritis started in 1949, originally thought that the anti-inflammatory action was through hypothalamus-pituitary-adrenal axis and glucocorticoid-dependent. Subsequent decades have witnessed extensive attempts in unraveling the physiology and pharmacology of the melanocortin system. It is now known that ACTH, together with α-, β-, and γ-MSHs, also possess glucocorticoid-independent anti-inflammatory and immunomodulatory effects by activating the melanocortin receptors expressed in the brain or peripheral immune cells. This review will briefly introduce the melanocortin system and highlight the action of melanocortins in the regulation of immune functions from in vitro, in vivo, preclinical, and clinical studies. The potential therapeutic use of melanocortins are also summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Dong-Yu Guo
| | - Yue-Jun Lin
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Ya-Xiong Tao
| |
Collapse
|
13
|
Heyder N, Kleinau G, Szczepek M, Kwiatkowski D, Speck D, Soletto L, Cerdá-Reverter JM, Krude H, Kühnen P, Biebermann H, Scheerer P. Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Front Endocrinol (Lausanne) 2019; 10:515. [PMID: 31417496 PMCID: PMC6685040 DOI: 10.3389/fendo.2019.00515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) can be endogenously activated by binding of melanocyte-stimulating hormones (MSH), which mediates anorexigenic effects. In contrast, the agouti-related peptide (AgRP) acts as an endogenous inverse agonist and suppresses ligand-independent basal signaling activity (orexigenic effects). Binding of ligands to MC4R leads to the activation of different G-protein subtypes or arrestin and concomitant signaling pathways. This receptor is a key protein in the hypothalamic regulation of food intake and energy expenditure and naturally-occurring inactivating MC4R variants are the most frequent cause of monogenic obesity. In general, obesity is a growing problem on a global scale and is of social, medical, and economic relevance. A significant goal is to develop optimized pharmacological tools targeting MC4R without adverse effects. To date, this has not been achieved because of inter alia non-selective ligands across the five functionally different MCR subtypes (MC1-5R). This motivates further investigation of (i) the three-dimensional MC4R structure, (ii) binding mechanisms of various ligands, and (iii) the molecular transfer process of signal transduction, with the aim of understanding how structural features are linked with functional-physiological aspects. Unfortunately, experimentally elucidated structural information is not yet available for the MC receptors, a group of class A G-protein coupled receptors (GPCRs). We, therefore, generated MC4R homology models and complexes with interacting partners to describe approximate structural properties associated with signaling mechanisms. In addition, molecular insights from pathogenic mutations were incorporated to discriminate more precisely their individual malfunction of the signal transfer mechanism.
Collapse
Affiliation(s)
- Nicolas Heyder
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Gunnar Kleinau
| | - Michal Szczepek
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dennis Kwiatkowski
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Speck
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lucia Soletto
- Departamento de Fisiología de Peces y Biotecnología, Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre de la Sal, Ribera de Cabanes, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre de la Sal, Ribera de Cabanes, Spain
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Kühnen
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Patrick Scheerer
| |
Collapse
|
14
|
Tse EK, Belsham DD. Palmitate induces neuroinflammation, ER stress, and Pomc mRNA expression in hypothalamic mHypoA-POMC/GFP neurons through novel mechanisms that are prevented by oleate. Mol Cell Endocrinol 2018; 472:40-49. [PMID: 29180108 DOI: 10.1016/j.mce.2017.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023]
Abstract
Dietary fats can modulate brain function. How free fatty acids (FFAs) alter hypothalamic pro-opiomelanocortin (POMC) neurons remain undefined. The saturated FFA, palmitate, increased neuroinflammatory and ER stress markers, as well as Pomc mRNA levels, but did not affect insulin signaling, in mHypoA-POMC/GFP-2 neurons. This effect was mediated through the MAP kinases JNK and ERK. Further, the increase in Pomc was dependent on palmitoyl-coA synthesis, but not de novo ceramide synthesis, as inhibition of SPT enhanced palmitate-induced Pomc expression, while methylpalmitate had no effect. While palmitate concomitantly induces neuroinflammation and ER stress, these effects were independent of changes in Pomc expression. Palmitate thus has direct acute effects on Pomc, which appears to be important for negative feedback, but not directly related to neuroinflammation. The monounsaturated FFA oleate completely blocked the palmitate-mediated increase in neuroinflammation, ER stress, and Pomc mRNAs. This study provides insight into the complex central metabolic regulation by FFAs.
Collapse
Affiliation(s)
- Erika K Tse
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Departments of Medicine and Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
15
|
Chen S, Zhao L, Sherchan P, Ding Y, Yu J, Nowrangi D, Tang J, Xia Y, Zhang JH. Activation of melanocortin receptor 4 with RO27-3225 attenuates neuroinflammation through AMPK/JNK/p38 MAPK pathway after intracerebral hemorrhage in mice. J Neuroinflammation 2018; 15:106. [PMID: 29642894 PMCID: PMC5896146 DOI: 10.1186/s12974-018-1140-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neuroinflammation plays an important role in the pathogenesis of intracerebral hemorrhage (ICH)-induced secondary brain injury. Activation of melanocortin receptor 4 (MC4R) has been shown to elicit anti-inflammatory effects in many diseases. The objective of this study was to explore the role of MC4R activation on neuroinflammation in a mouse ICH model and to investigate the contribution of adenosine monophosphate-activated protein kinase (AMPK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway in MC4R-mediated protection. Methods Adult male CD1 mice (n = 189) were subjected to intrastriatal injection of bacterial collagenase or sham surgery. The selective MC4R agonist RO27-3225 was administered by intraperitoneal injection at 1 h after collagenase injection. The specific MC4R antagonist HS024 and selective AMPK inhibitor dorsomorphin were administered prior to RO27-3225 treatment to elucidate potential mechanism. Short- and long-term neurobehavioral assessments, brain water content, immunofluorescence staining, and western blot were performed. Results The expression of MC4R and p-AMPK increased after ICH with a peak at 24 h. MC4R was expressed by microglia, neurons, and astrocytes. Activation of MC4R with RO27-3225 improved the neurobehavioral functions, decreased brain edema, and suppressed microglia/macrophage activation and neutrophil infiltration after ICH. RO27-3225 administration increased the expression of MC4R and p-AMPK while decreasing p-JNK, p-p38 MAPK, TNF-α, and IL-1β expression, which was reversed with inhibition of MC4R and AMPK. Conclusions Our study demonstrated that activation of MC4R with RO27-3225 attenuated neuroinflammation through AMPK-dependent inhibition of JNK and p38 MAPK signaling pathway, thereby reducing brain edema and improving neurobehavioral functions after experimental ICH in mice. Therefore, the activation of MC4R with RO27-3225 may be a potential therapeutic approach for ICH management. Electronic supplementary material The online version of this article (10.1186/s12974-018-1140-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China.,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Lianhua Zhao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.,Department of Neurology, Tianjin TEDA Hospital, Tianjin, 300457, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jing Yu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Derek Nowrangi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA. .,Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.
| |
Collapse
|
16
|
Nuutinen S, Ailanen L, Savontaus E, Rinne P. Melanocortin overexpression limits diet-induced inflammation and atherosclerosis in LDLR -/- mice. J Endocrinol 2018; 236:111-123. [PMID: 29317531 DOI: 10.1530/joe-17-0636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries. The disease is initiated by endothelial dysfunction that allows the transport of leukocytes and low-density lipoprotein into the vessel wall forming atherosclerotic plaques. The melanocortin system is an endogenous peptide system that regulates, for example, energy homeostasis and cardiovascular function. Melanocortin treatment with endogenous or synthetic melanocortin peptides reduces body weight, protects the endothelium and alleviates vascular inflammation, but the long-term effects of melanocortin system activation on atheroprogression remain largely unknown. In this study, we evaluated the effects of transgenic melanocortin overexpression in a mouse model of atherosclerosis. Low-density lipoprotein receptor-deficient mice overexpressing alpha- and gamma3-MSH (MSH-OE) and their wild-type littermates were fed either a regular chow or Western-style diet for 16 weeks. During this time, their metabolic parameters were monitored. The aortae were collected for functional analysis, and the plaques in the aortic root and arch were characterised by histological and immunohistochemical stainings. The aortic expression of inflammatory mediators was determined by quantitative PCR. We found that transgenic MSH-OE improved glucose tolerance and limited atherosclerotic plaque formation particularly in Western diet-fed mice. In terms of aortic vasoreactivity, MSH-OE blunted alpha1-adrenoceptor-mediated vasoconstriction and enhanced relaxation response to acetylcholine, indicating improved endothelial function. In addition, MSH-OE markedly attenuated Western diet-induced upregulation of proinflammatory cytokines (Ccl2, Ccl5 and Il6) that contribute to the pathogenesis of atherosclerosis. These results show that the activation of the melanocortin system improves glucose homeostasis and limits diet-induced vascular inflammation and atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Salla Nuutinen
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Liisa Ailanen
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Unit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - Petteri Rinne
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Liu L, Liu H, Fu C, Li C, Li F. Acetate induces anorexia via up-regulating the hypothalamic pro-opiomelanocortin ( POMC) gene expression in rabbits. JOURNAL OF ANIMAL AND FEED SCIENCES 2017. [DOI: 10.22358/jafs/75979/2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Vaglini F, Pardini C, Di Desidero T, Orlandi P, Pasqualetti F, Ottani A, Pacini S, Giuliani D, Guarini S, Bocci G. Melanocortin Receptor-4 and Glioblastoma Cells: Effects of the Selective Antagonist ML00253764 Alone and in Combination with Temozolomide In Vitro and In Vivo. Mol Neurobiol 2017; 55:4984-4997. [DOI: 10.1007/s12035-017-0702-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
19
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
20
|
Yang LK, Tao YX. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2486-2495. [PMID: 28433713 DOI: 10.1016/j.bbadis.2017.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
The global prevalence of obesity highlights the importance of understanding on regulation of energy homeostasis. The central melanocortin system is an important intersection connecting the neural pathways controlling satiety and energy expenditure to regulate energy homeostasis by sensing and integrating the signals of external stimuli. In this system, neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy homeostasis. Recently, multiple intracellular signaling pathways and biased signaling at neural MCRs have been discovered, providing new insights into neural MCR signaling. This review attempts to summarize biased signaling including biased receptor mutants (both naturally occurring and lab-generated) and biased ligands at neural MCRs, and to provide a better understanding of obesity pathogenesis and new therapeutic implications for obesity treatment.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
21
|
Yang Z, Tao YX. Biased signaling initiated by agouti-related peptide through human melanocortin-3 and -4 receptors. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1485-94. [PMID: 27208795 DOI: 10.1016/j.bbadis.2016.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/01/2023]
Abstract
The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have been increasingly recognized as important regulators of energy homeostasis. The orexigenic agouti-related peptide (AgRP), initially identified as an endogenous antagonist for both neural MCRs, has been suggested to be a biased agonist of MC4R independent of its antagonizing effects. In the present study, we sought to determine the potential of AgRP to regulate the activation of intracellular kinases, including extracellular signal-regulated kinase 1 and 2 (ERK1/2), AKT and AMP-activated protein kinase (AMPK), through neural MCRs. We showed that AgRP acted as a biased agonist in human MC3R (hMC3R), decreasing cAMP activity of constitutively active mutant (F347A) hMC3R but stimulating ERK1/2 activation in both wide type and F347A hMC3Rs. AgRP-stimulated ERK1/2 phosphorylation through MC3R was abolished by protein kinase A (PKA) inhibitor H-89 but not Rp-cAMPS, whereas AgRP-initiated ERK1/2 activation through MC4R was inhibited by phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002. Both NDP-MSH and AgRP treatment induced significant AKT phosphorylation in GT1-7 cells but not in MC3R- or MC4R-transfected HEK293T cells. The phosphorylated AMPK levels in both GT1-7 cells and HERK293T cells transfected with neural MCRs were significantly decreased upon stimulation with NDP-MSH but not with AgRP. In summary, we provided novel data for AgRP-initiated multiple intracellular signaling pathways, demonstrating biased agonism of AgRP in both neural MCRs, leading to a better understanding of neural MCR pharmacology.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Agouti-Related Protein/metabolism
- Amino Acid Substitution
- Central Nervous System/metabolism
- Cyclic AMP/metabolism
- HEK293 Cells
- Humans
- Kinetics
- Ligands
- MAP Kinase Signaling System
- Mutagenesis, Site-Directed
- Peptide Fragments/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Zhao Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
22
|
Müller A, Niederstadt L, Jonas W, Yi CX, Meyer F, Wiedmer P, Fischer J, Grötzinger C, Schürmann A, Tschöp M, Kleinau G, Grüters A, Krude H, Biebermann H. Ring Finger Protein 11 Inhibits Melanocortin 3 and 4 Receptor Signaling. Front Endocrinol (Lausanne) 2016; 7:109. [PMID: 27551276 PMCID: PMC4976663 DOI: 10.3389/fendo.2016.00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/26/2016] [Indexed: 01/07/2023] Open
Abstract
Intact melanocortin signaling via the G protein-coupled receptors (GPCRs), melanocortin receptor 4 (MC4R), and melanocortin receptor 3 (MC3R) is crucial for body weight maintenance. So far, no connection between melanocortin signaling and hypothalamic inflammation has been reported. Using a bimolecular fluorescence complementation library screen, we identified a new interaction partner for these receptors, ring finger protein 11 (RNF11). RNF11 participates in the constitution of the A20 complex that is involved in reduction of tumor necrosis factor α (TNFα)-induced NFκB signaling, an important pathway in hypothalamic inflammation. Mice treated with high-fat diet (HFD) for 3 days demonstrated a trend toward an increase in hypothalamic Rnf11 expression, as shown for other inflammatory markers under HFD. Furthermore, Gs-mediated signaling of MC3/4R was demonstrated to be strongly reduced to 20-40% by co-expression of RNF11 despite unchanged total receptor expression. Cell surface expression was not affected for MC3R but resulted in a significant reduction of MC4R to 61% by co-expression with RNF11. Mechanisms linking HFD, inflammation, and metabolism remain partially understood. In this study, a new axis between signaling of specific body weight regulating GPCRs and factors involved in hypothalamic inflammation is suggested.
Collapse
Affiliation(s)
- Anne Müller
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Niederstadt
- Tumor Targeting Laboratory, Department of Hepatology and Gastroenterology, Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center of Diabetes Research, Neuherberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Franziska Meyer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Wiedmer
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Jana Fischer
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Grötzinger
- Tumor Targeting Laboratory, Department of Hepatology and Gastroenterology, Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center of Diabetes Research, Neuherberg, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Germany, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Technische Universität München, München, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Grüters
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Heike Biebermann,
| |
Collapse
|
23
|
Karaderi T, Drong AW, Lindgren CM. Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Obesity-Related Traits. Curr Diab Rep 2015; 15:83. [PMID: 26363598 PMCID: PMC4568008 DOI: 10.1007/s11892-015-0648-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity and type 2 diabetes (T2D) are common and complex metabolic diseases, which are caused by an interchange between environmental and genetic factors. Recently, a number of large-scale genome-wide association studies (GWAS) have improved our knowledge of the genetic architecture and biological mechanisms of these diseases. Currently, more than ~250 genetic loci have been found for monogenic, syndromic, or common forms of T2D and/or obesity-related traits. In this review, we discuss the implications of these GWAS for obesity and T2D, and investigate the overlap of loci for obesity-related traits and T2D, highlighting potential mechanisms that affect T2D susceptibility.
Collapse
Affiliation(s)
- Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, Oxford, UK.
| | - Alexander W Drong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, Oxford, UK.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, Oxford, UK.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Big Data Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Ramírez D, Saba J, Carniglia L, Durand D, Lasaga M, Caruso C. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus. Mol Cell Endocrinol 2015; 411:28-37. [PMID: 25892444 DOI: 10.1016/j.mce.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023]
Abstract
Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus.
Collapse
Affiliation(s)
- D Ramírez
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - J Saba
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - L Carniglia
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - D Durand
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - M Lasaga
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - C Caruso
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015; 72:1331-45. [PMID: 25504085 PMCID: PMC11113477 DOI: 10.1007/s00018-014-1800-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
The melanocortin system is composed by the agonists adrenocorticotropic hormone and α, β and γ-melanocyte-stimulating hormone, and two naturally occurring antagonists, agouti and agouti-related protein. These ligands act by interaction with a family of five melanocortin receptors (MCRs), assisted by MCRs accessory proteins (MRAPs). MCRs stimulation activates different signaling pathways that mediate a diverse array of physiological processes, including pigmentation, energy metabolism, inflammation and exocrine secretion. This review focuses on the regulatory mechanisms of MCRs signaling, highlighting the differences among the five receptors. MCRs signal through G-dependent and independent mechanisms and their functional coupling to agonists at the cell surface is regulated by interacting proteins, namely MRAPs and β-arrestins. The knowledge of the distinct modulation pattern of MCRs signaling and function may be helpful for the future design of novel drugs able to combine specificity, safety and effectiveness in the course of their therapeutic use.
Collapse
Affiliation(s)
- Adriana R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
26
|
Abstract
Although anti-inflammatory drugs are among the most common class of marketed drugs, chronic inflammatory conditions such as rheumatoid arthritis, multiple sclerosis or inflammatory bowel disease still represent unmet needs. New first-in-class drugs might be discovered in the future but the repurpose and further development of old drugs also offers promise for these conditions. This is the case of the melanocortin adrenocorticotropin hormone, ACTH, used in patients since 1952 but regarded as the last therapeutic option when other medications, such as glucocorticoids, cannot be used. Better understanding on its physiological and pharmacological mechanisms of actions and new insights on melanocortin receptors biology have revived the interest on rescuing this old and effective drug. ACTH does not only induce cortisol production, as previously assumed, but it also exerts anti-inflammatory actions by targeting melanocortin receptors present on immune cells. The endogenous agonists for these receptors (ACTH, α-, β-, and γ-melanocyte stimulating hormones), are also produced locally by immune cells, indicating the existence of an endogenous anti-inflammatory tissue-protective circuit involving the melanocortin system. These findings suggested that new ACTH-like melanocortin drugs devoid of steroidogenic actions, and hence side effects, could be developed. This review summarizes the actions of ACTH and melanocortin drugs, their role as endogenous pro-resolving mediators, their current clinical use and provides an overview on how recent advances on GPCR functioning may lead to a novel class of drugs.
Collapse
|
27
|
Tao YX, Liang XF. G Protein-Coupled Receptors as Regulators of Glucose Homeostasis and Therapeutic Targets for Diabetes Mellitus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:1-21. [DOI: 10.1016/b978-0-12-800101-1.00001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Mencarelli M, Zulian A, Cancello R, Alberti L, Gilardini L, Di Blasio AM, Invitti C. A novel missense mutation in the signal peptide of the human POMC gene: a possible additional link between early-onset type 2 diabetes and obesity. Eur J Hum Genet 2012; 20:1290-4. [PMID: 22643178 DOI: 10.1038/ejhg.2012.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rare mutations in several genes have a critical role in the control of homeostatic mechanisms such as food-intake, energy balance and glucose metabolism. In this study, we performed a mutational screening in a 58-year-old woman presenting early-onset type 2 diabetes and central obesity. The entire coding regions of MC4R, MC3R, HNF1A, GCK and POMC (pro-opiomelanocortin) genes were analyzed by direct sequencing. A new missense mutation was identified within the POMC gene signal peptide sequence, resulting in a heterozygous substitution of an arginine for a glycine at codon 15 (p.A15G) that was excluded in 300 healthy normal weight controls. The mutation segregated in the family and was associated with overweight, type 2 diabetes, hypertension and coronary heart disease in the carriers. Functional studies demonstrated that POMC protein was not detectable in β-TC3 cells transfected with A15G-POMC vector as well as in their culture media, despite POMC mRNA levels were comparable for amount and stability to those of wild-type-transfected cells. In silico RNA folding prediction indicated that the mutation gives rise to a different RNA secondary structure, suggesting that it might affect translation and protein synthesis. To the best of our knowledge, this is the first report addressing the functional consequences of a mutation in the signal peptide of POMC. These findings further support the hypothesis that POMC-derived peptides might have a role in the control of peripheral glucose metabolism and suggest that disruption of central POMC secretion might represent an additional link between type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Monica Mencarelli
- Laboratory of Molecular Biology, Istituto Auxologico Italiano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Kang JA, Lee K, Lee KM, Cho S, Seo J, Hur EM, Park CS, Baik JH, Choi SY. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells. PLoS One 2012; 7:e36185. [PMID: 22563449 PMCID: PMC3338593 DOI: 10.1371/journal.pone.0036185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/29/2012] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca(2+) evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca(2+) increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca(2+) increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants.
Collapse
Affiliation(s)
- Ji-Ah Kang
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul Republic of Korea
| | - Keimin Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul Republic of Korea
| | - Kwang Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sukhee Cho
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul Republic of Korea
| | - Jinsoo Seo
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul Republic of Korea
| | - Eun-Mi Hur
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ja-Hyun Baik
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul Republic of Korea
- * E-mail:
| |
Collapse
|
30
|
Thearle MS, Muller YL, Hanson RL, Mullins M, Abdussamad M, Tran J, Knowler WC, Bogardus C, Krakoff J, Baier LJ. Greater impact of melanocortin-4 receptor deficiency on rates of growth and risk of type 2 diabetes during childhood compared with adulthood in Pima Indians. Diabetes 2012; 61:250-7. [PMID: 22106157 PMCID: PMC3237672 DOI: 10.2337/db11-0708] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Features of melanocortin-4 receptor (MC4R) deficiency have been observed to be more pronounced in childhood. Longitudinal data from a population-based study were used to separate the phenotypic effects of MC4R deficiency during childhood and adulthood. The MC4R exon was sequenced in 6,760 individuals of predominantly Pima Indian heritage, and discovered mutations were functionally assessed in vitro. Effects on BMI, height, and slope of BMI change were assessed during childhood (ages 5-20 years) and adulthood (ages 20-45 years). Six mutations affecting MC4R function, including three that may be private to Pima Indians, were found in 159 individuals (2.4%). The slope of BMI increase was greater in individuals carrying an MC4R mutation compared with noncarriers during childhood but not during adulthood. The final adult height obtained was higher in individuals with MC4R deficiency. There was an increased risk for developing type 2 diabetes in individuals with a defective MC4R during childhood and adulthood, but this was only independent of BMI in childhood. The greater rates of body mass accumulation and risk of type 2 diabetes before the age of 20 years in individuals with MC4R deficiency indicate that the effects of these mutations are more apparent during the active growth of childhood.
Collapse
MESH Headings
- Adolescent
- Adult
- Body Mass Index
- Child
- Child Development
- Child, Preschool
- Diabetes Mellitus, Type 2/ethnology
- Diabetes Mellitus, Type 2/genetics
- Female
- Genetic Predisposition to Disease
- Growth and Development/genetics
- Humans
- Indians, North American/genetics
- Male
- Middle Aged
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/physiology
- Risk Factors
- Young Adult
Collapse
Affiliation(s)
- Marie S Thearle
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 2011; 22:275-85. [PMID: 21489811 PMCID: PMC5154334 DOI: 10.1016/j.tem.2011.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 03/05/2011] [Indexed: 12/17/2022]
Abstract
Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis.
Collapse
Affiliation(s)
- Joseph S Marino
- Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH 43614, USA
| | | | | |
Collapse
|
32
|
Breit A, Büch TRH, Boekhoff I, Solinski HJ, Damm E, Gudermann T. Alternative G protein coupling and biased agonism: new insights into melanocortin-4 receptor signalling. Mol Cell Endocrinol 2011; 331:232-40. [PMID: 20674667 DOI: 10.1016/j.mce.2010.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/06/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022]
Abstract
The melanocortin-4 receptor (MC4R) is a prototypical G protein-coupled receptor (GPCR) that plays a considerable role in controlling appetite and energy homeostasis. Signalling initiated by MC4R is orchestrated by multiple agonists, inverse agonism and by interactions with accessory proteins. The exact molecular events translating MC4R signalling into its physiological role, however, are not fully understood. This review is an attempt to summarize new aspects of MC4R signalling in the context of its recently discovered alternative G protein coupling, and to give a perspective on how future research could improve our knowledge about the intertwining molecular mechanisms that are responsible for the regulation of energy homeostasis by the melanocortin system.
Collapse
Affiliation(s)
- Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, Ludwig-Maximilians-Universität München, 80336 München, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Wang SCM, Myers SA, Eriksson NA, Fitzsimmons RL, Muscat GEO. Nr4a1 siRNA expression attenuates α-MSH regulated gene expression in 3T3-L1 adipocytes. Mol Endocrinol 2011; 25:291-306. [PMID: 21239615 DOI: 10.1210/me.2010-0231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several recent investigations have underscored the growing role of melanocortin signaling in the peripheral regulation of lipid, glucose, and energy homeostasis. In addition, the melanocortins play a critical role in the central control of satiety. These observations, and the latest reports highlighting the emerging role of the nuclear hormone receptor (NR) 4A subgroup in metabolism, have prompted us to investigate the cross talk between [Nle(4), d-Phe(7)] (NDP)-α-MSH and Nr4a signaling in adipose. We have shown that NDP-MSH strikingly and preferentially induces the expression of the NR4A subgroup (but not any other members of the NR superfamily) in differentiated 3T3-L1 adipocytes. Utilization of quantitative PCR on custom-designed metabolic TaqMan low-density arrays identified the concomitant and marked induction of the mRNAs encoding Il-6, Cox2, Pdk4, and Pck-1 after NDP-MSH treatment. Similar experiments demonstrated that the mRNA expression profile induced by cAMP and NDP-MSH treatment displayed unique but also overlapping properties and suggested that melanocortin-mediated induction of gene expression involves cAMP-dependent and -independent signaling. Nr4a1/Nur77 small interfering RNA (siRNA) expression suppressed NDP-MSH-mediated induction of Nr4a1/Nur77 and Nr4a3/Nor-1 (but not Nr4a2/Nurr1). Moreover, expression of the siRNA-attenuated NDP-MSH mediated induction of the mRNAs encoding Il-6, Cox2/Ptgs2, and Pck-1 expression. In addition, Nur77 siRNA expression attenuated NDP-MSH-mediated glucose uptake. In vivo, ip administration of NDP-MSH to C57 BL/6J (male) mice significantly induced the expression of the mRNA encoding Nur77 and increased IL-6, Cox2, Pck1, and Pdk4 mRNA expression in (inguinal) adipose tissue. We conclude that Nur77 expression is necessary for MSH-mediated induction of gene expression in differentiated adipocytes. Furthermore, this study demonstrates cross talk between MSH and Nr4a signaling in adipocytes.
Collapse
Affiliation(s)
- S-C Mary Wang
- Obesity Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
34
|
Yang Y. Structure, function and regulation of the melanocortin receptors. Eur J Pharmacol 2011; 660:125-30. [PMID: 21208602 DOI: 10.1016/j.ejphar.2010.12.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/23/2010] [Accepted: 12/10/2010] [Indexed: 01/30/2023]
Abstract
Melanocortin receptors belong to the seven-transmembrane (TM) domain proteins that are coupled to G-proteins and signaled through intracellular cyclic adenosine monophosphate. Many structural features conserved in other G-protein coupled receptors (GPCRs) are found in the melanocortin receptors. There are five melanocortin receptor subtypes and each of the melanocortin receptor subtypes has a different pattern of tissue expression and has its own profile regarding the relative potency of different melanocortin peptides. α-, β-, and γ-MSH and ACTH are known endogenous agonist ligands for the melanocortin receptors. Agouti and AgRP are the only known naturally occurring antagonists of the melanocortin receptors. We have examined the molecular basis of all five human melanocortin receptors for different ligand binding affinities and potencies using chimeric and mutated receptors. Our studies indicate that human melanocortin MC(1) receptor, human melanocortin MC(3) receptor, human melanocortin MC(4) receptor and human melanocortin MC(5) receptor utilize orthosteric sites for non selective agonists, α-MSH and NDP-α-MSH, high affinity binding and utilize allosteric sites for selective agonist or antagonist binding. Furthermore, our results indicate that molecular determinants of human melanocortin MC(2) receptor for ACTH binding and signaling are different from that of other melanocortin receptors. Many studies also indicate that agonists can induce different conformation changes of melanocortin receptors, which then lead to the activation of different signaling pathways, even when the expression level of receptor and the strength of stimulus-response coupling are the same. This finding may provide new information for the design of drugs for targeting melanocortin receptors.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, United States.
| |
Collapse
|
35
|
Chai B, Li JY, Zhang W, Wu X, Zhang C, Mulholland MW. Melanocortin-4 receptor activation promotes insulin-stimulated mTOR signaling. Peptides 2010; 31:1888-93. [PMID: 20603172 PMCID: PMC3282553 DOI: 10.1016/j.peptides.2010.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/13/2023]
Abstract
The melanocortin signaling system is integral in regulating energy homeostasis. The melanocortin-4 receptor (MC4R) activates several signaling pathways in performance of this function. The effect of MC4R on insulin-stimulated mammalian target of rapamycin (mTOR), a cellular energy sensor, signaling was investigated. The GT1-1 cell line which expresses MC4R expression was utilized. mTOR signaling was measured by Western blotting analysis using Phospho-mTOR (Ser2448) antibody. NDP-MSH dose-dependently enhanced insulin-stimulated mTOR phosphorylation. The MC4R antagonist SHU9119 blocked this effect, demonstrating specificity. The protein kinase A - cyclic AMP pathway and the MAP kinase pathway were not involved in NDP-MSH actions on insulin-stimulated mTOR phosphorylation. In contrast, the AMP-activated protein kinase agonist, AICAR, attenuated this effect. MC4R activation potentiates insulin-stimulated mTOR signaling via the AMPK pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael W. Mulholland
- Corresponding Author: Michael W. Mulholland, M.D., Ph.D., 2101 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0346, Tel.: +1 734 936 3236; fax: +1 734 763 5625,
| |
Collapse
|
36
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|