1
|
Ortega-Tinoco S, Padilla-Orozco M, Hernández-Vázquez F, Garduño J, Mondragón-García A, Ramírez-Sánchez E, Bargas J, Hernández-López S. PACAP induces increased excitability in D1- and D2-expressing nucleus accumbens medium spiny neurons. Brain Res Bull 2025; 224:111323. [PMID: 40147707 DOI: 10.1016/j.brainresbull.2025.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
One of the main eating disorders associated with overweight and obesity is binge eating disorder. Binge eating is characterized by excessive consumption of high-calorie foods over a short period of time, approximately 2 hours. The nucleus accumbens (NAc) plays a key role in modulating the hedonic value of high-calorie foods, commonly referred to as palatable foods. Specific subregions of the shell portion of the NAc (NAcSh), known as hedonic hot spots, may play an important role in the motivational aspect of food consumption. Previous work has shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) injected into the NAc reduces palatable food intake, suggesting that this peptide could be a potential tool for treating binge eating. However, the mechanisms of action of PACAP on the NAc are poorly understood. Here, we used whole-cell recording and calcium imaging techniques in NAcSh brain slices from D1-Cre and A2A-Cre mice to investigate PACAP modulation of medium spiny neuron (MSN) activity. We found that PACAP administration increased the firing rate of D1- and D2-expressing MSNs. In addition, in a binge-eating mouse model, nasal PACAP reduced binge-eating behavior.
Collapse
Affiliation(s)
- S Ortega-Tinoco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - M Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - F Hernández-Vázquez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - J Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
2
|
Méndez LR, Rodríguez-Cornejo T, Rodríguez-Ramos T, Al-Hussinee L, Velázquez J, Campbell JH, Carpio Y, Estrada MP, Dixon B. PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109512. [PMID: 38499216 DOI: 10.1016/j.fsi.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | | | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada; Animal Health Laboratory, OVC, Guelph University, Canada
| | - Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
3
|
Meireles FATP, Antunes D, Temerozo JR, Bou-Habib DC, Caffarena ER. PACAP key interactions with PAC1, VPAC1, and VPAC2 identified by molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:3128-3144. [PMID: 37216328 DOI: 10.1080/07391102.2023.2213349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deborah Antunes
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Ernesto Raul Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Program/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Broome ST, Mandwie M, Gorrie CA, Musumeci G, Marzagalli R, Castorina A. Early Alterations of PACAP and VIP Expression in the Female Rat Brain Following Spinal Cord Injury. J Mol Neurosci 2023; 73:724-737. [PMID: 37646964 PMCID: PMC10694121 DOI: 10.1007/s12031-023-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.
Collapse
MESH Headings
- Female
- Rats
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Rats, Sprague-Dawley
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Vasoactive Intestinal Peptide/genetics
- Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Spinal Cord Injuries/metabolism
- Brain/metabolism
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
5
|
Rajbhandari AK, Barson JR, Gilmartin MR, Hammack SE, Chen BK. The functional heterogeneity of PACAP: Stress, learning, and pathology. Neurobiol Learn Mem 2023; 203:107792. [PMID: 37369343 PMCID: PMC10527199 DOI: 10.1016/j.nlm.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.
Collapse
Affiliation(s)
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, United States
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, United States.
| |
Collapse
|
6
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Zhao X, Wang N, Li Z, Li L. Knockdown of PAC1 improved inflammatory pain in mice by regulating the RAGE/TLR4/NF-κB signaling pathway. Brain Res Bull 2023; 197:49-56. [PMID: 36967091 DOI: 10.1016/j.brainresbull.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The development of inflammatory pain seriously affects the activities and general functions of patients in daily life. At present, the research on the mechanism of pain relief is still insufficient. This study aimed to investigate the influence of PAC1 on the progression of inflammatory pain and its molecular mechanism. Lipopolysaccharide (LPS) was used to induce BV2 microglia activation to establish an inflammation model, and CFA injection was used to establish a mouse inflammatory pain model. The results showed that PAC1 was highly expressed in BV2 microglia induced by LPS. Knockdown of PAC1 significantly reduced LPS-induced inflammation and apoptosis in BV2 cells, and RAGE/TLR4/NF-κB signaling pathway was involved in the regulation of BV2 cells by PAC1. What's more, knockdown of PAC1 alleviated CFA-induced mechanical allodynia and thermal hyperalgesia in mice, as well as reduced the development of inflammatory pain to a certain extent. Therefore, Knockdown of PAC1 relieved inflammatory pain in mice by inhibiting the RAGE/TLR4/NF-κB signaling pathway. Targeting PAC1 may be a new direction for the treatment of inflammatory pain.
Collapse
|
8
|
Curtis GR, Gargiulo AT, Carpenter BA, Pirino BE, Hawks A, Coleman SA, Syed NA, Gupta A, Barson JR. Sex-related differences in endogenous pituitary adenylate cyclase-activating polypeptide (PACAP) in the thalamic paraventricular nucleus: Implications for addiction neuroscience. ADDICTION NEUROSCIENCE 2023; 5:100058. [PMID: 36798694 PMCID: PMC9928148 DOI: 10.1016/j.addicn.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Males and females exhibit differences in motivated and affective behavior; however, the neural substrates underlying these differences remain poorly understood. In the paraventricular nucleus of the thalamus (PVT), sex-related differences in neuronal activity have been identified in response to motivated behavior tasks and affective challenges. Within the PVT, the neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is highly expressed and is also involved in motivated and affective behavior. The purpose of this study was to compare the expression of PACAP mRNA and peptide in the PVT of males and females. Analysis with quantitative real-time PCR in mice revealed that females had significantly higher levels of PACAP mRNA than males in the whole PVT, but no differences in the neuropeptides enkephalin or corticotropin releasing factor (CRF) in this brain region. While in rats, females demonstrated a trend for greater gene expression than males in the anterior/middle and middle/posterior PVT, they again showed no differences in enkephalin or CRF. Analysis with immunofluorescent histochemistry revealed that female mice had significantly more PACAP-containing cells than males as a function of area throughout the PVT, and that female rats had significantly more PACAP-27 and PACAP-38-containing cells than males, both as a percentage of total cells and as a function of PVT area. For PACAP-27, this specifically occurred in the anterior PVT, and for PACAP-38, it occurred throughout the anterior, middle, and posterior PVT. These results suggest that sex-related differences in PVT PACAP may underly some of the established sex-related differences in motivated and affective behavior.
Collapse
Affiliation(s)
- Genevieve R. Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Andrew T. Gargiulo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Brody A. Carpenter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Breanne E. Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Annie Hawks
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Sierra A. Coleman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Nawal A. Syed
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Anuranita Gupta
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| |
Collapse
|
9
|
Alexander TI, Tasma Z, Siow A, Rees TA, Brimble MA, Harris PWR, Hay DL, Walker CS. Novel Fluorescently Labeled PACAP and VIP Highlight Differences between Peptide Internalization and Receptor Pharmacology. ACS Pharmacol Transl Sci 2022; 6:52-64. [PMID: 36654758 PMCID: PMC9841777 DOI: 10.1021/acsptsci.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 12/13/2022]
Abstract
The related peptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) have diverse biological functions in peripheral tissues and the central nervous system. Therefore, these peptides and their three receptors represent potential drug targets for several conditions, including neurological and pain-related disorders. However, very little is known about how these peptides regulate their receptors through processes such as internalization. Therefore, we developed tools to study receptor regulation through the synthesis of fluorescently labeled analogues of PACAP-38, PACAP-27, and VIP using copper-mediated 1,3-dipolar cycloaddition of the Cy5 fluorophore. The functionality of Cy5-labeled peptides at their receptors was confirmed in cAMP accumulation assays. Internalization of the Cy5-labeled peptides was then examined and quantified at two distinct PAC1 receptor splice variants, VPAC1 and VPAC2 receptors in transfected cells. All labeled peptides were functional, exhibiting comparable cAMP pharmacology to their unlabeled counterparts and underwent internalization in a time-dependent manner. Temporal differences in the internalization profiles were observed between Cy5-labeled peptides at the PAC1n, PAC1s, VPAC1, and VPAC2 receptors. Interestingly, the pattern of Cy5-labeled peptide activity differed for cAMP accumulation and internalization, indicating that these peptides differentially stimulate cAMP accumulation and internalization and therefore display biased agonism. This novel insight into PACAP-responsive receptor signaling and internalization may provide a unique avenue for future therapeutic development. The fluorescently labeled PACAP and VIP peptides described herein, which we validated as tools to study receptor internalization, will have utility across a broad range of applications and provide greater insight into this receptor family.
Collapse
Affiliation(s)
- Tyla I. Alexander
- Department
of Pharmacology and Toxicology, The University
of Otago, Dunedin 9054, New Zealand,Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Zoe Tasma
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Biological Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Andrew Siow
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Tayla A. Rees
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Biological Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Paul W. R. Harris
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Debbie L. Hay
- Department
of Pharmacology and Toxicology, The University
of Otago, Dunedin 9054, New Zealand,Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Christopher S. Walker
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Biological Sciences, The University of
Auckland, Auckland 1010, New Zealand,
| |
Collapse
|
10
|
Piper SJ, Deganutti G, Lu J, Zhao P, Liang YL, Lu Y, Fletcher MM, Hossain MA, Christopoulos A, Reynolds CA, Danev R, Sexton PM, Wootten D. Understanding VPAC receptor family peptide binding and selectivity. Nat Commun 2022; 13:7013. [PMID: 36385145 PMCID: PMC9668914 DOI: 10.1038/s41467-022-34629-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists.
Collapse
Affiliation(s)
- Sarah J. Piper
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Giuseppe Deganutti
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK
| | - Jessica Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Peishen Zhao
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Yi-Lynn Liang
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,Present Address: Confo TherapeuticsTechnologiepark 94, Ghent (Zwijnaarde), 9052 Belgium
| | - Yao Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Madeleine M. Fletcher
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.454018.c0000 0004 0632 8971Present Address: GlaxoSmithKline, Abbotsford, 3067 VIC Australia
| | - Mohammed Akhter Hossain
- grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Arthur Christopoulos
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Christopher A. Reynolds
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK ,grid.8356.80000 0001 0942 6946School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Radostin Danev
- grid.26999.3d0000 0001 2151 536XGraduate School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Patrick M. Sexton
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Denise Wootten
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| |
Collapse
|
11
|
Luo W, Dai J, Liu J, Huang Y, Zheng Z, Xu P, Ma Y. PACAP attenuates hepatic lipid accumulation through the FAIM/AMPK/IRβ axis during overnutrition. Mol Metab 2022; 65:101584. [PMID: 36055580 PMCID: PMC9478455 DOI: 10.1016/j.molmet.2022.101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Objective Pituitary adenylate cyclase-activating polypeptide (PACAP) was reported to attenuate hepatic lipid accumulation in overnutrition-related metabolic disorder, mediated by up-regulation of fas apoptosis inhibitory molecule (FAIM). However, how PACAP regulates FAIM in metabolic tissues remains to be addressed. Here we investigated the underlying mechanism on the role of PACAP in ameliorating metabolic disorder and examined the potential therapeutic effects of PACAP in preventing the progression of metabolic associated fatty liver disease (MAFLD). Methods Mouse models with MAFLD induced by high-fat diet were employed. Different doses of PACAP were intraperitoneally administrated. Western blot, luciferase assay, lentiviral-mediated gene manipulations and animal metabolic phenotyping analysis were performed to explore the signaling pathway involved in PACAP function. Results PACAP ameliorated the excessive hepatic lipid accumulation and inhibited lipogenesis in HFD-fed C57BL/6J mice. Mechanistically, PACAP activated the FAIM-AMPK-IRβ axis to inhibit the expression of lipid synthesis genes, and FAIM mediated the effects of PACAP. FAIM suppression via lentiviral-mediated shRNA inhibited the activation of AMPK, whereas FAIM overexpression promoted AMPK activation. PACAP increased the promoter activity of FAIM gene through activating PKA-CREB signaling pathway. Conclusion Our work demonstrated that the administration of PACAP represented a feasible approach for treating hepatic lipid accumulation in MAFLD. The findings reveal the molecular mechanism that PACAP increase FAIM expression and activates the FAIM/AMPK/IRβ signaling axis, thus inhibits lipogenesis to mediate its beneficial effects. PACAP ameliorates hepatic lipid accumulation through the AMPK pathway. AMPK is a downstream mediator of FAIM. FAIM is transcriptionally activated by CREB and regulated by PACAP. PACAP regulates the FAIM-AMPK-IRβ axis to treat fatty liver phenotype.
Collapse
Affiliation(s)
- Wei Luo
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaxin Dai
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jianmin Liu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yongmei Huang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Ziqiong Zheng
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Pei Xu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Bueschbell B, Manga P, Schiedel AC. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front Mol Biosci 2022; 9:873777. [PMID: 35495622 PMCID: PMC9039016 DOI: 10.3389/fmolb.2022.873777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York City, NY, United States
| | - Anke C. Schiedel
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- *Correspondence: Anke C. Schiedel,
| |
Collapse
|
13
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Hajdú T, Kovács P, Zsigrai E, Takács R, Vágó J, Cho S, Sasi-Szabó L, Becsky D, Keller-Pinter A, Emri G, Rácz K, Reglodi D, Zákány R, Juhász T. Pituitary Adenylate Cyclase Activating Polypeptide Has Inhibitory Effects on Melanoma Cell Proliferation and Migration In Vitro. Front Oncol 2021; 11:681603. [PMID: 34616669 PMCID: PMC8488289 DOI: 10.3389/fonc.2021.681603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide which is distributed throughout the body. PACAP influences development of various tissues and exerts protective function during cellular stress and in some tumour formation. No evidence is available on its role in neural crest derived melanocytes and its malignant transformation into melanoma. Expression of PACAP receptors was examined in human skin samples, melanoma lesions and in a primary melanocyte cell culture. A2058 and WM35 melanoma cell lines, representing two different stages of melanoma progression, were used to investigate the effects of PACAP. PAC1 receptor was identified in melanocytes in vivo and in vitro and in melanoma cell lines as well as in melanoma lesions. PACAP administration did not alter viability but decreased proliferation of melanoma cells. With live imaging random motility, average speed, vectorial distance and maximum distance of migration of cells were reduced upon PACAP treatment. PACAP administration did not alter viability but decreased proliferation capacity of melanoma cells. On the other hand, PACAP administration decreased the migration of melanoma cell lines towards fibronectin chemoattractant in the Boyden chamber. Furthermore, the presence of the neuropeptide inhibited the invasion capability of melanoma cell lines in Matrigel chambers. In summary, we provide evidence that PACAP receptors are expressed in melanocytes and in melanoma cells. Our results also prove that various aspects of the cellular motility were inhibited by this neuropeptide. On the basis of these results, we propose PACAP signalling as a possible target in melanoma progression.
Collapse
Affiliation(s)
- Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Zsigrai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sinyoung Cho
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - László Sasi-Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kálmán Rácz
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, Szentagothai Research Center, Medical School, University of Pécs, Pécs, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Apostol CR, Tanguturi P, Szabò LZ, Varela D, Gilmartin T, Streicher JM, Polt R. Synthesis and In Vitro Characterization of Glycopeptide Drug Candidates Related to PACAP 1-23. Molecules 2021; 26:4932. [PMID: 34443519 PMCID: PMC8401035 DOI: 10.3390/molecules26164932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/05/2023] Open
Abstract
The search for efficacious treatment of neurodegenerative and progressive neuroinflammatory diseases continues, as current therapies are unable to halt or reverse disease progression. PACAP represents one potential therapeutic that provides neuroprotection effects on neurons, and also modulates inflammatory responses and circulation within the brain. However, PACAP is a relatively long peptide hormone that is not trivial to synthesize. Based on previous observations that the shortened isoform PACAP1-23 is capable of inducing neuroprotection in vitro, we were inspired to synthesize shortened glycopeptide analogues of PACAP1-23. Herein, we report the synthesis and in vitro characterization of glycosylated PACAP1-23 analogues that interact strongly with the PAC1 and VPAC1 receptors, while showing reduced activity at the VPAC2 receptor.
Collapse
Affiliation(s)
- Christopher R. Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| | - Parthasaradhireddy Tanguturi
- Department of Pharmacology, College of Medicine, The University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA; (P.T.); (J.M.S.)
| | - Lajos Z. Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| | - Daniel Varela
- Facultat de Quìmica Tarragona, Universitat Rovera I Virgili, 43007 Barcelona, Spain; (D.V.); (T.G.)
| | - Thiago Gilmartin
- Facultat de Quìmica Tarragona, Universitat Rovera I Virgili, 43007 Barcelona, Spain; (D.V.); (T.G.)
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA; (P.T.); (J.M.S.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| |
Collapse
|
16
|
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Physiological and Pathological Processes within the Gastrointestinal Tract: A Review. Int J Mol Sci 2021; 22:ijms22168682. [PMID: 34445388 PMCID: PMC8395522 DOI: 10.3390/ijms22168682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide widely distributed in the central nervous system (CNS) and many peripheral organs, such as the digestive tract, endocrine, reproductive and respiratory systems, where it plays different regulatory functions and exerts a cytoprotective effect. The multifarious physiological effects of PACAP are mediated through binding to different G protein-coupled receptors, including PAC1 (PAC1-R), VPAC1 (VPAC1-R) and VPAC2 (VPAC2-R) receptors. In the gastrointestinal (GI) tract, PACAP plays an important regulatory function. PACAP stimulates the secretion of digestive juices and hormone release, regulates smooth muscle contraction, local blood flow, cell migration and proliferation. Additionally, there are many reports confirming the involvement of PACAP in pathological processes within the GI tract, including inflammatory states, neuronal injury, diabetes, intoxication and neoplastic processes. The purpose of this review is to summarize the distribution and pleiotropic action of PACAP in the control of GI tract function and its cytoprotective effect in the course of GI tract disorders.
Collapse
|
17
|
Lindner S, Rudolf H, Palumbo G, Oos R, Antons M, Hübner R, Bartenstein P, Schirrmacher R, Wängler B, Wängler C. Are heterobivalent GRPR- and VPAC 1R-bispecific radiopeptides suitable for efficient in vivo tumor imaging of prostate carcinomas? Bioorg Med Chem Lett 2021; 48:128241. [PMID: 34217827 DOI: 10.1016/j.bmcl.2021.128241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Receptor-specific peptides labeled with positron emitters play an important role in the clinical imaging of several malignancies by positron emission tomography (PET). Radiolabeled heterobivalent bispecific peptidic ligands (HBPLs) can target more than one receptor type and by this - besides exhibiting other advantages - increase tumor imaging sensitivity. In the present study, we show the initial in vivo evaluation of the most potent heterobivalent gastrin-releasing peptide receptor (GRPR)- and vasoactive intestinal peptide receptor subtype 1 (VPAC1R)-bispecific radiotracer and determined its tumor visualization potential via PET/CT imaging. For this purpose, the most potent described HBPL was synthesized together with its partly scrambled heterobivalent monospecific homologs and its monovalent counterparts. The agents were efficiently labeled with 68Ga3+ and evaluated in an initial PET/CT tumor imaging study in a human prostate carcinoma (PCa) xenograft rat tumor model established for this purpose. None of the three 68Ga-HBPLs enabled a clear tumor visualization and a considerably higher involvement in receptor-mediated uptake was found for the GRPR-binding part of the molecule than for the VPAC1R-binding one. Of the monovalent radiotracers, only [68Ga]Ga-NODA-GA-PESIN could efficiently delineate the tumor, confirming the results. Thus, this work sets the direction for future developments in the field of GRPR- and VPAC1R-bispecific radioligands, which should be based on other VPAC1R-specific peptides than PACAP-27.
Collapse
Affiliation(s)
- Simon Lindner
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Henning Rudolf
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Giovanna Palumbo
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Melissa Antons
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
18
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): biology and clinical importance in central nervous system and inflammatory disorders. Curr Opin Endocrinol Diabetes Obes 2021; 28:206-213. [PMID: 33481421 PMCID: PMC7961158 DOI: 10.1097/med.0000000000000621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide (VIP/PACAP) receptors in the selected central nervous system (CNS) and inflammatory disorders. RECENT FINDINGS Recent studies provide evidence that PACAP plays an important role in a number of CNS disorders, particularly the pathogenesis of headaches (migraine, etc.) as well as posttraumatic stress disorder and drug/alcohol/smoking addiction. VIP has important therapeutic effects in a number of autoimmune/inflammatory disorder such as rheumatoid arthritis. In some cases, these insights have advanced to therapeutic trials. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both CNS disorders (migraine, posttraumatic stress disorder, addiction [drugs, alcohol, smoking]) and inflammatory disorders [such as rheumatoid arthritis] are suggesting new treatment approaches. The elucidation of the importance of VIP/PACAP system in these disorders combined recent development of specific drugs acting on this system (i.e., monoclonal VIP/PACAP antibodies) will likely lead to importance novel treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human services, National Cancer Institute, Center for Cancer Training. Bethesda, Maryland, USA
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [Part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Curr Opin Endocrinol Diabetes Obes 2021; 28:198-205. [PMID: 33449573 PMCID: PMC7957349 DOI: 10.1097/med.0000000000000617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in pharmacology, cell biology, and intracellular signaling in cancer. RECENT FINDINGS Recent studies provide new insights into the pharmacology, cell biology of the VIP/PACAP system and show they play important roles in a number of human cancers, as well as in tumor growth/differentiation and are providing an increased understanding of their signaling cascade that is suggesting new treatment targets/approaches. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both central nervous system disorders and inflammatory disorders suggest possible new treatment approaches. Elucidation of the exact roles of VIP/PACAP in these disorders and development of new therapeutic approaches involving these peptides have been limited by lack of specific pharmacological tools, and exact signaling mechanisms involved, mediating their effects. Reviewed here are recent insights from the elucidation of structural basis for VIP/PACAP receptor activation as well as the signaling cascades mediating their cellular effects (using results primarily from the study of their effects in cancer) that will likely lead to novel targets and treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
Hu E, Hong FT, Aral J, Long J, Piper DE, Poppe L, Andrews KL, Hager T, Davis C, Li H, Wong P, Gavva N, Shi L, Zhu DXD, Lehto SG, Xu C, Miranda LP. Discovery of Selective Pituitary Adenylate Cyclase 1 Receptor (PAC1R) Antagonist Peptides Potent in a Maxadilan/PACAP38-Induced Increase in Blood Flow Pharmacodynamic Model. J Med Chem 2021; 64:3427-3438. [PMID: 33715378 DOI: 10.1021/acs.jmedchem.0c01396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of the pituitary adenylate cyclase 1 receptor (PAC1R) is a novel mechanism that could be used for abortive treatment of acute migraine. Our research began with comparative analysis of known PAC1R ligand scaffolds, PACAP38 and Maxadilan, which resulted in the selection of des(24-42) Maxadilan, 6, as a starting point. C-terminal modifications of 6 improved the peptide metabolic stability in vitro and in vivo. SAR investigations identified synergistic combinations of amino acid replacements that significantly increased the in vitro PAC1R inhibitory activity of the analogs to the pM IC90 range. Our modifications further enabled deletion of up to six residues without impacting potency, thus improving peptide ligand binding efficiency. Analogs 17 and 18 exhibited robust in vivo efficacy in the rat Maxadilan-induced increase in blood flow (MIIBF) pharmacodynamic model at 0.3 mg/kg subcutaneous dosing. The first cocrystal structure of a PAC1R antagonist peptide (18) with PAC1R extracellular domain is reported.
Collapse
Affiliation(s)
- Essa Hu
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Fang-Tsao Hong
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jennifer Aral
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jason Long
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Derek E Piper
- Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, California 94080, United States
| | - Leszek Poppe
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kristin L Andrews
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Todd Hager
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Carl Davis
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hongyan Li
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Philip Wong
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Narender Gavva
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Licheng Shi
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Dawn X D Zhu
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sonya G Lehto
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Cen Xu
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Les P Miranda
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
21
|
Martelle SE, Cotella EM, Nawreen N, Chen C, Packard BA, Fitzgerald M, Herman JP. Prefrontal cortex PACAP signaling: organization and role in stress regulation. Stress 2021; 24:196-205. [PMID: 33726625 PMCID: PMC8025233 DOI: 10.1080/10253890.2021.1887849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuromodulatory peptide strongly implicated in nervous stress processing. Human polymorphism of the primary PACAP receptor (PAC1) is linked to psychiatric disorders, including posttraumatic stress disorder (PTSD). Prefrontal cortex PACAP signaling is associated with processing of traumatic stress and fear learning, suggesting a potential role in PTSD-related deficits. We used RNAscope to define the cellular location of PACAP and PAC1 in the infralimbic cortex (IL). Subsequent experiments used a pharmacological approach to assess the impact of IL PACAP infusion on behavioral and physiological stress response and fear memory. Adult male Sprague-Dawley rats were bilaterally microinjected with PACAP (1 ug) or vehicle into the IL, 30 minutes prior to forced swim test (FST). Blood was sampled at 15, 30, 60, and 120 minutes for analysis of hypothalamic pituitary adrenal (HPA) axis reactivity. Five days after, animals were tested in a 3-day passive avoidance paradigm with subsequent testing of fear retention two weeks later. We observed that PACAP is highly expressed in putative pyramidal neurons (identified by VGlut1 expression), while PAC1 is enriched in interneurons (identified by GAD). Pretreatment with PACAP increased active coping style in the FST, despite higher levels of ACTH and corticosterone. The treatment was also sufficient to cause an increase in anxiety-like behavior in a dark/light crossover test and enhanced retention of passive avoidance. Our data suggest that IL PACAP plays a role in driving stress responses and in processing of fear memories, likely mediated by inhibition of cortical drive.
Collapse
Affiliation(s)
- Susan E Martelle
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Wake Forest Innovations, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Evelin M Cotella
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Carrie Chen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Benjamin A Packard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Maureen Fitzgerald
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
22
|
Solés-Tarrés I, Cabezas-Llobet N, Vaudry D, Xifró X. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide Against Cognitive Decline in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:221. [PMID: 32765225 PMCID: PMC7380167 DOI: 10.3389/fncel.2020.00221] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cognitive impairment is one of the major symptoms in most neurodegenerative disorders such as Alzheimer’s (AD), Parkinson (PD), and Huntington diseases (HD), affecting millions of people worldwide. Unfortunately, there is no treatment to cure or prevent the progression of those diseases. Cognitive impairment has been related to neuronal cell death and/or synaptic plasticity alteration in important brain regions, such as the cerebral cortex, substantia nigra, striatum, and hippocampus. Therefore, compounds that can act to protect the neuronal loss and/or to reestablish the synaptic activity are needed to prevent cognitive decline in neurodegenerative diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two highly related multifunctional neuropeptides widely distributed in the central nervous system (CNS). PACAP and VIP exert their action through two common receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. In this review article, we first presented evidence showing the therapeutic potential of PACAP and VIP to fight the cognitive decline observed in models of AD, PD, and HD. We also reviewed the main transduction pathways activated by PACAP and VIP receptors to reduce cognitive dysfunction. Furthermore, we identified the therapeutic targets of PACAP and VIP, and finally, we evaluated different novel synthetic PACAP and VIP analogs as promising pharmacological tools.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Normandie University, UNIROUEN, Inserm, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
23
|
Pleiotropic pituitary adenylate cyclase-activating polypeptide (PACAP): Novel insights into the role of PACAP in eating and drug intake. Brain Res 2019; 1729:146626. [PMID: 31883848 PMCID: PMC6953419 DOI: 10.1016/j.brainres.2019.146626] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/30/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was discovered thirty years ago, but its role in eating and drug use disorders has only recently begun to be investigated. The present review develops the hypothesis that, although PACAP normally functions to tightly regulate intake, inhibiting it through negative feedback, this relationship can become dysregulated with the development of dependence, such that PACAP instead acts through positive feedback to promote excessive intake. We propose that repeated exposure to palatable food and drugs of abuse can alter the downstream responses of specific populations of neurons to stimulation by PACAP, leading to the perpetuation of the addiction cycle. Thus, this review will first describe published literature on homeostatic food intake, which shows that PACAP suppresses food intake, while its levels are themselves increased by overfeeding. Next, it will present literature on palatable food, cocaine, alcohol, and nicotine, which overall demonstrates that PACAP in specific limbic brain regions can promote their seeking and intake and itself is stimulated by their intake. Then, it will present literature on affective behavior, which shows that chronic stress increases levels of PACAP, which then promotes anxiety and depression, factors that can trigger substance seeking. Finally, the review will address mechanisms through which chronic substance exposure may dysregulate the PACAP system, proposing that it alters expression of PACAP receptor splice variants. While many questions remain to be addressed, the current evidence suggests that PACAP could be a viable medication target for the treatment of binge eating and drug and alcohol use disorders.
Collapse
|
24
|
Liao C, de Molliens MP, Schneebeli ST, Brewer M, Song G, Chatenet D, Braas KM, May V, Li J. Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Curr Top Med Chem 2019; 19:1399-1417. [PMID: 31284862 PMCID: PMC6761004 DOI: 10.2174/1568026619666190709092647] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK, and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis. Accordingly, at times of tissue injury or insult, PACAP/PAC1R activation of these pathways can be trophic to blunt or delay apoptotic events and enhance cell survival. Enhancing PAC1R signaling under these conditions has the potential to mitigate cellular damages associated with cerebrovascular trauma (including stroke), neurodegeneration (such as Parkinson's and Alzheimer's disease), or peripheral organ insults. Conversely, maladaptive PACAP/PAC1R signaling has been implicated in a number of disorders, including stressrelated psychopathologies (i.e., depression, posttraumatic stress disorder, and related abnormalities), chronic pain and migraine, and metabolic diseases; abrogating PAC1R signaling under these pathological conditions represent opportunities for therapeutic intervention. Given the diverse PAC1R-mediated biological activities, the receptor has emerged as a relevant pharmaceutical target. In this review, we first describe the current knowledge regarding the molecular structure, dynamics, and function of PAC1R. Then, we discuss the roles of PACAP and PAC1R in the activation of a variety of signaling cascades related to the physiology and diseases of the nervous system. Lastly, we examine current drug design and development of peptides and small molecules targeting PAC1R based on a number of structure- activity relationship studies and key pharmacophore elements. At present, the rational design of PAC1R-selective peptide or small-molecule therapeutics is largely hindered by the lack of structural information regarding PAC1R activation mechanisms, the PACAP-PAC1R interface, and the core segments involved in receptor activation. Understanding the molecular basis governing the PACAP interactions with its different cognate receptors will undoubtedly provide a basis for the development and/or refinement of receptor-selective therapeutics.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | | | - Severin T Schneebeli
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - David Chatenet
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
25
|
A Molecular Dynamics Study of Vasoactive Intestinal Peptide Receptor 1 and the Basis of Its Therapeutic Antagonism. Int J Mol Sci 2019; 20:ijms20184348. [PMID: 31491880 PMCID: PMC6770453 DOI: 10.3390/ijms20184348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Vasoactive intestinal peptide receptor 1 (VPAC1) is a member of a secretin-like subfamily of G protein-coupled receptors. Its endogenous neuropeptide (VIP), secreted by neurons and immune cells, modulates various physiological functions such as exocrine and endocrine secretions, immune response, smooth muscles relaxation, vasodilation, and fetal development. As a drug target, VPAC1 has been selected for therapy of inflammatory diseases but drug discovery is still hampered by lack of its crystal structure. In this study we presented the homology model of this receptor constructed with the well-known web service GPCRM. The VPAC1 model is composed of extracellular and transmembrane domains that form a complex with an endogenous hormone VIP. Using the homology model of VPAC1 the mechanism of action of potential drug candidates for VPAC1 was described. Only two series of small-molecule antagonists of confirmed biological activity for VPAC1 have been described thus far. Molecular docking and a series of molecular dynamics simulations were performed to elucidate their binding to VPAC1 and resulting antagonist effect. The presented work provides the basis for the possible binding mode of VPAC1 antagonists and determinants of their molecular recognition in the context of other class B GPCRs. Until the crystal structure of VPAC1 will be released, the presented homology model of VPAC1 can serve as a scaffold for drug discovery studies and is available from the author upon request.
Collapse
|
26
|
Lamine A, Poujol de Molliens M, Létourneau M, Hébert TE, Vaudry D, Fournier A, Chatenet D. The amidated PACAP 1-23 fragment is a potent reduced-size neuroprotective agent. Biochim Biophys Acta Gen Subj 2019; 1863:129410. [PMID: 31401178 DOI: 10.1016/j.bbagen.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by neuronal death involving, among other events, mitochondrial dysfunction and excitotoxicity. Along these lines, several attempts have been made to slow this pathology but none have been yet discovered. Based on its capacity to cross the blood-brain barrier and provide neuronal protection in vitro and in vivo, the pituitary adenylate cyclase-activating polypeptide (PACAP) represents a promising lead molecule. Pharmacological studies showed that PACAP interacts with three different G protein-coupled receptors, i.e. PAC1, VPAC1 and VPAC2. However, only PAC1 is associated with neuronal anti-apoptotic actions, whilst VPAC activation might cause adverse effects. In the context of the development of PAC1-selective agonists, PACAP(1-23) (PACAP23) appears as the shortest known PACAP bioactive fragment. METHODS Hence, the capacity of this peptide to bind PACAP receptors and protect neuroblastoma cells was evaluated under conditions of mitochondrial dysfunction and glutamate excitotoxicity. In addition, its ability to activate downstream signaling events involving G proteins (Gαs and Gαq), EPAC, and calcium was also assessed. RESULTS Compared to the endogenous peptide, PACAP23 showed a reduced affinity towards PAC1, although this fragment exerted potent neuroprotection. However, surprisingly, some disparities were observed for PACAP23 signaling compared to full length PACAP, suggesting that downstream signaling related to neuroprotection is distinctly regulated following subtle differences in their PAC1 interactions. CONCLUSIONS Altogether, this study demonstrates the potent neuroprotective action of amidated PACAP23. GENERAL SIGNIFICANCE PACAP23 represents an attractive template for development of shorter PACAP-derived neuroprotective molecules.
Collapse
Affiliation(s)
- A Lamine
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - M Poujol de Molliens
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada
| | - M Létourneau
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada
| | - T E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - D Vaudry
- INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - A Fournier
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada.
| | - D Chatenet
- INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada.
| |
Collapse
|
27
|
Poujol de Molliens M, Jamadagni P, Létourneau M, Devost D, Hébert TE, Patten SA, Fournier A, Chatenet D. Design and biological assessment of membrane-tethering neuroprotective peptides derived from the pituitary adenylate cyclase-activating polypeptide type 1 receptor. Biochim Biophys Acta Gen Subj 2019; 1863:129398. [PMID: 31306709 DOI: 10.1016/j.bbagen.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1), a class B G protein-coupled receptor (GPCR), has emerged as a promising target for treating neurodegenerative conditions. Unfortunately, despite years of research, no PAC1-specific agonist has been discovered, as activity on two other GPCRs, VPAC1 and VPAC2, is retained with current analogs. Cell signaling is related to structural modifications in the intracellular loops (ICLs) of GPCRs. Thus, we hypothesized that peptides derived from the ICLs (called pepducins) of PAC1 might initiate, as allosteric ligands, signaling cascades after recognition of the parent receptor and modulation of its conformational landscape. METHODS Three pepducins were synthesized and evaluated for their ability to 1) promote cell survival; 2) stimulate various signaling pathways associated with PAC1 activation; 3) modulate selectively PAC1, VPAC1 or VPAC2 activation; and 4) sustain mobility and prevent death of dopaminergic neurons in a zebrafish model of neurodegeneration. RESULTS Assays demonstrated that these molecules promote SH-SY5Y cell survival, a human neuroblastoma cell line expressing PAC1, and activate signaling via Gαs and Gαq, with distinct potencies and efficacies. Also, PAC1-Pep1 and PAC1-Pep2 activated selectively PAC1-mediated Gαs stimulation. Finally, experiments, using a zebrafish neurodegeneration model, showed a neuroprotective action with all three pepducins and in particular, revealed the ability of PAC1-Pep1 and PAC1-Pep3 to preserve fish mobility and tyrosine hydroxylase expression in the brain. CONCLUSION We have developed the first neuroprotective pepducins derived from PAC1, a class B GPCR. GENERAL SIGNIFICANCE PAC1-derived pepducins represent attractive templates for the development of innovative neuroprotecting molecules.
Collapse
Affiliation(s)
- Mathilde Poujol de Molliens
- Institut National de la Recherche Scientifique, Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, QC, Canada; Institut National de la Recherche Scientifique, Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides (LEMPP), Université du Québec, Ville de Laval, QC, Canada
| | - Priyanka Jamadagni
- Institut National de la Recherche Scientifique, Centre Armand-Frappier, Université du Québec, Ville de Laval, QC, Canada
| | - Myriam Létourneau
- Institut National de la Recherche Scientifique, Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, QC, Canada; Institut National de la Recherche Scientifique, Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides (LEMPP), Université du Québec, Ville de Laval, QC, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Shunmoogum A Patten
- Institut National de la Recherche Scientifique, Centre Armand-Frappier, Université du Québec, Ville de Laval, QC, Canada
| | - Alain Fournier
- Institut National de la Recherche Scientifique, Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides (LEMPP), Université du Québec, Ville de Laval, QC, Canada
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, QC, Canada.
| |
Collapse
|
28
|
Moody TW. Peptide receptors as cancer drug targets. Ann N Y Acad Sci 2019; 1455:141-148. [PMID: 31074514 DOI: 10.1111/nyas.14100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Neuropeptides function as neuromodulators in the brain, whereby they are released in a paracrine manner and activate G protein-coupled receptors (GPCRs) in adjacent cells. Because neuropeptides are made in, and secreted from, cancer cells, then bind to cell surface receptors, they function in an autocrine manner. Bombesin (BB)-like peptides synthesized by neuroendocrine tumor small cell lung cancer (SCLC) bind to BB receptors (BBRs), causing phosphatidylinositol turnover and phosphorylation of extracellular signal-regulated kinase (ERK). Phosphorylated ERK enters the nucleus and alters gene expression of SCLC cells, stimulating growth. Vasoactive intestinal peptide (VIP) addition to SCLC cells increases their release rate of BB-like peptides via activation of VIP receptors (VIPR), leading to activation of adenylyl cyclase and subsequent elevation of cAMP. Protein kinase A is then stimulated, leading to phosphorylation of cyclic AMP response element binding protein (CREB), which alters gene expression and stimulates proliferation. The growth of SCLC is inhibited by BBR and VIPR antagonists. This review will focus on how GPCRs for VIP and BB are molecular targets for early detection and treatment of cancer.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, Center for Cancer Training, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Musha S, Murakami S, Kojima R, Tomura H. Increased luminescence of the GloSensor cAMP assay in LβT2 cells does not correlate with cAMP accumulation under low pH conditions. J Reprod Dev 2019; 65:381-388. [PMID: 31006726 PMCID: PMC6708853 DOI: 10.1262/jrd.2018-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) plays a pivotal role in gonadotrope responses in the pituitary. Gonadotropin-releasing hormone (GnRH) mediated synthesis and secretion of
follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are regulated by both the Gs/cAMP and Gq/Ca2+ signaling pathways. Pituitary adenylate
cyclase-activating polypeptide (PACAP) also regulates GnRH responsiveness in gonadotropes through the PACAP receptor, which activates the Gs/cAMP signaling pathway. Therefore,
measuring intracellular cAMP levels is important for elucidating the molecular mechanisms of FSH and LH synthesis and secretion in gonadotropes. The GloSensor cAMP assay is useful for
detecting cAMP levels in intact, living cells. In this study, we found that increased GloSensor luminescence intensity did not correlate with cAMP accumulation in LβT2 cells under low pH
conditions. This result indicates that cell type and condition must be considered when using GloSensor cAMP.
Collapse
Affiliation(s)
- Shiori Musha
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Syo Murakami
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Ryotaro Kojima
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kawasaki 214-8571, Japan
| |
Collapse
|
30
|
Poujol de Molliens M, Létourneau M, Devost D, Hébert TE, Fournier A, Chatenet D. New insights about the peculiar role of the 28–38 C-terminal segment and some selected residues in PACAP for signaling and neuroprotection. Biochem Pharmacol 2018; 154:193-202. [DOI: 10.1016/j.bcp.2018.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
|
31
|
Moody TW, Ramos-Alvarez I, Jensen RT. Neuropeptide G Protein-Coupled Receptors as Oncotargets. Front Endocrinol (Lausanne) 2018; 9:345. [PMID: 30008698 PMCID: PMC6033971 DOI: 10.3389/fendo.2018.00345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide G protein-coupled receptors (GPCRs) are overexpressed on numerous cancer cells. In a number of tumors, such as small cell lung cancer (SCLC), bombesin (BB) like peptides and neurotensin (NTS) function as autocrine growth factors whereby they are secreted from tumor cells, bind to cell surface receptors and stimulate growth. BB-drug conjugates and BB receptor antagonists inhibit the growth of a number of cancers. Vasoactive intestinal peptide (VIP) increases the secretion rate of BB-like peptide and NTS from SCLC leading to increased proliferation. In contrast, somatostatin (SST) inhibits the secretion of autocrine growth factors from neuroendocrine tumors (NETs) and decreases proliferation. SST analogs such as radiolabeled octreotide can be used to localize tumors, is therapeutic for certain cancer patients and has been approved for four different indications in the diagnosis/treatment of NETs. The review will focus on how BB, NTS, VIP, and SST receptors can facilitate the early detection and treatment of cancer.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| |
Collapse
|
32
|
Starr CG, Maderdrut JL, He J, Coy DH, Wimley WC. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships. Peptides 2018; 104:35-40. [PMID: 29654809 PMCID: PMC5982112 DOI: 10.1016/j.peptides.2018.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence.
Collapse
Affiliation(s)
- Charles G Starr
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jerome L Maderdrut
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jing He
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
33
|
Lamine A, Létourneau M, Doan ND, Maucotel J, Couvineau A, Vaudry H, Chatenet D, Vaudry D, Fournier A. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson's disease model. Neuropharmacology 2016; 108:440-450. [PMID: 26006268 DOI: 10.1016/j.neuropharm.2015.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is characterized by a steady loss of dopamine neurons through apoptotic, inflammatory and oxidative stress processes. In that line of view, the pituitary adenylate cyclase-activating polypeptide (PACAP), with its ability to cross the blood-brain barrier and its anti-apoptotic, anti-inflammatory and anti-oxidative properties, has proven to offer potent neuroprotection in various PD models. Nonetheless, its peripheral actions, paired with low metabolic stability, hampered its clinical use. We have developed Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) as an improved PACAP-derived neuroprotective compound. In vitro, this analog stimulated cAMP production, maintained mitochondrial potential and protected SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium (MPP(+)) toxicity, as potently as PACAP. Furthermore, contrasting with PACAP, it is stable in human plasma and against dipeptidyl peptidase IV activity. When injected intravenously to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, PACAP and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) restored tyrosine hydoxylase expression into the substantia nigra and modulated the inflammatory response. Albeit falls of mean arterial pressure (MAP) were observed with both PACAP- and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27)-treated mice, the intensity of the decrease as well as its duration were significantly less marked after iv injections of the analog than after those of the native polypeptide. Moreover, no significant changes in heart rate were measured with the animals for both compounds. Thus, Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) appears as a promising lead molecule for the development of PACAP-derived drugs potentially useful for the treatment of PD or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Asma Lamine
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada; Laboratoire International Associé Samuel de Champlain, Université de Rouen, France; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - Myriam Létourneau
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada; Laboratoire International Associé Samuel de Champlain, Université de Rouen, France
| | - Ngoc Duc Doan
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada; Laboratoire International Associé Samuel de Champlain, Université de Rouen, France
| | - Julie Maucotel
- Laboratoire International Associé Samuel de Champlain, Université de Rouen, France; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - Alain Couvineau
- INSERM U1149/Inflammation Research Center (CRI), Université Paris-Diderot, Faculté de Médecine Site Bichat, 16, rue H. Huchard, 75018 Paris, France
| | - Hubert Vaudry
- Laboratoire International Associé Samuel de Champlain, Université de Rouen, France; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - David Chatenet
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - David Vaudry
- Laboratoire International Associé Samuel de Champlain, Université de Rouen, France; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - Alain Fournier
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada; Laboratoire International Associé Samuel de Champlain, Université de Rouen, France.
| |
Collapse
|
34
|
Vaczy A, Reglodi D, Somoskeoy T, Kovacs K, Lokos E, Szabo E, Tamas A, Atlasz T. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration. J Mol Neurosci 2016; 60:186-94. [PMID: 27566170 DOI: 10.1007/s12031-016-0818-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.
Collapse
Affiliation(s)
- A Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Somoskeoy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - K Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - E Lokos
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - E Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Ifjusag Street 6, Pecs, H-7624, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| |
Collapse
|
35
|
Wootten D, Miller LJ, Koole C, Christopoulos A, Sexton PM. Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. Chem Rev 2016; 117:111-138. [PMID: 27040440 DOI: 10.1021/acs.chemrev.6b00049] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Class B G protein-coupled receptors (GPCRs) respond to paracrine or endocrine peptide hormones involved in control of bone homeostasis, glucose regulation, satiety, and gastro-intestinal function, as well as pain transmission. These receptors are targets for existing drugs that treat osteoporosis, hypercalcaemia, Paget's disease, type II diabetes, and obesity and are being actively pursued as targets for numerous other diseases. Exploitation of class B receptors has been limited by difficulties with small molecule drug discovery and development and an under appreciation of factors governing optimal therapeutic efficacy. Recently, there has been increasing awareness of novel attributes of GPCR function that offer new opportunity for drug development. These include the presence of allosteric binding sites on the receptor that can be exploited as drug binding pockets and the ability of individual drugs to enrich subpopulations of receptor conformations to selectively control signaling, a phenomenon termed biased agonism. In this review, current knowledge of biased signaling and small molecule allostery within class B GPCRs is discussed, highlighting areas that have progressed significantly over the past decade, in addition to those that remain largely unexplored with respect to these phenomena.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | - Cassandra Koole
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia.,Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , New York, New York 10065, United States
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| |
Collapse
|
36
|
Moody TW, Nuche-Berenguer B, Jensen RT. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Curr Opin Endocrinol Diabetes Obes 2016; 23:38-47. [PMID: 26702849 PMCID: PMC4844466 DOI: 10.1097/med.0000000000000218] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To summarize the roles of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating polypeptide (PACAP) and their receptors (VPAC1, VPAC2, PAC1) in human tumors as well as their role in potential novel treatments. RECENT FINDINGS Considerable progress has been made in understanding of the effects of VIP/PACAP on growth of various tumors as well as in the signaling cascades involved, especially in the role of transactivation of the epidermal growth factor family. The overexpression of VPAC1/2 and PAC1 on a number of common neoplasms (breast, lung, prostate, central nervous system and neuroblastoma) is receiving increased attention both as a means of tumor imaging the location and extent of these tumors, as well as for targeted directed treatment, by coupling cytotoxic agents to VIP/PACAP analogues. SUMMARY VIP/PACAP has prominent growth effects on a number of common neoplasms, which frequently overexpressed the three subtypes of their receptors. The increased understanding of their signaling cascades, effect on tumor growth/differentiation and the use of the overexpression of these receptors for localization/targeted cytotoxic delivery are all suggesting possible novel tumor treatments.
Collapse
Affiliation(s)
- Terry W Moody
- aDepartment of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director bNational Institutes of Health, National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, Maryland, USA
| | | | | |
Collapse
|
37
|
Ramos-Álvarez I, Nakamura T, Mantey SA, Moreno P, Nuche-Berenguer B, Jensen RT. Novel chiral-diazepines function as specific, selective receptor agonists with variable coupling and species variability in human, mouse and rat BRS-3 receptor cells. Peptides 2016; 75:8-17. [PMID: 26524625 PMCID: PMC5461819 DOI: 10.1016/j.peptides.2015.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/11/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Abstract
Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor which is classified in the bombesin receptor (BnR) family with which it shares high homology. It is present widely in the central nervous system and peripheral tissues and primarily receptor-knockout studies suggest it is involved in metabolic-glucose-insulin homeostasis, feeding and other CNS behaviors, gastrointestinal motility and cancer growth. However, the role of BRS-3 physiologically or in pathologic disorders has been not well defined because the natural ligand is unknown. Until recently, no selective agonists/antagonists were available; however, recently synthetic high-affinity agonists, chiral-diazepines nonpeptide-analogs (3F, 9D, 9F, 9G) with low CNS penetrance, were described, but are not well-categorized pharmacologically or in different labarotory species. The present study characterizes the affinities, potencies, selectivities of the chiral-diazepine BRS-3 agonists in human and rodents (mice,rat). In human BRS-3 receptors, the relative affinities of the chiral-diazepines was 9G>9D>9F>3F; each was selective for BRS-3. For stimulating PLC activity, in h-BRS-3 each of the four chiral diazepine analogs was fully efficacious and their relative potencies were: 9G (EC50: 9 nM)>9D (EC50: 9.4 nM)>9F (EC50: 39 nM)>3F (EC50: 48 nM). None of the four chiral diazepine analogs activated r,m,h-GRPR/NMBR. The nonpeptide agonists showed marked differences from each other and a peptide agonist in receptor-coupling-stiochiometry and in affinities/potencies in different species. These results demonstrate that chiral diazepine analogs (9G, 9D, 9F, 3F) have high/affinity/potency for the BRS-3 receptor in human and rodent cells, but different coupling-relationships and species differences from a peptide agonist.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|