1
|
Dong W, Shang J, Guo X, Wang H, Zhu J, Liang P, Shi X. Transcription factor CREB/ATF regulates overexpression of CYP6CY14 conferring resistance to cycloxaprid in Aphis gossypii. Int J Biol Macromol 2025; 303:140634. [PMID: 39904427 DOI: 10.1016/j.ijbiomac.2025.140634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/19/2024] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Aphis gossypii Glover as a destructive agricultural pest has evolved resistance to various insecticides. Cycloxaprid is a novel structure neonicotinoid insecticide with excellent toxicity against A. gossypii. However, the resistance mechanism of A. gossypii to cycloxaprid was unclear. In the present study, a cycloxaprid-resistant (Cpd-R) strain (80.1-fold) of A. gossypii was obtained by continuous selection. Bioassay results showed that piperonyl butoxide significantly increased the toxicity of cycloxaprid by 10.5-fold to the Cpd-R strain. The activity of P450s was significantly higher in Cpd-R strain than in susceptible (Cpd-S) strain. The transcriptomic and qRT-PCR results showed that CYP6CY14, CYP380C44 and CYP303A1 were significantly upregulated in Cpd-R strain compared with Cpd-S strain. Furthermore, knockdown of CYP6CY14, CYP380C44 and CYP303A1 via RNA interference (RNAi) significantly increased the sensitivity of Cpd-R strain to cycloxaprid. Based on the higher expression of CYP6CY14 and RNAi results, transgenic Drosophila assay was conducted to further clarify the role of CYP6CY14 in cycloxaprid resistance, and results showed a significant increase in resistance to cycloxaprid in D. melanogaster. Additionally, the results of RNAi, dual-luciferase reporter and yeast one-hybrid (Y1H) indicated that CREB/ATF directly regulates CYP6CY14 expression. These findings provide necessary basis for clarifying the resistance mechanism of cycloxaprid in A. gossypii.
Collapse
Affiliation(s)
- Wenyang Dong
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiao Shang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xinyu Guo
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Haishan Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiahao Zhu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Li Y, Li R, Shao H, Liu Z, Gao X, Tian Z, Zhang Y, Liu J. Unraveling Key Amino Acid Residues Crucial for PxGSTs1 Conferring Benzoylurea Insecticide Resistance in Plutella xylostella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25549-25559. [PMID: 39508291 DOI: 10.1021/acs.jafc.4c07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The widespread use of benzoylurea insecticides (BUs) has led to significant resistance issues in various agricultural pests. Previous studies have demonstrated that the overexpression of sigma glutathione S-transferase 1 (PxGSTs1) can confer resistance to novaluron in Plutella xylostella; however, the underlying molecular mechanism remains unclear. This study investigates the role of glutathione S-transferase PxGSTs1 in mediating resistance to BUs in P. xylostella. Using a combination of RNA interference and transgenic Drosophila models, we demonstrated that the overexpression of PxGSTs1 significantly contributes to the resistance against BUs. Functional assays revealed that PxGSTs1 binds to these insecticides with varying affinities. Structural analysis through homology modeling and molecular docking identified the importance of hydrogen bonding and pi-pi stacking in resistance mechanisms. Site-directed mutagenesis confirmed the critical role of Ser65 and Tyr97 in these interactions. Our findings provide a molecular basis for the development of novel BUs and inform strategies for managing BU resistance in P. xylostella.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hainan Shao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China
| | - Zhuoda Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueyi Gao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
4
|
Hassan S, Shad SA. Polygenic, autosomal, and stable spirotetramat resistance in Chrysoperla carnea resulting in increased fitness. PLoS One 2024; 19:e0310142. [PMID: 39255273 PMCID: PMC11386462 DOI: 10.1371/journal.pone.0310142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Green lacewing, Chrysoperla carnea (Stephens) is a generalist predator used as a biological control agent in agro ecosystems. In order to use chemical and biological control in an integrated way, it is advantageous to know about natural enemy resistance response to a selected chemical. To determine C. carnea spirotetramat resistance potential, a population collected from the field was selected in the laboratory. Then we determined how spirotetramat resistance was inherited and how much it impacts the fitness of C. carnea. After eighteen selections with spirotetramat, the selected population (Spiro-Sel) of C. carnea had a 47-fold of resistance when compared to an UNSEL population. Inheritance results showed that spirotetramat resistance was inherited as an autosomal, incompletely dominant and polygenic trait. The values of effective dominance decreased from 0.87 (incomplete dominant) to 0.00 (complete recessive) as the concentration of spirotetramat increased from 625 mg/L to 10000 mg/L. The Spiro-Sel strain had no cross resistance to chlorfenapyr (1.10-fold), deltamethrin (1.26-fold) and chlorpyrifos (1.27-fold). After 7 generations without selection pressure resistance to all experimental insecticides in the Spiro-Sel strain was stable. Fitness data of the Spiro-Sel, Cross A, Cross B, UNSEL and susceptible strains of C. carnea showed that spirotetramat resistance increased the fitness of the selected green lacewing population. Life history parameters like fecundity, net reproductive rate, and relative fitness of the Spiro-Sel strain significantly increased when compared to the susceptible or unselected strains of C. carnea. These findings show that C. carnea is a perfect candidate for integrated pest management (IPM) programmes that combine biological control methods with selective pesticide applications to manage a variety of insect pests. Additionally, it would reduce the possibility of pests developing pesticide resistance despite repeated applications. It would be an excellent choice for widespread releases and be effective in most spray programs.
Collapse
Affiliation(s)
- Shoaib Hassan
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ali Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
5
|
Ding Y, Li J, Yan K, Jin L, Fan C, Bi R, Kong H, Pan Y, Shang Q. CF2-II Alternative Splicing Isoform Regulates the Expression of Xenobiotic Tolerance-Related Cytochrome P450 CYP6CY22 in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3406-3414. [PMID: 38329423 DOI: 10.1021/acs.jafc.3c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The expression of P450 genes is regulated by trans-regulatory factors or cis-regulatory elements and influences how endogenous or xenobiotic substances are metabolized in an organism's tissues. In this study, we showed that overexpression of the cytochrome P450 gene, CYP6CY22, led to resistance to cyantraniliprole in Aphis gossypii. The expression of CYP6CY22 increased in the midgut and remaining carcass of the CyR strain, and after repressing the expression of CYP6CY22, the mortality of cotton aphids increased 2.08-fold after exposure to cyantraniliprole. Drosophila ectopically expressing CYP6CY22 exhibited tolerance to cyantraniliprole and cross-tolerance to xanthotoxin, quercetin, 2-tridecanone, tannic acid, and nicotine. Moreover, transcription factor CF2-II (XM_027994540.2) is transcribed only as the splicing variant isoform CF2-II-AS, which was found to be 504 nucleotides shorter than CF2-II in A. gossypii. RNAi and yeast one-hybrid (Y1H) results indicated that CF2-II-AS positively regulates CYP6CY22 and binds to cis-acting element p (-851/-842) of CYP6CY22 to regulate its overexpression. The above results indicated that CYP6CY22 was regulated by the splicing isoform CF2-II-AS, which will help us further understand the mechanism of transcriptional adaption of cross-tolerance between synthetic insecticides and plant secondary metabolites mediated by P450s.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
6
|
Zhang C, Li Y, Qiu T, Wang Y, Wang H, Wang K, Dai W. Functional Characterization of CYP6QE1 and CYP6FV21 in Resistance to λ-Cyhalothrin and Imidacloprid in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2925-2934. [PMID: 38291565 DOI: 10.1021/acs.jafc.3c08807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) belong to a family of metabolic enzymes that are involved in the detoxification of insecticides. In this study, our bioassay results showed that a field-collected population of Bradysia odoriphaga displayed a moderate resistance to λ-cyhalothrin and imidacloprid. Compared to susceptible population, CYP6QE1 and CYP6FV21 were significantly overexpressed in the field population. The expression of CYP6QE1 and CYP6FV21 was more abundant in the third and fourth larval stages, and CYP6QE1 and CYP6FV21 were most highly expressed in the midgut and Malpighian tubules. Exposure to λ-cyhalothrin and imidacloprid significantly increased the expression levels of CYP6QE1 and CYP6FV21. Furthermore, the silencing of CYP6QE1 and CYP6FV21 significantly increased the susceptibility of B. odoriphaga larvae to λ-cyhalothrin and imidacloprid. The overexpression of CYP6QE1 and CYP6FV21 significantly enhanced the tolerance of transgenic Drosophila melanogaster lines to λ-cyhalothrin and imidacloprid. In addition, molecular docking revealed that these two P450 proteins have strong binding affinity toward λ-cyhalothrin and imidacloprid insecticides. Taken together, these results indicate that the overexpression of CYP6QE1 and CYP6FV21 is responsible for resistance to λ-cyhalothrin and imidacloprid in B. odoriphaga.
Collapse
Affiliation(s)
- Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Qiu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaihua Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Lv Y, Pan Y, Li J, Ding Y, Yu Z, Yan K, Shang Q. The C2H2 zinc finger transcription factor CF2-II regulates multi-insecticide resistance-related gut-predominant ABC transporters in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126765. [PMID: 37683749 DOI: 10.1016/j.ijbiomac.2023.126765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Clarifying the molecular mechanisms of cotton aphid resistance to various insecticides is crucial for the long-term safe application of insecticides in chemical control. ATP-binding cassette (ABC) transporters mediate the membrane transport of various substrates (including exogenous substances). Experiments confirmed that ABCB5, ABCF2, and MRP12 contributed to high levels of resistance to spirotetramat, cyantraniliprole, thiamethoxam or imidacloprid. Binding sites of the C2H2 zinc finger transcription factor CF2-II was predicted to be located in the promoters of ABCB5, ABCF2, and MRP12. The expression levels of ABCB5, ABCF2, and MRP12 were significantly upregulated after silencing CF2-II. The results of dual-luciferase reporter assays demonstrated a negative regulatory relationship between CF2-II and ABC transporter promoters. Furthermore, yeast one-hybrid (Y1H) and electrophoresis mobility shift assays (EMSAs) revealed that CF2-II inhibited the expression of ABC transporter genes through interaction with binding sites [ABCF2.p (-1149/-1140) or MRP12.p (-1189/-1181)]. The above results indicated that ABCB5, ABCF2, and MRP12 were negatively regulated by the transcription factor CF2-II, which will help us further understand the mechanism of transcriptional adaption of multi-insecticides resistant related ABC transporters in response to xenobiotics.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
8
|
Bansal R, Hunter WB, Haviland DR. Baseline Susceptibility and Evidence of Resistance to Acetamiprid in Gill's Mealybug, Ferrisia gilli Gullan (Hemiptera: Pseudococcidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:554-559. [PMID: 36708019 DOI: 10.1093/jee/toad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 05/30/2023]
Abstract
Gill's mealybug, Ferrisia gilli (Gullan) (Hemiptera: Pseudococcidae), is a major pest of pistachio in California. Insecticide treatment is the primary control method and acetamiprid is widely used to control this pest. However, there have been numerous reports of control failures for F. gilli after field applications of recommended insecticides in recent years. The purpose of this study was to develop a method for routine monitoring of F. gilli susceptibility and quantify current levels of F. gilli susceptibility to acetamiprid. A leaf-dip bioassay method using lima bean leaves was established and baseline susceptibility responses of 5 field populations were determined. Lethal concentrations to kill 50% of population (LC50) for second instar nymphs at 48 h ranged from 0.367 to 2.398 µg(AI)ml-1 of acetamiprid. Similarly, lethal concentrations to kill 90% of population (LC90) for second instar nymphs at 48 h ranged from 2.887 to 10.752 µg(AI)ml-1 of acetamiprid. The F. gilli population collected from Hanford area showed up to 6.5-fold significantly decreased mortality to acetamiprid compared to other populations. The resistance identified in this study, although relatively low, indicates that there has been repeated pressure to select for acetamiprid resistance and resistance levels can further magnify if effective management steps are not taken. The baseline susceptibility established in this study can be used to investigate potential cause of recent acetamiprid failures against F. gilli. In the long-term, results of this study will support the development of resistance management strategies by monitoring shifts in the susceptibility of F. gilli populations.
Collapse
Affiliation(s)
- Raman Bansal
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| | - Wayne B Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - David R Haviland
- University of California Cooperative Extension, Kern County, Bakersfield, CA 93307, USA
| |
Collapse
|
9
|
Chen W, Li Z, Zhou C, Ali A, Ali S, Wu J. RNA interference in cytochrome P450 monooxygenase (CYP) gene results in reduced insecticide resistance in Megalurothrips usitatus Bagnall. Front Physiol 2023; 14:1130389. [PMID: 37051022 PMCID: PMC10083390 DOI: 10.3389/fphys.2023.1130389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Genes of the cytochrome P450 (CYP450) superfamily are known to be involved in the evolution of insecticide resistance. In this study, the transcriptomes of two Megalurothrips usitatus Bagnall (Thysanoptera: Thripidae) strains (resistant and susceptible) were screened for detoxification genes. MusiDN2722 encodes a protein composed of 504 amino acid residues with a relative molecular mass of 57.3 kDa. Multiple sequence alignment and phylogenetic analysis showed that MusiDN2722 is a member of the CYP450 family and has characteristics of the conserved CYP6 domain shared by typical CYP450 family members. RT-qPCR (real-time quantitative polymerase chain reaction) analysis showed that MusiDN2722 was upregulated in the acetamiprid-resistant strain compared with the susceptible strain (p < 0.05), and the relative expression level was significantly higher at 48 h after exposure than at 24 h after exposure. The interference efficiency of the injection method was higher than that of the membrane-feeding method. Silencing of MusiDN2722 through RNA interference significantly increased the sensitivity of M. usitatus to acetamiprid. Overall, this study revealed that MusiDN2722 plays a crucial role in the resistance of M. usitatus to acetamiprid. The findings will not only advance our understanding of the role of P450s in insecticide resistance but also provide a potential target for the sustainable control of destructive pests such as thrips.
Collapse
Affiliation(s)
- Weiyi Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhaoyang Li
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chenyan Zhou
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Asad Ali
- Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- *Correspondence: Jianhui Wu, ; Shaukat Ali,
| | - Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- *Correspondence: Jianhui Wu, ; Shaukat Ali,
| |
Collapse
|
10
|
Lu J, Zhang H, Wang Q, Huang X. Genome-Wide Identification and Expression Pattern of Cytochrome P450 Genes in the Social Aphid Pseudoregma bambucicola. INSECTS 2023; 14:212. [PMID: 36835781 PMCID: PMC9966863 DOI: 10.3390/insects14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) have a variety of functions, including involvement in the metabolism of exogenous substances and the synthesis and degradation of endogenous substances, which are important for the growth and development of insects. Pseudoregma bambucicola is a social aphid that produces genetically identical but morphologically and behaviorally distinct first-instar soldiers and normal nymphs within colonies. In this study, we identified 43 P450 genes based on P. bambucicola genome data. Phylogenetic analysis showed that these genes were classified into 4 clans, 13 families, and 23 subfamilies. The CYP3 and CYP4 clans had a somewhat decreased number of genes. In addition, differential gene expression analysis based on transcriptome data showed that several P450 genes, including CYP18A1, CYP4G332, and CYP4G333, showed higher expression levels in soldiers compared to normal nymphs and adult aphids. These genes may be candidates for causing epidermal hardening and developmental arrest in soldiers. This study provides valuable data and lays the foundation for the study of functions of P450 genes in the social aphid P. bambucicola.
Collapse
Affiliation(s)
- Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
O'Hara FM, Liu Z, Davis JA, Swale DR. Catalyzing systemic movement of inward rectifier potassium channel inhibitors for antifeedant activity against the cotton aphid, Aphis gossypii (Glover). PEST MANAGEMENT SCIENCE 2023; 79:194-205. [PMID: 36116013 DOI: 10.1002/ps.7188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is a destructive agricultural pest, capable of photosynthate removal and plant virus transmission. Therefore, we aimed to test the antifeedant properties of small-molecule inhibitors of inward rectifier potassium (Kir) channels expressed in insect salivary glands and develop an approach for enabling systemic movement of lipophilic Kir inhibitors. RESULTS Two Kir channel inhibitors, VU041 and VU730, reduced the secretory activity of the aphid salivary glands by 3.3-fold and foliar applications of VU041 and VU730 significantly (P < 0.05) increased the time to first probe, total probe duration, and nearly eliminated phloem salivation and ingestion. Next, we aimed to facilitate systemic movement of VU041 and VU730 through evaluation of a novel natural product based solubilizer containing rubusoside that was isolated from Chinese sweet leaf (Rubus suavissimus) plants. A single lower leaf was treated with Kir inhibitor soluble liquid (KI-SL) and systemic movement throughout the plant was verified via toxicity bioassays and changes to feeding behavior through the electrical penetration graph (EPG) technique. EPG data indicate KI-SL significantly reduced ability to reach E1 (phloem salivation) and E2 (phloem ingestion) waveforms and altered plant probing behavior when compared to the untreated control. High-performance liquid chromatography (HPLC) analysis indicated the presence of VU041 and VU730 in the upper leaf tissue of these plants. Together, these data provide strong support that incorporation of rubusoside with Kir inhibitors enhanced translaminar and translocation movement through the plant tissue. CONCLUSION These data further support hemipteran Kir channels as a target to prevent feeding and induce toxicity. Further, these studies highlight a novel delivery approach for generating plant systemic activity of lipophilic insecticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Flinn M O'Hara
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Zhijun Liu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Jeffrey A Davis
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Lv Y, Wen S, Ding Y, Gao X, Chen X, Yan K, Yang F, Pan Y, Shang Q. Functional Validation of the Roles of Cytochrome P450s in Tolerance to Thiamethoxam and Imidacloprid in a Field Population of Aphis gossypii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14339-14351. [PMID: 36165284 DOI: 10.1021/acs.jafc.2c04867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Field populations of Aphis gossypii (SDR) have evolved high resistance to neonicotinoids, including thiamethoxam and imidacloprid. Synergism bioassays and transcriptomic comparison of the SDR and susceptible (SS) strains revealed that the cytochrome P450s may contribute to the neonicotinoid resistance evolution. The transcripts of some P450s were constitutively overexpressed in the SDR strain, and many genes showed expression plasticity under insecticide exposure. Drosophila that ectopically expressed CYPC6Y9, CYP4CK1, CYP6DB1, and CYP6CZ1 showed greater resistance (>8.0-fold) to thiamethoxam, and Drosophila that expressed CYPC6Y9, CYP6CY22, CYP6CY18, and CYP6D subfamily genes showed greater resistance (>5-fold) to imidacloprid. Five P450 genes that caused thiamethoxam resistance also conferred resistance to α-cypermethrin. Furthermore, the knockdown of CYP4CK1, CYP6CY9, CYP6CY18, CYPC6Y22, CYP6CZ1, and CYP6DB1 dramatically increased the sensitivity of the SDR strain to thiamethoxam or imidacloprid. These results indicate the involvement of multiple P450 genes, rather than one key gene, in neonicotinoid resistance in field populations.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shuyun Wen
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
13
|
Cheng LY, Hou DY, Sun QZ, Yu SJ, Li SC, Liu HQ, Cong L, Ran C. Biochemical and Molecular Analysis of Field Resistance to Spirodiclofen in Panonychus citri (McGregor). INSECTS 2022; 13:1011. [PMID: 36354837 PMCID: PMC9696244 DOI: 10.3390/insects13111011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Spirodiclofen is one of the most widely used acaricides in China. The citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), is one of the most destructive citrus pests worldwide and has developed a high resistance to spirodiclofen. However, the molecular mechanism of spirodiclofen resistance in P. citri is still unknown. In this study, we identified a field spirodiclofen-resistant strain (DL-SC) that showed 712-fold resistance to spirodiclofen by egg bioassay compared to the susceptible strain. Target-site resistance was not detected as non-synonymous mutations were not found by amplification and sequencing of the ACCase gene of resistant and susceptible strains; in addition, the mRNA expression levels of ACCase were similar in both resistant and susceptible strains. The activity of detoxifying enzymes P450s and CCEs in the resistant strain was significantly higher than in the susceptible strain. The transcriptome expression data showed 19 xenobiotic metabolisms genes that were upregulated. Stage-specific expression profiling revealed that the most prominent upregulated gene, CYP385C10, in transcriptome data was significantly higher in resistant strains in all stages. Furthermore, functional analysis by RNAi indicated that the mortality caused by spirodiclofen was significantly increased by silencing the P450 gene CYP385C10. The current results suggest that overexpression of the P450 gene, CYP385C10, may be involved in spirodiclofen resistance in P. citri.
Collapse
Affiliation(s)
- Lu-Yan Cheng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Dong-Yuan Hou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Si-Chen Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Hao-Qiang Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| |
Collapse
|
14
|
Lv Y, Yan K, Gao X, Chen X, Li J, Ding Y, Zhang H, Pan Y, Shang Q. Functional Inquiry into ATP-Binding Cassette Transporter Genes Contributing to Spirotetramat Resistance in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13132-13142. [PMID: 36194468 DOI: 10.1021/acs.jafc.2c04263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates to extracellular transporting, which play an important role in the detoxification process in arthropods. Here, we described a comprehensive approach to explore the involvement of ABC transporters in spirotetramat resistance in cotton aphids. In this study, synergism bioassays showed 17.05% and 35.42% increases in the toxicity to spirotetramat with the ABC inhibitor verapamil in adult and 3rd instar nymph aphids of the SR strain, respectively. In a competitive assay based on the microinjection of a fluorescent ABC transporter substrate, verapamil (a general ABC inhibitor) and spirotetramat significantly inhibited the elimination of Texas Red. Based on transcriptome data of midguts of spirotetramat-susceptible (SS) and -resistant (SR) strains, the expression levels of ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were significantly upregulated in the SR strain midgut compared to that of the SS strain. Gene functional analysis based on ectopic expression and RNA interference (RNAi) proved that ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were involved in the tolerance of cotton aphids to spirotetramat. Moreover, the upregulated ABCF2, ABCB4, and ABCB5 in the midgut of the SR strain contributed more to the resistance of spirotetramat in in vitro functional analysis. In summary, these results demonstrate that candidate ABC transporter genes in the midgut tissue were involved in spirotetramat resistance, which will help reveal the relationship between ABC transporters and the development of spirotetramat resistance in field populations.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hang Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
15
|
Gao X, Zhu X, Wang C, Wang L, Zhang K, Li D, Ji J, Niu L, Luo J, Cui J. Silencing of Cytochrome P450 Gene AgoCYP6CY19 Reduces the Tolerance to Host Plant in Cotton- and Cucumber-Specialized Aphids, Aphis gossypii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12408-12417. [PMID: 36154024 DOI: 10.1021/acs.jafc.2c05403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cytochrome P450 monooxygenases play important roles in insect metabolism and detoxification of toxic plant substances. However, the function of CYP6 family genes in degrading plant toxicants in Aphis gossypii has yet to be elucidated. In this study, AgoCYP6CY19, an A. gossypii CYP gene that differentially expresses in cotton- and cucumber-specialized aphids, was characterized. Spatiotemporal expression profiling revealed that AgoCYP6CY19 expression was higher in second instar nymph and 7 day old adults than in other developmental stages. Although the expression of AgoCYP6CY19 was significantly higher in cotton-specialized aphids, AgoCYP6CY19 silencing significantly increased larval and adult mortality and reduced total fecundity in both cotton- and cucumber-specialized aphids. What is more, the expression of AgoCYP6CY19 was significantly induced after the cotton-specialized and cucumber-specialized aphids fed on epigallocatechin gallate (EGCG) and cucurbitacin B (CucB), respectively. These findings demonstrate that AgoCYP6CY19 plays a pivotal role in toxic plant substance detoxification and metabolism. Functional knowledge about plant toxicity tolerance genes in this major pest can provide new insights into insect detoxification of toxic plant substances and insecticides and offer new targets for agricultural pest control strategies.
Collapse
Affiliation(s)
- Xueke Gao
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiangzhen Zhu
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Chuanpeng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jichao Ji
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Junyu Luo
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jinjie Cui
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| |
Collapse
|
16
|
Xu H, Pan Y, Li J, Yang F, Chen X, Gao X, Wen S, Shang Q. Chemosensory proteins confer adaptation to the ryanoid anthranilic diamide insecticide cyantraniliprole in Aphis gossypii glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105076. [PMID: 35715031 DOI: 10.1016/j.pestbp.2022.105076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
Chemosensory proteins (CSPs) are a class of small transporter proteins expressed only in arthropods with various functions beyond chemoreception. Previous studies have been reported that CSPs are involved in the insecticide resistance. In this study, we found that AgoCSP1, AgoCSP4, and AgoCSP5 were constitutively overexpressed in an insecticide-resistant strain of Aphis gossypii and showed higher expression in broad body tissue (including fat bodies) than in the midgut but without tissue specificity. However, the function of these three upregulated AgoCSPs remains unknown. Here, we investigated the function of AgoCSPs in resistance to the diamide insecticide cyantraniliprole. Suppression of AgoCSP1, AgoCSP4 and AgoCSP5 transcription by RNAi significantly increased the sensitivity of resistant aphids to cyantraniliprole. Molecular docking and competitive binding assays indicated that these AgoCSPs bind moderate with cyantraniliprole. Transgenic Drosophila melanogaster expressing these AgoCSPs in the broad body or midgut showed higher tolerance to cyantraniliprole than control flies with the same genetic background; AgoCSP4 was more effective in broad body tissue, and AgoCSP1 and AgoCSP5 were more effective in the midgut, indicating that broad body and midgut tissues may be involved in the insecticide resistance mediated by the AgoCSPs examined. The present results strongly indicate that AgoCSPs participate in xenobiotic detoxification by sequestering and masking toxic insecticide molecules, providing insights into new factors involved in resistance development in A. gossypii.
Collapse
Affiliation(s)
- Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
17
|
Li J, Lv Y, Yan K, Yang F, Chen X, Gao X, Wen S, Xu H, Pan Y, Shang Q. Functional analysis of cyantraniliprole tolerance ability mediated by ATP-binding cassette transporters in Aphis gossypii glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105104. [PMID: 35715043 DOI: 10.1016/j.pestbp.2022.105104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/02/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Cyantraniliprole, a second-generation anthranilic diamide insecticide, is widely used to control chewing and sucking pests. ATP-binding cassette transporters (ABCs) are a ubiquitous family of membrane proteins that play important roles in insect detoxification mechanisms. However, the potential effects of ABCs on cyantraniliprole-resistance remain unclear. In the present study, synergism bioassays revealed that verapamil, an ABC inhibitor, increased the toxicity of cyantraniliprole by 2.00- and 12.25-fold in the susceptible and cyantraniliprole-resistant strains of Aphis gossypii. Based on transcriptome data, the expression levels of ABCB4, ABCB5, ABCD1, ABCG4, ABCG7, ABCG13, ABCG16, ABCG17, ABCG26 and MRP12 were upregulated 1.56-, 1.32-, 1.51-, 2.03-, 1.65-, 1.50-, 4.18-, 6.07-, 4.68- and 4.69-fold, respectively, in the cyantraniliprole-resistant strain (CyR) compared to the susceptible strain (SS), as determined using RT-qPCR. Drosophila melanogaster ectopically overexpressing ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 exhibited significantly increased tolerance to cyantraniliprole by 11.71-, 2.39-, 4.85-, 2.06-, 3.75-, 4.20- and 3.50-fold, respectively, with ABCB5 and ABCG family members being the most effective. Furthermore, the suppression of ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 significantly increased the sensitivity of the CyR strain to cyantraniliprole. These results indicate that ABCs may play crucial roles in cyantraniliprole resistance and may provide information for shaping resistance management strategies.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
18
|
Taillebois E, Thany SH. The use of insecticide mixtures containing neonicotinoids as a strategy to limit insect pests: Efficiency and mode of action. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105126. [PMID: 35715064 DOI: 10.1016/j.pestbp.2022.105126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Synthetic insecticides continue to be the main strategy for managing insect pests, which are a major concern for both crop protection and public health. As nicotinic acetylcholine receptors play a central role in insect neurotransmission, they are the molecular target of neurotoxic insecticides such as neonicotinoids. These insecticides are used worldwide and have shown high efficiency in culture protection. However, the emergence of insect resistance mechanisms, and negative side-effects on non-target species have highlighted the need for a new control strategy. In this context, the use of insecticide mixtures with synergistic effects have been used in order to decrease the insecticide dose, and thus delay the selection of resistance-strains, and limit their negative impact. In this review, we summarize the available data concerning the mode of action of neonicotinoid mixtures, as well as their toxicity to various insect pests and non-target species. We found that insecticide mixtures containing neonicotinoids may be an effective strategy for limiting insect pests, and in particular resistant strains, although they could also negatively impact non-target species such as pollinating insects.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France.
| |
Collapse
|
19
|
Shen GM, Ou SY, Li CZ, Feng KY, Niu JZ, Adang MJ, He L. Transcription factors CncC and Maf connect the molecular network between pesticide resistance and resurgence of pest mites. INSECT SCIENCE 2022; 29:801-816. [PMID: 34586709 DOI: 10.1111/1744-7917.12970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticide resistance and resurgence are serious problems often occurring simultaneously in the field. In our long-term study of a fenpropathrin-resistant strain of Tetranychus cinnabaribus, enhancement of detoxification and modified fecundity mechanisms were both observed. Here we investigate the network across these two mechanisms and find a key node between resistance and resurgence. We show that the ecdysone pathway is involved in regulating the fecundity of T. cinnabaribus. The concentration change of ecdysone is consistent with the fecundity curve; the concentration of ecdysone is higher in the fenpropathrin-resistant strain which has stronger fecundity. The enhancement of ecdysone is due to overexpression of two P450 genes (CYP314A1 and CYP315A1) in the ecdysone synthesis pathway. Silencing expression of these CYP genes resulted in lower concentration of ecdysone, reduced expression of vitellogenin, and reduced fecundity of T. cinnabaribus. The expression of CYP315A1 is regulated by transcription factors Cap-n-collar isoform C (CncC) and Musculoaponeurotic fibrosarcoma protein (Maf), which are involved in regulating other P450 genes functioning in detoxification of fenpropathrin in T. cinnabaribus. A similar regulation is established in citrus pest mite Panonychus citri showing that the CncC pathway regulates expression of PcCYP315A1, which affects mite fecundity. Transcription factors are activated to upregulate detoxification genes facilitating pesticide resistance, while the "one to multiple" regulation mode of transcription factors simultaneously increases expression of metabolic enzyme genes in hormone pathways and alters the physiology of pests. This is an important response of arthropods to pesticides which leads to resistance and population resurgence.
Collapse
Affiliation(s)
- Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Shi-Yuan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Kai-Yang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Peng T, Liu X, Tian F, Xu H, Yang F, Chen X, Gao X, Lv Y, Li J, Pan Y, Shang Q. Functional investigation of lncRNAs and target cytochrome P450 genes related to spirotetramat resistance in Aphis gossypii Glover. PEST MANAGEMENT SCIENCE 2022; 78:1982-1991. [PMID: 35092151 DOI: 10.1002/ps.6818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Spirotetramat is a tetramic acid derivative insecticide with novel modes of action for controlling Aphis gossypii Glover in the field. Previous studies have shown that long noncoding RNAs (lncRNAs) and cytochrome P450 monooxygenases (P450s) are involved in the detoxification process. However, the functions of lncRNAs in regulating P450 gene expression in spirotetramat resistance in A. gossypii are unknown. RESULTS In this study, we found CYP4CJ1, CYP6CY7 and CYP6CY21 expression levels to be significantly upregulated in a spirotetramat-resistant (SR) strain compared with a susceptible (SS) strain. Furthermore, knockdown of CYP4CJ1, CYP6CY7 and CYP6CY21 increased nymph and adult mortality in the SR strain following exposure to spirotetramat. Drosophila ectopically expressing CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 showed significantly decreased mortality after spirotetramat exposure, and CYP380C6, CYP4CJ1 and CYP6CY21 are putative targets of six lncRNAs. Silencing of lncRNAs MSTRG.36649.2/5 and MSTRG.71880.1 changed CYP6CY21 and CYP380C6 expression, altering the sensitivity of the SR strain to spirotetramat. Moreover, MSTRG.36649.2/5 did not compete for microRNA (miRNA) binding to regulate CYP6CY21 expression. CONCLUSION Our results confirm that CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 are potentially involved in the development of spirotetramat resistance in A. gossypii, and MSTRG.36649.2/5 and MSTRG.71880.1 probably regulate CYP6CY21 and CYP380C6 expression other than through the "sponge effect" of competing for miRNA binding. Our results provide a favorable molecular basis for studying cotton aphid P450 genes and lncRNA functions in spirotetramat resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun, China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun, China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun, China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
21
|
Wang K, Zhao J, Han Z, Chen M. Comparative transcriptome and RNA interference reveal CYP6DC1 and CYP380C47 related to lambda-cyhalothrin resistance in Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105088. [PMID: 35430059 DOI: 10.1016/j.pestbp.2022.105088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The bird-cherry-oat aphid, Rhopalosiphum padi, is a serious agricultural pest of Triticeae crops, and pyrethroids are the most widely used chemical pesticides for the control of the aphid. Our previous studies found that some R. padi field populations have developed resistance against pyrethroids; an M918L target-site mutation of the voltage gated sodium channel was present in the pyrethroid resistant individuals, while the high-level resistance to lambda-cyhalothrin revealed the presence of other mechanisms in the pest. Here, we conducted genome-wide transcriptional analysis for the lambda-cyhalothrin susceptible (SS) and resistant (LC-RR) strains of R. padi. Results indicated that 2457 genes were differently expressed between the SS and LC-RR strains. In the LC-RR, a total of 1265 and 1192 genes were up- and down-regulated, respectively. KEGG analysis implicated enrichment of P450 involved in insecticide metabolic pathways in the resistant transcriptome. qRT-PCR results confirmed that two P450 genes (CYP6DC1 and CYP380C47) were significantly overexpressed in the LC-RR individuals. Furthermore, RNA interference (RNAi) of CYP6DC1 or CYP380C47 significantly increased mortality of R. padi exposure to lambda-cyhalothrin. These results suggest that the overexpression of CYP6DC1 and CYP380C47 contributed to the lambda-cyhalothrin resistance in the pest. This study provides knowledge for further analyzing the molecular mechanism of resistance to pyrethroids in R. padi.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Junning Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaojun Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
22
|
Lin R, Yang M, Yao B. The phylogenetic and evolutionary analyses of detoxification gene families in Aphidinae species. PLoS One 2022; 17:e0263462. [PMID: 35143545 PMCID: PMC8830634 DOI: 10.1371/journal.pone.0263462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Detoxification enzymes play significant roles in the interactions between insects and host plants, wherein detoxification-related genes make great contributions. As herbivorous pests, aphids reproduce rapidly due to parthenogenesis. They are good biological materials for studying the mechanisms that allow insect adaptation to host plants. Insect detoxification gene families are associated with insect adaptation to host plants. The Aphidinae is the largest subfamily in the Aphididae with at least 2483 species in 256 genera in 2 tribes: the Macrosiphini (with 3/4 of the species) and the Aphidini. Most aphid pests on crops and ornamental plants are Aphidinae. Members of the Aphidinae occur in nearly every region of the world. The body shape and colour vary significantly. To research the role that detoxification gene families played in the process of aphid adaptation to host evolution, we analyzed the phylogeny and evolution of these detoxification gene families in Aphidinae. In general, the P450/GST/CCE gene families contract, whereas the ABC/UGT families are conserved in Aphidinae species compared to these families in other herbivorous insects. Genus-specific expansions of P450 CYP4, and GST Delta have occurred in the genus Acyrthosiphon. In addition, the evolutionary rates of five detoxification gene families in the evolution process of Aphidinae are different. The comparison of five detoxification gene families among nine Aphidinae species and the estimated relative evolutionary rates provided herein support an understanding of the interaction between and the co-evolution of Aphidinae and plants.
Collapse
Affiliation(s)
- Rongmei Lin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (RL); (BY)
| | - Mengquan Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Bowen Yao
- School of Science, Beijing University of Chemical Technology, Chaoyang District, Beijing, China
- * E-mail: (RL); (BY)
| |
Collapse
|
23
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
24
|
Insecticide Resistance Monitoring in Field Populations of the Whitebacked Planthopper Sogatella furcifera (Horvath) in China, 2019-2020. INSECTS 2021; 12:insects12121078. [PMID: 34940166 PMCID: PMC8706372 DOI: 10.3390/insects12121078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The whitebacked planthopper (WBPH), Sogatella furcifera (Horváth), is one of the most destructive pests that seriously threatens the high-quality and safe production of rice. Overuse of chemical insecticides has led to varying levels of resistance to insecticides in the field population of S. furcifera. In this study, we measured the susceptibility of 18 populations to 10 insecticides by the rice-seedling dip method. Enzyme assays were performed to measure the levels of esterase (EST), glutathione S- transferase (GST) and cytochrome P450 monooxygenase (P450). A risk of cross-resistance between some insecticides were found by pairwise correlation, and EST may be contributed to the resistance to nitenpyram, thiamethoxam and clothianidin in S. furcifera. Overall, our findings will help inform the effective insecticide resistance management strategies to delay the development of insecticide resistance in S. furcifera. Abstract Monitoring is an important component of insecticide resistance management. In this study, resistance monitoring was conducted on 18 field populations in China. The results showed that S. furcifera developed high levels of resistance to chlorpyrifos and buprofezin, and S. furcifera showed low to moderate levels of resistance to imidacloprid, thiamethoxam, dinotefuran, clothianidin, sulfoxaflor, isoprocarb and ethofenprox. Sogatella furcifera remained susceptible or low levels of resistance to nitenpyram. LC50 values of nitenpyram and dinotefuran, imidacloprid, thiamethoxam, clothianidin and chlorpyrifos exhibited significant correlations, as did those between dinotefuran and thiamethoxam, clothianidin, sulfoxaflor, imidacloprid, isoprocarb and buprofezin. Similarly, significant correlations were observed between thiamethoxam and clothianidin, sulfoxaflor and imidacloprid. In addition, the activity of EST in field populations of S. furcifera were significantly correlated with the LC50 values of nitenpyram, thiamethoxam and clothianidin. These results will help inform effective insecticide resistance management strategies to delay the development of insecticide resistance in S. furcifera.
Collapse
|
25
|
Peng T, Pan Y, Tian F, Xu H, Yang F, Chen X, Gao X, Li J, Wang H, Shang Q. Identification and the potential roles of long non-coding RNAs in regulating acetyl-CoA carboxylase ACC transcription in spirotetramat-resistant Aphis gossypii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104972. [PMID: 34802522 DOI: 10.1016/j.pestbp.2021.104972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent the largest class of non-coding transcripts. They act a pivotal part in various insect developmental processes and stress responses. However, the investigation of lncRNA functions in insecticide resistant remains at an early phase. Herein, we conducted whole-transcriptome RNA sequencing for two cotton aphid (Aphis gossypii Glover) strains, i.e., insecticide-susceptible (SS) and spirotetramat-resistant (SR). We discovered 6059 lncRNAs in the RNA-Seq data, and 874 lncRNAs showed differential expression. In addition, 5 lncRNAs among 874 lncRNAs were predicted as targets of acetyl-CoA carboxylase (ACC). Reverse transcription real-time quantitative PCR (RT-qPCR) combined with RNA interference (RNAi) confirmed that selected ACC lncRNA was related to the expression of ACC. Moreover, we also identified two transcription factors, i.e., C/EBP and C/EBPzeta, that regulate the transcription level of ACC lncRNA. These results provide a good basis for the study of cotton aphid lncRNA functions in insecticide resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Haibao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
26
|
Wang L, Zhu J, Cui L, Wang Q, Huang W, Ji X, Yang Q, Rui C. Overexpression of ATP-binding cassette transporters associated with sulfoxaflor resistance in Aphis gossypii glover. PEST MANAGEMENT SCIENCE 2021; 77:4064-4072. [PMID: 33899308 DOI: 10.1002/ps.6431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Sulfoxaflor is a new insecticide for controlling against Aphis gossypii in the field. ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins and play an important role in the detoxification process. However, the potential role of ABC transporters in sulfoxaflor resistance in A. gossypii is unknown. RESULTS In this study, an ABC transporter inhibitor, verapamil, dramatically increased the toxicity of sulfoxaflor in the resistant population with a synergistic ratio of 8.55. However, verapamil did not synergize sulfoxaflor toxicity in the susceptible population. The contents of ABC transporters were significantly increased in the Sul-R population. Based on RT-qPCR analysis, 10 of 23 ABC transcripts, ABCA1, ABCA2, ABCB1, ABCB5, ABCD1, ABCG7, ABCG16, ABCG26, ABCG27, and MRP7, were up-regulated in the Sul-R population compared to the Sus population. Meanwhile, inductive effects of ABCA1, ABCD1, ABCG7 and ABCG26 by sulfoxaflor were found in A. gossypii. Furthermore, knockdown of ABCA1 and ABCD1 using RNAi significantly increased the sulfoxaflor sensitivity in Sul-R aphids. CONCLUSION These results suggested that ABC transporters, especially the ABCA1 and ABCD1 genes, might be related with sulfoxaflor resistance in A. gossypii. This study will promote further work to validate the functional roles of these ABCs in sulfoxaflor resistance and might be helpful for the management of sulfoxaflor-resistant A. gossypii.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junshu Zhu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qingjie Yang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
27
|
Shang J, Yao YS, Zhu XZ, Wang L, Li DY, Zhang KX, Gao XK, Wu CC, Niu L, Ji JC, Luo JY, Cui JJ. Evaluation of sublethal and transgenerational effects of sulfoxaflor on Aphis gossypii via life table parameters and 16S rRNA sequencing. PEST MANAGEMENT SCIENCE 2021; 77:3406-3418. [PMID: 33786972 DOI: 10.1002/ps.6385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aphis gossypii, a polyphagous and recurrent pest induced by pesticides, causes tremendous loss crop yields each year. Previous studies on the mechanism of pesticide-induced sublethal effects mainly focus on the gene level. The symbiotic bacteria are also important participants of this mechanism, but their roles in hormesis are still unclear. RESULTS In this study, life table parameters and 16S rRNA sequencing were applied to evaluate the sublethal and transgenerational effects of sulfoxaflor on adult A. gossypii after 24-h LC20 (6.96 mg L-1 ) concentration exposure. The results indicated that the LC20 of sulfoxaflor significantly reduced the finite rate of increase (λ) and net reproductive rate (R0 ) of parent generation (G0), and significantly increased mean generation time (T) of G1 and G2, but not of G3 and G4. Both reproductive period and fecundity of G1 and G2 were significantly higher than those of the control. Furthermore, our sequencing data revealed that more than 95% bacterial communities were dominated by the phylum Proteobacteria, in which the maximum proportion genus was the primary symbiont Buchnera and the facultative symbiont Arsenophonus. Compared to those of the control, the abundance and composition of symbiotic bacteria of A. gossypii for three successive generations (G0-G2) were changed after G0 A. gossypii was exposed to sulfoxaflor: the diversity of the bacterial community was decreased, but the abundance of Buchnera was increased (G0), while the abundance of Arsenophonus was decreased. Contrary to G0, G1 and G2 cotton aphid exhibited an increased relative abundance of Arsenophonus in the sublethal treatment group. CONCLUSION Taken together, our results provide an insight into the interactions among pesticide resistance, aphids, and symbionts, which will eventually help to better manage the resurgence of A. gossypii. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- College of Plant Science, Tarim University/Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, Aral, China
| | - Yong-Sheng Yao
- College of Plant Science, Tarim University/Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, Aral, China
| | - Xiang-Zhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dong-Yang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kai-Xin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xue-Ke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chang-Cai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji-Chao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jun-Yu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jin-Jie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
28
|
Zeng X, Pan Y, Tian F, Li J, Xu H, Liu X, Chen X, Gao X, Peng T, Bi R, Shang Q. Functional validation of key cytochrome P450 monooxygenase and UDP-glycosyltransferase genes conferring cyantraniliprole resistance in Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104879. [PMID: 34119222 DOI: 10.1016/j.pestbp.2021.104879] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) and UDP-glycosyltransferases (UGTs) are major detoxifying enzymes that metabolize plant toxins and insecticides. In the present study, the synergists of piperonyl butoxide, sulfinpyrazone and 5-nitrouracil significantly increased cyantraniliprole and α-cypermethrin toxicity against the resistant strain. The transcripts of UGT341A4, UGT344B4, UGT344D6, UGT344J2 and UGT344M2 increased significantly in the CyR strain compared with the susceptible strain. Among these upregulated genes (including P450s), CYP6CY7 and UGT344B4 were highly expressed in the midgut. Transgenic expression of the P450 and UGT genes in broad body tissues in Drosophila melanogaster indicated that the expression of CYP380C6, CYP4CJ1, UGT341A4, UGT344B4 and UGT344M2 is sufficient to confer cyantraniliprole resistance, and CYP380C6, CYP6CY7, CYP6CY21, UGT341A4 and UGT344M2 are related to α-cypermethrin cross-resistance. The midgut-specific overexpression of CYP380C6, CYP6CY7, CYP6CY21, CYP4CJ1, UGT341A4, UGT344B4 and UGT344M2 significantly increased insensitivity to cyantraniliprole, and CYP380C6, CYP6CY7, CYP6CY21, UGT344B4 and UGT344M2 confer α-cypermethrin cross-resistance. The expression of CYP380C6, CYP4CJ1, UGT341A4 and UGT344M2 in broad tissues or in midgut has similar effects on insensitivity to insecticides; however, CYP6CY7, CYP6CY21 and UGT344B4 are more effective in the midgut. This result indicates that broad body tissues and midgut tissue are involved in insecticide resistance mediated by the candidate P450s and UGTs examined.
Collapse
Affiliation(s)
- Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Rui Bi
- Department of Entomology, Jilin Agricultural University, Changchun 130118, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
29
|
Zeng X, Pan Y, Song J, Li J, Lv Y, Gao X, Tian F, Peng T, Xu H, Shang Q. Resistance Risk Assessment of the Ryanoid Anthranilic Diamide Insecticide Cyantraniliprole in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5849-5857. [PMID: 34014075 DOI: 10.1021/acs.jafc.1c00922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cyantraniliprole targets the ryanodine receptor and shows cross-spectrum activity against a broad range of chewing and sucking pests. In this study, a cyantraniliprole-resistant cotton aphid strain (CyR) developed resistance 17.30-fold higher than that of a susceptible (SS) strain. Bioassay results indicated that CyR developed increased cross-resistance to cyfluthrin, α-cypermethrin, imidacloprid, and acephate. In CyR, piperonyl butoxide synergistically increased the toxicity of cyantraniliprole, α-cypermethrin, and cyfluthrin. The cytochrome P450 activities in the CyR strain were significantly higher than those in the SS strain. The mRNA expression of CYP6CY7, CYP6CY12, CYP6CY21, CYP6CZ1, CYP6DA1, and CYP6DC1 in the CYP3 clade, and CYP380C6, CYP380C12, CYP380C44, CYP4CJ1, and CYP4CJ5 in the CYP4 clade, was significantly higher in CyR than in SS. The depletion of the most abundant CYP380C6 transcript by RNAi also significantly increased the sensitivity of CyR to cyantraniliprole. Transgenic expression of CYP380C6, CYP6CY7, CYP6CY21, and CYP4CJ1 in Drosophila melanogaster suggested that the expression of CYP380C6 and CYP4CJ1 was sufficient to confer cyantraniliprole resistance, with CYP380C6 being the most effective, and that CYP380C6, CYP6CY7, and CYP6CY21 were related to α-cypermethrin cross-resistance. These results indicate the involvement of P450 genes in cyantraniliprole resistance and pyrethroid cross-resistance and provide an overall view of the metabolic factors involved in resistance development.
Collapse
Affiliation(s)
- Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jiaobao Song
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
30
|
Zhu L, Zhang S, Lu F, Zhang K, Han Q, Ying Q, Zhang X, Zhang C, Zhou S, Chen A. Cross-resistance, fitness costs, and biochemical mechanism of laboratory-selected resistance to tenvermectin A in Plutella xylostella. PEST MANAGEMENT SCIENCE 2021; 77:2826-2835. [PMID: 33538385 DOI: 10.1002/ps.6317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Tenvermectin A is a new avermectin derivative that has good insecticidal and acaricidal effects. In order to study the resistance of Plutella xylostella to tenvermectin A, a sensitive strain (SS) and a laboratory-selected tenvermectin A-resistant strain (RS, 33.57-fold) were used to evaluate cross-resistance and fitness costs as well as to determine the resistance mechanism. RESULTS There was no cross-resistance with common pesticides except for moderate cross-resistance with cypermethrin (resistance ratio = 10.26-fold) observed in RS. The activities of metabolic enzymes were measured, and the results showed that mixed function oxidase (MFO) and carboxylate esterase (CarE) in RS increased significantly by 2.92- and 2.86-fold, respectively, compared with SS. In addition, there was no obvious difference in glutathione-S-transferase (GST), which indicated that enhanced MFO and CarE activities may be the main mechanisms of detoxification. In the four typical resistance-related genes, expression of GluCl (4.86-fold), ABCC2 (3.85-fold), and CYP6 (2.94-fold) in RS were significantly promoted, but expression of GST was not. The clone and sequence of the PxGluClα subunit displayed six mutations that could lead to changes in the amino acid residues. CONCLUSION High suitability related to tenvermectin A resistance was observed in RS, and it was found that the developmental stages of RS were significantly shortened and the survival rate of females was reduced. In addition, the mechanism of resistance to tenvermectin A may be regulated by the glutamate-gated chloride channel, ATP-binding cassette transporter, and MFO. In general, the study of resistance and biochemical mechanisms can provide beneficial and rational information for the management of resistance in P. xylostella. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linying Zhu
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Shaoyong Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Feng Lu
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Kui Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Qunqi Han
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Qianwen Ying
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Xinwei Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Cuilan Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Shaa Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Anliang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
31
|
Wang L, Zhu J, Cui L, Wang Q, Huang W, Yang Q, Ji X, Rui C. Overexpression of Multiple UDP-Glycosyltransferase Genes Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5198-5205. [PMID: 33877846 DOI: 10.1021/acs.jafc.1c00638] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UDP-glycosyltransferases (UGTs) are major phase II enzymes involved in the metabolic detoxification of xenobiotics. In this study, two UGT-inhibitors, 5-nitrouracil and sulfinpyrazone, significantly increased sulfoxaflor toxicity against sulfoxaflor-resistant (Sul-R) Aphis gossypii, whereas there were no synergistic effects in susceptible (Sus) A. gossypii. The activity of UGTs in the Sul-R strain was significantly higher (1.35-fold) than that in the Sus strain. Further, gene expression determination demonstrated that 11 of 23 UGT genes were significantly upregulated (1.40- to 5.46-fold) in the Sul-R strain, among which the expression levels of UGT350A2, UGT351A4, UGT350B2, UGT342C2, and UGT343C2 could be induced by sulfoxaflor. Additionally, knockdown of UGT350A2, UGT351A4, UGT350B2, and UGT343C2 using RNA interference (RNAi) significantly increased sensitivity (1.57- to 1.76-fold) to sulfoxaflor in the Sul-R strain. These results suggested that UGTs might be involved in sulfoxaflor resistance in A. gossypii. These findings will facilitate further work to validate the functional roles of these UGT genes in sulfoxaflor resistance.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junshu Zhu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingjie Yang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
32
|
Yang YX, Lin RH, Li Z, Wang AY, Xue C, Duan AL, Zhao M, Zhang JH. Function Analysis of P450 and GST Genes to Imidacloprid in Aphis craccivora (Koch). Front Physiol 2021; 11:624287. [PMID: 33551847 PMCID: PMC7854575 DOI: 10.3389/fphys.2020.624287] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
Aphis craccivora (Koch) is an economically important pest that affects legumes in worldwide. Chemical control is still the primary efficient method for A. craccivora management. However, the mechanism underlying insecticide resistance in A. craccivora has not been elucidated. A previous study observed that piperonyl butoxide (PBO) and diethyl maleate (DEM) significantly synergized imidacloprid in A. craccivora field populations, indicating that cytochrome P450 (P450) and glutathione S-transferase (GST) genes may play pivotal roles in imidacloprid resistance. In this study, 38 P450 genes and 10 GST genes were identified in A. craccivora through transcriptomic analysis. The expression levels of these P450 and GST genes were measured in susceptible (SUS) strains of A. craccivora under imidacloprid treatment with LC15, LC50, and LC85 doses. The expression levels of CYP18A1, CYP6CY21, CYP6DA1, CYP6DA2, CYP4CJ1, CYP4CJ2, and CYP380C6 were up-regulated in the three treatments. Most of these genes belong to CYP3 and CYP4 Clans. In addition, the expression levels of all P450 and GST genes in A. craccivora were also measured in the Juye (JY) and Linqing (LQ) field populations. The expression levels of CYP6DA2, CYP4CJ1, and CYP380C6 were up-regulated in the SUS strain after imidacloprid treatment at three doses, and these genes were overexpressed in the JY population. Furthermore, the sensitivity of A. craccivora to imidacloprid was significantly increased after knockdown of CYP380C6 and CYP6DA2 through RNA interference. These results may help to elucidate the mechanisms underlying of imidacloprid resistance in A. craccivora.
Collapse
Affiliation(s)
- Yuan-Xue Yang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rong-Hua Lin
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhuo Li
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ai-Yu Wang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Xue
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ai-Ling Duan
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Zhao
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jian-Hua Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
33
|
Ullah F, Gul H, Tariq K, Desneux N, Gao X, Song D. Functional analysis of cytochrome P450 genes linked with acetamiprid resistance in melon aphid, Aphis gossypii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104687. [PMID: 32980055 DOI: 10.1016/j.pestbp.2020.104687] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 05/15/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are highly conserved multifunctional enzymes that play crucial roles in insecticide resistance development. In this study, the molecular mechanisms of P450s in acetamiprid resistance development to melon aphid, Aphis gossypii was investigated. Acetamiprid resistant (32.64-fold resistance) population (Ace-R) of A. gossypii was established by continuous selection with acetamiprid for 24 generations. Quantitative Real Time PCR was carried out to analyze the expression of P450 genes in both acetamiprid resistant (Ace-R) and susceptible (Ace-S) strains. Result showed that nine genes (CYP6CY14, CYP6DC1, CYP6CZ1, CYP6DD1, CYP6CY5, CYP6CY9, CYP6DA1, CYP6CY18, and CYP6CY16) of CYP3 clade, four genes (CYP302A1, CYP315A1, CYP301A1, and CYP314A1) of CYP2 clade, two genes (CYP4CK1, CYP4G51) of CYP4 clade and three genes (CYP306A1, CYP305E1, CYP307A1) of mitochondrial clade (Mito clad) were significantly up-regulated, in Ace-R compared to Ace-S strain. Whilst CYP4CJ2 gene from (CYP4 clade) was significantly down-regulated in Ace-R strain. Furthermore, RNA interference-mediated knockdown of CYP6CY14, CYP6DC1, and CYP6CZ1 genes significantly increased the sensitivity of Ace-R strain to acetamiprid. Taken together, this study showed that P450 genes especially CYP6CY14, CYP6DC1 and CYP6CZ1 are potentially involved in acetamiprid resistance development in A. gossypii. This study could be useful to understand the molecular basis of acetamiprid resistance mechanism in A. gossypii.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kaleem Tariq
- Department of Agriculture Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan; Entomology and Nematology Department, Steinmetz Hall, University of Florida, Gainesville, FL 32611, USA; U.S. Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Wang K, Liu M, Wang Y, Song W, Tang P. Identification and functional analysis of cytochrome P450 CYP346 family genes associated with phosphine resistance in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104622. [PMID: 32711762 DOI: 10.1016/j.pestbp.2020.104622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/21/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Resistance to phosphine fumigation has been frequently reported in insect pests of stored products and remains one of the obstacles in controlling these pests, including Tribolium castaneum. In this study, six field populations of T. castaneum were collected from different localities in China. Bioassay data showed that SZ population was strongly resistant to phosphine, followed by moderate-resistance populations WL and SF and three susceptible populations JX, YN, and ML. In addition, synergism assays showed that piperonyl butoxide significantly increased the toxicity of phosphine in resistant population SZ. Furthermore, CYP346B subfamily genes, CYP346B1, CYP346B2, and CYP346B3, were significantly overexpressed in resistant populations. Expression of CYP346B1, CYP346B2, and CYP346B3 were significantly upregulated following exposure to phosphine. RNAi assays showed that depletions on the expression levels of CYP346B1, CYP346B2, and CYP346B3 resulted in an increase of susceptibility to phosphine in T. castaneum, respectively. Our data demonstrated that CYP346B subfamily genes in T. castaneum were associated with the resistance of phosphine. Moreover, the study also increased our understanding of the molecular basis of phosphine resistance in stored pest insects.
Collapse
Affiliation(s)
- Kangxu Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Manwen Liu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Yazhou Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Wei Song
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Peian Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
35
|
Chen A, Zhang H, Shan T, Shi X, Gao X. The overexpression of three cytochrome P450 genes CYP6CY14, CYP6CY22 and CYP6UN1 contributed to metabolic resistance to dinotefuran in melon/cotton aphid, Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104601. [PMID: 32527429 DOI: 10.1016/j.pestbp.2020.104601] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 05/27/2023]
Abstract
Dinotefuran, the third-generation neonicotinoid, has been applied against melon/cotton aphid Aphis gossypii Glover in China. The risk of resistance development, cross-resistance pattern and potential resistance mechanism of dinotefuran in A. gossypii were investigated. A dinotefuran-resistant strain of A. gossypii (DinR) with 74.7-fold resistance was established by continuous selection using dinotefuran. The DinR strain showed a medium level of cross resistance to thiamethoxam (15.2-fold), but no cross resistance to imidacloprid. The synergism assay indicated that piperonyl butoxide and triphenyl phosphate showed synergistic effects on dinotefuran toxicity to the DinR strain with a synergistic ratio of 8.3 and 2.5, respectively, while diethyl maleate showed no synergistic effect. The activities of cytochrome P450 monooxygenase and carboxylesterase were significantly higher in DinR strain than in susceptible strain (SS). Moreover, the gene expression results showed that CYP6CY14, CYP6CY22 and CYP6UN1 were significantly overexpressed in DinR strain compared with SS strain. The expression of CYP6CY14 was 5.8-fold higher in DinR strain than in SS strain. Additionally, the transcription of CYP6CY14, CYP6CY22 and CYP6UN1 in A. gossypii showed dose- and time-dependent responses to dinotefuran exposure. Furthermore, knockdown of CYP6CY14, CYP6CY22 and CYP6UN1 via RNA interference (RNAi) significantly increased mortality of A. gossypii, when A. gossypii was treated with dinotefuran. These results demonstrated the overexpression of CYP6CY14, CYP6CY22 and CYP6UN1 contributed to dinotefuran resistance in A. gossypii.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Huihui Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Tisheng Shan
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Lueke B, Douris V, Hopkinson JE, Maiwald F, Hertlein G, Papapostolou KM, Bielza P, Tsagkarakou A, Van Leeuwen T, Bass C, Vontas J, Nauen R. Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104583. [PMID: 32448413 DOI: 10.1016/j.pestbp.2020.104583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Insecticides of the tetronic/tetramic acid family (cyclic ketoenols) are widely used to control sucking pests such as whiteflies, aphids and mites. They act as inhibitors of acetyl-CoA carboxylase (ACC), a key enzyme for lipid biosynthesis across taxa. While it is well documented that plant ACCs targeted by herbicides have developed resistance associated with mutations at the carboxyltransferase (CT) domain, resistance to ketoenols in invertebrate pests has been previously associated either with metabolic resistance or with non-validated candidate mutations in different ACC domains. A recent study revealed high levels of spiromesifen and spirotetramat resistance in Spanish field populations of the whitefly Bemisia tabaci that was not thought to be associated with metabolic resistance. We confirm the presence of high resistance levels (up to >640-fold) against ketoenol insecticides in both Spanish and Australian B. tabaci strains of the MED and MEAM1 species, respectively. RNAseq analysis revealed the presence of an ACC variant bearing a mutation that results in an amino acid substitution, A2083V, in a highly conserved region of the CT domain. F1 progeny resulting from reciprocal crosses between susceptible and resistant lines are almost fully resistant, suggesting an autosomal dominant mode of inheritance. In order to functionally investigate the contribution of this mutation and other candidate mutations previously reported in resistance phenotypes, we used CRISPR/Cas9 to generate genome modified Drosophila lines. Toxicity bioassays using multiple transgenic fly lines confirmed that A2083V causes high levels of resistance to commercial ketoenols. We therefore developed a pyrosequencing-based diagnostic assay to map the spread of the resistance alleles in field-collected samples from Spain. Our screening confirmed the presence of target-site resistance in numerous field-populations collected in Sevilla, Murcia and Almeria. This emphasizes the importance of implementing appropriate resistance management strategies to prevent or slow the spread of resistance through global whitefly populations.
Collapse
Affiliation(s)
- Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece
| | - Jamie E Hopkinson
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Kyriaki-Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, 70013 Heraklion, Greece
| | - Pablo Bielza
- Department of Agricultural Engineering, Cartagena Polytechnical University, 30203 Cartagena, Spain
| | - Anastasia Tsagkarakou
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DEMETER", 70013 Heraklion, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Chris Bass
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany.
| |
Collapse
|
37
|
Pan Y, Wen S, Chen X, Gao X, Zeng X, Liu X, Tian F, Shang Q. UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104565. [PMID: 32448419 DOI: 10.1016/j.pestbp.2020.104565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic endogenous and exogenous compounds with sugars to produce water-soluble glycosides, playing an important role in insect endobiotic regulation and xenobiotic detoxification. In this study, two UGT-inhibitors, sulfinpyrazone and 5-nitrouracil, significantly increased spirotetramat toxicity against third instar nymphs of resistant Aphis gossypii, whereas there were no synergistic effects in apterous adult aphids, suggesting UGT involvement in spirotetramat resistance in cotton aphids. Furthermore, the UHPLC-MS/MS was employed to determine the content of spirotetramat and its four metabolites (S-enol, S-glu, S-mono, S-keto) in the honeydew of resistant cotton aphids under spirotetramat treatment. No residual spirotetramat was detected in the honeydew, while its four metabolites were detected at a S-enol: S-glu: S-mono: S-keto ratio of 69.30: 6.54: 1.44: 1.00. Therefore, glycoxidation plays a major role in spirotetramat inactivation and excretion in resistant aphids. Compared with the susceptible strain, the transcriptional levels of UGT344M2 were significantly upregulated in nymphs and adults of the resistant strain. RNA interference of UGT344M2 dramatically increased spirotetramat toxicity in nymphs, but no such effect were found in the resistant adult aphids. Overall, UGT-mediated glycoxidation were found to be involved in spirotetramat resistance. The suppression of UGT344M2 significantly increased the sensitivity of resistant nymphs to spirotetramat, suggesting that UGT344M2 upregulation might be associated with spirotetramat detoxification. This study provides an overview of the involvement of metabolic factors, UGTs, in the development of spirotetramat resistance.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
38
|
Wang C, Xu X, Huang Y, Yu H, Li H, Wan Q, Pan B. Transcription profiling and characterization of Dermanyssus gallinae cytochrome P450 genes involved in beta-cypermethrin resistance. Vet Parasitol 2020; 283:109155. [PMID: 32534384 DOI: 10.1016/j.vetpar.2020.109155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/29/2023]
Abstract
The poultry red mite, Dermanyssus gallinae, poses a significant threat to hen health and poultry husbandry. D. gallinae has typically been controlled using synthetic acaricides, like pyrethroids, but increased resistance to pyrethroids has been found in poultry red mite populations worldwide. Pyrethroids resistance in arthropods has been associated to cytochrome P450 monooxygenases (P450s), a main member of a group of detoxification enzymes. To explore the potential contribution of P450s to the resistance to pyrethroids in D. gallinae, we first identified and then characterized four P450s genes. Phylogenetic analysis revealed that the four P450s genes in D. gallinae belong to three different clades, with two in the CYP-6, one in the CYP-4 and one in the CYP-2. All four P450s genes were expressed in a similar pattern in D. gallinae at different stages of development, and showed high expression in the adult stage, indicating that they played a role in mite development. Simultaneously, constitutive over-expression of Deg-CYP-3, a clade associated with pesticide metabolism, was detected in a resistant strain (RS) compared with a susceptible strain (SS). When exposed to beta-cypermethrin, the four P450s gene transcripts in the RS strain increased in a time-dependent manner. In particular, Deg-CYP-3 expression increased 5-fold compared to gene expression in control group at 12 h, although the four P450s genes were not induced in the SS strain. Our results show the first insights into the molecular characteristics of P450s genes in D. gallinae. The elevated presence of P450s genes in the RS strain, indicated by their constitutive over-expression and their inducible expression, suggests that they confer resistance to beta-cypermethrin, and are involved in its detoxification.
Collapse
Affiliation(s)
- Chuanwen Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaolin Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Huang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - He Yu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiang Wan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
39
|
Wang R, Qu C, Wang Z, Yang G. Cross-resistance, biochemical mechanism and fitness costs of laboratory-selected resistance to pyridalyl in diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:8-13. [PMID: 31973873 DOI: 10.1016/j.pestbp.2019.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Pyridalyl belongs to one novel type of insecticides with uncertain mode of action, and it showed significant efficacy against Plutella xylostella, which has been considered as one notorious insect pest in the world. To characterize pyridalyl resistance in P. xylostella, one susceptible strain XY-PS and one laboratory-selected pyridalyl-resistant strain XY-PR (34.4-fold) were used to establish cross-resistance patterns, and no cross-resistance to a series of popular insecticides in the XY-PR was observed. Activities of metabolic enzymes were measured and results showed that there was an approximate 5.2-fold significant increase in cytochrome P450 monooxygenase (P450) and no significant differences in glutathione S-transferase (GST) and esterase between XY-PR and XY-PS, indicating that the enhanced activity of P450 could be dominant mechanism of detoxification. Furthermore, expression profiles of three previously published resistance-associated P450 genes were established but no one was significantly different expression. Besides, fitness costs associated with pyridalyl resistance was observed in XY-PR, and it had been found that survival rate of larvae and hatchability were reduced in XY-PR. Then, by calculating the net replacement rate (R0) of XY-PS, the fitness of XY-PR was established as 0.64. In conclusion, above results provided helpful data and information for studying further on mechanism of pyridalyl resistance, and will be conductive to design rational strategies of resistance management in P. xylostella.
Collapse
Affiliation(s)
- Ran Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cheng Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhenyu Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Guangfu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China..
| |
Collapse
|
40
|
Meng X, Zhang N, Yang X, Miao L, Jiang H, Ji C, Xu B, Qian K, Wang J. Sublethal effects of chlorantraniliprole on molting hormone levels and mRNA expressions of three Halloween genes in the rice stem borer, Chilo suppressalis. CHEMOSPHERE 2020; 238:124676. [PMID: 31473531 DOI: 10.1016/j.chemosphere.2019.124676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
While sublethal effects of insecticide on insect development have been widely studied, the underlying mechanisms remain elusive. Our previous studies revealed that sublethal concentrations of chlorantraniliprole significantly increased the juvenile hormone levels and resulted in both prolonged developmental time and reduced fecundity in Chilo suppressalis. In the present study, we evaluated the sublethal effects of chlorantraniliprole on molting hormone (MH) levels and mRNA expressions of three Halloween genes including CsCYP307A1, CsCYP306A1 and CsCYP314A1 in C. suppressalis. The results showed that the MH levels in different developmental stages of C. suppressalis were decreased after exposure to LC10 and LC30 of chlorantraniliprole. However, analysis of temporal expression profiles revealed that the mRNA levels of three Halloween genes were not closely correlated with the ecdysteroid titers in C. suppressalis. Notably, the transcript levels of CsCYP307A1, CsCYP306A1 and CsCYP314A1 were induced after treatment with sublethal concentrations of chlorantraniliprole in specific developmental stages. These results indicated that chlorantraniliprole had adverse effects on insect MH biosynthesis, and in addition to the involvement in MH biosynthesis, CsCYP307A1, CsCYP306A1 and CsCYP314A1 may also play important roles in the detoxification metabolism of chlorantraniliprole in C. suppressalis.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lijun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Caihong Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Beibei Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
41
|
Li Z, Davis JA, Swale DR. Chemical inhibition of Kir channels reduces salivary secretions and phloem feeding of the cotton aphid, Aphis gossypii (Glover). PEST MANAGEMENT SCIENCE 2019; 75:2725-2734. [PMID: 30785236 DOI: 10.1002/ps.5382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The unique feeding biology of aphids suggests novel insecticide targets are likely to exist outside of the nervous system. We therefore aimed to directly test the hypothesis that pharmacological inhibition of inward rectifier potassium (Kir) channels would result in salivary gland failure and reduced sap ingestion by the cotton aphid, Aphis gossypii. RESULTS The Kir inhibitors VU041 and VU590 reduced the length of the salivary sheath in a concentration dependent manner, indicating that the secretory activity of the salivary gland is reduced by Kir inhibition. Next, we employed the electrical penetration graph (EPG) technique to measure the impact Kir inhibition has to aphid sap feeding and feeding biology. Data show that foliar application of VU041 eliminated the E1 and E2 phases (phloem feeding) in all aphids studied. Contact exposure to VU041 after foliar applications was found to be toxic to A. gossypii at 72 and 96 h post-infestation, indicating mortality is likely a result of starvation and not acute toxicity. Furthermore, VU041 exposure significantly altered the feeding behavior of aphids, which is toxicologically relevant for plant-virus interactions. CONCLUSION These data suggest Kir channels are critical for proper function of aphid salivary glands and the reduced plant feeding justifies future work in developing salivary gland Kir channels as novel mechanism aphicides. Furthermore, products like VU041 would add to a very minor arsenal of compounds that simultaneously reduce vector abundance and alter feeding behavior. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Jeffrey A Davis
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| |
Collapse
|
42
|
Tengfei L, Yao W, Lixia Z, Yongyu X, Zhengqun Z, Wei M. Sublethal Effects of Four Insecticides on the Seven-Spotted Lady Beetle (Coleoptera: Coccinellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2177-2185. [PMID: 31140572 DOI: 10.1093/jee/toz146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 06/09/2023]
Abstract
To further develop integrated pest management (IPM) strategies against two sucking insect pests, Aleurocanthus spiniferus (Quaintanca) (Hemiptera: Aleyrodidae) and Toxoptera aurantii Boyer (Hemiptera: Aphididae), in Chinese tea plantations, it is important to evaluate the effects of insecticides on biological control agents, such as the seven-spot lady beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae). Therefore, we tested the toxicity and sublethal effects of spirotetramat, clothianidin, lambda-cyhalothrin, and bifenthrin on C. septempunctata. The side effects of the active ingredients of the insecticides were evaluated with residual contact tests on the larvae of C. septempunctata in the laboratory. Spirotetramat and clothianidin exhibited lower lethality to C. septempunctata as shown by the higher LC50 values and had higher selectivity for A. spiniferus and T. aurantii based on the selective toxicity ratios being superior to other tested insecticides. Spirotetramat also did not affect survival, longevity, fecundity, and egg hatching of C. septempunctata. Clothianidin and bifenthrin prolonged the duration of larval development stages of C. septempunctata obviously. Clothianidin at >2.5 mg/liter, lambda-cyhalothrin at >0.03 mg/liter, and bifenthrin at >0.125 mg/liter significantly reduced the survival and pupation rates of C. septempunctata larvae. Furthermore, spirotetramat at 3.125 mg/liter was harmless (IOBC class 1) to larvae of this coccinellid species. Based on the results, spirotetramat was innocuous to C. septempunctata larvae compared with clothianidin, lambda-cyhalothrin, and bifenthrin. Therefore, spirotetramat might be incorporated into IPM programs in combination with C. septempunctata for control of A. spiniferus and T. aurantii in the tea plantations.
Collapse
Affiliation(s)
- Liu Tengfei
- Shandong Institute of Pomology, Tai'an, China
| | - Wang Yao
- Shandong Agricultural University, Tai'an, China
| | - Zhang Lixia
- Shandong Agricultural University, Tai'an, China
| | - Xu Yongyu
- Shandong Agricultural University, Tai'an, China
| | | | - Mu Wei
- Shandong Agricultural University, Tai'an, China
| |
Collapse
|
43
|
Ma K, Tang Q, Zhang B, Liang P, Wang B, Gao X. Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:204-210. [PMID: 31153470 DOI: 10.1016/j.pestbp.2019.03.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Sulfoxaflor is the first commercially available sulfoximine insecticide, which exhibits highly efficacy against many sap-feeding insect pests and has been applied as an alternative insecticide against cotton aphid in China. This study was conducted to investigate the risk of resistance development, the cross-resistance pattern and the potential resistance mechanisms of sulfoxaflor in Aphis gossypii. A colony (SulR strain) of A. gossypii with 245-fold resistance, originated from Xinjiang field population, was established by continuous selection using sulfoxaflor. The SulR strain has developed cross-resistance to imidacloprid (80.8-fold), acetamiprid (19.3-fold), thiamethoxam (10.0-fold), and flupyradifurone (107.5-fold), while no cross-resistance was detected to malathion, omethoate, bifenthrin, methomyl, and carbosulfan. Piperonyl butoxide and S, S, S-tributyl phosphorotrithioate could significantly increase the toxicity of sulfoxaflor to the SulR strain by 5.99- and 4.18-fold, respectively, whereas no synergistic effect with diethyl maleate was observed. The activities of P450s and carboxylesterase were significantly higher in the SulR strain than that in the SS strain. Further gene expression determination demonstrated that nine P450 genes were significantly increased in SulR strain and suppression the expression of CYP6CY13 and CYP6CY19 by RNAi significantly increased the susceptibility of SulR adult aphids to sulfoxaflor. These results demonstrated that the enhancing detoxification by cytochrome P450 monooxygenase may be involved in A.gossypii resistance to sulfoxaflor.
Collapse
Affiliation(s)
- Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qiuling Tang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Baizhong Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Li F, Ma K, Liu Y, Zhou JJ, Gao X. Characterization of the Cytochrome P450 Gene CYP305A1 of the Cotton Aphid (Hemiptera: Aphididae) and Its Responsive Cis-Elements to Plant Allelochemicals. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1365-1371. [PMID: 30768168 DOI: 10.1093/jee/toz021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Insect cytochrome P450 monooxygenases play an important role in plant allelochemical detoxification. In this study, a full-length gene CYP305A1 of the P450 Clan 2 family was cloned from Aphis gossypii Glover, and its promoter was identified and characterized. The transcript level of CYP305A1 and its promoter activity were significantly induced by two plant allelochemicals, gossypol and 2-tridecanone. Furthermore, the 5'-end promoter region from -810 to +62 bp was demonstrated to be essential for basal transcriptional activity of CYP305A1, and the promoter region from -810 to -581 bp was shown as an essential plant allelochemical responsive element and had a cis-element 5'-CACACTA-3' as the binding site of aryl hydrocarbon receptor. Interestingly, there was an identical overlapping region of 1,094 bp between CYP305A1 promoter and the venom protease gene. When the expression of CYP305A1 gene was knocked down by RNA interference with CYP305A1 dsRNA, the expression of the venom protease gene was decreased. However, the knockdown of the expression of the venom protease gene did not affect the CYP305A1 expression. These results provide important insights for understanding the functions of P450 genes and the regulatory mechanism of P450 gene expressions in the resistance of Aphis gossypii Glover to plant allelochemicals.
Collapse
Affiliation(s)
- Fen Li
- Department of Entomology, China Agricultural University, Beijing, China
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jing-Jiang Zhou
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
- College of Plant Science, Jilin University, Changchun, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Quan Q, Hu X, Pan B, Zeng B, Wu N, Fang G, Cao Y, Chen X, Li X, Huang Y, Zhan S. Draft genome of the cotton aphid Aphis gossypii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:25-32. [PMID: 30590189 DOI: 10.1016/j.ibmb.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 05/15/2023]
Abstract
The cotton aphid Aphis gossypii Glover is a worldwide agricultural pest that feeds on cotton, melon, and other landscape plants, causing a high level of economic loss. In addition to the common characteristics shared with other aphids, Ap. gossypii has evolved multiple biotypes that present substantial differences in host adaption. These intriguing biological features are of interest from both a fundamental and applied perspective. However, the molecular studies of Ap. gossypii have been restrained by the lack of a reference genome. Furthermore, in order to establish a platform for the development of novel and sustainable control methods, it is necessary to generate genomic resources for Ap. gossypii. Here, we present a 294 Mb draft genome sequence of Ap. gossypii, which consists of 4,724 scaffolds with an N50 size of 438 kb. Compared to other aphid species with published genomes, Ap. gossypii presents the most compact genome size. A total of 14,694 protein-coding genes were predicted and annotated in the consensus gene set, 98.03% of CEGMA genes and 93.5% of BUSCO genes were captured respectively. Genome-wide selection analyses revealed that significantly evolving pathways in the genus Aphis are related to biological processes of detoxification, steroid biosynthesis, and ethylbenzene degradation. The acquisition of the genome of Ap. gossypii makes it possible to understand the molecular mechanism of intricate biological traits of this species, and will further facilitate the study of aphid evolution.
Collapse
Affiliation(s)
- Qingmei Quan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao Hu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bohu Pan
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ningning Wu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gangqi Fang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanghui Cao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
46
|
Bielza P, Moreno I, Belando A, Grávalos C, Izquierdo J, Nauen R. Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. PEST MANAGEMENT SCIENCE 2019; 75:45-52. [PMID: 30009510 DOI: 10.1002/ps.5144] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Spiromesifen and spirotetramat are novel insecticides belonging to the chemical class of tetronic and tetramic acid derivatives. Both compounds have proven very effective against field populations of Bemisia tabaci around the world. However, several growers have recently reported control failures in Spain. Therefore, we studied the resistance level to these insecticides in field populations reporting control failures. In addition, we further selected a spiromesifen-resistant strain to study the mechanisms involved and the cross-resistance pattern. RESULTS All the new field populations collected were significantly more resistant to spiromesifen than the susceptible population, confirming the presence of resistance. Several populations showing high levels of resistance to spiromesifen (>10 000-fold), exhibited cross-resistance to spirotetramat, but resistance ratios were much lower (130-fold). The spiromesifen laboratory-selected strain was very resistant to spiromesifen (LC50 > 30 000 mg L-1 ) and spirotetramat (LC50 = 368.1 mg L-1 ), but lacks any cross-resistance to other insecticides, thus providing options for resistance management. None of the synergists tested significantly restored the susceptibility of B. tabaci to either spiromesifen or spirotetramat. CONCLUSION This is the first report of resistance to spiromesifen and spirotetramat in B. tabaci, and such high levels of resistance have not been reported before in any field collected pest. Our results suggest that enhanced detoxification does not critically contribute to resistance to ketoenols in B. tabaci. The obvious lack of a metabolic resistance mechanism either suggests a target-site resistance mechanism or a metabolic mechanism insensitive to the synergists tested. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pablo Bielza
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Inmaculada Moreno
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Ana Belando
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Carolina Grávalos
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | | | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, Monheim, Germany
| |
Collapse
|