1
|
Muhammed Y, De Sabatino M, Lazenby RA. The Heterogeneity in the Response of A549 Cells to Toyocamycin Observed Using Hopping Scanning Ion Conductance Microscopy. J Phys Chem B 2025. [PMID: 40338629 DOI: 10.1021/acs.jpcb.4c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Scanning ion conductance microscopy (SICM) is a noninvasive topographic mapping technique used in imaging live cells, unlike electron microscopy and certain applications of fluorescence microscopy, which can disrupt cell integrity. In this study, we used SICM to track the morphological changes of the same A549 cells to uncover the cell-to-cell heterogeneity in their response to the drug. We found that toyocamycin (TOY) induced rapid reorganization of the actin cytoskeleton in A549 cells, causing them to become circular, irregular, or ellipsoidal in shape. Mapping of the dynamic changes in morphology revealed membrane blebbing and a significant decrease in volume over time. Using high-throughput SICM, we mapped the morphology of multiple single cells treated with TOY, which revealed that A549 showed characteristics of apoptosis and necrosis. The drug treatment does not significantly change the average root-mean-square (RMS) roughness of the cells. However, the drug leads to an increase in membrane height, possibly indicating early apoptotic changes. Plotting the individual RMS roughness of the cells showed a cell with an increase in roughness and the presence of pores, which is also an indication of necrosis behavior. Our results demonstrate that SICM is an effective technique for revealing the evolution of heterogeneity in single cells in their responses to anticancer drugs over time.
Collapse
Affiliation(s)
- Yusuf Muhammed
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Mia De Sabatino
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
2
|
Park B, Kim SH, Yu SN, Kim KY, Jeon H, Ahn SC. Exploring a Novel Role of Glycerol Kinase 1 in Prostate Cancer PC-3 Cells. Biomolecules 2024; 14:997. [PMID: 39199385 PMCID: PMC11352368 DOI: 10.3390/biom14080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Clinically, prostate cancer is infamous for its histological and molecular heterogeneity, which causes great challenges to pinpoint therapy and pharmaceutical development. To overcome these difficulties, researchers are focusing on modulating tumor microenvironment and immune responses in addition to genetic alteration and epigenetic regulation. Here, we aimed to identify potential biomarkers or modulators of prostate cancer by investigating genes specifically altered in prostate cancer cells treated with established anti-cancer agents. Glycerol kinase 1 (GK1) is phosphotransferase encoded on the X chromosome, is associated with the synthesis of triglycerides and glycerophospholipids, and has been mainly studied for X-linked metabolic disorder GK deficiency (GKD). Interestingly, our DNA microarray analysis showed that several anti-cancer agents highly induced the expression of GK1, especially GK1a and GK1b isoforms, in human prostate cancer PC-3 cells. To elucidate the relationship between GK1 and cancer cell death, a human GK1b-specific expression vector was constructed and transfected into the PC-3 cells. Surprisingly, GK1b overexpression dramatically reduced cell viability and significantly accelerated apoptotic cell death. These findings suggest that GK1b may serve as a promising modulator and biomarker of cell death in prostate cancer, offering potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Bobae Park
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; (S.-N.Y.); (H.J.)
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Sun-Nyoung Yu
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; (S.-N.Y.); (H.J.)
| | - Kwang-Youn Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea;
| | - Hoyeon Jeon
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; (S.-N.Y.); (H.J.)
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; (S.-N.Y.); (H.J.)
| |
Collapse
|
3
|
Grębowski R, Saluk J, Bijak M, Szemraj J, Wigner-Jeziorska P. The role of SOD2 and NOS2 genes in the molecular aspect of bladder cancer pathophysiology. Sci Rep 2023; 13:14491. [PMID: 37660159 PMCID: PMC10475080 DOI: 10.1038/s41598-023-41752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Bladder cancer (BC) is a severe health problem of the genitourinary system and is characterised by a high risk of recurrence. According to the recent GLOBOCAN report, bladder cancer accounts for 3% of diagnosed cancers in the world, taking 10th place on the list of the most common cancers. Despite numerous studies, the full mechanism of BC development remains unknown. Nevertheless, precious results suggest a crucial role of oxidative stress in the development of BC. Therefore, this study explores whether the c. 47 C > T (rs4880)-SOD2, (c. 1823 C > T (rs2297518) and g.-1026 C > A (rs2779249)-NOS2(iNOS) polymorphisms are associated with BC occurrence and whether the bladder carcinogenesis induces changes in SOD2 and NOS2 expression and methylation status in peripheral blood mononuclear cells (PBMCs). In this aim, the TaqMan SNP genotyping assay, TaqMan Gene Expression Assay, and methylation-sensitive high-resolution melting techniques were used to genotype profiling and evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that heterozygote of the g.-1026 C > A SNP was associated with a decreased risk of BC. Moreover, we detected that BC development influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs. Concluding, our results confirmed that oxidative stress, especially NOS2 polymorphisms and changes in the expression and methylation of the promoters of SOD2 and NOS2 are involved in the cancer transformation initiation of the cell urinary bladder.
Collapse
Affiliation(s)
- Radosław Grębowski
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland, Mazowiecka 6/8, 90-001
- Department of Urology, Provincial Integrated Hospital in Plock, Plock, Poland, Medyczna 19, 09-400
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland, Mazowiecka 6/8, 90-001
| | - Paulina Wigner-Jeziorska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236.
| |
Collapse
|
4
|
Handle F, Puhr M, Gruber M, Andolfi C, Schäfer G, Klocker H, Haybaeck J, De Wulf P, Culig Z. The Oncogenic Protein Kinase/ATPase RIOK1 Is Up-Regulated via the c-myc/E2F Transcription Factor Axis in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1284-1297. [PMID: 37301535 DOI: 10.1016/j.ajpath.2023.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
The atypical protein kinase/ATPase RIO kinase (RIOK)-1 is involved in pre-40S ribosomal subunit production, cell-cycle progression, and protein arginine N-methyltransferase 5 methylosome substrate recruitment. RIOK1 overexpression is a characteristic of several malignancies and is correlated with cancer stage, therapy resistance, poor patient survival, and other prognostic factors. However, its role in prostate cancer (PCa) is unknown. In this study, the expression, regulation, and therapeutic potential of RIOK1 in PCa were examined. RIOK1 mRNA and protein expression were elevated in PCa tissue samples and correlated with proliferative and protein homeostasis-related pathways. RIOK1 was identified as a downstream target gene of the c-myc/E2F transcription factors. Proliferation of PCa cells was significantly reduced with RIOK1 knockdown and overexpression of the dominant-negative RIOK1-D324A mutant. Biochemical inhibition of RIOK1 with toyocamycin led to strong antiproliferative effects in androgen receptor-negative and -positive PCa cell lines with EC50 values of 3.5 to 8.8 nmol/L. Rapid decreases in RIOK1 protein expression and total rRNA content, and a shift in the 28S/18S rRNA ratio, were found with toyocamycin treatment. Apoptosis was induced with toyocamycin treatment at a level similar to that with the chemotherapeutic drug docetaxel used in clinical practice. In summary, the current study indicates that RIOK1 is a part of the MYC oncogene network, and as such, could be considered for future treatment of patients with PCa.
Collapse
Affiliation(s)
- Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Chiara Andolfi
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria; Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter De Wulf
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Zhu Y, Wang S, Niu P, Chen H, Zhou J, Jiang L, Li D, Shi D. Raptor couples mTORC1 and ERK1/2 inhibition by cardamonin with oxidative stress induction in ovarian cancer cells. PeerJ 2023; 11:e15498. [PMID: 37304865 PMCID: PMC10257395 DOI: 10.7717/peerj.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background A balance on nutrient supply and redox homeostasis is required for cell survival, and increased antioxidant capacity of cancer cells may lead to chemotherapy failure. Objective To investigate the mechanism of anti-proliferation of cardamonin by inducing oxidative stress in ovarian cancer cells. Methods After 24 h of drug treatment, CCK8 kit and wound healing test were used to detect cell viability and migration ability, respectively, and the ROS levels were detected by flow cytometry. The differential protein expression after cardamonin administration was analyzed by proteomics, and the protein level was detected by Western blotting. Results Cardamonin inhibited the cell growth, which was related to ROS accumulation. Proteomic analysis suggested that MAPK pathway might be involved in cardamonin-induced oxidative stress. Western blotting showed that cardamonin decreased Raptor expression and the activity of mTORC1 and ERK1/2. Same results were observed in Raptor KO cells. Notably, in Raptor KO cells, the effect of cardamonin was weakened. Conclusion Raptor mediated the function of cardamonin on cellular redox homeostasis and cell proliferation through mTORC1 and ERK1/2 pathways.
Collapse
|
6
|
Song N, Song Y, Hu B, Liu X, Yu X, Zhou H, Long J, Yu Z. Persistent Endoplasmic Reticulum Stress Stimulated by Peptide Assemblies for Sensitizing Cancer Chemotherapy. Adv Healthc Mater 2023; 12:e2202039. [PMID: 36353887 DOI: 10.1002/adhm.202202039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Pharmacological targeting of endoplasmic reticulum (ER) stress represents one of important methods for disease therapy, which, however, is significantly suppressed by the ER homeostatic processe. Herein, a proof-of-concept strategy is reported for persistent stimulation of ER stress via preventing ER stress adaptation by utilizing multifunctional peptide assemblies. The strategy is established via creation of peptide assemblies with ER-targeting and chaperone glucose-regulated protein 78 (GRP78)-inhibiting functions. The peptides assemblies form well-defined nanofibers that are retrieved by ER organelles in human cervical cancer cell. The underlying mechanism studies unravel that the ER-accumulated peptide assemblies simultaneously stimulate ER stress and inhibit GRP78 refolding activity and thereby promoting endogenous protein aggregation. Combining the internalized peptide assemblies with the induced protein aggregates leads to the persistent stimulation of ER stress. The persistent ER stress induced by the peptide assemblies bestows their application in sensitizing cancer chemotherapy. Both in vitro and in vivo results confirm the enhanced cytotoxicity of drug toyocamycin against HeLa cells by peptide assemblies, thus efficiently inhibiting in vivo tumor growth. The strategy reported here discloses the fundamental keys for efficient promotion of ER stress, thus providing the guidance for development of ER-targeting-assisted cancer chemotherapy in the future.
Collapse
Affiliation(s)
- Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanqiu Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Binbin Hu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiunan Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
7
|
Palacka P, Kucharská J, Obertová J, Rejleková K, Slopovský J, Mego M, Světlovská D, Kollárik B, Mardiak J, Gvozdjáková A. Changes in CoQ 10/Lipids Ratio, Oxidative Stress, and Coenzyme Q 10 during First-Line Cisplatin-Based Chemotherapy in Patients with Metastatic Urothelial Carcinoma (mUC). Int J Mol Sci 2022; 23:ijms232113123. [PMID: 36361913 PMCID: PMC9657286 DOI: 10.3390/ijms232113123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
Abstract
Oxidative stress plays an important role in cancer pathogenesis, and thiobarbituric acid-reactive substance level (TBARS)—a parameter of lipid peroxidation—has prognostic significance in chemotherapy-naive patients with metastatic urothelial carcinoma (mUC). However, the effect of cisplatin (CDDP)-based chemotherapy on oxidative stress, coenzyme Q10, and antioxidants remains unknown. The objective of this prospective study was to determine possible changes in the CoQ10 (coenzyme Q10)/lipids ratio, antioxidants (α-tocopherol, γ-tocopherol, β-carotene, CoQ10), total antioxidant status (TAS), and TBARS in plasma at baseline and during first-line chemotherapy based on CDDP in mUC subjects. In this prospective study, 63 consecutive patients were enrolled. The median age was 66 years (range 39−84), performance status according to the Eastern Cooperative Oncology Group (ECOG) was 2 in 7 subjects (11.1%), and visceral metastases were present in 31 (49.2%) patients. Plasma antioxidants were determined by HPLC and TAS and TBARS spectrophotometrically. After two courses of chemotherapy, we recorded significant enhancements compared to baseline for total cholesterol (p < 0.0216), very low-density lipoprotein (VLDL) cholesterol (p < 0.002), triacylglycerols (p < 0.0083), α-tocopherol (p < 0.0044), and coenzyme Q10-TOTAL (p < 0.0001). Ratios of CoQ10/total cholesterol, CoQ10/HDL-cholesterol, and CoQ10/LDL-cholesterol increased during chemotherapy vs. baseline (p < 0.0048, p < 0.0101, p < 0.0032, respectively), while plasma TBARS declined (p < 0.0004). The stimulation of antioxidants could be part of the defense mechanism during CDDP treatment. The increased index of CoQ10-TOTAL/lipids could reflect the effect of CDDP protecting lipoproteins from peroxidation.
Collapse
Affiliation(s)
- Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
- Correspondence:
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of the 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Jana Obertová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Katarína Rejleková
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Ján Slopovský
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Daniela Světlovská
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Boris Kollárik
- Department of Urology, University Hospital in Bratislava, 851 07 Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Anna Gvozdjáková
- Pharmacobiochemical Laboratory of the 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|
8
|
Shi Z, Gao Y, Feng L, Tian W, Dou Z, Liu C, Liu J, Xu Y, Wang Y, Yan J, Wu Q, Li J, Yang L, Zhang Z, Yang J, Qi Z. TR35 Exerts Anti-tumor Effects by Modulating Mitogen-Activated Protein Kinase and STAT3 Signaling in Lung Cancer Cells. Front Cell Dev Biol 2021; 9:723346. [PMID: 34760885 PMCID: PMC8573214 DOI: 10.3389/fcell.2021.723346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
Cancer is a complex disease extremely dependent on its microenvironment and is highly regulated by a variety of stimuli inside and outside the cell. Evidence suggests that active camel whey fraction (TR35) confer anti-tumor effects in non-small cell lung cancer (NSCLC). However, its exact mechanisms remain elusive. Here, we investigated the mechanisms underlying suppression of NSCLC cell growth and proliferation by TR35. Treatment of A549 and H1299 cells with TR35 suppressed their growth and enhanced apoptosis, as revealed by CCK-8, colony formation and flow cytometric analyses. We find that TR35 suppresses tumor growth in a xenograft nude mouse model without losses in body weight. RNA-seq and KEGG pathway analyses showed that the DEGs were enriched in mitogen-activated protein kinase (MAPK) and Jak-STAT signaling pathways. After test the key factors’ activity associated with these pathways by Immunohistochemical (IHC) staining and western blotting, the activation of JNK phosphorylation and inhibition of p38 and STAT3 phosphorylation was observed both in TR35 treated lung cancer cell and tumor tissue. Taken together, these results showed that TR35 play a significant role in the NSCLC progression in the tumor microenvironment via MAPK and Jak-STAT signaling, highlighting TR35 as a potential therapeutic agent against lung cancer.
Collapse
Affiliation(s)
- Zhiyong Shi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Wencong Tian
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zhihua Dou
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Chen Liu
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Qiang Wu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, School of Tropical Medicine and Laboratory Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhaocai Zhang,
| | - Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Jie Yang,
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Zhi Qi,
| |
Collapse
|
9
|
Shen D, Lu Y, Li G, Hu M, Li S, Ju H, Zhang M, Wang X. Mechanism of neutrophil extracellular traps generation and their role in trophoblasts apoptosis in gestational diabetes mellitus. Cell Signal 2021; 88:110168. [PMID: 34634453 DOI: 10.1016/j.cellsig.2021.110168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic syndrome occurring in pregnant women and increases the risk of placental dysplasia. Neutrophil extracellular traps (NETs) may play a critical role in placental dysplasia. NETosis (neutrophil cell death by NET release) depends on NADPH/ROS pathway. In view of the adiponectin which is widely believed to be reduced in GDM patients suppresses NADPH oxidase and ROS generation of neutrophil. We speculate that increased NET release is associated with hypoadiponectinemia. Trophoblast apoptosis is significantly increased in GDM patients, but it is not clear whether NETs promotes cell apoptosis. This study aims to reveal the mechanism of Neutrophil Extracellular Traps generation and their role in trophoblast apoptosis in Gestational Diabetes Mellitus. We investigated the generation of NETs by cell-free DNA (cf-DNA) quantification, live-cell imaging, and reactive oxygen species (ROS) measurement. ERK1/2 and p38 MAPK signalling pathway proteins were detected by western blotting. The Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and western blotting were performed to explore the effects of NETs on trophoblast apoptosis. We found that adiponectin inhibited NET release by suppressing ROS production, and p38 MAPK and ERK1/2 proteins were involved in the process. Further, NETs promoted trophoblast apoptosis by activating the ROS-dependent mitochondrial pathway, which is mediated by ERK1/2 signalling. The current study demonstrated that hypoadiponectinemia is the cause of NETs formation and NETs promoting trophoblast apoptosis.
Collapse
Affiliation(s)
- Di Shen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Street, Jinan, Shandong 250021, China; Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Shandong Provincial, Cheeloo College of Medicine, Shandong University, 238 Jingshi East Road, Jinan, Shandong 250014, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Street, Jinan, Shandong 250021, China
| | - Guangzhen Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua West Road, 251000, Jinan, China
| | - Min Hu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Street, Jinan, Shandong 250021, China
| | - Shanling Li
- Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Shandong Provincial, Cheeloo College of Medicine, Shandong University, 238 Jingshi East Road, Jinan, Shandong 250014, China
| | - Hui Ju
- Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Shandong Provincial, Cheeloo College of Medicine, Shandong University, 238 Jingshi East Road, Jinan, Shandong 250014, China
| | - Meihua Zhang
- The Laboratory of Placenta-Related Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, 238 Jingshi East Road, Jinan, Shandong 250014, China
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Street, Jinan, Shandong 250021, China; Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Shandong Provincial, Cheeloo College of Medicine, Shandong University, 238 Jingshi East Road, Jinan, Shandong 250014, China; The Laboratory of Placenta-Related Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, 238 Jingshi East Road, Jinan, Shandong 250014, China.
| |
Collapse
|
10
|
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int J Mol Sci 2021; 22:ijms22094483. [PMID: 33923108 PMCID: PMC8123426 DOI: 10.3390/ijms22094483] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
In 2018, 550,000 people were diagnosed with bladder cancer (BC), of which nearly 200,000 people died. Moreover, men are 4 times more likely than women to be diagnosed with BC. The risk factors include exposure to environmental and occupational chemicals, especially tobacco smoke, benzidine and genetic factors. Despite numerous studies, the molecular basis of BC development remains unclear. A growing body of evidence suggests that inflammation, oxidant-antioxidant imbalance and angiogenesis disorders may play a significant role in the development and progression of bladder cancer. The patients with bladder cancer were characterised by an increased level of reactive oxygen species (ROS), the products of lipid peroxidation, proinflammatory cytokines and proangiogenic factors as compared to controls. Furthermore, it was shown that polymorphisms localised in genes associated with these pathways may modulate the risk of BC. Interestingly, ROS overproduction may induce the production of proinflammatory cytokines, which finally activated angiogenesis. Moreover, the available literature shows that both inflammation and oxidative stress may lead to activation of angiogenesis and tumour progression in BC patients.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-85; Fax: +48-42-635-44-84
| | - Radosław Grębowski
- Department of Urology, Provincial Integrated Hospital in Plock, 09-400 Plock, Poland;
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
11
|
The Structure, Activation and Signaling of IRE1 and Its Role in Determining Cell Fate. Biomedicines 2021; 9:biomedicines9020156. [PMID: 33562589 PMCID: PMC7914947 DOI: 10.3390/biomedicines9020156] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Inositol-requiring enzyme type 1 (IRE1) is a serine/threonine kinase acting as one of three branches of the Unfolded Protein Response (UPR) signaling pathway, which is activated upon endoplasmic reticulum (ER) stress conditions. It is known to be capable of inducing both pro-survival and pro-apoptotic cellular responses, which are strictly related to numerous human pathologies. Among others, IRE1 activity has been confirmed to be increased in cancer, neurodegeneration, inflammatory and metabolic disorders, which are associated with an accumulation of misfolded proteins within ER lumen and the resulting ER stress conditions. Emerging evidence suggests that genetic or pharmacological modulation of IRE1 may have a significant impact on cell viability, and thus may be a promising step forward towards development of novel therapeutic strategies. In this review, we extensively describe the structural analysis of IRE1 molecule, the molecular dynamics associated with IRE1 activation, and interconnection between it and the other branches of the UPR with regard to its potential use as a therapeutic target. Detailed knowledge of the molecular characteristics of the IRE1 protein and its activation may allow the design of specific kinase or RNase modulators that may act as drug candidates.
Collapse
|
12
|
He ZX, Huo JL, Gong YP, An Q, Zhang X, Qiao H, Yang FF, Zhang XH, Jiao LM, Liu HM, Ma LY, Zhao W. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur J Med Chem 2021; 210:112970. [PMID: 33153765 DOI: 10.1016/j.ejmech.2020.112970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/01/2022]
Abstract
To discover novel anticancer agents with potent and low toxicity, we designed and synthesized a range of new thiosemicarbazone-indole analogues based on lead compound 4 we reported previously. Most compounds displayed moderate to high anticancer activities against five tested tumor cells (PC3, EC109, DU-145, MGC803, MCF-7). Specifically, the represented compound 16f possessed strong antiproliferative potency and high selectivity toward PC3 cells with the IC50 value of 0.054 μM, compared with normal WPMY-1 cells with the IC50 value of 19.470 μM. Preliminary mechanism research indicated that compound 16f could significantly suppress prostate cancer cells (PC3, DU-145) growth and colony formation in a dose-dependent manner. Besides, derivative 16f induced G1/S cycle arrest and apoptosis, which may be related to ROS accumulation due to the activation of MAPK signaling pathway. Furthermore, molecule 16f could effectively inhibit tumor growth through a xenograft model bearing PC3 cells and had no evident toxicity in vivo. Overall, based on the biological activity evaluation, analogue 16f can be viewed as a potential lead compound for further development of novel anti-prostate cancer drug.
Collapse
Affiliation(s)
- Zhang-Xu He
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jin-Ling Huo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yun-Peng Gong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qi An
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xin-Hui Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Le-Min Jiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
13
|
Shen GN, Wang C, Luo YH, Wang JR, Wang R, Xu WT, Zhang Y, Zhang Y, Zhang DJ, Jin CH. 2-(6-Hydroxyhexylthio)-5,8-dimethoxy-1,4-naphthoquinone Induces Apoptosis through ROS-Mediated MAPK, STAT3, and NF- κB Signalling Pathways in Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7375862. [PMID: 32849902 PMCID: PMC7441457 DOI: 10.1155/2020/7375862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/08/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Two novel compounds, 2-(2-hydroxyethylthio)-5,8-dimethoxy-1,4-naphthoquinone (HEDMNQ) and 2-(6-hydroxyhexylthio)-5,8-dimethoxy-1,4-naphthoquinone (HHDMNQ), were synthesized to investigate the kill effects and mechanism of 1,4-naphthoquinone derivatives in lung cancer cells. The results of the CCK-8 assay showed that HEDMNQ and HHDMNQ had significant cytotoxic effects on A549, NCI-H23, and NCI-H460 NSCLC cells. Flow cytometry and western blot results indicated that HHDMNQ induced A549 cell cycle arrest at the G2/M phase by decreasing the expression levels of cyclin-dependent kinase 1/2 and cyclin B1. Fluorescence microscopy and flow cytometry results indicated that HHDMNQ could induce A549 cell apoptosis, and western blot analysis showed that HHDMNQ induced apoptosis through regulating the mitochondria pathway, as well as the MAPK, STAT3, and NF-κB signalling pathways. Flow cytometry results showed that intracellular reactive oxygen species (ROS) levels were increased after HHDMNQ treatment, and western blot showed that ROS could modulate the intrinsic pathway and MAPK, STAT3, and NF-κB signalling pathways. These effects were blocked by the ROS inhibitor N-acetyl-L-cysteine in A549 cells. Our findings suggest that compared with HEDMNQ, HHDMNQ had the stronger ability to inhibit the cell viability of lung cancer cells and induce apoptosis by regulating the ROS-mediated intrinsic pathway and MAPK/STAT3/NF-κB signalling pathways. Thus, HHDMNQ might be a potential antitumour compound for treating lung cancer.
Collapse
Affiliation(s)
- Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing 163001, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang 163319, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang 163319, China
| |
Collapse
|
14
|
Xu WT, Shen GN, Li TZ, Zhang Y, Zhang T, Xue H, Zuo WB, Li YN, Zhang DJ, Jin CH. Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROS‑regulated MAPK, STAT3 and NF‑κB signaling pathways. Int J Oncol 2020; 57:550-561. [PMID: 32626938 DOI: 10.3892/ijo.2020.5079] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Isoorientin (ISO) is a naturally occurring C‑glycosyl flavone that has various pharmacological properties, such as anti‑bacterial and anti‑inflammatory effects. However, its underlying molecular mechanisms in human lung cancer cells remain unknown. In the present study, the effects of ISO on the induction of apoptosis and relative molecular mechanisms in A549 human lung cancer cells were investigated. The results of Cell Counting Kit‑8 assay (CCK‑8) indicated that ISO exerted significant cytotoxic effects on 3 lung cancer cell lines, but had no obvious side‑effects on normal cells. Moreover, flow cytometry and western blot analysis revealed that ISO induced mitochondrial‑dependent apoptosis by reducing mitochondrial membrane potential. ISO also increased the expression levels of Bax, cleaved‑caspase‑3 (cle‑cas‑3) and poly(ADP‑ribose) polymerase (PARP; cle‑PARP), and decreased the expression levels of Bcl‑2 in A549 cells. Furthermore, ISO induced G2/M cell cycle arrest by decreasing the expression levels of cyclin B1 and CDK1/2, and increasing the expression levels of p21 and p27 in A549 cells. As the duration of ISO treatment increased, intracellular reactive oxygen species (ROS) levels in A549 cells also increased. However, pre‑treatment of the cells with the ROS scavenger, N‑acetylcysteine (NAC), inhibited ISO‑induced apoptosis. In addition, ISO increased the expression levels of p‑p38, p‑JNK and IκB‑α; and decreased the expression levels of p‑extracellular signal‑regulated kinase (ERK), p‑signal transducer and activator of transcription (STAT)3, p‑nuclear factor (NF)‑κB, NF‑κB and p‑IκB; these effects were induced by mitogen‑activated protein kinase (MAPK) inhibitors and blocked by NAC. Taken together, the results of the present study indicate that ISO induces the apoptosis of A549 lung cancer cells via the ROS‑mediated MAPK/STAT3/NF‑κB signaling pathway, and thus may be a potential drug for use in the treatment of lung cancer.
Collapse
Affiliation(s)
- Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wen-Bo Zuo
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
15
|
Zhou X, Zhang J, Hu X, He P, Guo J, Li J, Lan T, Liu J, Peng L, Li H. Pyrimethamine Elicits Antitumor Effects on Prostate Cancer by Inhibiting the p38-NF-κB Pathway. Front Pharmacol 2020; 11:758. [PMID: 32523533 PMCID: PMC7261869 DOI: 10.3389/fphar.2020.00758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Since incurable castration-resistant prostate cancer (CRPC) inevitably develops following treatment with androgen deprivation therapy, there is an urgent need to devise new therapeutic strategies to treat this cancer. Pyrimethamine, an FDA-approved antimalarial drug, is known to exert an antitumor activity in various types of human cancer cells. However, whether pyrimethamine can inhibit prostate cancer is not well established. Hence, the present study aimed to characterize the mechanism of action of pyrimethamine on prostate cancer. We investigated the potential effect of pyrimethamine on cell proliferation, cell cycle, and apoptosis in metastatic DU145 and PC3 prostate cancer cells. We found that pyrimethamine inhibited cell proliferation, induced cell cycle arrest in the S phase, and promoted cell apoptosis of prostate cells in vitro; it also suppressed tumor growth in xenograft models. In addition, we observed that pyrimethamine suppressed prostate cancer growth by inhibiting the p38-NF-κB axis in vitro and in vivo. Thus, this study demonstrates that pyrimethamine is a novel p38 inhibitor that can exert antiproliferative and proapoptotic effects in prostate cancer by affecting cell cycle and intrinsic apoptotic signaling, thereby providing a novel strategy for using pyrimethamine in CRPC treatment.
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Department of Respiration, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Hu
- Department of Pharmacy, Affiliated Tumor Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peiqing He
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianyu Guo
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tian Lan
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jumei Liu
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lilan Peng
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hua Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Chen Y, Yang J, Wang Y, Yang M, Guo M. Zinc Deficiency Promotes Testicular Cell Apoptosis in Mice. Biol Trace Elem Res 2020; 195:142-149. [PMID: 31309446 DOI: 10.1007/s12011-019-01821-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022]
Abstract
Zinc (Zn) plays an important role in spermatogenesis, and carbon tetrachloride (CCl4) induces testicular oxidative damage and cell death. The objective of the present study was to define the effects of Zn deficiency in combination with CCl4 treatment on testicular apoptosis and the associated mechanisms. Mice were fed the following diets with three different Zn levels for 6 weeks: normal zinc (ZN) diet (30 mg Zn/kg), zinc-deficient (ZD) diet (2 mg Zn/kg), and adequate zinc (ZA) diet (100 mg Zn/kg). Beginning in the third week, CCl4 was intraperitoneally injected into half of the mice in each diet group six times over 3 weeks. We found that Zn was distributed in various tissues and organs in normal mice and that the zinc content in the testis of normal mice was high. The Zn-deficient diet reduced the zinc concentration in the testis tissue, and the testicular/body weight ratio significantly decreased. Moreover, the TUNEL results proved that CCl4 stimulation of mice fed with a zinc-deficient diet caused marked apoptosis of testicular cells. Furthermore, the ROS levels in the testes obviously increased after Zn-deficient mice were stimulated with CCl4, whereas reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) showed reduced activities. In addition, proteins associated with the apoptosis signaling pathway were detected with ELISA kits. P-p53, cleaved caspase-3, cleaved PRAP, p-Bad, p-JNK, p-ERK, and p-NF-κB p65 increased by varying degrees under zinc deficiency or CCl4 stimulation. All the data indicated that Zn deficiency significantly enhanced the harm to the testis induced by oxidative stress and damage, while CCl4 stimulation exacerbated the oxidative damage in testicular cells, leading to apoptosis through the activation of p53, MAPK, and NF-κB.
Collapse
Affiliation(s)
- Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
17
|
Chen S, Chen J, Hua X, Sun Y, Cui R, Sha J, Zhu X. The emerging role of XBP1 in cancer. Biomed Pharmacother 2020; 127:110069. [PMID: 32294597 DOI: 10.1016/j.biopha.2020.110069] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor whose dynamic form is controlled by an alternative splicing response upon disturbance of homeostasis in the endoplasmic reticulum (ER) and activation of the unfolded protein response (UPR). XBP1 was first distinguished as a key regulator of major histocompatibility complex (MHC) class II gene expression in B cells. XBP1 communicates with the foremost conserved signalling component of the UPR and is essential for cell fate determination in response to ER stress (ERS). Here, we review recent advances in our understanding of this multifaceted translation component in cancer. In this review, we briefly discuss the role of XBP1 mediators in the UPR and the transcriptional function of XBP1. In addition, we describe how XBP1 operates as a key factor in tumour progression and metastasis. We mainly review XBP1's expression, function and prognostic value in research on solid tumours. Finally, we discuss multiple approaches, especially those involving XBP1, that overcome the immunosuppressive effect of the UPR in cancer that could potentially be useful as antitumour therapies.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Jing Chen
- Department of Respiratory, Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Xin Hua
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yue Sun
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rui Cui
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jun Sha
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaoli Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China; Department of Respiratory, Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Liu D, Qiu X, Xiong X, Chen X, Pan F. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics. Clin Transl Oncol 2020; 22:1687-1697. [PMID: 32189139 PMCID: PMC7423792 DOI: 10.1007/s12094-020-02330-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BCa) is the fourth most common urological malignancy in the world, it has become the costliest cancer to manage due to its high rate of recurrence and lack of effective treatment modalities. As a natural byproduct of cellular metabolism, reactive oxygen species (ROS) have an important role in cell signaling and homeostasis. Although up-regulation of ROS is known to induce tumorigenesis, growing evidence suggests a number of agents that can selectively kill cancer cells through ROS induction. In particular, accumulation of ROS results in oxidative stress-induced apoptosis in cancer cells. So, ROS is a double-edged sword. A modest level of ROS is required for cancer cells to survive, whereas excessive levels kill them. This review summarizes the up-to-date findings of oxidative stress-regulated signaling pathways and transcription factors involved in the etiology and progression of BCa and explores the possible therapeutic implications of ROS regulators as therapeutic agents for BCa.
Collapse
Affiliation(s)
- D Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - X Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - X Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - X Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - F Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Wang C, Liu X, Han Z, Zhang X, Wang J, Wang K, Yang Z, Wei Z. Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109508. [PMID: 31408819 DOI: 10.1016/j.ecoenv.2019.109508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
As a new type of antibacterial agent, nanosilver has attracted great attention in biomedical applications. However, the safety of nanosilver to humans and the environment has not been well elucidated. The objective of this study was to investigate the influence of nanosilver on novel effector mechanism of neutrophil extracellular traps (NETs), and its possible molecular mechanisms. In this study, nanosilver (10, 20 and 40 μg/mL) was incubated with neutrophils for 90 min. Then, nanosilver-induced the release of NETs was observed by laser confocal microscopy. Nanosilver-induced NETs release was also quantitatively detected by pico Green®. In addition, the role of NADPH oxidase, extracellular signal-regulated kinase (ERK) and p38 signaling pathways in nanosilver-induced NETs release were detected by the inhibitors and pico Green®. The results indicated that nanosilver significantly activated polymorphonuclear neutrophils (PMN) to release NETs, which was a DNA-based network structure modified with histones (H3) and neutrophil elastase (NE). The inhibitors of NADPH oxidase, ERK and p38 signaling pathways significantly inhibited the formation of nanosilver-induced NETs. Furthermore, nanosilver did not alter the extracellular lactate dehydrogenase (LDH) level of PMN cells. All these results showed that nanosilver significantly induced NETs release, and the potential molecular mechanisms were correlated with reactive oxygen species (ROS) production-dependent on NADPH oxidase, ERK and p38 signaling pathways, which might provide a new perspective on nanosilver-induced excess NETs release related to the host immune damage.
Collapse
Affiliation(s)
- Chaoqun Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Zhen Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Xu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Kai Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| |
Collapse
|
20
|
Tretyakova EV, Salimova EV, Parfenova LV, Yunusbaeva MM, Dzhemileva LU, D'yakonov VA, Dzhemilev UM. Synthesis of New Dihydroquinopimaric Acid Analogs with Nitrile Groups as Apoptosis-Inducing Anticancer Agents. Anticancer Agents Med Chem 2019; 19:1172-1183. [PMID: 30947679 DOI: 10.2174/1871520619666190404100846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cyan-containing compounds are of great interest as potential anticancer agents. Terpenoids can severe as a natural matrix for the development of promising derivatives with antitumor activity. METHODS The 2-cyanoethoxy methyl dihydroquinopimarate derivatives (5-9) were synthesized by the reaction of the intermediates (1-4) with acrylonitrile in the presence of alkali (30% KOH solution) using triethylbenzylammonium chloride. The cytotoxicity evaluation was carried out according to the National Cancer Institute (NCI) Protocol, while apoptosis was studied by flow cytometric analysis of Annexin V and 7-aminoactinomycin D staining and cell cycle was analyzed using the method of propidium iodide staining. RESULTS Synthesis of new dihydroquinopimaric acid derivatives with nitrile groups was carried out. The obtained cyanoethyl derivatives were converted into tetrazole, amine, oxadiazole and amidoxime analogs. The primary screening for antitumor activity showed the highest cytotoxic potency of the cyanoethyl-substituted compounds. The introduction of cyanoethyl groups at C-1, C-4 and C-1, C-4, C-20 positions of dihydroquinopimaric acid methyl ester provided antiproliferative effect towards the Jurkat, K562, U937, and HeLa tumor cell cultures (CC50=0.045-0.154µM). These nitrile derivatives are effective inducers of tumor cell apoptosis affecting the S and G2 phases of the cell cycle in a dose-dependent manner. CONCLUSION The cyanoethyl analogs of dihydroquinopimaric acid reported herein are apoptosis inducers and cytotoxic agents. These findings will be useful for the further design of more potent cytotoxic agents based on natural terpenes.
Collapse
Affiliation(s)
- Elena V Tretyakova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Elena V Salimova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Lyudmila V Parfenova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Milyausha M Yunusbaeva
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Lilya U Dzhemileva
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Vladimir A D'yakonov
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Usein M Dzhemilev
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| |
Collapse
|
21
|
Wang JN, Che Y, Yuan ZY, Lu ZL, Li Y, Zhang ZR, Li N, Li RD, Wan J, Sun HD, Sun N, Puno PT, He J. Acetyl-macrocalin B suppresses tumor growth in esophageal squamous cell carcinoma and exhibits synergistic anti-cancer effects with the Chk1/2 inhibitor AZD7762. Toxicol Appl Pharmacol 2019; 365:71-83. [PMID: 30633885 DOI: 10.1016/j.taap.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/17/2022]
Abstract
Natural products derived from herbal medicines have become a major focus of anti-cancer drug discovery studies. Acetyl-macrocalin B (A-macB) is an ent-diterpenoid isolated from Isodon silvatica. This study aimed to examine the effect and molecular action of A-macB in esophageal squamous cell carcinoma (ESCC) and explore possible drug synergistic modalities. A-macB induced cellular reactive oxygen species (ROS) generation, initiated the p38 mitogen-activated protein kinase (MAPK) signaling pathway, and triggered the caspase-9-dependent apoptosis cascade in ESCC cells. The ROS scavenger N-acetylcysteine (NAC) and the specific p38 inhibitor SB203580 reversed the effects of A-macB on the p38 network and thus rescued ESCC cells from apoptosis. The cellular ROS increase was at least partially due to the suppression of glutathione-S-transferase P1 (GSTP1) by A-macB. A-macB also upregulated the Chk1/Chk2-Cdc25C/Cdc2/Cyclin B1 axis to induce G2/M phase arrest. The cell growth inhibition induced by A-macB was further enhanced by AZD7762, a specific Chk1/Chk2 inhibitor, with a combination index (CI) of <1. Moreover, A-macB efficiently suppressed xenograft growth without inducing significant toxicity, and AZD7762 potentiated the effects of A-macB in the suppression of tumor growth in vivo. Taken together, A-macB is a promising lead compound for ESCC and exerts synergistic anti-cancer effects with AZD7762.
Collapse
Affiliation(s)
- Jing-Nan Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zu-Yang Yuan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Liang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Rong Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ren-Da Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jun Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
22
|
Wang JN, Zhang ZR, Che Y, Yuan ZY, Lu ZL, Li Y, Li N, Wan J, Sun HD, Sun N, Puno PT, He J. Acetyl-macrocalin B, an ent-kaurane diterpenoid, initiates apoptosis through the ROS-p38-caspase 9-dependent pathway and induces G2/M phase arrest via the Chk1/2-Cdc25C-Cdc2/cyclin B axis in non-small cell lung cancer. Cancer Biol Ther 2018; 19:609-621. [PMID: 29565730 PMCID: PMC5989808 DOI: 10.1080/15384047.2018.1449613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, and novel effective drugs against NSCLC are urgently needed. Isodon species are rich in ent-kaurane diterpenoids that have been reported to have antitumor bioactivity. Acetyl-macrocalin B (A-macB) is a novel ent-kaurane diterpenoid isolated from Isodon silvatica, and its antitumor efficacy against NSCLC and the underlying mechanisms were scrutinized in depth. The viability of cells treated with A-macB was detected by CCK-8 and colony formation assays. Apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms were investigated by detecting ROS and performing western blotting and verification experiments with specific inhibitors. The in vivo effect of A-macB was explored in a nude mouse xenograft model. A-macB effectively inhibited H1299 and A549 cell viability, triggered apoptosis and delayed cells in the G2/M phase. A-macB induced cellular ROS production and then activated the p38 MAPK-mediated, caspase 9-dependent apoptotic pathway. Both the ROS scavenger NAC and the specific p38 inhibitor SB203580 inactivated the function of p38 induced by A-macB, thus preventing cells from apoptosis. A-macB activated the Chk1/2-Cdc25C-Cdc2/cyclin B1 axis to induce G2/M phase arrest. AZD7762 abrogated the function of Chk1/2, abolished the G2/M delay and enhanced the cytotoxicity of A-macB. Moreover, A-macB efficiently suppressed tumor growth in a mouse xenograft model without noticeable toxicity to normal tissues. Having both efficacy and relative safety, A-macB is a potential lead compound that is worthy of further exploration for development as an anticancer agent.
Collapse
Affiliation(s)
- Jing-Nan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhi-Rong Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zu-Yang Yuan
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhi-Liang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ning Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jun Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
23
|
Lian X, Gu J, Gao B, Li Y, Damodaran C, Wei W, Fu Y, Cai L. Fenofibrate inhibits mTOR-p70S6K signaling and simultaneously induces cell death in human prostate cancer cells. Biochem Biophys Res Commun 2018; 496:70-75. [PMID: 29305864 DOI: 10.1016/j.bbrc.2017.12.168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Fenofibrate is the most widely used lipid-lowering drug, but it seems to have anti-tumor effects in several tumor cell lines. However, there are only a few reports on its effects on human prostate cancer cells. Thus, we investigated the anti-proliferative effects of fenofibrate on human prostate cancer cells and potential mechanisms. The methods used include cell viability analysis with an MTT assay, as well as apoptosis and related signaling pathway analyses with flow cytometry and Western blotting. Fenofibrate inhibited PC-3 cell growth in dose- and time-dependent manners. The fenofibrate-induced cell death is predominantly apoptotic death that is mediated by both the caspase-3 activation and apoptosis-inducing factor (AIF) signaling pathways. Fenofibrate also increased the expression of Bad and decreased the expression of Bcl-2 and Survivin. Mechanistically, fenofibrate-induced cell death was associated with decreased p-p70S6K and the mammalian target of rapamycin (mTOR) phosphorylation levels. When further exploring the upstream mediators of mTOR/p70S6K, we found that fenofibrate increased p38 MAPK and AMPK phosphorylation but did not significantly change the phosphorylation levels of PI3K, AKT, and JNK. However, the inhibition of either p38 MAPK or AMPK with their specific inhibitor did not change the effect of fenofibrate-induced cell death. These findings suggested that fenofibrate indeed significantly inhibited the proliferation of PC-3 cells via apoptotic action, which is associated with the inactivation of the mTOR/p70S6K-dependent cell survival pathway. Although the mechanisms by which fenofibrate inactivates this pathway remains unclear, this study reveals great potential for its use for the clinical treatment of prostate cancers.
Collapse
Affiliation(s)
- Xin Lian
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Junlian Gu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yan Li
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - Wei Wei
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaowen Fu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
24
|
Tao J, Xu J, Chen F, Xu B, Gao J, Hu Y. Folate acid-Cyclodextrin/Docetaxel induces apoptosis in KB cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Eur J Pharm Sci 2018; 111:540-548. [DOI: 10.1016/j.ejps.2017.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
25
|
Ahmad MK, Abdollah NA, Shafie NH, Yusof NM, Razak SRA. Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol Med 2018; 15:14-28. [PMID: 29545965 PMCID: PMC5842331 DOI: 10.20892/j.issn.2095-3941.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are the main regulators of cellular proliferation, growth, and survival in physiological or pathological conditions. Aberrant MAPK signaling plays a pivotal role in carcinogenesis, which leads to development and progression of human cancer. Dual-specificity phosphatase 6 (DUSP6), a member of the MAPK phosphatase family, interacts with specifically targeted extracellular signal-regulated kinase 1/2 via negative feedback regulation in the MAPK pathway of mammalian cells. This phosphatase functions in a dual manner, pro-oncogenic or tumor-suppressive, depending on the type of cancer. To date, the tumor-suppressive role of DUSP6 has been demonstrated in pancreatic cancer, non-small cell lung cancer, esophageal squamous cell and nasopharyngeal carcinoma, and ovarian cancer. Its pro-oncogenic role has been observed in human glioblastoma, thyroid carcinoma, breast cancer, and acute myeloid carcinoma. Both roles of DUSP6 have been documented in malignant melanoma depending on the histological subtype of the cancer. Loss- or gain-of-function effects of DUSP6 in these cancers highlights the significance of this phosphatase in carcinogenesis. Development of methods that use the DUSP6 gene as a therapeutic target for cancer treatment or as a prognostic factor for diagnosis and evaluation of cancer treatment outcome has great potential. This review focuses on molecular characteristics of the DUSP6 gene and its role in cancers in the purview of development, progression, and cancer treatment outcome.
Collapse
Affiliation(s)
- Muhammad Khairi Ahmad
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Nur Ainina Abdollah
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Nurul Husna Shafie
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Narazah Mohd Yusof
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Siti Razila Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| |
Collapse
|
26
|
Cui L, Bu W, Song J, Feng L, Xu T, Liu D, Ding W, Wang J, Li C, Ma B, Luo Y, Jiang Z, Wang C, Chen J, Hou J, Yan H, Yang L, Jia X. Apoptosis induction by alantolactone in breast cancer MDA-MB-231 cells through reactive oxygen species-mediated mitochondrion-dependent pathway. Arch Pharm Res 2017; 41:299-313. [DOI: 10.1007/s12272-017-0990-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/19/2017] [Indexed: 12/26/2022]
|
27
|
The effect of dehydroglyasperin C on UVB–mediated MMPs expression in human HaCaT cells. Pharmacol Rep 2017; 69:1224-1231. [DOI: 10.1016/j.pharep.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 01/06/2023]
|
28
|
Jiang M, Zhang H, Zhai L, Ye B, Cheng Y, Zhai C. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β 1 pathway. Lipids Health Dis 2017; 16:216. [PMID: 29145851 PMCID: PMC5691398 DOI: 10.1186/s12944-017-0611-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Growing evidence indicates that oxidative stress (OS) plays a pivotal role in Diabetic nephropathy (DN). In a previous study we demonstrated that ALA/LA protected HK-2 cells against high glucose-induced cytotoxicity. So we aimed to establish the glucose injury model of HK-2 cells and investigate the beneficial effects of ALA/LA on high glucose-induced excessive production of TGF-β1 and the possible mechanisms mediating the effects. METHODS The expression of OS markers in high glucose-induced HK-2 cells treated with ALA/LA., including the antioxidant enzymes and reactive oxygen species (ROS) production, as well as the apoptosis rate were assayed by ELISA and flow cytometry. The p38/transforming growth factor β1 (TGF-β1) signal pathway were measured by real-time RT-PCR and western blot. RESULTS The modeling condition of glucose toxicity on HK-2 cells was at the glucose concentration of 40.9 mM. ALA/LA can significantly increase the activities of antioxidant enzymes and decrease ROS production stimulated by high glucose. The study also found that ALA/LA caused a decrease in the apoptosis rate and TGF-β1 level of HK-2 cells under high glucose stress through the ROS/p38 pathway. CONCLUSIONS ALA/LA exerts protective effects in vitro through inhibition of ROS generation, down regulation of the activation of the p38MAPK pathway and the expression of TGF-β1 in HK-2 cells.
Collapse
Affiliation(s)
- Mingxia Jiang
- School of Public Health, Southeast University, Nanjing, 210009, China
- Jinling Hospital, Nanjing, 210002, China
| | - Haifen Zhang
- School of Public Health, Southeast University, Nanjing, 210009, China
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, 225127, China
| | - Lijie Zhai
- Department of Neurological Surgery, Northwestern University - Feinberg School of Medicine, Chicago, IL, 60612, USA
| | - Bianliang Ye
- School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yin Cheng
- School of Public Health, Southeast University, Nanjing, 210009, China
| | - Chengkai Zhai
- School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Miyata Y, Matsuo T, Sagara Y, Ohba K, Ohyama K, Sakai H. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis. Int J Mol Sci 2017; 18:ijms18102214. [PMID: 29065504 PMCID: PMC5666894 DOI: 10.3390/ijms18102214] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress refers to elevated reactive oxygen species (ROS) levels, and NADPH oxidases (NOXs), which are one of the most important sources of ROS. Oxidative stress plays important roles in the etiologies, pathological mechanisms, and treatment strategies of vascular diseases. Additionally, oxidative stress affects mechanisms of carcinogenesis, tumor growth, and prognosis in malignancies. Nearly all solid tumors show stimulation of neo-vascularity, termed angiogenesis, which is closely associated with malignant aggressiveness. Thus, cancers can be seen as a type of vascular disease. Oxidative stress-induced functions are regulated by complex endogenous mechanisms and exogenous factors, such as medication and diet. Although understanding these regulatory mechanisms is important for improving the prognosis of urothelial cancer, it is not sufficient, because there are controversial and conflicting opinions. Therefore, we believe that this knowledge is essential to discuss observations and treatment strategies in urothelial cancer. In this review, we describe the relationships between members of the NOX family and tumorigenesis, tumor growth, and pathological mechanisms in urological cancers including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, we introduce natural compounds and chemical agents that are associated with ROS-induced angiogenesis or apoptosis.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kaname Ohyama
- Department of Pharmaceutical Science, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|