1
|
Patai R, Csik B, Nyul-Toth A, Gulej R, Vali Kordestan K, Chandragiri SS, Shanmugarama S, Tarantini S, Mukli P, Ungvari A, Yabluchanskiy A, Ungvari Z, Csiszar A. Persisting blood-brain barrier disruption following cisplatin treatment in a mouse model of chemotherapy-associated cognitive impairment. GeroScience 2025:10.1007/s11357-025-01569-x. [PMID: 39982666 DOI: 10.1007/s11357-025-01569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Chemotherapy-related cognitive impairment, commonly referred to as "chemobrain," significantly affects cancer survivors' quality of life, yet its underlying mechanisms remain unclear. Most chemotherapeutic agents cannot cross the blood-brain barrier (BBB), yet they cause central nervous system side effects, suggesting alternative pathways of toxicity. Given that these drugs interact with the cerebrovascular endothelium at their highest concentrations, it is logical to hypothesize that endothelial damage contributes to these effects. Our recent studies demonstrated that paclitaxel-induced cognitive impairment in a mouse model results in a partial BBB disruption and subsequent neuroinflammation, mediated by chemotherapy-induced endothelial senescence. In this pilot study, we used two-photon microscopy to assess BBB permeability in mice receiving a clinically relevant cisplatin regimen, evaluating the leakage of fluorescent dextran tracers of varying molecular weights. Two months post-treatment, cisplatin-treated mice exhibited significantly increased BBB permeability to smaller molecular tracers (40 kDa, 3 kDa, and 0.3 kDa) compared to controls, indicating sustained BBB disruption. These results align with our findings for paclitaxel and suggest that chemotherapy-induced endothelial damage and senescence play a central role in cognitive impairments. Interventions targeting endothelial health could mitigate these long-term effects, improving cognitive outcomes for cancer survivors.
Collapse
Affiliation(s)
- Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Kiana Vali Kordestan
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Chen Y, Dai Y, Huang Y, Zhang L, Zhang C, Gao H, Yan Q. Inhibition of tubular epithelial cells ferroptosis alleviates renal interstitial fibrosis by reducing lipid hydroperoxides and TGF-β/Smad signaling. Cell Commun Signal 2025; 23:81. [PMID: 39934851 DOI: 10.1186/s12964-025-02068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Ferroptosis is a non-apoptotic form of regulated cell death that involves an imbalance in the homeostasis of two elements: iron and lipid hydroperoxides. The accumulation of lipid hydroperoxide serves as a key trigger for initiating ferroptosis. Recent studies have identified ferroptosis as a critical pathophysiology contributing to kidney disease progression. However, the specific mechanisms underlying the role of ferroptosis in chronic kidney disease (CKD) have not been elucidated. METHODS Tubular epithelial cells (TECs) ferroptosis was evaluated in unilateral ureteral obstruction (UUO) models and in TGF-β-treated HK-2 cells to explore the relationship between ferroptosis and fibrosis. Ferroptosis inhibitors (ferrostatin-1) and TECs-targeted glutathione peroxidase 4 (GPX4) overexpression in vivo and in vitro were used to investigate the effect and mechanism of TECs ferroptosis on fibrosis progression. RESULTS Our findings indicate that ferroptosis is persistently activated during various states of the UUO model. As the results, ferroptosis was identified as a core facilitator of renal interstitial fibrosis in TECs during UUO. The reduction in TECs ferroptosis significantly ameliorated renal fibrosis and maintained the structure in the proximal tubules. Persistent activation of TECs ferroptosis effectively aggravated fibrosis progression through the TGF-β/Smad pathway. CONCLUSIONS Inhibiting ferroptosis effectively rescues the accumulation of profibrotic cytokines, thereby alleviating renal fibrosis. The profibrotic mechanism of ferroptosis is closely related to the TGF-β/Smad pathway, and targeting ferroptosis and increasing GPX4 expression could be an effective strategy for treating CKD.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Division of Nephrology, Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyu Gao
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qi Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Jaqueto M, Alfieri DF, de Araújo MCM, Fürstenberger Lehmann ALC, Flauzino T, Trevisan ER, Nagao MR, de Freitas LB, Colado Simão AN, Lozovoy MAB, Delfino VDA, Reiche EMV. Acute kidney injury is associated with soluble vascular cell adhesion molecule 1 levels and short-term mortality in patients with ischemic stroke. Clin Neurol Neurosurg 2024; 245:108470. [PMID: 39079288 DOI: 10.1016/j.clineuro.2024.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The mechanisms that modulate the onset of acute kidney inlury (AKI) after ischemic stroke (IS) and valuable biomarkers to predict the occurrence and prognosis of AKI among patients with IS are missing. OBJECTIVE To evaluate the frequency of AKI and the prognostic validity of clinical and laboratory biomarkers in predicting AKI and short-term mortality after the IS. METHODS Ninety-five patients with IS were enrolled. Baseline IS severity was assessed using the National Institutes of Health Stroke Scale (NIHSS) and disability was determined after three-month follow-up using the modified Rankin Scale. Patients with IS were also categorized as survivors and non-survivors after the follow-up. Baseline data and laboratory biomarkers were obtained up to 24 h of the admission. RESULTS Fifteen (15.7 %) patients with IS presented AKI. The proportion of patients with vitamin D deficiency and the mortality were higher among those with AKI than those without AKI (p=0.011 and p-0.009, respectively). Patients with AKI showed higher disability and higher increased soluble vascular cellular adhesion molecule-1 (sVCAM-1) than those without AKI (p=0.029 and p=0.023, respectively). Logistic regression analysis showed that only sVCAM-1 was associated with the occurrence of AKI after IS [odds ratio (OR): 2.715, 95 % confidence intereval (CI): 1.12-6.67, p=0.027]. When both AKI and NIHSS were evaluated as explanatory variables, this panel showed an OR of 5.782 (95 % CI: 1.09-30.43, p<0.001) and correctly classified 83.6 % of cases. CONCLUSION In conclusion, sVCAM-1 levels showed a potential useful for prediction of AKI after IS.
Collapse
Affiliation(s)
- Marcel Jaqueto
- Department of Clinical Medicine, Health Science Center and Radiology Service of the University Hospital, State University of Londrina, Paraná, Brazil.
| | - Daniela Frizon Alfieri
- Department of Pharmaceutical Sciences, Health Sciences Center, State University of Londrina, Paraná, Brazil.
| | - Maria Caroline Martins de Araújo
- Laboratory of Research in Applied Immunology, Health Sciences Center, State University of Londrina, Paraná, Brazil; School of Medicine of Pontifical Catholic University of Paraná, Campus Londrina, Londrina, Paraná, Brazil.
| | - Ana Lucia Cruz Fürstenberger Lehmann
- Department of Clinical Medicine, Health Science Center and Radiology Service of the University Hospital, State University of Londrina, Paraná, Brazil.
| | - Tamires Flauzino
- Laboratory of Research in Applied Immunology, Health Sciences Center, State University of Londrina, Paraná, Brazil; School of Medicine of Pontifical Catholic University of Paraná, Campus Londrina, Londrina, Paraná, Brazil.
| | - Emmanuelle Roberto Trevisan
- Laboratory of Research in Applied Immunology, Health Sciences Center, State University of Londrina, Paraná, Brazil; School of Medicine of Pontifical Catholic University of Paraná, Campus Londrina, Londrina, Paraná, Brazil.
| | - Maisa Rocha Nagao
- Laboratory of Research in Applied Immunology, Health Sciences Center, State University of Londrina, Paraná, Brazil; School of Medicine of Pontifical Catholic University of Paraná, Campus Londrina, Londrina, Paraná, Brazil.
| | - Leonardo Bodner de Freitas
- Laboratory of Research in Applied Immunology, Health Sciences Center, State University of Londrina, Paraná, Brazil; School of Medicine of Pontifical Catholic University of Paraná, Campus Londrina, Londrina, Paraná, Brazil.
| | - Andrea Name Colado Simão
- Laboratory of Research in Applied Immunology, Health Sciences Center, State University of Londrina, Paraná, Brazil; School of Medicine of Pontifical Catholic University of Paraná, Campus Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Brazil.
| | - Marcell Alysson Batisti Lozovoy
- Laboratory of Research in Applied Immunology, Health Sciences Center, State University of Londrina, Paraná, Brazil; School of Medicine of Pontifical Catholic University of Paraná, Campus Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Brazil.
| | - Vinicius Daher Alvares Delfino
- Department of Clinical Medicine, Health Science Center and Radiology Service of the University Hospital, State University of Londrina, Paraná, Brazil.
| | - Edna Maria Vissoci Reiche
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Pontificial Catholic University of Paraná, Campus Londrina, School of Medicine, Londrina, Paraná, Brazil.
| |
Collapse
|
4
|
Otanwa OO, Ndidi US, Ibrahim AB, Balogun EO, Anigo KM. Prooxidant effects of high dose ascorbic acid administration on biochemical, haematological and histological changes in Cavia porcellus (Guinea pigs): a Guinea pig experimental model. Pan Afr Med J 2023; 46:18. [PMID: 38035158 PMCID: PMC10683174 DOI: 10.11604/pamj.2023.46.18.36098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ascorbic acid (AA) is a water-soluble vitamin that is well known for its antioxidant and immune-boosting properties. Owing to the wide-range application of AA in the treatment of numerous ailments and its sweet taste, it is usually abused i.e. overused. However, the effect of the abuse has rarely received attention. Therefore, this study was designed to assess the effect of oral administration of high-dose ascorbic acid on biochemical and haematological parameters as well as the effects on the kidney, liver and lungs. Methods adult guinea pigs were divided into four (4) groups where group 1 served as the untreated control group and groups 2-4 were dosed with 29 mg, 662 mg and 1258 mg of ascorbic acid per day, respectively for 28 days. Results the result revealed that administration of high dose ascorbic acid significantly (P<0.05) increased serum creatinine from 50.0 ± 7.09 (NC) to AA29- 73.8 ± 4.5, AA-662-89.7 ± 3.3 and AA1258- 79.9 ± 5.7mmol/L and urea levels in the treatment group AA-1258 -18.3 ± 0.5 µmol/L compared to the normal group (NC-2.15 ± 0.6 µmol/L). Disturbance in electrolyte balance was observed with a significant (P<0.05) increase in Na+ from NC- 131.3 ± 3.5 mmol/L to 135.7 ± 3.6 mmol/L in the AA-1258 treatment group, Cl- ( NC- 67.1 ± 1.6 mmol/L increased to AA29- 92.1 ± 0.83, AA662- 95.3 ± 1.3 and AA-1258- 95.6 ± 0.4 mmol/L), and Ca2+ (NC- 2.66 ± 0.03 to AA1258- 3.36 ± 0.03 mmol/L) and a significant (P<0.05) decrease in serum K+ in the AA29-5.0 ± 0.2, AA662-5.2 ± 0.3 and AA1258-5.6 ± 0.3 mmol/L treatment groups compared to the normal group 6.6 ± 0.3 mmol/L. There was also a significant (P<0.05) increase in the differential blood count in the animals with a significant (P<0.05) increase in red blood count ( NC-5.11 ± 0.13 ×106/µL to AA1258- 5.75 ± 0.11×106/µL ), haematocrit count (NC 39.90 ± 0.52% to AA-29-42.08 ± 0.24 and AA1258-46.13 ± 0.86%), white blood count (NC 10.15 ± 1.01 ×103/µL to AA1258- 15.18 ± 1.65×103/µL ), total lymphocytes (NC 3.5 ± 0.51×103/µL to AA29-5.28 ±0.43×103/µL), monocytes (NC 0.45 ± 0.07×103/µL to AA1258 0.80 ± 0.07×103/µL), eosinophils (NC 0.23 ± 0.03×103/µL to AA12580.40 ± 0.03×103/µL), basophils (NC0.68 ± 0.10×103/µL to AA12581.20 ± 0.10×103/µL) and neutrophil count (NC 4.73 ± 0.68×103/µL to AA1258 8.36 ± 0.71×103/µL). The histopathological indices indicate cellular necrosis in the AA662 and AA1258 treatment groups of the kidney and liver respectively compared to the normal control which has normal cells. Conclusion high dose of ascorbic acid can therefore be suggested to cause damage to the cells by causing cellular necrosis as observed in the histopathology results and has effect on the blood cells as observed in the increase compared to the normal control, and the consequences are possibly triggered through inflammatory responses.
Collapse
Affiliation(s)
- Oladunni Omolabake Otanwa
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Biochemistry, Faculty of Science, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Uche Samuel Ndidi
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Abdulrazak Baba Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Kola Matthew Anigo
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
5
|
Li S, Zhou H, Liang Y, Yang Q, Zhang J, Shen W, Lei L. Integrated analysis of transcriptome-wide m 6A methylation in a Cd-induced kidney injury rat model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114903. [PMID: 37054473 DOI: 10.1016/j.ecoenv.2023.114903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/28/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in a variety of diseases. However, the specific functions of m6A in CdCl2-induced kidney injury remain unclear. OBJECTIVE Here, we investigate a transcriptome-wide map of m6A modifications and explore the effects of m6A on Cd-induced kidney injury. MATERIALS AND METHODS The rat kidney injury model was constructed by subcutaneous injection of CdCl2 (0.5, 1.0, and 2.0 mg/kg). The m6A levels were measured by colorimetry. The level of expression of m6A-related enzymes were detected by reverse transcription quantitative real-time PCR analysis. Transcriptome-wide m6A methylome in CdCl2 (2.0 mg/kg) and the control group were profiled by methylated RNA immunoprecipitation sequencing (MeRIP-seq). Subsequently, the sequencing data were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), while gene set enrichment analysis (GSEA) confirmed the functional enrichment pathways of sequencing genes. In addition, a protein-protein interaction (PPI) network was applied to select hub genes. RESULTS The levels of m6A and m6A regulators (METTL3, METTL14, WTAP, YTHDF2) were significantly increased in CdCl2 groups. We identified a total of 2615 differentially expressed m6A peaks, 868 differentially expressed genes and 200 genes with significant changes in both m6A modification and gene expression levels. GO, KEGG, and GSEA analyses indicated that these genes were mainly enriched in inflammation and metabolism-related pathways such as in IL-17 signaling and fatty acid metabolism. According the result of the conjoint analysis, we identified the top ten hub genes (Fos, Hsp90aa1, Gata3, Fcer1g, Cftr, Cspg4, Atf3, Cdkn1a, Ptgs2, and Npy) which may be regulated by m6A and involve in CdCl2-induced kidney damage. CONCLUSION This study established a m6A transcriptional map in a CdCl2-induced kidney injury model and suggested that m6A may affect CdCl2 induced kidney injury via regulated the inflammation and metabolism related gene.
Collapse
Affiliation(s)
- Shuangjing Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Han Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yufen Liang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Qian Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiachen Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Weitong Shen
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
6
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
7
|
Panax notoginseng Alleviates Sepsis-Induced Acute Kidney Injury by Reducing Inflammation in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9742169. [PMID: 35698642 PMCID: PMC9188472 DOI: 10.1155/2022/9742169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Background Sepsis is defined as a host inflammatory response to infection that can result in end-organ dysfunction. One of the most common consequences of sepsis is acute kidney injury (AKI). Panax notoginseng powder (PNP) has been previously reported to protect against overactive inflammation process. However, the potential effect of PNP on septic AKI is poorly described. The current study was conducted to investigate the protective effects of PNP in septic AKI rats. Methods A model of septic AKI was established on male SD rats by using the cecal ligation and puncture procedure. PNP was administrated by gavage after the cecal ligation and puncture (CLP) procedure, and the mice were sacrificed at 6, 12, and 72 h after induction of sepsis. The serum and kidney samples were collected and assayed for biochemical tests, histopathological staining, inflammation, and apoptosis-related gene/protein expression. In addition, 15 rats in each group were used to calculate the 7-day survival rate. Results CLP-induced kidney injury was observed by the histopathological score, which markedly was attenuated by PNP treatment. Consistently, PNP intervention significantly alleviated the elevated levels of serum creatinine and blood urea nitrogen in CLP-induced sepsis rats. The CLP procedure also triggered proinflammatory cytokine production and increased the expression of various inflammation-related proteins in the kidneys. However, PNP inhibited the renal expression of IL-18, IL-1β, TNF-α, and IL-6 to substantially improve inflammatory response. Mechanistically, CLP induced the increase of the NF-κB p65 level in the injured kidneys, while PNP notably inhibited the corresponding protein expression. Conclusion PNP attenuated kidney inflammation to protect against CLP-induced septic AKI in rats via inhibiting the NF-κB signaling pathway.
Collapse
|
8
|
Zhou L, Xue X, Hou Q, Dai C. Targeting Ferroptosis Attenuates Interstitial Inflammation and Kidney Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:57-71. [PMID: 35224007 DOI: 10.1159/000517723] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/08/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ferroptosis, an iron-dependent form of regulated necrosis mediated by lipid peroxidation, predominantly polyunsaturated fatty acids, is involved in postischemic and toxic kidney injury. However, the role and mechanisms for tubular epithelial cell (TEC) ferroptosis in kidney fibrosis remain largely unknown. OBJECTIVES The aim of the study was to decipher the role and mechanisms for TEC ferroptosis in kidney fibrosis. METHODS Mouse models with unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI) were generated. RESULTS We found that TEC ferroptosis exhibited as reduced glutathione peroxidase 4 (GPX4) expression and increased 4-hydroxynonenal abundance was appeared in kidneys from chronic kidney disease (CKD) patients and mouse models with UUO or IRI. Inhibition of ferroptosis could largely mitigate kidney injury, interstitial fibrosis, and inflammatory cell accumulation in mice after UUO or IRI. Additionally, treatment of TECs with (1S,3R)-RSL-3, an inhibitor of GPX4, could enhance cell ferroptosis and recruit macrophages. Furthermore, inhibiting TEC ferroptosis reduced monocyte chemotactic protein 1 (MCP-1) secretion and macrophage chemotaxis. CONCLUSIONS This study uncovers that TEC ferroptosis may promote interstitial fibrosis and inflammation, and targeting ferroptosis may shine a light on protecting against kidney fibrosis in patients with CKDs.
Collapse
Affiliation(s)
- Lu Zhou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xian Xue
- Department of Clinical Genetics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Hou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Clinical Genetics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Yu P, Duan Z, Liu S, Pachon I, Ma J, Hemstreet GP, Zhang Y. Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models. MICROMACHINES 2021; 13:mi13010003. [PMID: 35056167 PMCID: PMC8780064 DOI: 10.3390/mi13010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The kidneys are often involved in adverse effects and toxicity caused by exposure to foreign compounds, chemicals, and drugs. Early predictions of these influences are essential to facilitate new, safe drugs to enter the market. However, in current drug treatments, drug-induced nephrotoxicity accounts for 1/4 of reported serious adverse reactions, and 1/3 of them are attributable to antibiotics. Drug-induced nephrotoxicity is driven by multiple mechanisms, including altered glomerular hemodynamics, renal tubular cytotoxicity, inflammation, crystal nephropathy, and thrombotic microangiopathy. Although the functional proteins expressed by renal tubules that mediate drug sensitivity are well known, current in vitro 2D cell models do not faithfully replicate the morphology and intact renal tubule function, and therefore, they do not replicate in vivo nephrotoxicity. The kidney is delicate and complex, consisting of a filter unit and a tubular part, which together contain more than 20 different cell types. The tubular epithelium is highly polarized, and maintaining cellular polarity is essential for the optimal function and response to environmental signals. Cell polarity depends on the communication between cells, including paracrine and autocrine signals, as well as biomechanical and chemotaxis processes. These processes affect kidney cell proliferation, migration, and differentiation. For drug disposal research, the microenvironment is essential for predicting toxic reactions. This article reviews the mechanism of drug-induced kidney injury, the types of nephrotoxicity models (in vivo and in vitro models), and the research progress related to drug-induced nephrotoxicity in three-dimensional (3D) cellular culture models.
Collapse
Affiliation(s)
- Pengfei Yu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shuang Liu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ivan Pachon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | | | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Correspondence: ; Tel.: +1-336-713-1189
| |
Collapse
|
10
|
Hu Q, Lan J, Liang W, Chen Y, Chen B, Liu Z, Xiong Y, Zhong Z, Wang Y, Ye Q. MMP7 damages the integrity of the renal tubule epithelium by activating MMP2/9 during ischemia-reperfusion injury. J Mol Histol 2020; 51:685-700. [PMID: 33070277 DOI: 10.1007/s10735-020-09914-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
Abstract
Renal ischemia-reperfusion (IR) injury is a common issue in urological surgery, and the renal tubules, particularly the proximal tubules, are extremely vulnerable to IR injury. In this work, we detected the differently expressed genes (DEGs) between normal rabbit kidneys and IR kidneys by RNA-sequencing, then identified that matrix metalloproteinase-7 (MMP7) played an important role in the progress of IR injury. Indeed, A time-dependent promotion of renal injury was detected in rabbit model, as demonstrated by the increased levels of MMP2/7/9, and the decreased of tight junction protein-1 (TJP1). Furtherly, similar results were confirmed in human renal proximal tubule epithelial (HK-2) cells model. Notably, downregulation of MMP7 affected the activity of MMP2/9 by suppressing expression of cleaved-MMP2/9 not the pro-MMP2/9 protein, which directly alleviated the degradation of TJP1 in HK-2 model. On the contrary, MMP7 had not been affected by inhibiting MMP2/9. In addition, coimmunoprecipitation assay showed that knockdown MMP7 restrained the interaction between MMP2/9 and TJP1. Collectively, this study suggested that MMP7 could serve as early biomarkers for renal tubular injury, and revealed that MMP7 could destroy the integrity of tubular epithelium through degrading TJP1 by activating MMP2/9.
Collapse
Affiliation(s)
- Qianchao Hu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jianan Lan
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Wenjin Liang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yiwen Chen
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Biao Chen
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zhongzhong Liu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yan Xiong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zibiao Zhong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China. .,Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
11
|
Ahn HS, Kim JH, Jeong H, Yu J, Yeom J, Song SH, Kim SS, Kim IJ, Kim K. Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction. Int J Mol Sci 2020; 21:ijms21124236. [PMID: 32545899 PMCID: PMC7352871 DOI: 10.3390/ijms21124236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Renal dysfunction, a major complication of type 2 diabetes, can be predicted from estimated glomerular filtration rate (eGFR) and protein markers such as albumin concentration. Urinary protein biomarkers may be used to monitor or predict patient status. Urine samples were selected from patients enrolled in the retrospective diabetic kidney disease (DKD) study, including 35 with good and 19 with poor prognosis. After removal of albumin and immunoglobulin, the remaining proteins were reduced, alkylated, digested, and analyzed qualitatively and quantitatively with a nano LC-MS platform. Each protein was identified, and its concentration normalized to that of creatinine. A prognostic model of DKD was formulated based on the adjusted quantities of each protein in the two groups. Of 1296 proteins identified in the 54 urine samples, 66 were differentially abundant in the two groups (area under the curve (AUC): p-value < 0.05), but none showed significantly better performance than albumin. To improve the predictive power by multivariate analysis, five proteins (ACP2, CTSA, GM2A, MUC1, and SPARCL1) were selected as significant by an AUC-based random forest method. The application of two classifiers—support vector machine and random forest—showed that the multivariate model performed better than univariate analysis of mucin-1 (AUC: 0.935 vs. 0.791) and albumin (AUC: 1.0 vs. 0.722). The urinary proteome can reflect kidney function directly and can predict the prognosis of patients with chronic kidney dysfunction. Classification based on five urinary proteins may better predict the prognosis of DKD patients than urinary albumin concentration or eGFR.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jong Ho Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Hwangkyo Jeong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul 05505, Korea;
| | - Sang Heon Song
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Sang Soo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - In Joo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| |
Collapse
|
12
|
Choi WJ, Kang SK, Ham S, Chung W, Kim AJ, Kang M. Chronic Cadmium Intoxication and Renal Injury Among Workers of a Small-scale Silver Soldering Company. Saf Health Work 2020; 11:235-240. [PMID: 32596021 PMCID: PMC7303519 DOI: 10.1016/j.shaw.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022] Open
Abstract
Background Cadmium exposure may induce chronic intoxication with renal damage. Silver soldering may be a source of cadmium exposure. Methods We analyzed working environment measurement data and periodic health screening data from a small-scale silver soldering company with ten workers. Concentrations of cadmium in air from working environment measurement data were obtained. Concentrations of blood and urinary cadmium, urine protein, and urine β2-microglobulin (β2M) were obtained. The generalized linear model was used to identify the association between blood and urine cadmium and urine β2M concentrations. Clinical features of chronic cadmium intoxication focused with toxicological renal effects were described. Results The mean duration of work was 8.5 years (standard deviation [SD] = 6.9, range = 3-20 years). Cadmium concentrations in air were ranged from 0.006 to 0.015 mg/m3. Blood cadmium concentration was elevated in all ten workers, with a highest level of 34.6 μg/L (mean = 21.288 μg/L, SD = 11.304, range = 9.641-34.630 μg/L). Urinary cadmium concentration was elevated in nine workers, with a highest level of 62.9 μg/g Cr (mean = 22.151 μg/g creatinine, SD = 19.889, range = 3.228-62.971 μg/g creatinine). Urine β2M concentration was elevated in three workers. Urinary cadmium concentration was positively associated with urine protein concentration (beta coefficient = 10.27, 95% confidence interval = [4.36, 16.18]). Other clinical parameters were compatible with renal tubular damage. Conclusion Cadmium intoxication may occur at quite low air concentrations. Exposure limit may be needed to be lowered.
Collapse
Affiliation(s)
- Won-Jun Choi
- Department of Occupational and Environmental Medicine, Gachon University College of Medicine, Gil Medical Center, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Seong-Kyu Kang
- Department of Occupational and Environmental Medicine, Gachon University College of Medicine, Gil Medical Center, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Seunghon Ham
- Department of Occupational and Environmental Medicine, Gachon University College of Medicine, Gil Medical Center, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Wookyung Chung
- Division of Nephrology, Department of Internal Medicine, Gachon University College of Medicine, Gil Medical Center, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Ae Jin Kim
- Division of Nephrology, Department of Internal Medicine, Gachon University College of Medicine, Gil Medical Center, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Myunghee Kang
- Department of Pathology, Gachon University, Gil Medical Center, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| |
Collapse
|
13
|
Differential expression of p120-catenin 1 and 3 isoforms in epithelial tissues. Sci Rep 2019; 9:90. [PMID: 30643202 PMCID: PMC6331582 DOI: 10.1038/s41598-018-36889-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
P120 catenin (p120) is a non-redundant master regulatory protein of cadherin-based cell-cell junctions, intracellular signaling, and tissue homeostasis and repair. Alternative splicing can generate p120 isoforms 1 and 3 (p120-1 and p120-3), which are implicated in non-overlapping functions by differential expression regulation and unique interactions in different cell types, with often predominant expression of p120-1 in mesenchymal cells, and p120-3 generally prevalent in epithelial cells. However, the lack of specific p120-3 protein detection has precluded analysis of their relative abundance in tissues. Here, we have developed a p120-3 isoform-specific antibody and analyzed the p120-3 localization relative to p120-1 in human tissues. p120-3 but not p120-1 is highly expressed in cell-cell junctions of simple gastrointestinal epithelia such as colon and stomach, and the acini of salivary glands and the pancreas. Conversely, the basal layer of the epidermis and hair follicles expressed p120-1 with reduced p120-3, whereas most other epithelia co-expressed p120-3 and p120-1, including bronchial epithelia and mammary luminal epithelial cells. These data provide an inventory of tissue-specific p120 isoform expression and suggest a link between p120 isoform expression and epithelial differentiation.
Collapse
|
14
|
Chen X, Li L, Liu F, Hoh J, Kapron CM, Liu J. Cadmium Induces Glomerular Endothelial Cell–Specific Expression of Complement Factor H via the −1635 AP-1 Binding Site. THE JOURNAL OF IMMUNOLOGY 2019; 202:1210-1218. [DOI: 10.4049/jimmunol.1800081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
|
15
|
Rana MN, Tangpong J, Rahman MM. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicol Rep 2018; 5:704-713. [PMID: 29992094 PMCID: PMC6035907 DOI: 10.1016/j.toxrep.2018.05.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 04/13/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution has become a concerning matter to human beings. Flint water crisis in the USA pointed out that pollution by heavy metal is getting worse day by day, predominantly by Lead, Cadmium, Mercury and Arsenic. Despite of not having any biological role in flora and fauna, they exhibit detrimental effect following exposure (acute or chronic). Even at low dose, they affect brain, kidney and heart. Oxidative stress has been termed as cause and effect in heavy metal-induced kidney toxicity. In treatment strategy, different chelating agent, vitamins and minerals are included, though chelating agents has been showed different fatal drawbacks. Interestingly, plants and plants derived compounds had shown possible effectiveness against heavy metals induced kidney toxicity. This review will provide detail information on toxicodynamics of Pb, Cd, Hg and As, treatment strategy along with the possible beneficiary role of plant derived compound to protect kidney.
Collapse
Affiliation(s)
- Mohammad Nasiruddin Rana
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Kumira, Chittagong-4318, Bangladesh
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Md. Masudur Rahman
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Kumira, Chittagong-4318, Bangladesh
| |
Collapse
|
16
|
Xiong C, Zang X, Zhou X, Liu L, Masucci MV, Tang J, Li X, Liu N, Bayliss G, Zhao TC, Zhuang S. Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion. Oncotarget 2018; 8:31238-31253. [PMID: 28415724 PMCID: PMC5458204 DOI: 10.18632/oncotarget.16114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lirong Liu
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Monica V Masucci
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jinhua Tang
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuezhu Li
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Na Liu
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Boston University, Providence, RI, 02908, USA
| | - Shougang Zhuang
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
17
|
Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 2018; 93:568-579. [DOI: 10.1016/j.kint.2017.09.033] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
|
18
|
Li Z, Jiang L, Zhu Y, Su W, Xu C, Tao T, Shi Y, Qin J. Assessment of hepatic metabolism-dependent nephrotoxicity on an organs-on-a-chip microdevice. Toxicol In Vitro 2018; 46:1-8. [DOI: 10.1016/j.tiv.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/22/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
|
19
|
Kamenova K, Gluhcheva Y, Vladov I, Stoykova S, Ivanova J. Ameliorative effect of the anticancer agent salinomycin on cadmium-induced hepatotoxicity and renal dysfunction in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3616-3627. [PMID: 29164462 DOI: 10.1007/s11356-017-0755-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
This study presents experimental data on the effects of the tetraethylammonium salt of salinomycinic acid (Sal) on Cd-induced hepatotoxicity and renal dysfunction in Cd-treated mice compared to those of meso-2,3-dimercaptosuccinic acid (DMSA). Forty 60-day-old male ICR mice were randomized into five groups: control group (untreated mice), Cd group (Cd(II) acetate 20 mg/kg body weight provided orally once per day for 14 days), Cd + DMSA group (exposed to Cd(II) acetate as the Cd-exposed group followed by DMSA 20 mg/kg body weight provided orally once per day for 14 days), and Cd + Sal group (exposed to Cd(II) acetate as the Cd-exposed group followed by Sal 20 mg/kg body weight once per day for 14 days). Cd intoxication of mice induced significant liver and kidney injury and a significant elevation of the concentration of Cd in both organs. Treatment of Cd-exposed mice with DMSA or Sal restored the levels of the renal and hepatic functional markers and significantly decreased the concentration of the toxic metal ion in both organs. Administration of Sal improved Cd-induced alterations of the endogenous levels of the essential metal ions. Histological studies revealed that the antibiotic more effectively ameliorated the Cd effect on the liver morphology compared to DMSA. Taken together, the results confirm that the anticancer agent salinomycin is a promising antidote to Cd poisoning.
Collapse
Affiliation(s)
- Kalina Kamenova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Ave, 1164, Sofia, Bulgaria
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Ave, 1164, Sofia, Bulgaria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Kozjak Str., 1, 1407, Sofia, Bulgaria.
| |
Collapse
|
20
|
Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, Rodrigues-Diez R, Falke LL, Mezzano S, Ortiz A, Egido J, Goldschmeding R, Ruiz-Ortega M. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 2018; 244:227-241. [PMID: 29160908 DOI: 10.1002/path.5007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023]
Abstract
Connective tissue growth factor (CCN2/CTGF) is a matricellular protein that is overexpressed in progressive human renal diseases, mainly in fibrotic areas. In vitro studies have demonstrated that CCN2 regulates the production of extracellular matrix (ECM) proteins and epithelial-mesenchymal transition (EMT), and could therefore contribute to renal fibrosis. CCN2 blockade ameliorates experimental renal damage, including diminution of ECM accumulation. We have reported that CCN2 and its C-terminal degradation product CCN2(IV) bind to epidermal growth factor receptor (EGFR) to modulate renal inflammation. However, the receptor involved in CCN2 profibrotic actions has not been described so far. Using a murine model of systemic administration of CCN2(IV), we have unveiled a fibrotic response in the kidney that was diminished by EGFR blockade. Additionally, in conditional CCN2 knockout mice, renal fibrosis elicited by folic acid-induced renal damage was prevented, and this was linked to inhibition of EGFR pathway activation. Our in vitro studies demonstrated a direct effect of CCN2 via the EGFR pathway on ECM production by fibroblasts and the induction of EMT in tubular epithelial cells. Our studies clearly show that the EGFR regulates CCN2 fibrotic signalling in the kidney, and suggest that EGFR pathway blockade could be a potential therapeutic option to block CCN2-mediated profibrotic effects in renal diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Raquel Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain
| | - Jesús Egido
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| |
Collapse
|
21
|
Akinyemi AJ, Faboya OL, Paul AA, Olayide I, Faboya OA, Oluwasola TA. Nephroprotective Effect of Essential Oils from Ginger (Zingiber officinale) and Turmeric (Curcuma longa) Rhizomes against Cadmium-induced Nephrotoxicity in Rats. J Oleo Sci 2018; 67:1339-1345. [PMID: 30305562 DOI: 10.5650/jos.ess18115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Several studies have shown that cadmium (Cd) induces nephrotoxicity and many plant foods phytochemicals have been found useful but their possible mechanism of action still remains unexplored. Hence, this study aimed to investigate the nephroprotective effect of essential oils from Nigeria ginger and turmeric rhizomes in cadmium-treated rats by examining their effect on renal function biomarkers (creatinine, urea and BUN), inflammatory cytokines (IL-6, IL-10 and TNF-Alpha) and renal adenosine deaminase (ADA) activity. The result revealed that essential oils from ginger and turmeric rhizomes exert anti-inflammatory effect by preventing alterations of renal function markers and cytokines (IL-6, IL-10 and TNF-Alpha) levels in Cd-treated rats. In addition, the essential oils inhibited renal ADA activity in Cdtreated rats. In conclusion, inhibition of ADA activity and modulation of inflammatory cytokines could be suggested as the possible mechanism of action by which essential oils from ginger and turmeric rhizomes exert their nephroprotective activities.
Collapse
Affiliation(s)
| | | | | | - Israel Olayide
- Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University
| | | | | |
Collapse
|
22
|
Allostimulatory capacity of conditionally immortalized proximal tubule cell lines for bioartificial kidney application. Sci Rep 2017; 7:7103. [PMID: 28769101 PMCID: PMC5540916 DOI: 10.1038/s41598-017-07582-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022] Open
Abstract
Novel renal replacement therapies, such as a bioartificial kidney (BAK), are needed to improve current hemodialysis treatment of end-stage renal disease (ESRD) patients. As BAK applications may reveal safety concerns, we assessed the alloimmunization and related safety aspects of readily available conditionally immortalized human proximal tubule epithelial cell (ciPTEC) lines to be used in BAK. Two ciPTEC lines, originally derived from urine and kidney tissue, were characterized for the expression and secretion of relevant molecules involved in alloimmunization and inflammatory responses, such as HLA class-I, HLA-DR, CD40, CD80, CD86, as wells as soluble HLA class I and proinflammatory cytokines (IL-6, IL-8 and TNF-α). A lack of direct immunogenic effect of ciPTEC was shown in co-culture experiments with peripheral blood mononuclear cells (PBMC), after appropriate stimulation of ciPTEC. Tight epithelial cell monolayer formation on polyethersulfone flat membranes was confirmed by zonula occludens-1 (ZO-1) expression in the ciPTEC tight junctions, and by restricted inulin-FITC diffusion. Co-culture with (activated) PBMC did not jeopardize the transepithelial barrier function of ciPTEC. In conclusion, the absence of allostimulatory effects and the stability of ciPTEC monolayers show that these unique cells could represent a safe option for BAK engineering application.
Collapse
|
23
|
Loboda A, Stachurska A, Sobczak M, Podkalicka P, Mucha O, Jozkowicz A, Dulak J. Nrf2 deficiency exacerbates ochratoxin A-induced toxicity in vitro and in vivo. Toxicology 2017; 389:42-52. [DOI: 10.1016/j.tox.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/21/2023]
|
24
|
Tsai JP, Lee CJ, Subeq YM, Lee RP, Hsu BG. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats. Int J Med Sci 2017; 14:680-689. [PMID: 28824301 PMCID: PMC5562120 DOI: 10.7150/ijms.19479] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.
Collapse
Affiliation(s)
- Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yi-Maun Subeq
- Department of Nursing, Tzu Chi University, Hualien, Taiwan
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Nephrology, Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
25
|
Erboga M, Kanter M, Aktas C, Sener U, Fidanol Erboga Z, Bozdemir Donmez Y, Gurel A. Thymoquinone Ameliorates Cadmium-Induced Nephrotoxicity, Apoptosis, and Oxidative Stress in Rats is Based on its Anti-Apoptotic and Anti-Oxidant Properties. Biol Trace Elem Res 2016; 170:165-72. [PMID: 26226832 DOI: 10.1007/s12011-015-0453-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd), an environmental and industrial pollutant, generates free radicals responsible for oxidative stress. Cd can also lead to various renal toxic damage such as the proximal tubules and glomerulus dysfunction. Thymoquinone (TQ) is the main constituent of the essential oil obtained from black seeds (Nigella sativa) and has various pharmacological effects. The aim of the present study was to examine the nephroprotective, anti-oxidant, and anti-apoptotic effect of the TQ against Cd-induced nephrotoxicity. A total of 24 male Wistar albino rats were divided into three groups: control, Cd-treated, and Cd-treated with TQ; each group contain eight animals. The Cd-treated group was injected subcutaneously with CdCl2 dissolved in saline in the amount of 2 ml/kg/day for 30 days, resulting in a dosage of 1 mg/kg Cd. The rats in TQ-treated groups were given TQ (50 mg/kg body weight) once a day orally together with first Cd injection during the study period. The histopathological studies in the kidney of rats also showed that TQ markedly reduced the toxicity of Cd and preserved the normal histological architecture of the renal tissue. Immunohistochemical analysis revealed that TQ significantly decreased the Cd-induced over expression of nuclear factor-κB in renal tissue. Furthermore, TQ treatment resulted in decreased the number of apoptotic cells. TQ significantly suppressed lipid peroxidation, compensated deficits in the anti-oxidant defenses (reduced superoxide dismutase, glutathione peroxidase and catalase activities) in renal tissue resulted from Cd administration. These findings suggest that the nephroprotective potential of TQ in Cd toxicity might be due to its anti-oxidant and anti-apoptotic properties, which could be useful for achieving optimum effects in Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Erboga
- Department of Histology and Embryology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey.
| | - Mehmet Kanter
- Department of Histology and Embryology, Faculty of Medicine, University of Istanbul Medeniyet, Istanbul, Turkey
| | - Cevat Aktas
- Department of Histology and Embryology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| | - Umit Sener
- Department of Physiology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| | - Zeynep Fidanol Erboga
- Department of Histology and Embryology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| | - Yeliz Bozdemir Donmez
- Department of Histology and Embryology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| | - Ahmet Gurel
- Department of Biochemistry, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| |
Collapse
|
26
|
Arafa E, Bondzie PA, Rezazadeh K, Meyer RD, Hartsough E, Henderson JM, Schwartz JH, Chitalia V, Rahimi N. TMIGD1 is a novel adhesion molecule that protects epithelial cells from oxidative cell injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2757-67. [PMID: 26342724 DOI: 10.1016/j.ajpath.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.
Collapse
Affiliation(s)
- Emad Arafa
- Department of Pathology, Boston University Medical Campus, Boston, Massachusetts
| | - Philip A Bondzie
- Department of Pathology, Boston University Medical Campus, Boston, Massachusetts
| | - Kobra Rezazadeh
- Department of Pathology, Boston University Medical Campus, Boston, Massachusetts
| | - Rosana D Meyer
- Department of Pathology, Boston University Medical Campus, Boston, Massachusetts
| | - Edward Hartsough
- Department of Pathology, Boston University Medical Campus, Boston, Massachusetts
| | - Joel M Henderson
- Department of Pathology, Boston University Medical Campus, Boston, Massachusetts
| | - John H Schwartz
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Nader Rahimi
- Department of Pathology, Boston University Medical Campus, Boston, Massachusetts; Department of Ophthalmology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts.
| |
Collapse
|
27
|
Berzal S, González-Guerrero C, Rayego-Mateos S, Ucero Á, Ocaña-Salceda C, Egido J, Ortiz A, Ruiz-Ortega M, Ramos AM. TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-κB pathway and ERK activation. J Cell Physiol 2015; 230:1580-93. [PMID: 25536182 DOI: 10.1002/jcp.24905] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
The tubular epithelium may be intrinsically involved in promoting kidney injury by junctional instability, epithelial-mesenchymal transition (EMT) and extracellular matrix remodelling. In this work, we investigated whether the pleiotropic and proinflammatory cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK), could be able to disturb junctional protein expression and to induce EMT of tubular cells. In cultured murine proximal tubular cells TWEAK induced phenotypic changes that were accompanied by F-actin redistribution, loss of epithelial adherent (E-cadherin, Cadherin-16, β-catenin) and tight junction (ZO-1) proteins, and re-expression of the mesenchymal protein Vimentin. The transcriptional repressors Snail and HNF1β were also modulated by TWEAK. In a murine model of obstructive renal pathology, TWEAK expression correlated with the appearance of the mesenchymal marker αSMA in kidney tubular cells. Mechanistically, the epithelial changes induced by TWEAK, including loss of epithelial integrity and EMT, via Fn14 were TGF-β1 independent, but mediated by several intracellular signaling systems, including the canonical NF-κB, ERK activation and the vitamin D receptor modulation. These results highlight potential contributions of TWEAK-induced inflammatory mechanisms that could unveil new pathogenic effects of TWEAK starting tubulointerstitial damage and fibrosis.
Collapse
Affiliation(s)
- Sergio Berzal
- Laboratory of Nephrology and Vascular Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cheng CY. Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model. SPERMATOGENESIS 2015; 4:e981485. [PMID: 26413399 PMCID: PMC4581065 DOI: 10.4161/21565562.2014.981485] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
There are numerous types of junctions in the seminiferous epithelium which are integrated with, and critically dependent on the Sertoli cell cytoskeleton. These include the basal tight junctions between Sertoli cells that form the main component of the blood–testis barrier, the basal ectoplasmic specializations (basal ES) and basal tubulobulbar complexes (basal TBC) between Sertoli cells; as well as apical ES and apical TBC between Sertoli cells and the developing spermatids that orchestrate spermiogenesis and spermiation. These junctions, namely TJ, ES, and TBC interact with actin microfilament-based cytoskeleton, which together with the desmosomal junctions that interact with the intermediate filament-based cytoskeleton plus the highly polarized microtubule-based cytoskeleton are working in concert to move spermatocytes and spermatids between the basal and luminal aspect of the seminiferous epithelium. In short, these various junctions are structurally complexed with the actin- and microtubule-based cytoskeleton or intermediate filaments of the Sertoli cell. Studies have shown toxicants (e.g., cadmium, bisphenol A (BPA), perfluorooctanesulfonate (PFOS), phthalates, and glycerol), and some male contraceptives under development (e.g., adjudin, gamendazole), exert their effects, at least in part, by targeting cell junctions in the testis. The disruption of Sertoli–Sertoli cell and Sertoli–germ cell junctions, results in the loss of germ cells from the seminiferous epithelium. Adjudin, a potential male contraceptive under investigation in our laboratory, produces loss of spermatids from the seminiferous tubules through disruption of the Sertoli cell spermatid junctions and disruption of the Sertoli cell cytoskeleton. The molecular and structural changes associated with adjudin administration are described, to provide an example of the profile of changes caused by disturbance of Sertoli-germ cell and also Sertoli cell-cell junctions.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| |
Collapse
|
29
|
Ljubojević M, Breljak D, Herak-Kramberger CM, Anzai N, Sabolić I. Expression of basolateral organic anion and cation transporters in experimental cadmium nephrotoxicity in rat kidney. Arch Toxicol 2015; 90:525-41. [DOI: 10.1007/s00204-015-1450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/06/2015] [Indexed: 01/11/2023]
|
30
|
Huang JX, Blaskovich MA, Cooper MA. Cell- and biomarker-based assays for predicting nephrotoxicity. Expert Opin Drug Metab Toxicol 2014; 10:1621-35. [DOI: 10.1517/17425255.2014.967681] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Su L, Mruk DD, Cheng CY. Regulation of drug transporters in the testis by environmental toxicant cadmium, steroids and cytokines. SPERMATOGENESIS 2014; 2:285-293. [PMID: 23248770 PMCID: PMC3521751 DOI: 10.4161/spmg.22536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The blood-testis barrier (BTB) provides an efficient barrier to restrict paracellular and transcellular transport of substances, such as toxicants and drugs, limiting their entry to the testis to cause injury. This is achieved by the coordinated actions of efflux and influx transporters at the BTB, which are integral membrane proteins that interact with their substrates, such as drugs and toxicants. An efflux transporter (e.g., P-glycoprotein) can either restrict the entry of drugs/toxicants into the testis or actively pump drugs/toxicants out of Sertoli and/or germ cells if they have entered the seminiferous epithelium via influx pumps. This thus provides an effective mechanism to safeguard spermatogenesis. Using Sertoli cells cultured in vitro with an established tight junction (TJ)-permeability barrier which mimicked the BTB in vivo and treated with cadmium chloride (CdCl2), and also in adult rats (~300 g b.w.) treated with CdCl2 (3 mg/kg b.w., via i.p.) to induce testicular injury, cadmium was found to significantly downregulate the expression of efflux (e.g., P-glycoprotein, Mrp1, Abcg1) and influx (e.g., Oatp3, Slc15a1, Scl39a8) transporters. For instance, treatment of Sertoli cells with cadmium induced significant loss of P-glycoprotein and Oatp-3 at the cell-cell interface, which likely facilitated cadmium entry into the Sertoli cell. These findings illustrate that one of the mechanisms by which cadmium enters the testis is mediated by downregulating the expression of drug transporters at the BTB. Furthermore, cytokines and steroids were found to have differential effects in regulating the expression of drug transporters. Summary, the expression of drug transporters in the testis is regulated by toxicants, steroids and cytokines.
Collapse
Affiliation(s)
- Linlin Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| | | | | |
Collapse
|
32
|
Innate immune system and tissue regeneration in planarians: an area ripe for exploration. Semin Immunol 2014; 26:295-302. [PMID: 25082737 DOI: 10.1016/j.smim.2014.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 01/11/2023]
Abstract
The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism.
Collapse
|
33
|
Gremlin activates the Smad pathway linked to epithelial mesenchymal transdifferentiation in cultured tubular epithelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:802841. [PMID: 24949470 PMCID: PMC4052161 DOI: 10.1155/2014/802841] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/25/2014] [Accepted: 05/01/2014] [Indexed: 11/27/2022]
Abstract
Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β). Epithelial mesenchymal transition (EMT) is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2) with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription). The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.
Collapse
|
34
|
Hoppensack A, Kazanecki CC, Colter D, Gosiewska A, Schanz J, Walles H, Schenke-Layland K. A human in vitro model that mimics the renal proximal tubule. Tissue Eng Part C Methods 2014; 20:599-609. [PMID: 24266327 DOI: 10.1089/ten.tec.2013.0446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human in vitro-manufactured tissue and organ models can serve as powerful enabling tools for the exploration of fundamental questions regarding cell, matrix, and developmental biology in addition to the study of drug delivery dynamics and kinetics. To date, the development of a human model of the renal proximal tubule (PT) has been hindered by the lack of an appropriate cell source and scaffolds that allow epithelial monolayer formation and maintenance. Using extracellular matrices or matrix proteins, an in vivo-mimicking environment can be created that allows epithelial cells to exhibit their typical phenotype and functionality. Here, we describe an in vitro-engineered PT model. We isolated highly proliferative cells from cadaveric human kidneys (human kidney-derived cells [hKDCs]), which express markers that are associated with renal progenitor cells. Seeded on small intestinal submucosa (SIS), hKDCs formed a confluent monolayer and displayed the typical phenotype of PT epithelial cells. PT markers, including N-cadherin, were detected throughout the hKDC culture on the SIS, whereas markers of later tubule segments were weak (E-cadherin) or not (aquaporin-2) expressed. Basement membrane and microvilli formation demonstrated a strong polarization. We conclude that the combination of hKDCs and SIS is a suitable cell-scaffold composite to mimic the human PT in vitro.
Collapse
Affiliation(s)
- Anke Hoppensack
- 1 Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) , Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Lee SY, Han SM, Kim JE, Chung KY, Han KH. Expression of E-cadherin in pig kidney. J Vet Sci 2013; 14:381-6. [PMID: 23820247 PMCID: PMC3885730 DOI: 10.4142/jvs.2013.14.4.381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/24/2012] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is a cell adhesion molecule that plays an important role in maintaining renal epithelial polarity and integrity. The purpose of this study was to determine the exact cellular localization of E-cadherin in pig kidney. Kidney tissues from pigs were processed for light and electron microscopy immunocytochemistry, and immunoblot analysis. E-cadhedrin bands of the same size were detected by immunoblot of samples from rat and pig kidneys. In pig kidney, strong E-cadherin expression was observed in the basolateral plasma membrane of the tubular epithelial cells. E-cadherin immunolabeling was not detected in glomeruli or blood vessels of pig kidney. Double-labeling results demonstrated that E-cadherin was expressed in the calbindin D28k-positive distal convoluted tubule and H(+)-ATPase- positive collecting duct, but not in the aquaporin 1-positive, N-cadherin-positive proximal tubule. In contrast to rat, E-cadherin immunoreactivity was not expressed at detectable levels in the Tamm-Horsfall protein-positive thick ascending limb of pig kidney. Immunoelectron microscopy confirmed that E-cadherin was localized in both the lateral membranes and basal infoldings of the collecting duct. These results suggest that E-cadherin may be a critical adhesion molecule in the distal convoluted tubule and collecting duct cells of pig kidney.
Collapse
Affiliation(s)
- Su-Youn Lee
- Departments of Anatomy, Ewha Womans University School of Medicine, Seoul 158-710, Korea
| | | | | | | | | |
Collapse
|
36
|
Wan HT, Mruk DD, Wong CKC, Cheng CY. The apical ES-BTB-BM functional axis is an emerging target for toxicant-induced infertility. Trends Mol Med 2013; 19:396-405. [PMID: 23643465 DOI: 10.1016/j.molmed.2013.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023]
Abstract
Testes are sensitive to toxicants, such as cadmium and phthalates, which disrupt a local functional axis in the seminiferous epithelium known as the 'apical ectoplasmic specialization (apical ES)-blood-testis barrier (BTB)-basement membrane (BM)'. Following exposure, toxicants contact the basement membrane and activate the Sertoli cell, which perturbs its signaling function. Thus, toxicants can modulate signaling and/or cellular events at the apical ES-BTB-BM axis, perturbing spermatogenesis without entering the epithelium. Toxicants also enter the epithelium via drug transporters to potentiate their damaging effects, and downregulation of efflux transporters by toxicants impedes BTB function such that toxicants remain in the epithelium and efficiently disrupt spermatogenesis. These findings support a novel model of toxicant-induced disruption of spermatogenesis that could be interfered with using small molecules.
Collapse
Affiliation(s)
- Hin-Ting Wan
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | | | | | | |
Collapse
|
37
|
Wan HT, Mruk DD, Wong CKC, Cheng CY. Targeting testis-specific proteins to inhibit spermatogenesis: lesson from endocrine disrupting chemicals. Expert Opin Ther Targets 2013; 17:839-55. [PMID: 23600530 DOI: 10.1517/14728222.2013.791679] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Exposure to endocrine disrupting chemicals (EDCs) has recently been linked to declining fertility in men in both developed and developing countries. Since many EDCs possess intrinsic estrogenic or androgenic activities, thus, the gonad is one of the major targets of EDCs. AREAS COVERED For the past 2 decades, studies found in the literature regarding the disruptive effects of these EDCs on reproductive function in human males and also rodents were mostly focused on oxidative stress-induced germ cell apoptosis, disruption of steroidogenesis, abnormal sperm production and disruption of spermatogenesis in particular cell adhesion function and the blood-testis-barrier (BTB) function. Herein, we highlight recent findings in the field illustrating testis-specific proteins are also targets of EDCs. EXPERT OPINION This information should be helpful in developing better therapeutic approach to manage ECD-induced reproductive toxicity. This information is also helpful to identify potential targets for male contraceptive development.
Collapse
Affiliation(s)
- H T Wan
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | | | | | | |
Collapse
|
38
|
Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model. Toxicol Appl Pharmacol 2013; 268:27-36. [DOI: 10.1016/j.taap.2013.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
|
39
|
Abstract
Cadmium is known for its toxicity in animals and man as it is not used in these species. Its only role in biology is as a zinc replacement at the catalytic site of a particular class of carbonic anhydrases in some marine diatoms. The toxicity of cadmium continues to be a significant public health concern as cadmium enters the food chain and it is taken up by tobacco smokers. The biochemical basis for its toxicity has been the objective of research for over 50 years. Cadmium damages the kidneys, the lungs upon inhalation, and interferes with bone metabolism. Evidence is accumulating that it affects the cardiovascular system. Cadmium is classified as a human carcinogen. It generates oxidative stress. This chapter discusses the chemistry and biochemistry of cadmium(II) ions, the only important state of cadmium in biology. This background is needed to interpret the countless effects of cadmium in laboratory experiments with cultured cells or with animals with regard to their significance for human health. Evaluation of the risks of cadmium exposure and the risk factors that affect cadmium's biological effects in tissues is an on-going process. It appears that the more we learn about the biochemistry of cadmium and the more sensitive assays we develop for determining exposure, the lower we need to set the upper limits for exposure to protect those at risk. But proper control of cadmium's presence and interactions with living species and the environment still needs to be based on improved knowledge about the mechanisms of cadmium toxicity; the gaps in our knowledge in this area are discussed herein.
Collapse
|
40
|
Edwards JR, Kolman K, Lamar PC, Chandar N, Fay MJ, Prozialeck WC. Effects of cadmium on the sub-cellular localization of β-catenin and β-catenin-regulated gene expression in NRK-52E cells. Biometals 2012; 26:33-42. [DOI: 10.1007/s10534-012-9592-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
41
|
Prozialeck WC, Edwards JR. Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther 2012; 343:2-12. [PMID: 22669569 PMCID: PMC3464032 DOI: 10.1124/jpet.110.166769] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023] Open
Abstract
Cadmium is an important industrial agent and environmental pollutant that is a major cause of kidney disease. With chronic exposure, cadmium accumulates in the epithelial cells of the proximal tubule, resulting in a generalized reabsorptive dysfunction characterized by polyuria and low-molecular-weight proteinuria. The traditional view has been that as cadmium accumulates in proximal tubule cells, it produces a variety of relatively nonspecific toxic effects that result in the death of renal epithelial cells through necrotic or apoptotic mechanisms. However, a growing volume of evidence suggests that rather than merely being a consequence of cell death, the early stages of cadmium-induced proximal tubule injury may involve much more specific changes in cell-cell adhesion, cellular signaling pathways, and autophagic responses that occur well before the onset of necrosis or apoptosis. In this commentary, we summarize these recent findings, and we offer our own perspectives as to how they relate to the toxic actions of cadmium in the kidney. In addition, we highlight recent findings, suggesting that it may be possible to detect the early stages of cadmium toxicity through the use of improved biomarkers. Finally, some of the therapeutic implications of these findings will be considered. Because cadmium is, in many respects, a model cumulative nephrotoxicant, these insights may have broader implications regarding the general mechanisms through which a variety of drugs and toxic chemicals damage the kidney.
Collapse
Affiliation(s)
- Walter C Prozialeck
- Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA.
| | | |
Collapse
|
42
|
Zuehlke J, Ebenau A, Krueger B, Goppelt-Struebe M. Vectorial secretion of CTGF as a cell-type specific response to LPA and TGF-β in human tubular epithelial cells. Cell Commun Signal 2012; 10:25. [PMID: 22938209 PMCID: PMC3503564 DOI: 10.1186/1478-811x-10-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/16/2012] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED BACKGROUND Increased expression of the pro-fibrotic protein connective tissue growth factor (CTGF) has been detected in injured kidneys and elevated urinary levels of CTGF are discussed as prognostic marker of chronic kidney disease. There is evidence that epithelial cells lining the renal tubular system contribute to uptake and secretion of CTGF. However, the role of different types of tubular epithelial cells in these processes so far has not been addressed in primary cultures of human cells. RESULTS Tubular epithelial cells of proximal and distal origin were isolated from human kidneys and cultured as polarized cells in insert wells. The pro-fibrotic stimuli lysophosphatidic acid (LPA) and transforming growth factor β (TGF-β) were used to induce CTGF secretion.LPA activated CTGF secretion in proximal tubular cells when applied from either the apical or the basolateral side as shown by immunocytochemistry. CTGF was secreted exclusively to the apical side. Signaling pathways activated by LPA included MAP kinase and Rho kinase signaling. TGF-β applied from either side also stimulated CTGF secretion primarily to the apical side with little basolateral release.Interestingly, TGF-β activation induced different signaling pathways depending on the side of TGF-β application. Smad signaling was almost exclusively activated from the basolateral side most prominently in cells of distal origin. Only part of these cells also synthesized CTGF indicating that Smad activation alone was not sufficient for CTGF induction. MAP kinases were involved in apical TGF-β-mediated activation of CTGF synthesis in proximal cells and a subset of epithelial cells of distal origin. This subpopulation of distal tubular cells was also able to internalize recombinant apical CTGF, in addition to proximal cells which were the main cells to take up exogenous CTGF. CONCLUSIONS Analysis of polarized human primary renal epithelial cells in a transwell system shows that vectorial secretion of the pro-fibrotic protein CTGF depends on the cell type, the stimulus and the signaling pathway activated. In all conditions, CTGF was secreted mainly to the apical side upon TGF-β and LPA treatment and therefore, likely contributes to increased urinary CTGF levels in vivo. Moreover, CTGF secreted basolaterally may be active as paracrine pro-fibrotic mediator.
Collapse
Affiliation(s)
- Jonathan Zuehlke
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| | - Astrid Ebenau
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| | - Bettina Krueger
- Department of Cellular and Molecular Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 6, Erlangen, 91054, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 8, Erlangen 91054, Germany
| |
Collapse
|
43
|
Rehman K, Akash MSH, Azhar S, Khan SA, Abid R, Waseem A, Murtaza G, Sherazi TA. A biochemical and histopathologic study showing protection and treatment of gentamicin-induced nephrotoxicity in rabbits using vitamin C. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2012; 9:360-5. [PMID: 23983367 DOI: 10.4314/ajtcam.v9i3.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gentamicin and vitamin C have been proposed as nephrotoxic and antioxidant, respectively. This study involved biochemical and histopathologic investigation showing protection and treatment of gentamicin-induced nephrotoxicity in rabbits using vitamin C for 26 days hypothesizing that whether vitamin C would inhibit or decrease the raised serum urea and creatinine levels. This study was conducted on 25 healthy male albino rabbits (average weight 1.5±0.2 kg), classified into 5 groups: group A, B, C, D and E for nephrocurative (study-I) and nephroprotective (study-II) studies. Control group of rabbits (group A) received only the vehicle of gentamicin ampoule. In study-I, gentamicin sulphate (GS 80 mg/kg, i.m.) was administered to group B and C rabbits for ten days, then group C rabbits received vitamin C 250 mg/Kg for remaining 16 days. Group D and E received GS 80 mg/kg and GS 80 mg/kg i.m.-vitamin C 250 mg/kg orally, respectively during whole period (26 days) of study-II. After 26 days, various biochemical parameters, i.e. serum creatinine, blood urea nitrogen (BUN), and serum antioxidant activity, and histopathologic investigations were made. Nephrotoxicity was observed in rabbit groups B, C and D as evident from significant (p<0.05) high levels of serum creatinine and BUN and low serum antioxidant levels as compared to the levels of control group. Decrease in the levels of serum creatinine and BUN along with the increase in serum antioxidant activity was observed after vitamin C treatment in group C. While, renal-protective role of vitamin C was seen in group E as compared to the control. In conclusion, Gentamicin induced nephrotoxicity can be attenuated or treated using vitamin C.
Collapse
Affiliation(s)
- K Rehman
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Berzal S, Alique M, Ruiz-Ortega M, Egido J, Ortiz A, Ramos AM. GSK3, Snail, and Adhesion Molecule Regulation by Cyclosporine A in Renal Tubular Cells. Toxicol Sci 2012; 127:425-37. [DOI: 10.1093/toxsci/kfs108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
45
|
Pennemans V, De Winter LM, Munters E, Nawrot TS, Van Kerkhove E, Rigo JM, Reynders C, Dewitte H, Carleer R, Penders J, Swennen Q. The association between urinary kidney injury molecule 1 and urinary cadmium in elderly during long-term, low-dose cadmium exposure: a pilot study. Environ Health 2011; 10:77. [PMID: 21888673 PMCID: PMC3176151 DOI: 10.1186/1476-069x-10-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/05/2011] [Indexed: 05/06/2023]
Abstract
BACKGROUND Urinary kidney injury molecule 1 is a recently discovered early biomarker for renal damage that has been proven to be correlated to urinary cadmium in rats. However, so far the association between urinary cadmium and kidney injury molecule 1 in humans after long-term, low-dose cadmium exposure has not been studied. METHODS We collected urine and blood samples from 153 non-smoking men and women aged 60+, living in an area with moderate cadmium pollution from a non-ferrous metal plant for a significant period. Urinary cadmium and urinary kidney injury molecule 1 as well as other renal biomarkers (alpha1-microglobulin, beta2-microglobulin, blood urea nitrogen, urinary proteins and microalbumin) were assessed. RESULTS Both before (r = 0.20; p = 0.01) and after (partial r = 0.32; p < 0.0001) adjustment for creatinine, age, sex, past smoking, socio-economic status and body mass index, urinary kidney injury molecule 1 correlated with urinary cadmium concentrations. No significant association was found between the other studied renal biomarkers and urinary cadmium. CONCLUSIONS We showed that urinary kidney injury molecule 1 levels are positively correlated with urinary cadmium concentration in an elderly population after long-term, low-dose exposure to cadmium, while other classical markers do not show an association. Therefore, urinary kidney injury molecule 1 might be considered as a biomarker for early-stage metal-induced kidney injury by cadmium.
Collapse
Affiliation(s)
- Valérie Pennemans
- Biomedical Research Institute, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Liesbeth M De Winter
- Biomedical Research Institute, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Elke Munters
- Centre for Environmental Sciences, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
- Occupational & Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium
| | - Emmy Van Kerkhove
- Centre for Environmental Sciences, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Jean-Michel Rigo
- Biomedical Research Institute, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Carmen Reynders
- Department of Clinical Biology, Ziekenhuis Oost-Limburg (ZOL), Genk, Belgium
| | - Harrie Dewitte
- Department of General Practice, Leuven University (KULeuven), Leuven, Belgium
- Primary health care center GVHV, Genk, Belgium
| | - Robert Carleer
- Centre for Environmental Sciences, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Joris Penders
- Biomedical Research Institute, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
- Department of Clinical Biology, Ziekenhuis Oost-Limburg (ZOL), Genk, Belgium
| | - Quirine Swennen
- Biomedical Research Institute, Hasselt University and transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| |
Collapse
|
46
|
Lu YF, Wu Q, Yan JW, Shi JZ, Liu J, Shi JS. Realgar, cinnabar and An-Gong-Niu-Huang Wan are much less chronically nephrotoxic than common arsenicals and mercurials. Exp Biol Med (Maywood) 2011; 236:233-9. [PMID: 21321321 DOI: 10.1258/ebm.2010.010247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Realgar (As(4)S(4)) and cinnabar (HgS) are frequently included in traditional Chinese medicines and Indian Ayurvedic medicines. Both As and Hg are well known for toxic effects, and their safety is of concern. The aim of this study was to compare chronic nephrotoxicity of An-Gong-Niu-Huang Wan (AGNH), realgar and cinnabar with common arsenicals and mercurials. Mice were orally administrated with AGNH (3 g/kg, 6-fold of clinical dose), cinnabar (0.3 g/kg, amount in AGNH) and realgar (0.3 g/kg, amount in AGNH), HgCl(2) (0.118 mmol/kg, 1/10 of cinnabar), MeHg (0.012 mmol/kg, 1/100 of cinnabar), NaAsO(2) (As(3+) 0.028 mmol/kg, 1/100 of realgar) or Na(2)HAsO(4) (As(5+) 0.056 mmol/kg, 1/50 of realgar), daily for six weeks, and nephrotoxicity was examined. Animal body weights were decreased by MeHg and HgCl(2). Blood urea nitrogen and creatinine levels were elevated by MeHg. Renal pathology was severe in the MeHg and HgCl(2) groups, moderate in the arsenite, arsenate and realgar groups and mild in the cinnabar and AGNH groups. Renal Hg accumulation in the MeHg and HgCl(2) groups was 50-200 folds higher than the cinnabar group. Expressions of metallothionein-1 and heme oxygenase-1, biomarkers for metal toxicity, were increased 2-5 folds by arsenite, arsenate, MeHg and HgCl(2), but not by realgar, cinnabar and AGNH. The chemokine and glutathione-S transferase-α4, markers for inflammation, were also increased by MeHg and HgCl(2). Expressions of cell adhesion gene S100a9 and E-cadherin were altered by HgCl(2), arsenite and realgar. Taken together, chemical forms of mercury and arsenic are major determinants in their disposition and toxicity.
Collapse
Affiliation(s)
- Yuan-Fu Lu
- Department of Pharmacology and Key Lab of Basic Pharmacology of Guizhou, Zunyi Medical College, Zunyi 563003
| | | | | | | | | | | |
Collapse
|
47
|
Bodo M, Balloni S, Lumare E, Bacci M, Calvitti M, Dell’Omo M, Murgia N, Marinucci L. Effects of sub-toxic Cadmium concentrations on bone gene expression program: Results of an in vitro study. Toxicol In Vitro 2010; 24:1670-80. [DOI: 10.1016/j.tiv.2010.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 05/24/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
|
48
|
Moulis JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 2010; 23:877-96. [DOI: 10.1007/s10534-010-9336-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/01/2010] [Indexed: 01/12/2023]
|
49
|
Effect of metals on β-actin and total protein synthesis in cultured human intestinal epithelial cells. J Pharmacol Toxicol Methods 2010; 63:47-58. [PMID: 20452446 DOI: 10.1016/j.vascn.2010.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 02/08/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
INTRODUCTION As an important structural protein, β-actin is associated with anchoring of tight junctions (TJs) to the cell scaffold. Caco-2 cells, an immortal intestinal epithelial cell line, rely on β-actin to form intact monolayers with high transepithelial electrical resistance in cell culture inserts. METHODS We examined the effect of six metals on expression of β-actin mRNA and β-actin synthesis, on total and net production of newly synthesized proteins, on paracellular transport of TJ markers, and on cell viability in confluent monolayers. [(3)H]-glycine and [(3)H]-tyrosine were used as indicators of newly synthesized proteins in the absence or presence of increasing concentrations of arsenic, cadmium, copper, manganese, mercury and nickel. The monolayers were exposed to 24-h single exposures as well as continuous daily repeated doses of metals for 48-h and 96-h. RESULTS Results suggest that decreases in newly synthesized proteins, in which β-actin represents about 10%, correlated with 2- to 5-fold higher expression of β-actin mRNA for the higher concentrations of metals. Interestingly, IC(50)s calculated for each chemical for 24-h acute and 48- and 96-h repeated dosing experiments, using the MTT viability assay and paracellular permeability markers, decreased newly synthesized and total proteins to 10% and 40% of control, respectively. DISCUSSION Overall, the results indicate that, at equivalent concentrations, the metals affect β-actin mRNA and newly synthesized proteins before cell viability and paracellular permeability are compromised. Consequently the results help in elucidating mechanisms of metal cytotoxicity that lead to understanding the relationship between tight junction integrity, paracellular transport, and cell viability.
Collapse
|
50
|
Early biomarkers of cadmium exposure and nephrotoxicity. Biometals 2010; 23:793-809. [PMID: 20107869 DOI: 10.1007/s10534-010-9288-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/08/2010] [Indexed: 01/27/2023]
Abstract
As the risks of cadmium (Cd)-induced kidney disease have become increasingly apparent, much attention has been focused on the development and use of sensitive biomarkers of Cd nephrotoxicity. The purpose of this review is to briefly summarize the current state of Cd biomarker research. The review includes overviews of the toxicokinetics of Cd, the mechanisms of Cd-induced proximal tubule injury, and mechanistic summaries of some of the biomarkers (N-acetyl-β-D-glucosamidase; β(2)-microglubulin, metallothionein, etc.) that have been most widely used in monitoring of human populations for Cd exposure and nephrotoxicity. In addition, several novel biomarkers (kidney injury molecule-1, α-glutathione-S-transferase and insulin) that offer the potential for improved biomonitoring of Cd-exposed populations are discussed.
Collapse
|