1
|
Shen YJ, Ou PH, Shen YC, Lai CJ. Role of endogenous nerve growth factor in laryngeal airway hyperreactivity and laryngeal inflammation induced by intermittent hypoxia in rats. Respir Physiol Neurobiol 2025; 332:104372. [PMID: 39566876 DOI: 10.1016/j.resp.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Obstructive sleep apnea, characterized by airway exposure to intermittent hypoxia (IH), is associated with laryngeal airway hyperreactivity (LAH) and laryngeal inflammation. The sensitization of capsaicin-sensitive superior laryngeal afferents (CSSLAs) by inflammatory mediators has been implicated in the pathogenesis of LAH. Nerve growth factor (NGF) is an inflammatory mediator that acts on tropomyosin receptor kinase A (TrkA) and the p75 neurotrophin receptor (p75NTR) to induce lower airway hyperresponsiveness. In this study, we investigated the role of NGF in the development of LAH and laryngeal inflammation induced by IH in anesthetized rats. Compared with rats subjected to room air exposure for 14 days, rats with 14-day IH exposure exhibited augmented reflex apneic responses to the laryngeal provocation of three different chemical stimulants of CSSLAs, resulting in LAH. The apneic responses to laryngeal stimulants were abolished by either perineural capsaicin treatment (a procedure that selectively blocks the conduction of CSSLAs) or denervation of the superior laryngeal nerves, suggesting that the reflex was mediated through CSSLAs. The IH-induced LAH was significantly attenuated by daily treatment with anti-NGF antibody, but was unaffected by daily treatment with immunoglobulin G. IH exposure also induced laryngeal inflammation as evidenced by increases in laryngeal levels of NGF, lipid peroxidation, tumor necrosis factor-α, interleukin-1β, TrkA, and p75NTR. Similarly, IH-induced laryngeal inflammation was significantly reduced by daily treatment with anti-NGF antibody. We concluded that NGF contributes to the development of LAH and laryngeal inflammation induced by IH in rats. The LAH may result from the sensitizing effect of NGF on CSSLAs.
Collapse
Affiliation(s)
- Yan-Jhih Shen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsun Ou
- Master program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yan-Cheng Shen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching Jung Lai
- Master program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Verres Y, Bodin A, Chevret S, Victoni T, Gicquel T, Barreto E, Freund-Michel V, Lagente V. Effects of the nerve growth factor and its carrier protein on the inflammatory response from human monocytes. Fundam Clin Pharmacol 2024; 38:940-945. [PMID: 38693600 DOI: 10.1111/fcp.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The nerve growth factor (NGF) has been previously shown to be involved in cellular proliferation, differentiation, survival, or wound healing. This factor displays a variety of biological effects that yet remain to be explored. Previous data on cell lines show a pro-inflammatory role of NGF on monocytes. OBJECTIVES The objective of the study was to investigate the pro-inflammatory effect of NGF, using a model of fresh human monocytes. METHODS Monocytes obtained from PBMC were exposed to NGF at various concentrations. Alternatively, monocytes were exposed to BSA, the NGF carrier protein without the NGF. Gene expression and cytokine release in the supernatant were monitored. RESULTS We found that NGF increased the expression of pro-inflammatory, chemotactic, and remodeling genes such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and C-X-C motif ligand (CXCL)8. The protein levels of CXCL8 and matrix metalloproteinase (MMP)-9 were also increased in the cell supernatants following NGF exposure. BSA alone was found to drive part of this response, bringing nuance to the inflammatory potential of the NGF. CONCLUSION These data suggest that NGF is able to enhance monocyte inflammatory responses once cells are stimulated with another signal but is possibly not able to directly activate it. This could have implications for example in patients with bacterial infections, where NGF could worsen the local inflammation by over-activating immune cells.
Collapse
Affiliation(s)
- Yann Verres
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Univ. Rennes, INSERM, INRAE, CHU, Rennes, France
| | - Aude Bodin
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Univ. Rennes, INSERM, INRAE, CHU, Rennes, France
| | - Sarah Chevret
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Univ. Rennes, INSERM, INRAE, CHU, Rennes, France
| | - Tatiana Victoni
- University of Lyon, VetAgro Sup, APCSE, Marcy l'Etoile, France
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Univ. Rennes, INSERM, INRAE, CHU, Rennes, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, Maceió, Brazil
| | - Véronique Freund-Michel
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, Pessac, France
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Univ. Rennes, INSERM, INRAE, CHU, Rennes, France
| |
Collapse
|
3
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. eLife 2024; 12:RP91012. [PMID: 39162616 PMCID: PMC11335347 DOI: 10.7554/elife.91012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Shauna C Otto
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Teresa M Swanson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Anthony Nhim
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Sara Carlson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Marium Raza
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Ligia Araujo Naves
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Eric N Senning
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Sharona E Gordon
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| |
Collapse
|
4
|
Mahajan AT, Shivani, Datusalia AK, Coluccini C, Coghi P, Chaudhary S. Pyrazolo[1,5- a]pyrimidine as a Prominent Framework for Tropomyosin Receptor Kinase (Trk) Inhibitors-Synthetic Strategies and SAR Insights. Molecules 2024; 29:3560. [PMID: 39124968 PMCID: PMC11314189 DOI: 10.3390/molecules29153560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure-activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors.
Collapse
Affiliation(s)
- Amol T. Mahajan
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Shivani
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Ashok Kumar Datusalia
- Laboratory of Molecular Neurotherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India;
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| |
Collapse
|
5
|
Cardouat G, Douard M, Bouchet C, Roubenne L, Kmecová Z, Esteves P, Brette F, Guignabert C, Tu L, Campagnac M, Robillard P, Coste F, Delcambre F, Thumerel M, Begueret H, Maurac A, Belaroussi Y, Klimas J, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Guibert C, Freund-Michel V. NGF increases Connexin-43 expression and function in pulmonary arterial smooth muscle cells to induce pulmonary artery hyperreactivity. Biomed Pharmacother 2024; 174:116552. [PMID: 38599061 DOI: 10.1016/j.biopha.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Rats
- Cells, Cultured
- Connexin 43/metabolism
- Gap Junctions/metabolism
- Gap Junctions/drug effects
- Hypertension, Pulmonary/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Nerve Growth Factor/metabolism
- Phosphorylation
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptor, trkA/metabolism
Collapse
Affiliation(s)
| | - Matthieu Douard
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux F-33000, France
| | - Clément Bouchet
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | - Lukas Roubenne
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | - Zuzana Kmecová
- Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovakia
| | - Pauline Esteves
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | - Fabien Brette
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux F-33000, France
| | - Christophe Guignabert
- INSERM UMR_S 999, « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, Le Plessis-Robinson 92350, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
| | - Ly Tu
- INSERM UMR_S 999, « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, Le Plessis-Robinson 92350, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
| | | | - Paul Robillard
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | - Florence Coste
- Laboratoire de Pharm-écologie Cardiovasculaire (LaPEC-EA 4278), Université d'Avignon et des Pays du Vaucluse, Avignon 84000, France
| | | | - Matthieu Thumerel
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; CHU de Bordeaux, Bordeaux 33000, France
| | | | | | | | - Jan Klimas
- Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovakia
| | - Thomas Ducret
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | | | - Pierre Vacher
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | | | - Roger Marthan
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; CHU de Bordeaux, Bordeaux 33000, France
| | - Patrick Berger
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; CHU de Bordeaux, Bordeaux 33000, France
| | | | | |
Collapse
|
6
|
D'Amico F, Lugarà C, Luppino G, Giuffrida C, Giorgianni Y, Patanè EM, Manti S, Gambadauro A, La Rocca M, Abbate T. The Influence of Neurotrophins on the Brain-Lung Axis: Conception, Pregnancy, and Neonatal Period. Curr Issues Mol Biol 2024; 46:2528-2543. [PMID: 38534776 DOI: 10.3390/cimb46030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Neurotrophins (NTs) are four small proteins produced by both neuronal and non-neuronal cells; they include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). NTs can exert their action through both genomic and non-genomic mechanisms by interacting with specific receptors. Initial studies on NTs have identified them only as functional molecules of the nervous system. However, recent research have shown that some tissues and organs (such as the lungs, skin, and skeletal and smooth muscle) as well as some structural cells can secrete and respond to NTs. In addition, NTs perform several roles in normal and pathological conditions at different anatomical sites, in both fetal and postnatal life. During pregnancy, NTs are produced by the mother, placenta, and fetus. They play a pivotal role in the pre-implantation process and in placental and embryonic development; they are also involved in the development of the brain and respiratory system. In the postnatal period, it appears that NTs are associated with some diseases, such as sudden infant death syndrome (SIDS), asthma, congenital central hypoventilation syndrome (CCHS), and bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Federica D'Amico
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Cecilia Lugarà
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giovanni Luppino
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Carlo Giuffrida
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Ylenia Giorgianni
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Eleonora Maria Patanè
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Tiziana Abbate
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| |
Collapse
|
7
|
Koudstaal T, Boomars KA. Inflammatory biomarkers in pulmonary arterial hypertension: ready for clinical implementation? Eur Respir J 2023; 61:61/3/2300018. [PMID: 36958746 DOI: 10.1183/13993003.00018-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 03/25/2023]
Affiliation(s)
- Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karin A Boomars
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Nerve growth factor causes epinephrine release dysfunction by regulating phenotype alterations and the function of adrenal medullary chromaffin cells in mice with allergic rhinitis. Mol Med Rep 2023; 27:39. [PMID: 36601769 PMCID: PMC9835056 DOI: 10.3892/mmr.2023.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of allergic rhinitis (AR) is an increased risk factor for the occurrence of bronchial asthma (BA). Nerve growth factor (NGF), in addition to its key role in the development and differentiation of neurons, may also be an important inflammatory factor in AR and BA. However, the pathogenesis of the progression of AR to BA remains to be elucidated. The present study aimed to investigate the ability of NGF to mediate nasobronchial interactions and explore possible underlying molecular mechanisms. In the present study, an AR mouse model was established and histology of nasal mucosa tissue injury was determined. The level of phenylethanolamine N‑methyl transferase in adrenal medulla was determined by immunofluorescence. Primary adrenal medullary chromaffin cells (AMCCs) were isolated and cultured from the adrenal medulla of mice. The expression levels of synaptophysin (SYP), STAT1, JAK1, p38 and ERK in NGF‑treated and untreated AMCCs were detected by reverse‑transcription‑quantitative PCR and western blotting. The epinephrine (EPI) and norepinephrine (NE) concentrations were measured by ELISA. It was found that the expression of SYP in AMCCs was enhanced in the presence of NGF, whereas, the concentration of EPI decreased significantly under the same conditions. Furthermore, NGF mediated the phenotypic and functional changes of AMCCs, resulting in decreased EPI secretion via JAK1/STAT1, p38 and ERK signaling. In conclusion, these findings could provide novel evidence for the role of NGF in regulating neuroendocrine mechanisms.
Collapse
|
9
|
NGF regulates sertoli cell growth and prevents LPS-induced junction protein damage via PI3K/AKT/NFκB signaling. Theriogenology 2023; 195:138-148. [DOI: 10.1016/j.theriogenology.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
10
|
Freitas NL, Gomes YCP, Souza FDS, Torres RC, Echevarria-Lima J, Leite ACCB, Lima MASD, Araújo AQC, Silva MTT, Espíndola ODM. Lessons from the Cerebrospinal Fluid Analysis of HTLV-1-Infected Individuals: Biomarkers of Inflammation for HAM/TSP Development. Viruses 2022; 14:v14102146. [PMID: 36298702 PMCID: PMC9609689 DOI: 10.3390/v14102146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neurodegenerative disease that leads to motor impairment due to a chronic inflammatory process in the central nervous system (CNS). However, the HAM/TSP pathogenesis is not completely clear, and biomarkers to define the disease prognosis are still necessary. Thus, we aimed to identify biomarkers for HAM/TSP and potential mechanisms involved in disease development. To that end, the concentrations of VILIP-1, BDNF, VEGF, β-NGF, TGF-β1, fractalkine/CX3CL1, IL-6, IL-18, and TNF-α, and the soluble forms of TREM-1, TREM-2, and RAGE, were assessed using a multiplex bead-based immunoassay in paired cerebrospinal fluid (CSF) and serum samples from HAM/TSP patients (n = 20), asymptomatic HTLV-1 carriers (AC) (n = 13), and HTLV-1-seronegative individuals (n = 9), with the results analyzed according to the speed of HAM/TSP progression. HAM/TSP patients had elevated fractalkine in the serum but not in the CSF, particularly those with low neuroinflammatory activity (CSF/serum ratio of neopterin <1 and of CXCL10 < 2). HAM/TSP patients with normal CSF levels of neurofilament light chain (NfL) showed elevated β-NGF in serum, and serum BDNF levels were increased in HTLV-1-infected individuals, particularly in HTLV-1 AC. Both HTLV-1 AC and HAM/TSP patients had lower TGF-β1 levels in CSF compared to uninfected individuals, and HAM/TSP patients with active CNS inflammation showed higher CSF levels of IL-18, which correlated with markers of inflammation, neuronal death, and blood−brain-barrier permeability. Although none of the factors evaluated were associated with the speed of HAM/TSP progression, reduced TGF-β1 levels in CSF suggest that suppressive responses to control subclinical and/or active neurodegeneration are impaired, while increased CSF IL-18 indicates the involvement of inflammasome-mediated mechanisms in HAM/TSP development.
Collapse
Affiliation(s)
- Nicole Lardini Freitas
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Yago Côrtes Pinheiro Gomes
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Flávia dos Santos Souza
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Rafael Carvalho Torres
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil
| | - Juliana Echevarria-Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | | | | | - Abelardo Queiroz Campos Araújo
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Marcus Tulius Teixeira Silva
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Otávio de Melo Espíndola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Correspondence:
| |
Collapse
|
11
|
Bouchet C, Cardouat G, Douard M, Coste F, Robillard P, Delcambre F, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Guibert C, Freund-Michel V. Inflammation and Oxidative Stress Induce NGF Secretion by Pulmonary Arterial Cells through a TGF-β1-Dependent Mechanism. Cells 2022; 11:cells11182795. [PMID: 36139373 PMCID: PMC9496672 DOI: 10.3390/cells11182795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Expression of the nerve growth factor NGF is increased in pulmonary hypertension (PH). We have here studied whether oxidative stress and inflammation, two pathological conditions associated with transforming growth factor-β1 (TGF-β1) in PH, may trigger NGF secretion by pulmonary arterial (PA) cells. Effects of hydrogen peroxide (H2O2) and interleukin-1β (IL-1β) were investigated ex vivo on rat pulmonary arteries, as well as in vitro on human PA smooth muscle (hPASMC) or endothelial cells (hPAEC). TβRI expression was assessed by Western blotting. NGF PA secretion was assessed by ELISA after TGF-β1 blockade (anti-TGF-β1 siRNA, TGF-β1 blocking antibodies, TβRI kinase, p38 or Smad3 inhibitors). TβRI PA expression was evidenced by Western blotting both ex vivo and in vitro. H2O2 or IL-1β significantly increased NGF secretion by hPASMC and hPAEC, and this effect was significantly reduced when blocking TGF-β1 expression, binding to TβRI, TβRI activity, or signaling pathways. In conclusion, oxidative stress and inflammation may trigger TGF-β1 secretion by hPASMC and hPAEC. TGF-β1 may then act as an autocrine factor on these cells, increasing NGF secretion via TβRI activation. Since NGF and TGF-β1 are relevant growth factors involved in PA remodeling, such mechanisms may therefore be relevant to PH pathophysiology.
Collapse
Affiliation(s)
- Clément Bouchet
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Guillaume Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Matthieu Douard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- IHU Institut de Rythmologie et Modélisation Cardiaque (LIRYC), 33600 Pessac, France
| | - Florence Coste
- Laboratoire de Pharm-Écologie Cardiovasculaire (LaPEC-EA 4278), Université d’Avignon et des Pays du Vaucluse, 84000 Avignon, France
| | - Paul Robillard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | | | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Pierre Vacher
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Isabelle Baudrimont
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Roger Marthan
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- CHU de Bordeaux, 33000 Bordeaux, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- CHU de Bordeaux, 33000 Bordeaux, France
| | - Christelle Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Véronique Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
12
|
Verma V, Dileepan M, Huang Q, Phan T, Hu WS, Ly H, Liang Y. Influenza A virus activates cellular Tropomyosin receptor kinase A (TrkA) signaling to promote viral replication and lung inflammation. PLoS Pathog 2022; 18:e1010874. [PMID: 36121891 PMCID: PMC9521937 DOI: 10.1371/journal.ppat.1010874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection causes acute respiratory disease with potential severe and deadly complications. Viral pathogenesis is not only due to the direct cytopathic effect of viral infections but also to the exacerbated host inflammatory responses. Influenza viral infection can activate various host signaling pathways that function to activate or inhibit viral replication. Our previous studies have shown that a receptor tyrosine kinase TrkA plays an important role in the replication of influenza viruses in vitro, but its biological roles and functional mechanisms in influenza viral infection have not been characterized. Here we show that IAV infection strongly activates TrkA in vitro and in vivo. Using a chemical-genetic approach to specifically control TrkA kinase activity through a small molecule compound 1NMPP1 in a TrkA knock-in (TrkA KI) mouse model, we show that 1NMPP1-mediated TrkA inhibition completely protected mice from a lethal IAV infection by significantly reducing viral loads and lung inflammation. Using primary lung cells isolated from the TrkA KI mice, we show that specific TrkA inhibition reduced IAV viral RNA synthesis in airway epithelial cells (AECs) but not in alveolar macrophages (AMs). Transcriptomic analysis confirmed the cell-type-specific role of TrkA in viral RNA synthesis, and identified distinct gene expression patterns under the TrkA regulation in IAV-infected AECs and AMs. Among the TrkA-activated targets are various proinflammatory cytokines and chemokines such as IL6, IL-1β, IFNs, CCL-5, and CXCL9, supporting the role of TrkA in mediating lung inflammation. Indeed, while TrkA inhibitor 1NMPP1 administered after the peak of IAV replication had no effect on viral load, it was able to decrease lung inflammation and provided partial protection in mice. Taken together, our results have demonstrated for the first time an important biological role of TrkA signaling in IAV infection, identified its cell-type-specific contribution to viral replication, and revealed its functional mechanism in virus-induced lung inflammation. This study suggests TrkA as a novel host target for therapeutic development against influenza viral disease.
Collapse
Affiliation(s)
- Vikram Verma
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Thu Phan
- Department of Chemical Engineering and Material Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Material Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| |
Collapse
|
13
|
Stabile AM, Pistilli A, Bartolini D, Angelucci E, Dell’Omo M, Di Sante G, Rende M. Short-Term Effects of Side-Stream Smoke on Nerve Growth Factor and Its Receptors TrKA and p75 NTR in a Group of Non-Smokers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10317. [PMID: 36011952 PMCID: PMC9408420 DOI: 10.3390/ijerph191610317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Environmental tobacco smoke remains a major risk factor, for both smokers and non-smokers, able to trigger the initiation and/or the progression of several human diseases. Although in recent times governments have acted with the aim of banning or strongly reducing its impact within public places and common spaces, environmental tobacco smoke remains a major pollutant in private places, such as the home environment or cars. Several inflammatory and long-term biomarkers have been analysed and well-described, but the list of mediators modulated during the early phases of inhalation of environmental tobacco smoke needs to be expanded. The aim of this study was to measure the short-term effects after exposure to side-stream smoke on Nerve Growth Factor and its receptors Tropomyosin-related kinase A and neurotrophin p75, molecules already described in health conditions and respiratory diseases. Twenty-one non-smokers were exposed to a home-standardized level of SS as well as to control smoke-free air. Nerve Growth Factor and inflammatory cytokines levels, as well the expression of Tropomyosin-related kinase A and neurotrophin receptor p75, were analysed in white blood cells. The present study demonstrates that during early phases, side-stream smoke exposure induced increases in the percentage of neurotrophin receptor p75-positive white blood cells, in their mean fluorescent intensity, and in gene expression. In addition, we found a positive correlation between the urine cotinine level and the percentage of neurotrophin receptor-positive white blood cells. For the first time, the evidence that short-term exposure to side-stream smoke is able to increase neurotrophin receptor p75 expression confirms the very early involvement of this receptor, not only among active smokers but also among non-smokers exposed to SS. Furthermore, the correlation between cotinine levels in urine and the increase in neurotrophin receptor p75-positive white blood cells could represent a potential novel molecule to be investigated for the detection of SS exposure at early time points.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Desirée Bartolini
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
- Department of Pharmaceutical Sciences, Section of Biochemistry, University of Perugia, Via del Giochetto, 06132 Perugia, Italy
| | - Eleonora Angelucci
- Department of Medicine, Section of Occupational Medicine, Respiratory Diseases and Toxicology, School of Medicine, University of Perugia, Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Marco Dell’Omo
- Department of Medicine, Section of Occupational Medicine, Respiratory Diseases and Toxicology, School of Medicine, University of Perugia, Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, P. le Lucio Severi 1 Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
14
|
Matthews RM, Bradley E, Griffin CS, Lim XR, Mullins ND, Hollywood MA, Lundy FT, McGarvey LP, Sergeant GP, Thornbury KD. Functional expression of Na V1.7 channels in freshly dispersed mouse bronchial smooth muscle cells. Am J Physiol Cell Physiol 2022; 323:C749-C762. [DOI: 10.1152/ajpcell.00011.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolated smooth muscle cells (SMC) from mouse bronchus were studied using the whole-cell patch clamp technique at ~21oC. Stepping from -100 mV to -20 mV evoked inward currents of mean amplitude -275 pA. These inactivated (tau=1.1 ms) and were abolished when external Na+ was substituted with N-Methyl-D-glucamine. In current-voltage protocols, current peaked at -10 mV and reversed between +20 and +30 mV. The V1/2s of activation and inactivation were -25 & -86 mV, respectively. The current was highly sensitive to tetrodotoxin (IC50=1.5 nM) and the NaV1.7 subtype selective blocker, PF-05089771 (IC50=8.6 nM), consistent with NaV1.7 as the underlying pore-forming a subunit. Two NaV1.7-selective antibodies caused membrane-delineated staining of isolated SMC, as did a non-selective pan-NaVantibody. RT-PCR, performed on groups of ~15 isolated SMC, revealed transcripts for NaV1.7 in 7/8 samples. Veratridine (30 mM), a non-selective NaV channel activator, reduced peak current evoked by depolarization but induced a sustained current of 40 pA. Both effects were reversed by tetrodotoxin (100 nM). In tension experiments veratridine (10 mM) induced contractions that were entirely blocked by atropine (1 mM). However, in the presence of atropine, veratridine was able to modulate the pattern of activity induced by a combination of U-46619 (a thromboxane A2 mimetic) & PGE2(prostaglandin E2), by eliminating bursts in favour of sustained phasic contractions. These effects were readily reversed to control-like activity by tetrodotoxin (100 nM). In conclusion, mouse bronchial SMC functionally express NaV1.7 channels that are capable of modulating contractile activity, at least under experimental conditions.
Collapse
Affiliation(s)
- Ruth M. Matthews
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Caoimhin S. Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Xin Rui Lim
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Nicolas D. Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Mark A. Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Fionnuala T. Lundy
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Lorcan P. McGarvey
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Gerard P. Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Keith D. Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| |
Collapse
|
15
|
The Effect of Interaction NGF/p75NTR in Sperm Cells: A Rabbit Model. Cells 2022; 11:cells11061035. [PMID: 35326486 PMCID: PMC8947739 DOI: 10.3390/cells11061035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Nerve Growth Factor (NGF) plays an important role in the reproductive system through its receptor’s interaction (p75NTR). This paper aims to analyze the impact of NGF p75NTR in epididymal and ejaculated rabbit semen during in vitro sperm storage. Methods: Semen samples from 10 adult rabbit bucks were collected four times (n = 40) and analyzed. NGF was quantified in seminal plasma, and the basal expression of p75NTR in sperm was established (time 0). Moreover, we evaluated p75NTR, the apoptotic rates, and the main sperm parameters, at times 2–4 and 6 h with or without the administration of exogenous NGF. Results: Based on the level of p75NTR, we defined the threshold value (25.6%), and sperm were divided into High (H) and Normal (N). During sperm storage, p75NTR of H samples significantly modulated some relevant sperm parameters. Specifically, comparing H samples with N ones, we observed a reduction in motility and non-capacitated cell number, together with an increased percentage of dead and apoptotic cells. Notably, the N group showed a reduction in dead and apoptotic cells after NGF treatment. Conversely, the NGF administration on H sperm did not change either the percentage of dead cells or the apoptotic rate. Conclusion: The concentration of p75NTR on ejaculated sperm modulates many semen outcomes (motility, apoptosis, viability) through NGF interaction affecting the senescence of sperm.
Collapse
|
16
|
Usai C, Gibbons JM, Pade C, Li W, Jacobs SRM, McKnight Á, Kennedy PTF, Gill US. The β-NGF/TrkA Signalling Pathway Is Associated With the Production of Anti-Nucleoprotein IgG in Convalescent COVID-19. Front Immunol 2022; 12:813300. [PMID: 35095908 PMCID: PMC8795736 DOI: 10.3389/fimmu.2021.813300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023] Open
Abstract
Background The presentation of SARS-CoV-2 infection varies from asymptomatic to severe COVID-19. Similarly, high variability in the presence, titre and duration of specific antibodies has been reported. While some host factors determining these differences, such as age and ethnicity have been identified, the underlying molecular mechanisms underpinning these differences remain poorly defined. Methods We analysed serum and PBMC from 17 subjects with a previous PCR-confirmed SARS-CoV-2 infection and 10 unexposed volunteers following the first wave of the pandemic, in the UK. Anti-NP IgG and neutralising antibodies were measured, as well as a panel of infection and inflammation related cytokines. The virus-specific T cell response was determined by IFN-γ ELISPOT and flow cytometry after overnight incubation of PBMCs with pools of selected SARS-CoV-2 specific peptides. Results Seven of 17 convalescent subjects had undetectable levels of anti-NP IgG, and a positive correlation was shown between anti-NP IgG levels and the titre of neutralising antibodies (IC50). In contrast, a discrepancy was noted between antibody levels and T cell IFN-γ production by ELISpot following stimulation with specific peptides. Among the analysed cytokines, β-NGF and IL-1α levels were significantly different between anti-NP positive and negative subjects, and only β-NGF significantly correlated with anti-NP positivity. Interestingly, CD4+ T cells of anti-NP negative subjects expressed lower amounts of the β-NGF-specific receptor TrkA. Conclusions Our results suggest that the β-NGF/TrkA signalling pathway is associated with the production of anti-NP specific antibody in mild SARS-CoV-2 infection and the mechanistic regulation of this pathway in COVID-19 requires further investigation.
Collapse
Affiliation(s)
- Carla Usai
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joseph M. Gibbons
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Corinna Pade
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Wenhao Li
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| | - Sabina R. M. Jacobs
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Áine McKnight
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Patrick T. F. Kennedy
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| | - Upkar S. Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| |
Collapse
|
17
|
Tsuji K. Reply: Letter to the editor. J Orthop Res 2021; 39:2535-2536. [PMID: 33783018 DOI: 10.1002/jor.25028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
18
|
Pathare-Ingawale P, Chavan-Gautam P. The balance between cell survival and death in the placenta: Do neurotrophins have a role? Syst Biol Reprod Med 2021; 68:3-12. [PMID: 34615417 DOI: 10.1080/19396368.2021.1980132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Neurotrophins (NT) are a closely related family of growth factors, which regulate the nervous system's development, maintenance, and function. Although NTs have been well studied in neuronal cells, they are also expressed in the placenta. Despite their suggested role in regulating fetoplacental development, their precise functional significance in the placenta remains elusive. NT activate two different classes of receptors. These include the Trk, tropomyosin-related kinase family of high-affinity tropomyosin-related kinase receptors, which induces cell survival, and the p75NTR, p75 neurotrophin receptor, a member of the tumor necrosis factor(TNF) receptor superfamily, which induces apoptosis in neuronal cells. Mature NT molecule results from proteolysis of a biologically active precursor form called pro-neurotrophins (pro-NT) by the intracellular proprotein convertase or furin. Pro-NTs have a regulatory role in determining cell survival and apoptosis. Here, we review the literature on the expression and functions of NTs and their receptors in the placenta and discuss their possible role in placental tissue development and apoptosis. The possible implications of imbalance in pro-NT and mature-NT levels for fetoplacental development are also discussed.Abbreviations AGE/ALEs: Advanced glycation/lipoxidation end products; Bax: Bcl 2 Associated X; Bcl-2: B-cell lymphoma 2; BDNF: Brain-derived neurotrophic factor; FAS/FASL: Fas cell surface death receptor/ ligand; IUGR: Intrauterine growth restriction; JNK: c-Jun amino-terminal kinase; MAP: mitogen-activated protein k; mRNA: Messenger ribonucleic acid; NGF: Nerve growth factor; NT: Neurotrophins; NRAGE: Neurotrophin receptor-interacting MAGE homolog; NRIF: Neurotrophin receptor interacting factor; PE: Preeclampsia; PI3k: Phosphoinositide 3- kinase; PLC: Phospholipase C; p75NTR: p75 neurotrophin receptor; Pro-NT: Pro-neurotrophins; PTB: Preterm birth; p53: Tumor protein p53; TNF: Tumor necrosis factor; TRAF: TNFR-associated factors; Trk: Tropomyosin-related kinase; siRNA: small interfering ribonucleic acid.
Collapse
Affiliation(s)
| | - Preeti Chavan-Gautam
- Interdisciplinary School of Health Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
19
|
Wang J, Wu Q, Ding L, Song S, Li Y, Shi L, Wang T, Zhao D, Wang Z, Li X. Therapeutic Effects and Molecular Mechanisms of Bioactive Compounds Against Respiratory Diseases: Traditional Chinese Medicine Theory and High-Frequency Use. Front Pharmacol 2021; 12:734450. [PMID: 34512360 PMCID: PMC8429615 DOI: 10.3389/fphar.2021.734450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Ding
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Tan Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
20
|
Liu Z, Wu H, Huang S. Role of NGF and its receptors in wound healing (Review). Exp Ther Med 2021; 21:599. [PMID: 33884037 PMCID: PMC8056114 DOI: 10.3892/etm.2021.10031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Wound healing is an important and complicated process that includes four highly integrated and overlapping phases, haemostasis, inflammation, proliferation and tissue remodelling. Nerve growth factor (NGF) was the first member of a family of neurotrophic factors to be discovered, and is an essential neurotrophic factor for the development and maintenance of the central and peripheral nervous systems. Several studies have proposed that NGF and its receptors, tropomyosin-related kinase receptor 1 and NGF receptor, are involved in the wound healing process, and are important components of the healing of several wounds both in vivo and in vitro. Topical application of NGF significantly promotes the healing of different types of wounds, including diabetic foot ulcers, pressure ulcers and corneal wounds. The present review summarizes the status of NGF and its receptors in current literature, and discusses data obtained in the last few years on the healing action of NGF in cutaneous, corneal and oral wounds.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
21
|
Dorschner BW, Wiedemuth R, Funke AC, Gentzel M, Rogers ML, Brenner S, Thieme S. Listening to the Whispers in Neuroimmune Crosstalk: A Comprehensive Workflow to Investigate Neurotrophin Receptor p75NTR Under Endogenous, Low Abundance Conditions. Front Immunol 2021; 12:648283. [PMID: 33936068 PMCID: PMC8085361 DOI: 10.3389/fimmu.2021.648283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
Inflammatory conditions are critically influenced by neuroimmune crosstalk. Cytokines and neurotrophic factors shape the responses of both nervous and immune systems. Although much progress has been made, most findings to date are based on expression of recombinant (tagged) proteins. The examination of receptor interactions by immunoprecipitation (IP) at endogenous levels provides further insight into the more subtle regulations of immune responses. Here, we present a comprehensive workflow and an optimized IP protocol that provide step-by-step instructions to investigate neurotrophin receptor p75NTR at endogenous, low abundance levels: from lysate preparation and confirmation of receptor expression to antibody validation and successful detection of protein-protein interactions. We employ human melanoma cell line A375 to validate specific antibodies and IP conditions, and apply these methods to explore p75NTR interactions in human leukemic plasmacytoid dendritic cell line PMDC05 detecting 14-3-3ϵ:p75NTR interaction in this cell type. With p75NTR as an exemplary protein, our approach provides a strategy to detect specific interaction partners even under endogenous, low abundance expression conditions.
Collapse
Affiliation(s)
- Benjamin W. Dorschner
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Ralf Wiedemuth
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Ann-Christin Funke
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Marc Gentzel
- Molecular Analysis - Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universitaet Dresden, Dresden, Germany
| | - Mary-Louise Rogers
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sebastian Brenner
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Sebastian Thieme
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
22
|
An JS, Tsuji K, Onuma H, Araya N, Isono M, Hoshino T, Inomata K, Hino J, Miyazato M, Hosoda H, Kangawa K, Nakagawa Y, Katagiri H, Miyatake K, Sekiya I, Muneta T, Koga H. Inhibition of fibrotic changes in infrapatellar fat pad alleviates persistent pain and articular cartilage degeneration in monoiodoacetic acid-induced rat arthritis model. Osteoarthritis Cartilage 2021; 29:380-388. [PMID: 33388431 DOI: 10.1016/j.joca.2020.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We have reported that fibrotic changes in infrapatellar fat pad (IFP) after acute joint inflammation are closely associated with persistent pain in rats. In this study, to examine the effects of anti-fibrotic treatment on persistent pain, we used C-type natriuretic peptides (CNP) at the recovery phase after acute joint inflammation. DESIGN Thirty-two male Wistar rats were used in this study. Monoiodoacetic acid (MIA) was injected intra-articularly to induce IFP fibrosis and persistent pain. CNP was injected after acute inflammatory phase in the same knee joint. Time-course pain-avoidance behavior tests and histological analyses were performed to examine the effects of CNP. RESULTS Histological evaluations indicated that intra-articular injection of CNP inhibited fibrotic changes in IFP after acute inflammation. Incapacitance tests indicated that MIA injection into rat knee joint quickly decreased the percent weight on ipsilateral limb. In the vehicle group, the decrease was maintained up to day 28, suggesting that pain persistence occurred after acute inflammation (Day 0/Day 28, Est Dif -8.15, CI -10.78∼-5.53, Linear mixed-effect model). In contrast, the pain was alleviated in the CNP group after day 14 (Day0/Day 14, -0.51, -2.62-1.59). In addition, we observed significant improvement in the degree of articular cartilage degeneration at day 14 in the CNP group (OARSI score: vehicle 16.14 ± 4.37 vs CNP 6.87 ± 3.44, P < 0.01; Wilcoxon rank sum test). CONCLUSION Fibrotic changes in IFP may play important roles in both persistent pain and articular cartilage degeneration.
Collapse
Affiliation(s)
- J-S An
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - K Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan.
| | - H Onuma
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - N Araya
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - M Isono
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - T Hoshino
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - K Inomata
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - J Hino
- Department of Biochemistry, Japan; National Cerebral and Cardiovascular Center Research Institute, Japan.
| | - M Miyazato
- Department of Biochemistry, Japan; National Cerebral and Cardiovascular Center Research Institute, Japan.
| | - H Hosoda
- Department of Regenerative Medicine and Tissue Engineering, Japan; National Cerebral and Cardiovascular Center Research Institute, Japan.
| | - K Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Japan.
| | - Y Nakagawa
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan.
| | - H Katagiri
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - K Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - I Sekiya
- Center for Stem Cells and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - T Muneta
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - H Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
23
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
24
|
Rubin L, Stabler CT, Schumacher-Klinger A, Marcinkiewicz C, Lelkes PI, Lazarovici P. Neurotrophic factors and their receptors in lung development and implications in lung diseases. Cytokine Growth Factor Rev 2021; 59:84-94. [PMID: 33589358 DOI: 10.1016/j.cytogfr.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Although lung innervation has been described by many studies in humans and rodents, the regulation of the respiratory system induced by neurotrophins is not fully understood. Here, we review current knowledge on the role of neurotrophins and the expression and function of their receptors in neurogenesis, vasculogenesis and during the embryonic development of the respiratory tree and highlight key implications relevant to respiratory diseases.
Collapse
Affiliation(s)
- Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Adi Schumacher-Klinger
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
25
|
Mai L, Huang F, Zhu X, He H, Fan W. Role of Nerve Growth Factor in Orofacial Pain. J Pain Res 2020; 13:1875-1882. [PMID: 32801845 PMCID: PMC7399448 DOI: 10.2147/jpr.s250030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Some chronic pain conditions in the orofacial region are common and the mechanisms underlying orofacial pain are unresolved. Nerve growth factor (NGF) is a member of a family of neurotrophins and regulates the growth, maintenance and development of neurons. Increasing evidence suggests that NGF plays a crucial role in the generation of pain and hyperalgesia in different pain states. This review investigates the role of NGF in orofacial pain and their underlying cellular mechanisms, which may provide essential guidance to drug-discovery programmes. A systemic literature search was conducted in Pubmed focusing on NGF and orofacial pain. Articles were reviewed, and those discussing in vitro studies, animal evidence, clinical course, and possible mechanisms were summarized. We found a hyperalgesic effect of NGF in peripheral sensitization in orofacial pain models. We also summarize the current knowledge regarding NGF-dependent pain mechanism, which is initiated by retrograde transport of the ligand-receptor complex, ensuing transcriptional regulation of many important nociceptor genes involved in nociceptive processing. Phase III trials suggest that anti-NGF drug is endorsed with anti-inflammatory and pain-relieving effects with good tolerance in a variety of pain conditions, including pain associated with osteoarthritis and chronic lower back pain. Based on the data reviewed herein, NGF is believed to be an important hyperalgesic mediator in orofacial pain. The identification of underlying mechanisms and pathways of orofacial pain opens new frontiers for pain management.
Collapse
Affiliation(s)
- Lijia Mai
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, People's Republic of China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
26
|
Neurotrophic factors and nerve growth factor in ocular allergy. Curr Opin Allergy Clin Immunol 2020; 19:510-516. [PMID: 31145195 DOI: 10.1097/aci.0000000000000555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW During allergic reaction, nervous and immune systems mutually interact through release of mediators, including neurotrophic factors and nerve growth factor (NGF). These mediators modulate allergic reaction through binding their receptors expressed by immune and structural cells and by stimulating neuropeptide release by nerves. The role of neuropeptides and NGF has been demonstrated in allergic asthma and rhinitis, and, to a lesser extent, in allergic conjunctivitis. The aim of this review are to elucidate the evidence of the role of NGF and neuropeptides in the pathogenesis of allergic conjunctivitis. RECENT FINDINGS NGF modulates allergic reaction by stimulating release of cytokines, inflammatory mediators and neuropeptides by immune and structural cells and nerve endings at the site of inflammation. Evidence showed that local and systemic NGF levels increase in patients with allergic conjunctivitis, including allergic rhinoconjuncivitis, vernal keratoconjunctivitis and atopic keratoconjunctivitis. We recently described an increase of conjunctival p75NTR expression in patients with allergic rhinoconjuncivitis, and an increase of tear levels of NGF after conjunctival provocation test with allergen. SUMMARY NGF modulates ocular allergic reaction. Increasing understanding of the role of neuropeptides in allergic conjunctivitis may pave the way to the development of novel therapeutic approaches and improvement of patients' management.
Collapse
|
27
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
28
|
Cardouat G, Guibert C, Freund-Michel V. [The expression and role of nerve growth factor (NGF) in pulmonary hypertension]. Rev Mal Respir 2020; 37:205-209. [PMID: 32151405 DOI: 10.1016/j.rmr.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 11/29/2022]
Abstract
Pulmonary hypertension is a severe multifactorial disease of the pulmonary circulation characterized by a progressive elevation in mean pulmonary arterial pressure (PAPm), leading to right ventricular failure and the death of the patient. Current therapies slow the progression of the disease but do not offer a cure. Nerve growth factor NGF is a growth factor playing a significant role in the pathophysiology of pulmonary hypertension, particularly in pulmonary arterial hyperreactivity, and the remodelling and inflammation of the pulmonary vasculature. Thus, targeting NGF may offer new therapeutic strategies in the treatment of this disease.
Collapse
Affiliation(s)
- G Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm U1045; Université de Bordeaux.
| | - C Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm U1045; Université de Bordeaux
| | - V Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm U1045; Université de Bordeaux
| |
Collapse
|
29
|
Wei X, Sun C, Zhou RP, Ma GG, Yang Y, Lu C, Hu W. Nerve growth factor promotes ASIC1a expression via the NF-κB pathway and enhances acid-induced chondrocyte apoptosis. Int Immunopharmacol 2020; 82:106340. [PMID: 32146316 DOI: 10.1016/j.intimp.2020.106340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Nerve growth factor (NGF) is a neurotrophic factor that is thought to have a broad role in the nervous system and tumors, and has recently been described as a mediator of inflammation. It is not clear whether or not NGF participates in apoptosis of articular chondrocytes. In this study, we determined if NGF affects ASIC1a expression and NF-κB P65 activation in rat chondrocytes, and measured the effectiveness of NGF on apoptotic protein expression in acid-induced chondrocytes. NGF was shown to up-regulate the level of ASIC1a in a dose- and time-dependent fashion. Simultaneously, NGF activated NF-κB P65 in chondrocytes. Additionally, the elevated ASIC1a expression induced by NGF was eliminated by the NF-κB inhibitor (PDTC) in chondrocytes. Moreover, NGF reduced cell viability and induced LDH release under the premise of acid-induced articular chondrocytes. Furthermore, NGF could enhance cleaved-caspase 9 and cleaved-PARP expression in acid-pretreated chondrocytes, and which could be inhibited by using psalmotoxin 1(PcTX1) or PDTC. Together, these results indicated that NGF may up-regulate ASIC1a expression through the NF-κB signaling pathway, and further promote acid-induced apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Sun
- Department of Pharmacology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
30
|
Dileepan M, Ge XN, Bastan I, Greenberg YG, Liang Y, Sriramarao P, Rao SP. Regulation of Eosinophil Recruitment and Allergic Airway Inflammation by Tropomyosin Receptor Kinase A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:682-693. [PMID: 31871023 PMCID: PMC7058110 DOI: 10.4049/jimmunol.1900786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Eosinophilia is a hallmark of allergic airway inflammation (AAI). Identifying key molecules and specific signaling pathways that regulate eosinophilic inflammation is critical for development of novel therapeutics. Tropomycin receptor kinase A (TrkA) is the high-affinity receptor for nerve growth factor. AAI is associated with increased expression of TrkA by eosinophils; however, the functional role of TrkA in regulating eosinophil recruitment and contributing to AAI is poorly understood. This study identifies, to our knowledge, a novel mechanism of eotaxin-mediated activation of TrkA and its role in regulating eosinophil recruitment by using a chemical-genetic approach to specifically inhibit TrkA kinase activity with 1-NM-PP1 in TrkAF592A-knock-in (TrkA-KI) eosinophils. Blockade of TrkA by 1-NM-PP1 enhanced eosinophil spreading on VCAM-1 but inhibited eotaxin-1 (CCL11)-mediated eosinophil migration, calcium flux, cell polarization, and ERK1/2 activation, suggesting that TrkA is an important player in the signaling pathway activated by eotaxin-1 during eosinophil migration. Further, blockade of matrix metalloprotease with BB-94 inhibited eotaxin-1-induced TrkA activation and eosinophil migration, additively with 1-NM-PP1, indicating a role for matrix metalloproteases in TrkA activation. TrkA inhibition in Alternaria alternata-challenged TrkA-KI mice markedly inhibited eosinophilia and attenuated various features of AAI. These findings are indicative of a distinctive eotaxin-mediated TrkA-dependent signaling pathway, which, in addition to other TrkA-activating mediators, contributes to eosinophil recruitment during AAI and suggests that targeting the TrkA signaling pathway to inhibit eosinophil recruitment may serve as a therapeutic strategy for management of eosinophilic inflammation in allergic airway disease, including asthma.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | | | | | - Yana G. Greenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - P. Sriramarao
- Corresponding authors: P. Srirama Rao (), University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, Phone: 612-626-6989; Yuying Liang (), University of Minnesota, 1988 Fitch Ave., 295 AS/VM Bldg, St. Paul, MN 55108, Phone: 612-625-3376
| | - Savita P. Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| |
Collapse
|
31
|
Sacchetti M, Segatto M, Bruscolini A, Abicca I, Cavaliere C, Lambiase A. Changes of NGF pathway in allergic rhinoconjunctivitis: A conjunctival allergen challenge study. Allergy 2019; 74:605-607. [PMID: 30353971 DOI: 10.1111/all.13641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marta Sacchetti
- Department of Sense Organs; University Sapienza of Rome; Rome Italy
| | - Marco Segatto
- Department of Sense Organs; University Sapienza of Rome; Rome Italy
| | - Alice Bruscolini
- Department of Sense Organs; University Sapienza of Rome; Rome Italy
| | - Irene Abicca
- Department of Sense Organs; University Sapienza of Rome; Rome Italy
| | - Carlo Cavaliere
- Department of Oral and Maxillo Facial Sciences; University Sapienza of Rome; Rome Italy
| | | |
Collapse
|
32
|
Li M, Fan X, Ji L, Fan Y, Xu L. Exacerbating effects of trimellitic anhydride in ovalbumin-induced asthmatic mice and the gene and protein expressions of TRPA1, TRPV1, TRPV2 in lung tissue. Int Immunopharmacol 2019; 69:159-168. [PMID: 30716586 DOI: 10.1016/j.intimp.2019.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 01/11/2019] [Accepted: 01/27/2019] [Indexed: 12/27/2022]
Abstract
With the increasing morbidity and mortality of asthma, asthma aggravated by environmental pollution has drawn more attention. This study investigated the exacerbating effects of trimellitic anhydride (TMA), a typical pollutant, in ovalbumin (OVA)-induced asthmatic mice and the gene and protein expressions of TRPA1, V1, V2 in lung tissue. Female BALB/c mice were respectively administered for 42 days as follow: sensitized and challenged with OVA, sensitized and challenged with TMA, sensitized with OVA and challenged with OVA plus TMA, as well as sensitized and challenged with OVA plus TMA. 24 h after the last challenge, the changes in airway resistance (RI) and lung dynamic compliance (Cdyn) were tested. The levels of the inflammatory cells in blood and bronchoalveolar lavage fluid (BALF) were determined. The gene and protein expressions of TRPA1, V1, V2 in lung tissue were examined, and levels of interleukin (IL)-4, -13, substance P (SP), prostaglandin D2 (PGD2), nerve growth factor (NGF) in BALF and the supernatant of lung homogenate were measured. The results indicated that OVA plus TMA significantly increased the amount of inflammatory cells in blood and BALF, enhanced RI while decreased Cdyn, and aggravated lung injury. Increased gene and protein expressions of TRPA1, V1, V2 in lung tissue, level of IL-4 in the supernatant of lung homogenate, levels of IL-13, SP, PGD2, NGF in BALF and the supernatant of lung homogenate were observed. It was suggested that exacerbating effects of TMA in OVA-induced asthma might be related to the regulation of TRPA1, V1, V2 and relevant neurokines.
Collapse
Affiliation(s)
- Mengwen Li
- School of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinsheng Fan
- School of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Leilei Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Fan
- School of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Stabile A, Marinucci L, Balloni S, Giuliani A, Pistilli A, Bodo M, Rende M. Long term effects of cigarette smoke extract or nicotine on nerve growth factor and its receptors in a bronchial epithelial cell line. Toxicol In Vitro 2018; 53:29-36. [DOI: 10.1016/j.tiv.2018.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
34
|
Gezginci-Oktayoglu S, Coskun E, Ercin M, Bolkent S. 4-Methylcatechol prevents streptozotocin-induced acute kidney injury through modulating NGF/TrkA and ROS-related Akt/GSK3β/β-catenin pathways. Int Immunopharmacol 2018; 64:52-59. [DOI: 10.1016/j.intimp.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022]
|
35
|
Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L485-L501. [PMID: 29952220 PMCID: PMC6230874 DOI: 10.1152/ajplung.00211.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous epidemiologic studies have identified an association between occupational exposures to organophosphorus pesticides (OPs) and asthma or asthmatic symptoms in adults. Emerging epidemiologic data suggest that environmentally relevant levels of OPs may also be linked to respiratory dysfunction in the general population and that in utero and/or early life exposures to environmental OPs may increase risk for childhood asthma. In support of a causal link between OPs and asthma, experimental evidence demonstrates that occupationally and environmentally relevant OP exposures induce bronchospasm and airway hyperreactivity in preclinical models. Mechanistic studies have identified blockade of autoinhibitory M2 muscarinic receptors on parasympathetic nerves that innervate airway smooth muscle as one mechanism by which OPs induce airway hyperreactivity, but significant questions remain regarding the mechanism(s) by which OPs cause neuronal M2 receptor dysfunction and, more generally, how OPs cause persistent asthma, especially after developmental exposures. The goals of this review are to 1) summarize current understanding of OPs in asthma; 2) discuss mechanisms of OP neurotoxicity and immunotoxicity that warrant consideration in the context of OP-induced airway hyperreactivity and asthma, specifically, inflammatory responses, oxidative stress, neural plasticity, and neurogenic inflammation; and 3) identify critical data gaps that need to be addressed in order to better protect adults and children against the harmful respiratory effects of low-level OP exposures.
Collapse
Affiliation(s)
- Frances C Shaffo
- Department of Molecular Biosciences, University of California , Davis, California
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California , Davis, California
| | - Allison D Fryer
- Pulmonary Critical Care Medicine, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California , Davis, California
| |
Collapse
|
36
|
Dellis AE, Papatsoris AG. Bridging pharmacotherapy and minimally invasive surgery in interstitial cystitis/bladder pain syndrome treatment. Expert Opin Pharmacother 2018; 19:1369-1373. [PMID: 30074829 DOI: 10.1080/14656566.2018.1505865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interstitial cystitis/bladder pain syndrome (IC/BPS) is a painful and debilitating clinical entity which is challenging to diagnose and even more difficult to treat. Unfortunately, none of the existing oral and intravesical medications have been established as effective and therefore relevant research is ongoing. Areas covered: In this review, the authors present established and emerging treatment options for IC/BPS in terms of medication and minimal invasive procedures. Both American and European Urological Association Guidelines recommend multimodal behavioral techniques alongside oral (e.g. amitriptyline and pentosan polysulfate sodium) or minimally invasive treatments (e.g. dimethyl sulfoxide, botulinum toxin, chondroitin sulfate, triamcinolone, hyaluronic acid, and lidocaine). Novel treatment modalities include immunomodulating drugs, stem cell therapy, nerve growth factor, and ASP6294. Expert opinion: IC/BPS is still a pathophysiological enigma with multifactorial etiopathogenesis that may be controlled but not completely cured. Patient-tailored phenotype-directed multimodal therapy is the most promising treatment strategy. Combined phenotypic categorization with specific biomarkers could help toward better treatment.
Collapse
Affiliation(s)
- Athanasios E Dellis
- a 2nd Department of Surgery, Aretaieion Academic Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece.,b 1st Department of Urology, Laikon General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| | - Athanasios G Papatsoris
- c 2nd Department of Urology, Sismanogleion General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
37
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
38
|
Ogawa T, Ishizuka O, Ueda T, Tyagi P, Chancellor MB, Yoshimura N. Pharmacological management of interstitial cystitis /bladder pain syndrome and the role cyclosporine and other immunomodulating drugs play. Expert Rev Clin Pharmacol 2018; 11:495-505. [PMID: 29575959 DOI: 10.1080/17512433.2018.1457435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Interstitial cystitis/bladder pain syndrome (IC/BPS) is a symptomatic disorder characterized by pelvic pain and urinary frequency. Immunological responses are considered as one of the possible etiologies of IC/BPS. In this review, we focused on emerging targets, especially on those modulating immunological mechanisms for the treatments of IC/BPS. Area covered: This review was based on the literature search of PubMed/MEDLINE, for which key words following bladder pain syndrome, interstitial cystitis, and/or cyclosporine A (CyA) were used. We discussed current treatments and the drugs targeting the immune responses including CyA and other drugs with different mechanisms including NGF antibodies and P2X3 antagonists. Expert commentary: IC/BPS is often difficult to treat by current treatments. Immunosuppression agents, especially CyA are considered as effective treatments for IC/BPS with Hunner's lesion because these drugs suppress the inflammatory responses in the bladder underlying urinary symptoms of the disease. Base on the previous literatures, we should use CyA for the refractory IC/BPS, especially that with Hunner's lesion due to its side effects. New drugs targeting other mechanisms such as urothelial or afferent nerve dysfunction or new delivery systems such as sustained drug releasing devices or gene therapy techniques may be promising for the future treatments of IC/BPS.
Collapse
Affiliation(s)
- Teruyuki Ogawa
- a Department of Urology , Shinshu University School of Medicine , Matsumoto , Japan.,b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Osamu Ishizuka
- a Department of Urology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tomohiro Ueda
- c Department of Urology , Ueda Clinic , Kyoto , Japan
| | - Pradeep Tyagi
- b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael B Chancellor
- d Department of Urology , Oakland University William Beaumont School of Medicine , Royal Oak , MI , USA
| | - Naoki Yoshimura
- b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,c Department of Urology , Ueda Clinic , Kyoto , Japan
| |
Collapse
|
39
|
Crispoltoni L, Stabile AM, Pistilli A, Venturelli M, Cerulli G, Fonte C, Smania N, Schena F, Rende M. Changes in Plasma β-NGF and Its Receptors Expression on Peripheral Blood Monocytes During Alzheimer's Disease Progression. J Alzheimers Dis 2018; 55:1005-1017. [PMID: 27802234 DOI: 10.3233/jad-160625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is characterized by the deposition of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles, and by neuroinflammation. During the pathogenesis of AD, monocyte-macrophage lineage cells become increasingly ineffective in clearing Aβ deposits, less able to differentiate, and shift toward pro-inflammatory processes. Beta-nerve growth factor (β-NGF) and its receptors, TrKA and p75NTR, produce several biological responses, including cell apoptosis and survival, and inflammation. In the central nervous system, the involvement of these receptors in several critical hallmarks of AD is well known, but their role in circulating monocytes during the progression of dementia is unclear. We investigated the relationship between plasma β-NGF concentration and TrkA/p75NTR receptor expression in monocytes of patients with mild cognitive impairment (MCI), mild AD, and severe AD. We observed that plasma β-NGF concentration was increased with a higher expression of TrKA, but not of p75NTR, in monocytes from patients with MCI and mild AD, whereas β-NGF concentration and TrKA expression were decreased and p75NTR expression was increased, associated with caspase 3-mediated apoptosis, in patients with severe AD. In our study, we show evidence of variation in plasmatic β-NGF and monocytic TrkA/p75NTR receptor expression during the progression of dementia. These novel findings add evidence to support the hypothesis for the involvement of β-NGF and its receptors on monocytes during AD progression.
Collapse
Affiliation(s)
- Lucia Crispoltoni
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Anna Maria Stabile
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Alessandra Pistilli
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Massimo Venturelli
- Section of Movement Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuliano Cerulli
- The Nicola Cerulli Institute of Translational Research for the Musculoskeletal System - LPMRI, Biology and Degenerative Medicine Division, Arezzo, Italy.,Istituto di Clinica Ortopedica e Traumatologica, Università Cattolica del Sacro Cuore-Policlinico Universitario Agostino Gemelli, Roma, Italy
| | - Cristina Fonte
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Section of Movement Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mario Rende
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| |
Collapse
|
40
|
AL-QUDAH M, SHAMMALA DA, AL-DWAIRI A, AL-SHBOUL O, MUSTAFA AG. Dextran Sodium Sulphate (DSS)-Induced Colitis Alters the Expression of Neurotrophins in Smooth Muscle Cells of Rat Colon. Physiol Res 2017; 66:1009-1020. [DOI: 10.33549/physiolres.933465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins are present in the gastrointestinal tract where they participate in the survival and growth of enteric neurons, augmentation of enteric circuits, elevation of colonic myoelectrical activity and also in different aspects of colitis. Previous studies largely focused on the role of neural and mucosal neurotrophins in gut inflammation. The expression of neurotrophins in colonic smooth muscle cells (SMCs) and the interactions of this potential source with colitis has not been studied in the gut. The expression of NGF, BDNF, NT-3 and NT-4 in SMCs from longitudinal and circular muscle layers of rat colon from normal and dextran sodium sulphate (DSS)-induced colitis rats was measured by ELISA. NGF, BDNF, NT-3 and NT-4 are differentially expressed in both longitudinal and circular SMCs, where the expressions of BDNF and NT-4 proteins were greater in SMCs from the longitudinal muscle layer than from the circular muscle layer, while NGF protein expression was greater in circular SMCs and NT-3 expression was equal in cells from both muscle layers. Induction of colitis with DSS significantly alters neurotrophins expression pattern in colonic SMCs. NGF levels upregulated in circular SMCs. BDNF level was increased in DSS-induced colitis in longitudinal SMCs. NGF, NT-3 and NT-4 levels were downregulated in longitudinal SMCs of DSS-induced colitis rats' colon. Disturbances of neurotrophins expression in SMCs resulted from colitis might account for the structural and functional changes in inflammatory bowel disease (IBD) such as loss of innervation and characteristic hypercontractility of longitudinal muscle in IBD.
Collapse
Affiliation(s)
- M. AL-QUDAH
- Department of Physiology, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | |
Collapse
|
41
|
Bandoła J, Richter C, Ryser M, Jamal A, Ashton MP, von Bonin M, Kuhn M, Dorschner B, Alexopoulou D, Navratiel K, Roeder I, Dahl A, Hedrich CM, Bonifacio E, Brenner S, Thieme S. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:981. [PMID: 28861085 PMCID: PMC5562693 DOI: 10.3389/fimmu.2017.00981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.
Collapse
Affiliation(s)
- Joanna Bandoła
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Cornelia Richter
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Martin Ryser
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Arshad Jamal
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany.,Department of Medical Laboratory Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Michelle P Ashton
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic I, University Clinic Dresden, Dresden, Germany.,DKTK-German Cancer Consortium, Partner Site Dresden, University Clinic Dresden, Dresden, Germany.,DKFZ-German Cancer Research Center, Heidelberg, Germany
| | - Matthias Kuhn
- Faculty of Medicine, Institute for Medical Informatics and Biometry, Technische Universitaet Dresden, Dresden, Germany
| | | | - Dimitra Alexopoulou
- BIOTEChnology Center/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Katrin Navratiel
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Ingo Roeder
- Faculty of Medicine, Institute for Medical Informatics and Biometry, Technische Universitaet Dresden, Dresden, Germany
| | - Andreas Dahl
- BIOTEChnology Center/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | | | - Ezio Bonifacio
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Sebastian Brenner
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany.,DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Sebastian Thieme
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| |
Collapse
|
42
|
Montagnoli C, Tiribuzi R, Crispoltoni L, Pistilli A, Stabile AM, Manfreda F, Placella G, Rende M, Cerulli GG. β-NGF and β-NGF receptor upregulation in blood and synovial fluid in osteoarthritis. Biol Chem 2017; 398:1045-1054. [PMID: 28253191 DOI: 10.1515/hsz-2016-0280] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) of the knee is the most common form of non-traumatic joint disease. Previous studies have shown the involvement of β-NGF and its receptors TrKA and p75NTR in OA-related pain, but their role in its pathogenesis is still unclear. The aim of our study was to investigate the amount of β-NGF and the expression levels of its receptors on cells isolated from synovial fluid and blood from OA patients who had undergone total knee arthroplasty, in order to check any possible correlation with the disease staging. Our results show a progressive stage-related increase of β-NGF and its receptors both in serum and synovial fluid. Furthermore, with respect to control subjects, OA patients show an increased amount of inflammatory monocytes along with an increased expression of β-NGF, TrKA and p75NTR. In conclusion, our study suggests a stage-related modulation of β-NGF and its receptors in the inflammatory process of OA.
Collapse
|
43
|
Affiliation(s)
- Ahmed Z. El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Sahar M. Jaffal
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
44
|
Liu H, Fan X, Wang N, Zhang Y, Yu J. Exacerbating effects of PM2.5 in OVA-sensitized and challenged mice and the expression of TRPA1 and TRPV1 proteins in lungs. J Asthma 2017; 54:807-817. [PMID: 28102732 DOI: 10.1080/02770903.2016.1266495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To investigate the effects of particulate matter ≤ 2.5 microns (PM2.5) on asthma-related phenotypes and on lung expression of TRPA1 and TRPV1 proteins in a mouse model of asthma. METHODS Female BALB/c mice were utilized to establish 28- and 42-day asthma models. Mice were sensitized with ovalbumin (OVA) and challenged with OVA, OVA plus normal saline (NS), or OVA plus PM2.5 at two doses, 1.6 or 8.0 mg kg-1. PM2.5 was instilled intratracheally without anesthesia. After the final OVA challenge was performed, 24 hours later, the changes in airway resistance (RI) and lung dynamic compliance (Cdyn) in response to acetylcholine chloride (ACH) were evaluated, and blood, bronchoalveolar lavage fluid (BALF) and lung tissue were taken at that time. The number of eosinophils in blood and various leukocytes in BALF were determined. Lung protein was extracted and probed for TRPA1 and TRPV1 expression. Interleukin (IL)-13, substance P (SP), prostaglandin D2 (PGD2) and nerve growth factor (NGF) in BALF were measured by enzyme-linked immunosorbent assay. RESULTS PM2.5 treated mice showed significantly greater changes in the number of inflammatory cells in blood and BALF, in RI and Cdyn in response to ACH, and in lung histopathology, indicated by inflammatory cell infiltration, thickened bronchial smooth muscles and bronchial mucosa damage, compared to controls. In addition, higher expression of TRPA1 and TRPV1 in lung and IL-13, SP, PGD2 and NGF in BALF were seen in mice exposed to PM2.5. All effects were most pronounced in mice in the 42-day model. CONCLUSIONS PM2.5 exacerbates effects of asthma in this model, possibly by regulating TRPA1 and TRPV1 and the relevant neurokines.
Collapse
Affiliation(s)
- Hong Liu
- a School of Basic Medicine , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China.,b Library of Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China
| | - Xinsheng Fan
- a School of Basic Medicine , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China
| | - Naiqian Wang
- a School of Basic Medicine , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China
| | - Yuyan Zhang
- c Nanjing Environmental Monitoring Center , Nanjing , Jiangsu Province , People's Republic of China
| | - Jinghua Yu
- d First school of clinical medicine , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China
| |
Collapse
|
45
|
Manti S, Brown P, Perez MK, Piedimonte G. The Role of Neurotrophins in Inflammation and Allergy. VITAMINS AND HORMONES 2016; 104:313-341. [PMID: 28215300 DOI: 10.1016/bs.vh.2016.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic inflammation is the result of a specific pattern of cellular and humoral responses leading to the activation of the innate and adaptive immune system, which, in turn, results in physiological and structural changes affecting target tissues such as the airways and the skin. Eosinophil activation and the production of soluble mediators such as IgE antibodies are pivotal features in the pathophysiology of allergic diseases. In the past few years, however, convincing evidence has shown that neurons and other neurosensory structures are not only a target of the inflammatory process but also participate in the regulation of immune responses by actively releasing soluble mediators. The main products of these activated sensory neurons are a family of protein growth factors called neurotrophins. They were first isolated in the central nervous system and identified as important factors for the survival and differentiation of neurons during fetal and postnatal development as well as neuronal maintenance later in life. Four members of this family have been identified and well defined: nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, and neurotrophin 4/5. Neurotrophins play a critical role in the bidirectional signaling mechanisms between immune cells and the neurosensory network structures in the airways and the skin. Pruritus and airway hyperresponsiveness, two major features of atopic dermatitis and asthma, respectively, are associated with the disruption of the neurosensory network activities. In this chapter, we provide a comprehensive description of the neuroimmune interactions underlying the pathophysiological mechanisms of allergic and inflammatory diseases.
Collapse
Affiliation(s)
- S Manti
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - P Brown
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - M K Perez
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States; Pediatric Institute and Children's Hospital, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - G Piedimonte
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States; Pediatric Institute and Children's Hospital, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|
46
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
47
|
Norman BH, McDermott JS. Targeting the Nerve Growth Factor (NGF) Pathway in Drug Discovery. Potential Applications to New Therapies for Chronic Pain. J Med Chem 2016; 60:66-88. [DOI: 10.1021/acs.jmedchem.6b00964] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bryan H. Norman
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| | - Jeff S. McDermott
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| |
Collapse
|
48
|
Ceccanti M, Coccurello R, Carito V, Ciafrè S, Ferraguti G, Giacovazzo G, Mancinelli R, Tirassa P, Chaldakov GN, Pascale E, Ceccanti M, Codazzo C, Fiore M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016; 21:776-87. [PMID: 25940002 DOI: 10.1111/adb.12255] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring.
Collapse
Affiliation(s)
- Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology (IFT); National Research Council of Italy (C.N.R.); Italy
| | - Giampiero Ferraguti
- Department of Cellular Biotechnologies and Hematology; Sapienza University of Rome; Italy
| | - Giacomo Giacovazzo
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Rosanna Mancinelli
- Centro Nazionale Sostanze Chimiche; Instituto Superiore di Sanità; Rome Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | | | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies; Sapienza University of Rome; Italy
| | - Marco Ceccanti
- Department of Neurology and Psychiatry; Sapienza University of Rome; Italy
| | - Claudia Codazzo
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| |
Collapse
|
49
|
Ho GYF, Zheng SL, Cushman M, Perez-Soler R, Kim M, Xue X, Wang T, Schlecht NF, Tinker L, Rohan TE, Wassertheil-Smoller S, Wallace R, Chen C, Xu J, Yu H. Associations of Insulin and IGFBP-3 with Lung Cancer Susceptibility in Current Smokers. J Natl Cancer Inst 2016; 108:djw012. [PMID: 27071409 DOI: 10.1093/jnci/djw012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/19/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) signaling network is involved in lung carcinogenesis. This study examined whether ligands that activate or suppress the EGFR signaling network were associated with lung cancer risk in ever smokers. METHODS A nested case-control study within the Women's Health Initiative assessed baseline plasma levels of insulin, insulin-like growth factor (IGF)-1, insulin-like growth factor binding protein (IGFBP)-3, interleukin (IL)-6, hepatocyte growth factor (HGF), and nerve growth factor (NGF) in 1143 ever-smoking lung cancer cases and 1143 controls. Leptin was measured as an adiposity biomarker. Conditional logistic regression was used in data analyses. RESULTS Leptin was inversely associated with lung cancer risk (odds ratio [ORcontinuous] per Ln [pg/mL] = 0.85, 95% confidence interval [CI] = 0.74 to 0.98). After adjusting for adiposity and other risk factors, null associations were found for IL-6, HGF, and NGF. In current smokers, but not former smokers, high insulin levels were associated with increased lung cancer risk (OR for 4th quartile vs others [ORq4] = 2.06, 95% CI = 1.30 to 3.26) whereas IGFBP-3 had a linear inverse association (ORcontinuous per μg/mL = 0.64, 95% CI = 0.41 to 0.98). The insulin association was consistent across subgroups defined by body mass index and histological type, but the IGFBP-3 association was specific to small cell lung cancer. There was a modest positive association between IGF-1 and lung cancer risk in current smokers (ORq4 = 1.44, 95% CI = 0.90 to 2.29). CONCLUSIONS Independent of obesity, high insulin levels but reduced levels of IGFBP-3 were associated with increased lung cancer risk in current smokers.
Collapse
Affiliation(s)
- Gloria Y F Ho
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Siqun L Zheng
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Mary Cushman
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Roman Perez-Soler
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Mimi Kim
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Xiaonan Xue
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Tao Wang
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Nicolas F Schlecht
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Lesley Tinker
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Thomas E Rohan
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Sylvia Wassertheil-Smoller
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Robert Wallace
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Chu Chen
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Jianfeng Xu
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| | - Herbert Yu
- Affiliations of authors:Department of Occupational Medicine, Epidemiology & Prevention, Feinstein Institute for Medical Research, Northwell Health; Hofstra-Northwell School of Medicine , Great Neck, NY (GYFH); Department of Epidemiology and Population Health (GYFH, MK, XX, TW, NFS, TER, SWS) and Department of Medicine (RPS, NFS), Albert Einstein College of Medicine, Bronx, NY; Center for Genomics and Personalized Medicine Research, Wake Forest University , Winston-Salem, NC (SLZ); Departments of Medicine & Pathology, University of Vermont , Burlington, VT (MC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA (LT, CC); Department of Epidemiology, College of Public Health, University of Iowa , Iowa City, IA (RW); NorthShore University HealthSystem , Evanston, IL (JX); University of Hawaii Cancer Center , Honolulu, HI (HY)
| |
Collapse
|
50
|
Superior Cervical Ganglia Neurons Induce Foxp3+ Regulatory T Cells via Calcitonin Gene-Related Peptide. PLoS One 2016; 11:e0152443. [PMID: 27022966 PMCID: PMC4811438 DOI: 10.1371/journal.pone.0152443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/14/2016] [Indexed: 01/21/2023] Open
Abstract
The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body’s internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.
Collapse
|