1
|
Cruz-Muñoz JR, Valdez-Morales EE, Barajas-Espinosa A, Barrios-García T, Liñán-Rico A, Guerrero-Alba R. Gene expression alterations of purinergic signaling components in obesity-associated intestinal low-grade inflammation in type 2 diabetes. Purinergic Signal 2024; 20:629-643. [PMID: 38587723 PMCID: PMC11555165 DOI: 10.1007/s11302-024-10006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Intestinal low-grade inflammation induced by a high-fat diet has been found to detonate chronic systemic inflammation, which is a hallmark of obesity, and precede the apparition of insulin resistance, a key factor for developing type 2 diabetes (T2D). Aberrant purinergic signaling pathways have been implicated in the pathogenesis of inflammatory bowel disease and other gastrointestinal diseases. However, their role in the gut inflammation associated with obesity and T2D remains unexplored. C57BL/6 J mice were fed a cafeteria diet for 21 weeks and received one injection of streptozotocin in their sixth week into the diet. The gene expression profile of purinergic signaling components in colon tissue was assessed by RT-qPCR. Compared to control mice, the treated group had a significant reduction in colonic length and mucosal and muscular layer thickness accompanied by increased NF-κB and IL-1β mRNA expression. Furthermore, colonic P2X2, P2X7, and A3R gene expression levels were lower, while the P2Y2, NT5E, and ADA expression levels increased. In conclusion, these data suggest that these purinergic signaling components possibly play a role in intestinal low-grade inflammation associated with obesity and T2D and thus could represent a novel therapeutic target for the treatment of the metabolic complications related to these diseases.
Collapse
Affiliation(s)
- José R Cruz-Muñoz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | - Eduardo E Valdez-Morales
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | - Alma Barajas-Espinosa
- Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Tonatiuh Barrios-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | - Andrómeda Liñán-Rico
- Centro Universitario de Investigaciones Biomédicas. Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Universidad de Colima, Colima, México.
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México.
| |
Collapse
|
2
|
Han P, Chen X, Liang Z, Liu Y, Yu X, Song P, Zhao Y, Zhang H, Zhu S, Shi X, Guo Q. Metabolic signatures and risk of sarcopenia in suburb-dwelling older individuals by LC-MS-based untargeted metabonomics. Front Endocrinol (Lausanne) 2024; 15:1308841. [PMID: 38962681 PMCID: PMC11220188 DOI: 10.3389/fendo.2024.1308841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Background Untargeted metabonomics has provided new insight into the pathogenesis of sarcopenia. In this study, we explored plasma metabolic signatures linked to a heightened risk of sarcopenia in a cohort study by LC-MS-based untargeted metabonomics. Methods In this nested case-control study from the Adult Physical Fitness and Health Cohort Study (APFHCS), we collected blood plasma samples from 30 new-onset sarcopenia subjects (mean age 73.2 ± 5.6 years) and 30 healthy controls (mean age 74.2 ± 4.6 years) matched by age, sex, BMI, lifestyle, and comorbidities. An untargeted metabolomics methodology was employed to discern the metabolomic profile alterations present in individuals exhibiting newly diagnosed sarcopenia. Results In comparing individuals with new-onset sarcopenia to normal controls, a comprehensive analysis using liquid chromatography-mass spectrometry (LC-MS) identified a total of 62 metabolites, predominantly comprising lipids, lipid-like molecules, organic acids, and derivatives. Receiver operating characteristic (ROC) curve analysis indicated that the three metabolites hypoxanthine (AUC=0.819, 95% CI=0.711-0.927), L-2-amino-3-oxobutanoic acid (AUC=0.733, 95% CI=0.598-0.868) and PC(14:0/20:2(11Z,14Z)) (AUC= 0.717, 95% CI=0.587-0.846) had the highest areas under the curve. Then, these significant metabolites were observed to be notably enriched in four distinct metabolic pathways, namely, "purine metabolism"; "parathyroid hormone synthesis, secretion and action"; "choline metabolism in cancer"; and "tuberculosis". Conclusion The current investigation elucidates the metabolic perturbations observed in individuals diagnosed with sarcopenia. The identified metabolites hold promise as potential biomarkers, offering avenues for exploring the underlying pathological mechanisms associated with sarcopenia.
Collapse
Affiliation(s)
- Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Xiaoyu Chen
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhenwen Liang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuewen Liu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xing Yu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Peiyu Song
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Yinjiao Zhao
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Hui Zhang
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Shuyan Zhu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Shi
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
3
|
Wyss MT, Heuer C, Herwerth M. The bumpy road of purinergic inhibitors to clinical application in immune-mediated diseases. Neural Regen Res 2024; 19:1206-1211. [PMID: 37905866 PMCID: PMC11467927 DOI: 10.4103/1673-5374.386405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Purinergic signaling plays important roles throughout the body in the regulation of organ functions during and following the disruption of homeostasis. This is also reflected by the widespread expression of two families of purinergic receptors (P1 and P2) with numerous subtypes. In the last few decades, there has been increasing evidence that purinergic signaling plays an important role in the regulation of immune functions. Mainly, signals mediated by P2 receptors have been shown to contribute to immune system-mediated pathologies. Thus, interference with P2 receptors may be a promising strategy for the modulation of immune responses. Although only a few clinical studies have been conducted in isolated entities with limited success, preclinical work suggests that the use of P2 receptor inhibitors may bear some promise in various autoimmune diseases. Despite the association of P2 receptors with several disorders from this field, the use of P2 receptor antagonists in clinical therapy is still very scarce. In this narrative review, we briefly review the involvement of the purinergic system in immunological responses and clinical studies on the effect of purinergic inhibition on autoimmune processes. We then open the aperture a bit and show some preclinical studies demonstrating a potential effect of purinergic blockade on autoimmune events. Using suramin, a non-specific purinergic inhibitor, as an example, we further show that off-target effects could be responsible for observed effects in immunological settings, which may have interesting implications. Overall, we believe that it is worthwhile to further investigate this hitherto underexplored area.
Collapse
Affiliation(s)
- Matthias T. Wyss
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Christine Heuer
- Neurology Department, University Hospital of Zurich, Zürich, Switzerland
| | - Marina Herwerth
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Neurology Department, University Hospital of Zurich, Zürich, Switzerland
| |
Collapse
|
4
|
Zhang C, Wang K, Wang H. Adenosine in cancer immunotherapy: Taking off on a new plane. Biochim Biophys Acta Rev Cancer 2023; 1878:189005. [PMID: 37913941 DOI: 10.1016/j.bbcan.2023.189005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
5
|
Jia S, Mai L, Yang H, Huang F, He H, Fan W. Cross-species gene expression patterns of purinergic signaling in the human and mouse trigeminal ganglion. Life Sci 2023; 332:122130. [PMID: 37769809 DOI: 10.1016/j.lfs.2023.122130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Purinergic signaling system plays a pivotal role in the trigeminal ganglion (TG) which is a primary sensory tissue in vertebrate nervous systems involving orofacial nociception and peripheral sensitization. Despite previous efforts to reveal the expression patterns of purinergic components in the mouse TG, it is still unknown the interspecies differences between human and mouse. In this study, we provide a comprehensive transcriptome profile of the purinergic signaling system across diverse cell types and neuronal subpopulations within the human TG, systematically comparing it with mouse TG. In addition, the evolutionary conservation and species-specific expression patterns of the purinergic components are also discussed. We propose that the data can improve our understanding of purinergic signaling in the peripheral nervous system and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hui Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
6
|
Machado FA, Souza RF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Effects of experimental ulcerative colitis on myenteric neurons in P2X7-knockout mice. Histochem Cell Biol 2023; 160:321-339. [PMID: 37306742 DOI: 10.1007/s00418-023-02208-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.
Collapse
Affiliation(s)
- Felipe Alexandre Machado
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
7
|
Antonioli L, Fornai M, Pellegrini C, Pacher P, Haskó G. Adenosine signaling as target in cardiovascular pharmacology. Curr Opin Pharmacol 2023; 71:102393. [PMID: 37450948 PMCID: PMC10527223 DOI: 10.1016/j.coph.2023.102393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Increasing evidence demonstrated the relevance of adenosine system in the onset and development of cardiovascular diseases, such as hypertension, myocardial infarct, ischemia, hypertension, heart failure, and atherosclerosis. In this regard, intense research efforts are being focused on the characterization of the pathophysiological significance of adenosine, acting at its membrane receptors named A1, A2A, A2B, and A3 receptors, in cardiovascular diseases. The present review article provides an integrated and comprehensive overview about current clinical and pre-clinical evidence about the role of adenosine in the pathophysiology of cardiovascular diseases. Particular attention has been focused on current scientific evidence about the pharmacological ligands acting on adenosine pathway as useful tools to manage cardiovascular diseases.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Matteo Fornai
- The Institution is Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- The Institution is Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Silvestro M, Iannone LF, Orologio I, Tessitore A, Tedeschi G, Geppetti P, Russo A. Migraine Treatment: Towards New Pharmacological Targets. Int J Mol Sci 2023; 24:12268. [PMID: 37569648 PMCID: PMC10418850 DOI: 10.3390/ijms241512268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a debilitating neurological condition affecting millions of people worldwide. Until a few years ago, preventive migraine treatments were based on molecules with pleiotropic targets, developed for other indications, and discovered by serendipity to be effective in migraine prevention, although often burdened by tolerability issues leading to low adherence. However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). Nevertheless, despite the revolution brought by CGRP monoclonal antibodies and gepants, a significant percentage of patients still remains burdened by an unsatisfactory response, suggesting that other pathways may play a critical role, with an extent of involvement varying among different migraine patients. Specifically, neuropeptides of the CGRP family, such as adrenomedullin and amylin; molecules of the secretin family, such as pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular downstream determinants, such as potassium channels, but also the opioid system and the purinergic pathway, have been suggested to be involved in migraine pathophysiology. The present review provides an overview of these pathways, highlighting, based on preclinical and clinical evidence, as well as provocative studies, their potential role as future targets for migraine preventive treatment.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Francesco Iannone
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pierangelo Geppetti
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Antonio Russo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
9
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown. AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs. METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF). RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon. CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
10
|
Cai Y, Chen X, Yi B, Li J, Wen Z. Pathophysiology roles for adenosine 2A receptor in obesity and related diseases. Obes Rev 2022; 23:e13490. [PMID: 35796566 DOI: 10.1111/obr.13490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
Obesity, a burgeoning worldwide health system challenge, is associated with several comorbidities, including non-alcoholic fatty liver disease (NAFLD), diabetes, atherosclerosis, and osteoarthritis, leading to serious problems to people's health. Adenosine is a critical extracellular signaling molecule that has essential functions in regulating most organ systems by binding to four G-protein-coupled adenosine receptors, denoted A1 , A2A , A2B , and A3 . Among the receptors, a growing body evidence highlights the key roles of the adenosine 2A receptor (A2A R) in obesity and related diseases. In the current review, we summarize the effects of A2A R in obesity and obesity-associated non-alcoholic fatty liver disease, diabetes, atherosclerosis, and osteoarthritis, to clarify the complicated impacts of A2A R on obesity and related diseases.
Collapse
Affiliation(s)
- Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Yi
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junfeng Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Dong LW, Ma ZC, Fu J, Huang BL, Liu FJ, Sun D, Lan C. Upregulated adenosine 2A receptor accelerates post-infectious irritable bowel syndrome by promoting CD4+ T cells' T helper 17 polarization. World J Gastroenterol 2022; 28:2955-2967. [PMID: 35978875 PMCID: PMC9280732 DOI: 10.3748/wjg.v28.i25.2955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Post-infectious irritable bowel syndrome (PI-IBS) is generally regarded as a functional disease. Several recent studies have reported the involvement of low-grade inflammation and immunological dysfunction in PI-IBS. T helper 17 (Th17) polarization occurs in IBS. Adenosine and its receptors participate in intestinal inflammation and immune regulation. AIM To investigate the role of Th17 polarization of CD4+ T cells regulated by adenosine 2A receptor (A2AR) in PI-IBS. METHODS A PI-IBS model was established by infecting mice with Trichinella spiralis. The intestinal A2AR and CD4+ T lymphocytes were detected by immunohistochemistry, and the inflammatory cytokines were detected by enzyme-linked immunoassay. CD4+ T lymphocytes present in the animal's spleen were separated and cultured with or without A2AR agonist and antagonist. Western blotting and real-time quantitative polymerase chain reaction were performed to determine the effect of A2AR on the cells and intestinal tissue. Cytokine production was determined. The protein and mRNA levels of A2AR associated signaling pathway molecules were also evaluated. Furthermore, A2AR agonist and antagonist were injected into the mouse model and the clinical features were observed. RESULTS The PI-IBS mouse model showed increased expression of ATP and A2AR (P < 0.05), and inhibition of A2AR improved the clinical features in PI-IBS, including the abdominal withdrawal reflex and colon transportation test (P < 0.05). The number of intestinal CD4+ T cells and interleukin-17 (IL-17) protein levels increased during PI-IBS, which was reversed by administration of the A2AR antagonist (P < 0.05). CD4+ T cells expressed A2AR and produced IL-17 in vitro, which was regulated by the A2AR agonist and antagonist. The A2AR antagonist increased the production of IL-17 by CD4+ T cells via the Janus kinase-signal transducer and activator of transcription-receptor-related orphan receptor γ signaling pathway. CONCLUSION The results of the present study suggested that the upregulation of A2AR increases PI-IBS by promoting the Th17 polarization of CD4+ T cells.
Collapse
Affiliation(s)
- Li-Wei Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zhi-Chao Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Jiao Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bai-Li Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fu-Jin Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
12
|
Evangelinellis MM, Souza RF, Mendes CE, Castelucci P. Effects of a P2X7 receptor antagonist on myenteric neurons in the distal colon of an experimental rat model of ulcerative colitis. Histochem Cell Biol 2022; 157:65-81. [PMID: 34626216 DOI: 10.1007/s00418-021-02039-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic diseases of the gastrointestinal tract that include ulcerative colitis and Crohn's disease and affect enteric neurons. Research has shown that Brilliant Blue G (BBG), a P2X7 receptor antagonist, restores enteric neurons following ischemia and reperfusion. This study aimed to evaluate the effect of BBG on myenteric neurons of the distal colon in an experimental rat model of ulcerative colitis. Colitis was induced by injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the large intestine. BBG was administered 1 h after colitis induction and for five consecutive days thereafter. Distal colons were collected 24 h or 7 days after TNBS injection. The animals were divided into 24-h and 7-day sham (vehicle injection rather than colitis induction), 24-h colitis, 24-h BBG, 7-day colitis and 7-day BBG groups. The disease activity index (DAI), neuronal density and profile of neuronal nitric oxide synthase (nNOS)-, choline acetyltransferase (ChAT)- and P2X7 receptor-immunoreactive enteric neurons were analyzed, and histological analysis was performed. The results showed recovery of the DAI and histological tissue integrity in the BBG groups compared to those in the colitis groups. In addition, the numbers of neurons positive for nNOS, ChAT and the P2X7 receptor per area were decreased in the colitis groups, and these measures were recovered in the BBG groups. Neuronal size was increased in the colitis groups and restored in the BBG groups. In conclusion, BBG is effective in improving experimental ulcerative colitis, and the P2X7 receptor may be a therapeutic target.
Collapse
Affiliation(s)
- Mariá Munhoz Evangelinellis
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr Orlando Marques de Paiva, 87, São Paulo, CEP 05508-270, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Cristina Eusébio Mendes
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
13
|
Perez-Medina A, Galligan JJ. Nitrergic and Purinergic Nerves in the Small Intestinal Myenteric Plexus and Circular Muscle of Mice and Guinea Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:33-43. [PMID: 36587144 DOI: 10.1007/978-3-031-05843-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ATP is an excitatory and inhibitory neurotransmitter, while nitric oxide (NO) is an inhibitory neurotransmitter in the enteric nervous system (ENS). We used a vesicular nucleotide transporter (SLC17A9, VNUT) antibody and a nitric oxide synthase (NOS) antibody to identify purinergic and nitrergic nerves in mouse and guinea ileum. Mouse: VNUT-immunoreactivity (ir) was detected in nerve fibers in myenteric ganglia and circular muscle. VNUT-ir fibers surrounded choline acetyltransferase (ChAT), nitric oxide synthase (nNOS), and calretinin-ir neurons. VNUT-ir nerve cell bodies were not detected. Tyrosine hydroxylase (TH)-ir nerves were detected in myenteric ganglia and the tertiary plexus. Guinea pig: VNUT-ir was detected in neurons and nerves fibers and did not overlap with NOS-ir nerve fibers. VNUT-ir was detected in nerve fibers in ganglia but not nerve cell bodies. VNUT-ir nerve fibers surrounded NOS-ir and NOS- neurons. NOS-ir and VNUT-ir nerve fibers did not overlap in myenteric ganglia or circular muscle. VNUT-ir nerves surrounded some ChAT-ir neurons. VNUT-ir and ChAT-ir were detected in separate nerves in the CM. VNUT-ir nerve fibers surrounded calretinin-ir neurons.Conclusions: VNUT-ir neurons likely mediate purinergic signaling in small intestinal myenteric ganglia and circular muscle. ATP and NO are likely released from different inhibitory motorneurons. VNUT-ir and ChAT-ir interneurons mediate cholinergic and purinergic synaptic transmission in the myenteric plexus.
Collapse
Affiliation(s)
- Alberto Perez-Medina
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA. .,The Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
14
|
Wei Z, Ge F, Che Y, Wu S, Dong X, Song D. Metabolomics Coupled with Pathway Analysis Provides Insights into Sarco-Osteoporosis Metabolic Alterations and Estrogen Therapeutic Effects in Mice. Biomolecules 2021; 12:41. [PMID: 35053189 PMCID: PMC8773875 DOI: 10.3390/biom12010041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) and sarcopenia are common diseases that predominantly affect postmenopausal women. In the occurrence and development of these two diseases, they are potentially pathologically connected with each other at various molecular levels. However, the application of metabolomics in sarco-osteoporosis and the metabolic rewiring happening throughout the estrogen loss-replenish process have not been reported. To investigate the metabolic alteration of sarco-osteoporosis and the possible therapeutical effects of estradiol, 24 mice were randomly divided into sham surgery, ovariectomy (OVX), and estradiol-treated groups. Three-dimensional reconstructions and histopathology examination showed significant bone loss after ovariectomy. Estrogen can well protect against OVX-induced bone loss deterioration. UHPLC-Q-TOF/MS was preformed to profile semi- polar metabolites of skeletal muscle samples from all groups. Metabolomics analysis revealed metabolic rewiring occurred in OVX group, most of which can be reversed by estrogen supplementation. In total, 65 differential metabolites were identified, and pathway analysis revealed that sarco-osteoporosis was related to the alterations in purine metabolism, glycerophospholipid metabolism, arginine biosynthesis, tryptophan metabolism, histidine metabolism, oxidative phosphorylation, and thermogenesis, which provided possible explanations for the metabolic mechanism of sarco-osteoporosis. This study indicates that an UHPLC-Q-TOF/MS-based metabolomics approach can elucidate the metabolic reprogramming mechanisms of sarco-osteoporosis and provide biological evidence of the therapeutical effects of estrogen on sarco-osteoporosis.
Collapse
Affiliation(s)
- Ziheng Wei
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China;
| | - Fei Ge
- School of Medicine, Shanghai University, Shanghai 200444, China; (F.G.); (Y.C.)
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yanting Che
- School of Medicine, Shanghai University, Shanghai 200444, China; (F.G.); (Y.C.)
- College of Sciences, Shanghai University, Shanghai 200444, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; (F.G.); (Y.C.)
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China;
| |
Collapse
|
15
|
Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J Gastroenterol 2021; 27:7909-7924. [PMID: 35046620 PMCID: PMC8678817 DOI: 10.3748/wjg.v27.i46.7909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) consists of thousands of small ganglia arranged in the submucosal and myenteric plexuses, which can be negatively affected by Crohn's disease and ulcerative colitis - inflammatory bowel diseases (IBDs). IBDs are complex and multifactorial disorders characterized by chronic and recurrent inflammation of the intestine, and the symptoms of IBDs may include abdominal pain, diarrhea, rectal bleeding, and weight loss. The P2X7 receptor has become a promising therapeutic target for IBDs, especially owing to its wide expression and, in the case of other purinergic receptors, in both human and model animal enteric cells. However, little is known about the actual involvement between the activation of the P2X7 receptor and the cascade of subsequent events and how all these activities associated with chemical signals interfere with the functionality of the affected or treated intestine. In this review, an integrated view is provided, correlating the structural organization of the ENS and the effects of IBDs, focusing on cellular constituents and how therapeutic approaches through the P2X7 receptor can assist in both protection from damage and tissue preservation.
Collapse
Affiliation(s)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 08000-000, Brazil
| |
Collapse
|
16
|
CD73 Overexpression in Podocytes: A Novel Marker of Podocyte Injury in Human Kidney Disease. Int J Mol Sci 2021; 22:ijms22147642. [PMID: 34299260 PMCID: PMC8304086 DOI: 10.3390/ijms22147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022] Open
Abstract
The CD73 pathway is an important anti-inflammatory mechanism in various disease settings. Observations in mouse models suggested that CD73 might have a protective role in kidney damage; however, no direct evidence of its role in human kidney disease has been described to date. Here, we hypothesized that podocyte injury in human kidney diseases alters CD73 expression that may facilitate the diagnosis of podocytopathies. We assessed the expression of CD73 and one of its functionally important targets, the C-C chemokine receptor type 2 (CCR2), in podocytes from kidney biopsies of 39 patients with podocytopathy (including focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous glomerulonephritis (MGN) and amyloidosis) and a control group. Podocyte CD73 expression in each of the disease groups was significantly increased in comparison to controls (p < 0.001–p < 0.0001). Moreover, there was a marked negative correlation between CD73 and CCR2 expression, as confirmed by immunohistochemistry and immunofluorescence (Pearson r = −0.5068, p = 0.0031; Pearson r = −0.4705, p = 0.0313, respectively), thus suggesting a protective role of CD73 in kidney injury. Finally, we identify CD73 as a novel potential diagnostic marker of human podocytopathies, particularly of MCD that has been notorious for the lack of pathological features recognizable by light microscopy and immunohistochemistry.
Collapse
|
17
|
Interaction between the Renin-Angiotensin System and Enteric Neurotransmission Contributes to Colonic Dysmotility in the TNBS-Induced Model of Colitis. Int J Mol Sci 2021; 22:ijms22094836. [PMID: 34063607 PMCID: PMC8125095 DOI: 10.3390/ijms22094836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin II (Ang II) regulates colon contraction, acting not only directly on smooth muscle but also indirectly, interfering with myenteric neuromodulation mediated by the activation of AT1 /AT2 receptors. In this article, we aimed to explore which mediators and cells were involved in Ang II-mediated colonic contraction in the TNBS-induced rat model of colitis. The contractile responses to Ang II were evaluated in distinct regions of the colon of control animals or animals with colitis in the absence and presence of different antagonists/inhibitors. Endogenous levels of Ang II in the colon were assessed by ELISA and the number of AT1/AT2 receptors by qPCR. Ang II caused AT1 receptor-mediated colonic contraction that was markedly decreased along the colons of TNBS-induced rats, consistent with reduced AT1 mRNA expression. However, the effect mediated by Ang II is much more intricate, involving (in addition to smooth muscle cells and nerve terminals) ICC and EGC, which communicate by releasing ACh and NO in a complex mechanism that changes colitis, unveiling new therapeutic targets.
Collapse
|
18
|
Antonioli L, Fornai M, Pellegrini C, D'Antongiovanni V, Turiello R, Morello S, Haskó G, Blandizzi C. Adenosine Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:145-167. [PMID: 33123998 DOI: 10.1007/978-3-030-47189-7_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine, deriving from ATP released by dying cancer cells and then degradated in the tumor environment by CD39/CD73 enzyme axis, is linked to the generation of an immunosuppressed niche favoring the onset of neoplasia. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell surface receptors, classified into four subtypes: A1, A2A, A2B, and A3. A critical role of this nucleoside is emerging in the modulation of several immune and nonimmune cells defining the tumor microenvironment, providing novel insights about the development of novel therapeutic strategies aimed at undermining the immune-privileged sites where cancer cells grow and proliferate.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Roberta Turiello
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Antonioli L, Lucarini E, Lambertucci C, Fornai M, Pellegrini C, Benvenuti L, Di Cesare Mannelli L, Spinaci A, Marucci G, Blandizzi C, Ghelardini C, Volpini R, Dal Ben D. The Anti-Inflammatory and Pain-Relieving Effects of AR170, an Adenosine A 3 Receptor Agonist, in a Rat Model of Colitis. Cells 2020; 9:cells9061509. [PMID: 32575844 PMCID: PMC7348903 DOI: 10.3390/cells9061509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
The pharmacological activation of A3 receptors has shown potential usefulness in the management of bowel inflammation. However, the role of these receptors in the control of visceral hypersensitivity in the presence of intestinal inflammation has not been investigated. The effects of AR170, a potent and selective A3 receptor agonist, and dexamethasone (DEX) were tested in rats with 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis to assess their tissue inflammatory parameters. The animals received AR170, DEX, or a vehicle intraperitoneally for 6 days, starting 1 day before the induction of colitis. Visceral pain was assessed by recording the abdominal responses to colorectal distension in animals with colitis. Colitis was associated with a decrease in body weight and an increase in spleen weight. The macroscopic damage score and tissue tumor necrosis factor (TNF), interleukin 1β (IL-1β), and myeloperoxidase (MPO) levels were also enhanced. AR170, but not DEX, improved body weight. Both drugs counteracted the increase in spleen weight, ameliorated macroscopic colonic damage, and decreased TNF, IL-1β, and MPO tissue levels. The enhanced visceromotor response (VMR) in rats with colitis was decreased via AR170 administration. In rats with colitis, AR170 counteracted colonic inflammatory cell infiltration and decreased pro-inflammatory cytokine levels, thereby relieving visceral hypersensitivity.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Elena Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | | | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
- Correspondence:
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| |
Collapse
|
20
|
Souza RF, Evangelinellis MM, Mendes CE, Righetti M, Lourenço MCS, Castelucci P. P2X7 receptor antagonist recovers ileum myenteric neurons after experimental ulcerative colitis. World J Gastrointest Pathophysiol 2020; 11:84-103. [PMID: 32587788 PMCID: PMC7303980 DOI: 10.4291/wjgp.v11.i4.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/04/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The P2X7 receptor is expressed by enteric neurons and enteric glial cells. Studies have demonstrated that administration of a P2X7 receptor antagonist, brilliant blue G (BBG), prevents neuronal loss. AIM To report the effects of BBG in ileum enteric neurons immunoreactive (ir) following experimental ulcerative colitis in Rattus norvegicus albinus. METHODS 2,4,6-trinitrobenzene sulfonic acid (TNBS group, n = 5) was injected into the distal colon. BBG (50 mg/kg, BBG group, n = 5) or vehicle (sham group, n = 5) was given subcutaneously 1 h after TNBS. The animals were euthanized after 24 h, and the ileum was removed. Immunohistochemistry was performed on the myenteric plexus to evaluate immunoreactivity for P2X7 receptor, neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), HuC/D and glial fibrillary acidic protein. RESULTS The numbers of nNOS-, ChAT-, HuC/D-ir neurons and glial fibrillary acidic protein-ir glial cells were decreased in the TNBS group and recovered in the BBG group. The neuronal profile area (μm2) demonstrated that nNOS-ir neurons decreased in the TNBS group and recovered in the BBG group. There were no differences in the profile areas of ChAT- and HuC/D-ir neurons. CONCLUSION Our data conclude that ileum myenteric neurons and glial cells were affected by ulcerative colitis and that treatment with BBG had a neuroprotective effect. Thus, these results demonstrate that the P2X7 receptor may be an important target in therapeutic strategies.
Collapse
Affiliation(s)
| | - Mariá Munhoz Evangelinellis
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil
| | | | - Marta Righetti
- Department of Anatomy, University of São Paulo, São Paulo 05508-900, Brazil
| | | | | |
Collapse
|
21
|
Thude H, Onken L, Kappauf J, Dworak M, Sterneck M, Peine S, Nashan B, Koch M. Ectonucleoside triphosphate diphosphohydrolase 1 and 5'-nucleotidase ecto gene polymorphisms and acute cellular rejection after liver transplantation. HLA 2020; 96:64-69. [PMID: 32248630 DOI: 10.1111/tan.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Abstract
The single nucleotide polymorphisms (SNPs) rs11188513, rs7071836, rs10748643, rs9450279, rs4458647, and rs6922 map in the genes of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) and 5'-nucleotidase ecto. We investigated whether these SNPs and haplotypes of these SNPs are associated with an acute cellular rejection after liver transplantation. A total of 69 recipients with an acute cellular rejection and 138 recipients without an acute cellular rejection were analyzed. Analyzed individually, no SNP demonstrates an association, but the haplotype rs11188513T-rs7071836G-rs10748643A of the ENTPD1 gene appeared more frequently in recipients without rejection and conversely, the haplotype rs11188513T-rs7071836G-rs10748643G of the ENTPD1 gene was more often represented in recipients with rejection. These two haplotypes seem to be important for the susceptibility of an acute cellular rejection after liver transplantation.
Collapse
Affiliation(s)
- Hansjörg Thude
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Onken
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Kappauf
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Dworak
- Clinical and Regulatory Affairs, Novartis Pharma GmbH, Nürnberg, Germany
| | - Martina Sterneck
- Transplantation-Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Koch
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Dal Ben D, Antonioli L, Lambertucci C, Spinaci A, Fornai M, D'Antongiovanni V, Pellegrini C, Blandizzi C, Volpini R. Approaches for designing and discovering purinergic drugs for gastrointestinal diseases. Expert Opin Drug Discov 2020; 15:687-703. [PMID: 32228110 DOI: 10.1080/17460441.2020.1743673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Purines finely modulate physiological motor, secretory, and sensory functions in the gastrointestinal tract. Their activity is mediated by the purinergic signaling machinery, including receptors and enzymes regulating their synthesis, release, and degradation. Several gastrointestinal dysfunctions are characterized by alterations affecting the purinergic system. AREAS COVERED The authors provide an overview on the purinergic receptor signaling machinery, the molecules and proteins involved, and a summary of medicinal chemistry efforts aimed at developing novel compounds able to modulate the activity of each player involved in this machinery. The involvement of purinergic signaling in gastrointestinal motor, secretory, and sensory functions and dysfunctions, and the potential therapeutic applications of purinergic signaling modulators, are then described. EXPERT OPINION A number of preclinical and clinical studies demonstrate that the pharmacological manipulation of purinergic signaling represents a viable way to counteract several gastrointestinal diseases. At present, the paucity of purinergic therapies is related to the lack of receptor-subtype-specific agonists and antagonists that are effective in vivo. In this regard, the development of novel therapeutic strategies should be focused to include tools able to control the P1 and P2 receptor expression as well as modulators of the breakdown or transport of purines.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| |
Collapse
|
23
|
Circulating levels of ATP is a biomarker of HIV cognitive impairment. EBioMedicine 2019; 51:102503. [PMID: 31806564 PMCID: PMC7000317 DOI: 10.1016/j.ebiom.2019.10.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In developed countries, Human Immunodeficiency Virus type-1 (HIV-1) infection has become a chronic disease despite the positive effects of anti-retroviral therapies (ART), but still at least half of the HIV infected population shown signs of cognitive impairment. Therefore, biomarkers of HIV cognitive decline are urgently needed. METHODS We analyze the opening of one of the larger channels expressed by humans, pannexin-1 (Panx-1) channels, in the uninfected and HIV infected population (n = 175). We determined channel opening and secretion of intracellular second messengers released through the channel such as PGE2 and ATP. Also, we correlated the opening of Panx-1 channels with the circulating levels of PGE2 and ATP as well as cogntive status of the individuals analyzed. FINDINGS Here, we demonstrate that Panx-1 channels on fresh PBMCs obtained from uninfected individuals are closed and no significant amounts of PGE2 and ATP are detected in the circulation. In contrast, in all HIV-infected individuals analyzed, even the ones under effective ART, a spontaneous opening of Panx-1 channels and increased circulating levels of PGE2 and ATP were detected. Circulating levels of ATP were correlated with cognitive decline in the HIV-infected population supporting that ATP is a biomarker of cognitive disease in the HIV-infected population. INTERPRETATION We propose that circulating levels of ATP could predict CNS compromise and lead to the breakthroughs necessary to detect and prevent brain compromise in the HIV-infected population.
Collapse
|
24
|
Perez-Medina AL, Galligan JJ. Optogenetic analysis of neuromuscular transmission in the colon of ChAT-ChR2-YFP BAC transgenic mice. Am J Physiol Gastrointest Liver Physiol 2019; 317:G569-G579. [PMID: 31411893 PMCID: PMC6879885 DOI: 10.1152/ajpgi.00089.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Propulsion of luminal content along the gut requires coordinated contractions and relaxations of gastrointestinal smooth muscles controlled by the enteric nervous system. Activation of excitatory motor neurons (EMNs) causes muscle contractions, whereas inhibitory motor neuron (IMN) activation causes muscle relaxation. EMNs release acetylcholine (ACh), which acts at muscarinic receptors on smooth muscle cells and adjacent interstitial cells of Cajal, causing excitatory junction potentials (EJPs). IMNs release ATP (or another purine) and nitric oxide to cause inhibitory junction potentials (IJPs) and muscle relaxation. We used commercially available choline acetyltransferase (ChAT)-channelrhodopsin-2 (ChR2)-yellow fluorescent protein (YFP) bacterial artificial chromosome (BAC) transgenic mice, which express ChR2 in cholinergic neurons, to study cholinergic neuromuscular transmission in the colon. Intracellular microelectrodes were used to record IJPs and EJPs from circular muscle cells. We used blue light stimulation (BLS, 470 nm, 20 mW/mm2) and electrical field stimulation (EFS) to activate myenteric neurons. EFS evoked IJPs only, whereas BLS evoked EJPs and IJPs. Mecamylamine (10 µM, nicotinic cholinergic receptor antagonist) reduced BLS-evoked IJPs by 50% but had no effect on electrically evoked IJPs. MRS 2179 (10 µM, a P2Y1 receptor antagonist) blocked BLS-evoked IJPs. MRS 2179 and Nω-nitro-l-arginine (100 µM, nitric oxide synthase inhibitor) isolated the EJP, which was blocked by scopolamine (1 µM, muscarinic ACh receptor antagonist). Immunohistochemistry revealed ChAT expression in ~88% of enhanced YFP (eYFP)-expressing neurons, whereas 12% of eYFP neurons expressed nitric oxide synthase. These data show that cholinergic interneurons synapse with EMNs and IMNs to cause contraction and relaxation of colonic smooth muscle.NEW & NOTEWORTHY Electrical stimulation of interganglionic connectives has been used widely to study synaptic transmission in the enteric nervous system. However, electrical stimulation will activate many types of neurons and nerve fibers, which complicates data interpretation. Optogenetic activation of enteric neurons using genetically modified mice expressing channelrhodopsin-2 in cholinergic neurons offers a new approach that provides more specificity for nerve stimulation when studying myenteric plexus nerve circuitry.
Collapse
Affiliation(s)
| | - James J. Galligan
- 1Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan,2Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
25
|
Dal Ben D, Lambertucci C, Buccioni M, Martí Navia A, Marucci G, Spinaci A, Volpini R. Non-Nucleoside Agonists of the Adenosine Receptors: An Overview. Pharmaceuticals (Basel) 2019; 12:E150. [PMID: 31597388 PMCID: PMC6958362 DOI: 10.3390/ph12040150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022] Open
Abstract
Potent and selective adenosine receptor (AR) agonists are of pharmacological interest for the treatment of a wide range of diseases and conditions. Among these derivatives, nucleoside-based agonists represent the great majority of molecules developed and reported to date. However, the limited availability of compounds selective for a specific AR subtype (i.e., A2BAR) and a generally long and complex synthetic route for largely substituted nucleosides are the main drawbacks of this category of molecules. Non-nucleoside agonists represent an alternative set of compounds able to stimulate the AR function and based on simplified structures. This review provides an updated overview on the structural classes of non-nucleoside AR agonists and their biological activities, with emphasis on the main derivatives reported in the literature. A focus is also given to the synthetic routes employed to develop these derivatives and on molecular modeling studies simulating their interaction with ARs.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Aleix Martí Navia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| |
Collapse
|
26
|
Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol 2019; 141:1246-1257. [PMID: 31520704 DOI: 10.1016/j.ijbiomac.2019.09.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Adenosine deaminase is a critical enzyme in purine metabolism that regulates intra and extracellular adenosine concentrations by converting it to inosine. Adenosine is an important purine that regulates numerous physiological functions by interacting with its receptors. Adenosine and consequently adenosine deaminase can have pro or anti-inflammatory effects on tissues depending on how much time has passed from the start of the injury. In addition, an increase in adenosine deaminase activity has been reported for various diseases and the significant effect of deaminase inhibition on the clinical course of different diseases has been reported. However, the use of inhibitors is limited to only a few medical indications. Data on the increase of adenosine deaminase activity in different diseases and the impact of its inhibition in various cases have been collected and are discussed in this review. Overall, the evidence shows that many studies have been done to introduce inhibitors, however, in vivo studies have been much less than in vitro, and often have not been expanded for clinical use.
Collapse
Affiliation(s)
- S Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - T Haertlé
- Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|
27
|
Yang D, Zhang Q, Ma Y, Che Z, Zhang W, Wu M, Wu L, Liu F, Chu Y, Xu W, McGrath M, Song C, Liu J. Augmenting the therapeutic efficacy of adenosine against pancreatic cancer by switching the Akt/p21-dependent senescence to apoptosis. EBioMedicine 2019; 47:114-127. [PMID: 31495718 PMCID: PMC6796568 DOI: 10.1016/j.ebiom.2019.08.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Background There are many reports of the anti-tumour effects of exogenous adenosine in gastrointestinal tumours. Gemcitabine, a first line agent for patients with poor performance status, and adenosine have structural similarities. For these reasons, it is worth exploring the therapeutic efficacy of adenosine and its underlying mechanism in pancreatic cancer. Methods Tumour volumes and survival periods were measured in a patient-derived xenograft (PDX) model of pancreatic cancer. The Akt-p21 signalling axis was blocked by p21 silencing or by the Akt inhibitor GSK690693. The combined effect of GSK690693 and adenosine was calculated by the Chou-Talalay equation and verified by measuring fluorescent areas in orthotopic models. Findings Among the PDX mice, the tumour volume in the adenosine treatment group was only 61% of that in the saline treatment group. Adenosine treatment in combination with the Akt inhibitor, GSK690693, or the silencing of p21 to interfere with the Akt-p21 axis can switch the senescence-to-apoptosis signal and alleviate drug resistance. A GSK690693-adenosine combination caused 37.4% further reduction of tumour fluorescent areas in orthotopic models compared with that observed in adenosine monotherapy. Interpretation: Our data confirmed the therapeutic effect of adenosine on pancreatic cancer, and revealed the potential of Akt inhibitors as sensitization agents in this treatment. Fund The work is supported by grants from the National Natural Science Foundation of China to Dongqin Yang (81572336, 81770579) and Jie Liu (81630016, 81830080), and jointly by the Development Fund for Shanghai Talents (201660).
Collapse
Affiliation(s)
- Dongqin Yang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.
| | - Qi Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Yunfang Ma
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihui Che
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Wenli Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Mengmeng Wu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Lijun Wu
- Department of Library, Fudan University, Shanghai, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Immunology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
29
|
Palombit K, Mendes CE, Tavares-de-Lima W, Barreto-Chaves ML, Castelucci P. Blockage of the P2X7 Receptor Attenuates Harmful Changes Produced by Ischemia and Reperfusion in the Myenteric Plexus. Dig Dis Sci 2019; 64:1815-1829. [PMID: 30734238 DOI: 10.1007/s10620-019-05496-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Our work analyzed the effects of a P2X7 receptor antagonist, Brilliant Blue G (BBG), on rat ileum myenteric plexus following ischemia and reperfusion (ISR) induced by 45 min of ileal artery occlusion with an atraumatic vascular clamp with 24 h (ISR 24-h group) or 14 d of reperfusion (ISR 14-d group). MATERIAL AND METHODS Either BBG (50 mg/kg or 100 mg/kg, BBG50 or BBG100 groups) or saline (vehicle) was administered subcutaneously 1 h after ischemia in the ISR 24-h group or once daily for the 5 d after ischemia in the ISR 14-d group (n = 5 per group). We evaluated the neuronal density and profile area by examining the number of neutrophils in the intestinal layers, protein expression levels of the P2X7 receptor, intestinal motility and immunoreactivity for the P2X7 receptor, nitric oxide synthase, neurofilament-200, and choline acetyl transferase in myenteric neurons. RESULTS The neuronal density and profile area were restored by BBG following ISR. The ischemic groups showed alterations in P2X7 receptor protein expression and the number of neutrophils in the intestine and decreased intestinal motility, all of which were recovered by BBG treatment. CONCLUSION We concluded that ISR morphologically and functionally affected the intestine and that its effects were reversed by BBG treatment, suggesting the P2X7 receptor as a therapeutic target.
Collapse
Affiliation(s)
- Kelly Palombit
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
- Department of Morphology, Federal University of Piaui, Teresina, Brazil
| | - Cristina Eusébio Mendes
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Luiza Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
30
|
Buccioni M, Dal Ben D, Lambertucci C, Martí Navia A, Ricciutelli M, Spinaci A, Volpini R, Marucci G. New sensible method to quantize the intestinal absorption of receptor ligands. Bioorg Med Chem 2019; 27:3328-3333. [PMID: 31230970 DOI: 10.1016/j.bmc.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
In recent years, special attention has been paid to the A3 adenosine receptor (A3AR) as a possible pharmacological target to treat intestinal inflammation. In this work, it was set up a novel method to quantify the concentration of a promising anti-inflammatory agent inside and outside of intestinal barrier using the everted gut sac technique. The compound chosen for the present study is one of the most potent and selective A3AR agonist reported so far, named AR 170 (N6-methyl-2-phenylethynyl-5'-N-methylcarboxamidoadenosine). In order to evaluate the intestinal absorption of AR 170 the radioligand binding assay in comparison with HPLC-DAD was used. Results showed that the compound is absorbed via passive diffusion by paracellular pathway. The concentrations determined in the serosal (inside the sac) fluid by radioligand binding assay are in good agreement with those obtained through the widely used HPLC/MS protocol, demonstrating the reliability of the method. It is worthwhile to note that the radioligand binding assay allows detecting very low concentrations of analyte, thus offering an excellent tool to measure the intestinal absorption of receptor ligands. Moreover, the AR 170 quantity outside the gut sac and the interaction with A3AR could presuppose good topical anti-inflammatory effects of this compound.
Collapse
Affiliation(s)
- Michela Buccioni
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Diego Dal Ben
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Catia Lambertucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Aleix Martí Navia
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Andrea Spinaci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Rosaria Volpini
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Gabriella Marucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy.
| |
Collapse
|
31
|
Antonioli L, Blandizzi C, Fornai M, Pacher P, Lee HT, Haskó G. P2X4 receptors, immunity, and sepsis. Curr Opin Pharmacol 2019; 47:65-74. [PMID: 30921560 DOI: 10.1016/j.coph.2019.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
Sepsis is life-threatening systemic organ dysfunction caused by a deregulated host response to an infectious insult. Currently, the treatment of sepsis is limited to the use of antibiotics, fluids, and cardiovascular/respiratory support. Despite these interventions, septic mortality remains high, with reduced life quality in survivors. For this reason, the identification of novel drug targets is a pressing task of modern pharmacology. According to a recent research, it appears that P2 purinergic receptors, which can regulate the host's response to infections, have been identified as potential targets for the treatment of sepsis. Among P2 receptors, the P2X4 receptor has recently captured the attention of the research community owing to its role in protecting against infections, inflammation, and organ injury. The present review provides an outline of the role played by P2X4 receptors in the modulation of the host's response to sepsis and the promise that targeting this receptor holds in the treatment of sepsis.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - H Thomas Lee
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
32
|
Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in Intestinal and Hepatic Inflammation. Front Immunol 2019; 10:507. [PMID: 30941139 PMCID: PMC6433995 DOI: 10.3389/fimmu.2019.00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Adenosine triphosphate is co-secreted with glucagon-like peptide-1 to modulate intestinal enterocytes and afferent neurons. Nat Commun 2019; 10:1029. [PMID: 30833673 PMCID: PMC6399286 DOI: 10.1038/s41467-019-09045-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/01/2019] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine cells are specialised sensory cells located in the intestinal epithelium and generate signals in response to food ingestion. Whilst traditionally considered hormone-producing cells, there is evidence that they also initiate activity in the afferent vagus nerve and thereby signal directly to the brainstem. We investigate whether enteroendocrine L-cells, well known for their production of the incretin hormone glucagon-like peptide-1 (GLP-1), also release other neuro-transmitters/modulators. We demonstrate regulated ATP release by ATP measurements in cell supernatants and by using sniffer patches that generate electrical currents upon ATP exposure. Employing purinergic receptor antagonists, we demonstrate that evoked ATP release from L-cells triggers electrical responses in neighbouring enterocytes through P2Y2 and nodose ganglion neurones in co-cultures through P2X2/3-receptors. We conclude that L-cells co-secrete ATP together with GLP-1 and PYY, and that ATP acts as an additional signal triggering vagal activation and potentially synergising with the actions of locally elevated peptide hormone concentrations.
Collapse
|
34
|
Navarrete E, Díaz G, Montúfar-Chaveznava R, Caldelas I. Temporal variations of nucleosides and nucleotides in rabbit milk. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:415-435. [PMID: 30449235 DOI: 10.1080/15257770.2018.1494278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleotides and nucleosides have a preeminent role in physiological and biochemical processes for newborns, the major source of these during early development is the breast milk. Different biomolecules exhibit daily fluctuations in maternal milk that could transfer temporal information that synchronize newborn circadian system. As a first approach, we characterized the diurnal profile of nucleotides and nucleosides contained in maternal milk of rabbits during the first week of lactation. It is possible that some nucleosides, such as adenosine, play a relevant role in setting up the emerging circadian rhythmicity, whereas uridine and guanosine could participate in the maintenance of rhythmicity.
Collapse
Affiliation(s)
- Erika Navarrete
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Georgina Díaz
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| | | | - Ivette Caldelas
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| |
Collapse
|
35
|
The ecto-enzymes CD73 and adenosine deaminase modulate 5'-AMP-derived adenosine in myofibroblasts of the rat small intestine. Purinergic Signal 2018; 14:409-421. [PMID: 30269308 DOI: 10.1007/s11302-018-9623-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a versatile signaling molecule recognized to physiologically influence gut motor functions. Both the duration and magnitude of adenosine signaling in enteric neuromuscular function depend on its availability, which is regulated by the ecto-enzymes ecto-5'-nucleotidase (CD73), alkaline phosphatase (AP), and ecto-adenosine deaminase (ADA) and by dipyridamole-sensitive equilibrative transporters (ENTs). Our purpose was to assess the involvement of CD73, APs, ecto-ADA in the formation of AMP-derived adenosine in primary cultures of ileal myofibroblasts (IMFs). IMFs were isolated from rat ileum longitudinal muscle segments by means of primary explant technique and identified by immunofluorescence staining for vimentin and α-smooth muscle actin. IMFs confluent monolayers were exposed to exogenous 5'-AMP in the presence or absence of CD73, APs, ecto-ADA, or ENTs inhibitors. The formation of adenosine and its metabolites in the IMFs medium was monitored by high-performance liquid chromatography. The distribution of CD73 and ADA in IMFs was detected by confocal immunocytochemistry and qRT-PCR. Exogenous 5'-AMP was rapidly cleared being almost undetectable after 60-min incubation, while adenosine levels significantly increased. Treatment of IMFs with CD73 inhibitors markedly reduced 5'-AMP clearance whereas ADA blockade or inhibition of both ADA and ENTs prevented adenosine catabolism. By contrast, inhibition of APs did not affect 5'-AMP metabolism. Immunofluorescence staining and qRT-PCR analysis confirmed the expression of CD73 and ADA in IMFs. Overall, our data show that in IMFs an extracellular AMP-adenosine pathway is functionally active and among the different enzymatic pathways regulating extracellular adenosine levels, CD73 and ecto-ADA represent the critical catabolic pathway.
Collapse
|
36
|
Shi L, Yang L, Wu Z, Xu W, Song J, Guan W. Adenosine signaling: Next checkpoint for gastric cancer immunotherapy? Int Immunopharmacol 2018; 63:58-65. [PMID: 30075429 DOI: 10.1016/j.intimp.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022]
Abstract
Adenosine (ADO), generated by the ectonucleotidase CD39 and CD73 from ATP, interacts with its specific G protein-coupled receptors, which can impair anti-tumor immune responses inhibiting the infiltration and function of CD8+ T cell and natural killer cell. Recent studies have also identified that ADO pathway plays a critical role in tumor immune surveillance, especially for some non-solid cancers. In addition, although immune checkpoint therapy targeting ADO pathway in gastric cancer is still in an early phase, encouraging results have come out from some drugs targeting ADO pathway. Therefore, target ADO signaling may be a new promising strategy to treat gastric cancer. In this review, we summarized recent works on the role of ADO in cancer immunotherapy and also discussed relative mechanisms underlying the function of ADO signaling in cancer immune responses.
Collapse
Affiliation(s)
- Linsen Shi
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China; The Affiliated Drum Tower Clinical College of NanJing Medical University, Nanjing, PR China
| | - Lin Yang
- XuZhou Medical University, Xuzhou, PR China
| | - Zhaoyin Wu
- XuZhou Medical University, Xuzhou, PR China
| | - Wei Xu
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Jun Song
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China.
| | - Wenxian Guan
- Departments of Gastrointestinal surgery, the Affiliated Drum Tower hospital of NanJing Medical University, Nanjing, PR China.
| |
Collapse
|
37
|
Pastor-Anglada M, Urtasun N, Pérez-Torras S. Intestinal Nucleoside Transporters: Function, Expression, and Regulation. Compr Physiol 2018; 8:1003-1017. [PMID: 29978890 DOI: 10.1002/cphy.c170039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is the absorptive organ for nutrients found in foods after digestion. Nucleosides and, to a lesser extent nucleobases, are the late products of nucleoprotein digestion. These metabolites are absorbed by nucleoside (and nucleobase) transporter (NT) proteins. NTs are differentially distributed along the gastrointestinal tract showing also polarized expression in epithelial cells. Concentrative nucleoside transporters (CNTs) are mainly located at the apical side of enterocytes, whereas equilibrative nucleoside transporters (ENTs) facilitate the basolateral efflux of nucleosides and nucleobases to the bloodstream. Moreover, selected nucleotides and the bioactive nucleoside adenosine act directly on intestinal cells modulating purinergic signaling. NT-polarized insertion is tightly regulated. However, not much is known about the modulation of intestinal NT function in humans, probably due to the lack of appropriate cell models retaining CNT functional expression. Thus, the possibility of nutritional regulation of intestinal NTs has been addressed using animal models. Besides the nutrition-related role of NT proteins, orally administered drugs also need to cross the intestinal barrier, this event being a major determinant of drug bioavailability. In this regard, NT proteins might also play a role in pharmacology, thereby allowing the absorption of nucleoside- and nucleobase-derived drugs. The relative broad selectivity of these membrane transporters also suggests clinically relevant drug-drug interactions when using combined therapies. This review focuses on all these physiological and pharmacological aspects of NT protein biology. © 2017 American Physiological Society. Compr Physiol 8:1003-1017, 2018.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Urtasun
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
38
|
Camilleri M. Toward an effective peripheral visceral analgesic: responding to the national opioid crisis. Am J Physiol Gastrointest Liver Physiol 2018; 314:G637-G646. [PMID: 29470146 PMCID: PMC6032061 DOI: 10.1152/ajpgi.00013.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This minireiew summarizes recent new developments in visceral analgesics. This promising field is important, as a new approach to address abdominal pain with peripheral visceral analgesics is considered a key approach to addressing the current opioid crisis. Some of the novel compounds address peripheral pain mechanisms through modulation of opioid receptors via biased ligands, nociceptin/orphanin FQ opioid peptide (NOP) receptor, or dual action on NOP and μ-opioid receptor, buprenorphine and morphiceptin analogs. Other compounds target nonopioid mechanisms, including cannabinoid (CB2), N-methyl-d-aspartate, calcitonin gene-related peptide, estrogen, and adenosine A2B receptors and transient receptor potential (TRP) channels (TRPV1, TRPV4, and TRPM8). Although current evidence is based predominantly on animal models of visceral pain, early human studies also support the evidence from the basic and animal research. This augurs well for the development of nonaddictive, visceral analgesics for treatment of chronic abdominal pain, an unmet clinical need.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research Center, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
39
|
Antonioli L, Fornai M, Blandizzi C, Pacher P, Haskó G. Adenosine signaling and the immune system: When a lot could be too much. Immunol Lett 2018; 205:9-15. [PMID: 29702147 DOI: 10.1016/j.imlet.2018.04.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Adenosine is increasingly recognized as a key mediator of the immune response. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell-surface receptors, classified into four subtypes: A1, A2A, A2B and A3. These receptors, expressed virtually on all immune cells, modulate all aspects of immune/inflammatory responses. These immunoregulatory effects, which are mostly anti-inflammatory, contribute to the general tissue protective effects of adenosine and its receptors. In some instances, however, the effect of adenosine on the immune system is deleterious, as prolonged adenosine signaling can hinder anti-tumor and antibacterial immunity, thereby promoting cancer development and progression and sepsis, respectively.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy; Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
40
|
Dal Ben D, Antonioli L, Lambertucci C, Fornai M, Blandizzi C, Volpini R. Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Front Pharmacol 2018; 9:212. [PMID: 29593540 PMCID: PMC5861216 DOI: 10.3389/fphar.2018.00212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation-related intestinal diseases are a set of various conditions presenting an overactive enteric immune system. A continuous overproduction of pro-inflammatory cytokines and a decreased production of anti-inflammatory modulators are generally observed, while morpho-functional alterations of the enteric nervous system lead to intestinal secretory and motor dysfunctions. The factors at the basis of these conditions are still to be totally identified and current therapeutic strategies are aimed only at achieving and maintaining remission states, by using therapeutic tools like aminosalicylates, corticosteroids, immunomodulators, biological drugs (i.e., monoclonal antibodies), and eventually surgery. Recent reports described a key role of purinergic mediators (i.e., adenosine and its nucleotides ATP and ADP) in the regulation of the activity of immune cells and enteric nervous system, showing also that alterations of the purinergic signaling are linked to pathological conditions of the intestinal tract. These data prompted to a series of investigations to test the therapeutic potential for inflammation-related intestinal conditions of compounds able to restore or modulate an altered purinergic signaling within the gut. This review provides an overview on these investigations, describing the results of preclinical and/or clinical evaluation of compounds able to stimulate or inhibit specific P2 (i.e., P2X7) or P1 (i.e., A2A or A3) receptor signaling and to modify the adenosine levels through the modulation of enzymes activity (i.e., Adenosine Deaminase) or nucleoside transporters. Recent developments in the field are also reported and the most promising purine-based therapeutic strategies for the treatment of inflammation-related gastrointestinal disorders are schematically summarized.
Collapse
Affiliation(s)
- Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
41
|
Burnstock G, Jacobson KA, Christofi FL. Purinergic drug targets for gastrointestinal disorders. Curr Opin Pharmacol 2017; 37:131-141. [PMID: 29149731 DOI: 10.1016/j.coph.2017.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Purinergic receptors are implicated in the pathogenesis of gastrointestinal disorders and are being explored as potential therapeutic targets. Gut inflammation releases ATP that acts on neuronal, glial, epithelial and immune cells. Purinergic signalling in glia and neurons is implicated in enteric neuropathies. Inflammation activates glia to increase ATP release and alter purinergic signalling. ATP release causes neuron death and gut motor dysfunction in colitis via a P2X7-dependent neural-glial pathway and a glial purinergic-connexin-43 pathway. The latter pathway also mediates morphine-induced constipation and gut inflammation that may differ from opioid-induced constipation. P2X7R antagonists are protective in inflammatory bowel disease (IBD) models, where as AZD9056 is questionable in Crohn's disease, but is potentially beneficial for chronic abdominal pain. Drug targets under investigation for IBD, irritable bowel syndrome and motility disorders include P2X7R, P2X3R, P2Y2R, A2A/A2BAR, enzymes and transporters.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Australia
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry & Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, MD 20892-0810, USA.
| | - Fievos L Christofi
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, 226 Tzagournis Medical Research Facility, 420W 12th Ave, Columbus, OH, USA
| |
Collapse
|
42
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
43
|
da Silva MV, Marosti AR, Mendes CE, Palombit K, Castelucci P. Submucosal neurons and enteric glial cells expressing the P2X7 receptor in rat experimental colitis. Acta Histochem 2017; 119:481-494. [PMID: 28501138 DOI: 10.1016/j.acthis.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the effect of ulcerative colitis on the submucosal neurons and glial cells of the submucosal ganglia of rats. 2,4,6-Trinitrobenzene sulfonic acid (TNBS; colitis group) was administered in the colon to induce ulcerative colitis, and distal colons were collected after 24h. The colitis rats were compared with those in the sham and control groups. Double labelling of the P2X7 receptor with calbindin (marker for intrinsic primary afferent neurons, IPANs, submucosal plexus), calretinin (marker for secretory and vasodilator neurons of the submucosal plexus), HuC/D and S100β was performed in the submucosal plexus. The density (neurons per area) of submucosal neurons positive for the P2X7 receptor, calbindin, calretinin and HuC/D decreased by 21%, 34%, 8.2% and 28%, respectively, in the treated group. In addition, the density of enteric glial cells in the submucosal plexus decreased by 33%. The profile areas of calbindin-immunoreactive neurons decreased by 25%. Histological analysis revealed increased lamina propria and decreased collagen in the colitis group. This study demonstrated that ulcerative colitis affected secretory and vasodilatory neurons, IPANs and enteric glia of the submucosal plexus expressing the P2X7 receptor.
Collapse
Affiliation(s)
- Marcos Vinícius da Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil; University Federal of Sergipe, Brazil
| | - Aline Rosa Marosti
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Kelly Palombit
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil; Department of Morphology, University Federal of Piaui, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
44
|
Hao MM, Bergner AJ, Hirst CS, Stamp LA, Casagranda F, Bornstein JC, Boesmans W, Vanden Berghe P, Young HM. Spontaneous calcium waves in the developing enteric nervous system. Dev Biol 2017; 428:74-87. [PMID: 28528728 DOI: 10.1016/j.ydbio.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca2+ imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator. Spontaneous propagating calcium waves were observed between neighbouring ENCCs, through both neuronal and non-neuronal ENCCs. Pharmacological experiments showed wave propagation was not mediated by gap junctions, but by purinergic signalling via P2 receptors. The expression of several P2X and P2Y receptors was confirmed using RT-PCR. Furthermore, inhibition of P2 receptors altered the morphology of the ENCC network, without affecting neuronal differentiation or ENCC proliferation. It is well established that purines participate in synaptic transmission in the mature ENS. Our results describe, for the first time, purinergic signalling between ENCCs during pre-natal development, which plays roles in the propagation of Ca2+ waves between ENCCs and in ENCC network formation. One previous study has shown that calcium signalling plays a role in sympathetic ganglia formation; our results suggest that calcium waves are likely to be important for enteric ganglia development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Australia; Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium.
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Caroline S Hirst
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | | | - Werend Boesmans
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium
| | | | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| |
Collapse
|
45
|
Bhave S, Gade A, Kang M, Hauser KF, Dewey WL, Akbarali HI. Connexin-purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation. FASEB J 2017; 31:2649-2660. [PMID: 28280004 DOI: 10.1096/fj.201601068r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 01/20/2023]
Abstract
Morphine is one of the most widely used drugs for the treatment of pain. However, side effects, including persistent constipation and antinociceptive tolerance, limit its clinical efficacy. Prolonged morphine treatment results in a "leaky" gut, predisposing to colonic inflammation that is facilitated by microbial dysbiosis and associated bacterial translocation. In this study, we examined the role of enteric glia in mediating this secondary inflammatory response to prolonged treatment with morphine. We found that purinergic P2X receptor activity was significantly enhanced in enteric glia that were isolated from mice with long-term morphine treatment (in vivo) but not upon direct exposure of glia to morphine (in vitro). LPS, a major bacterial product, also increased ATP-induced currents, as well as expression of P2X4, P2X7, IL6, IL-1β mRNA in enteric glia. LPS increased connexin43 (Cx43) expression and enhanced ATP release from enteric glia cells. LPS-induced P2X currents and proinflammatory cytokine mRNA expression were blocked by the Cx43 blockers Gap26 and carbenoxolone. Likewise, colonic inflammation related to prolonged exposure to morphine was significantly attenuated by carbenoxolone (25 mg/kg). Carbenoxolone also prevented gut wall disruption and significantly reduced morphine-induced constipation. These findings imply that enteric glia activation is a significant modulator of morphine-related inflammation and constipation.-Bhave, S., Gade, A., Kang, M., Hauser, K. F., Dewey, W. L., Akbarali, H. I. Connexin-purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Aravind Gade
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
46
|
Müller G. Personalized Diagnosis and Therapy. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016:3167-3284. [DOI: 10.1007/978-3-319-05392-9_152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Safety and Efficacy of an Oral Inhibitor of the Purinergic Receptor P2X7 in Adult Patients with Moderately to Severely Active Crohn's Disease: A Randomized Placebo-controlled, Double-blind, Phase IIa Study. Inflamm Bowel Dis 2015. [PMID: 26197451 DOI: 10.1097/mib.0000000000000514] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AZD9056 is a selective orally active inhibitor of the purinergic receptor P2X7, which is a key player in the generation and secretion of several proinflammatory cytokines involved in the pathogenesis of Crohn's disease (CD). The aim of this phase IIa study was to assess the efficacy and safety of AZD9056 for the treatment of moderately to severely active CD. METHODS We conducted a placebo-controlled, multicenter, double-blind phase IIa study in patients with moderately to severely active CD as defined by a CD Activity Index (CDAI) of at least 220. Patients were randomized in a 2:1 mode either to 200 mg of AZD9056 administered orally as a tablet once daily for 28 days or matching placebo. Primary endpoint was the change in CDAI from baseline at day 28, and secondary endpoints included clinical remission (CDAI < 150) and CDAI 70 response and improvement in the quality of life measures Short Form 36 and Inflammatory Bowel Disease Questionnaire. Changes in serum C-reactive protein and fecal calprotectin were assessed. RESULTS In total, 34 patients were enrolled, 24 to AZD9056 and 10 to placebo. The CDAI dropped in AZD9056-treated subjects from a baseline mean of 311 to 242 and from 262 to 239 in placebo-treated subjects (P = 0.049). Remission and response rates were numerically higher with AZD9056 versus placebo, (n = 5, 24% versus n = 1, 11%, P = 0.43 and n = 11, 52% versus n = 2, 22%, P = 0.13, respectively). Marked decrease in disease activity was observed for the CDAI subcomponents, pain and general well-being. Apart from a statistically significant improvement in the Mental Component Score of Short Form 36 for AZD9056 versus placebo (P = 0.017), no other differences in measurements of quality of life could be observed. There was no decrease in concentrations of serum C-reactive protein and fecal calprotectin during treatment. AZD9056 was well-tolerated, and no serious adverse events were reported. CONCLUSIONS Our data suggest that the purinergic receptor P2X7 antagonist AZD9056 has the potential to improve symptoms in patients with moderate-to-severe CD combined with a beneficial risk profile. Although the lack in change of inflammatory biomarkers questions its anti-inflammatory potential, the results obtained in this study rather suggest P2X7 antagonism for the treatment of chronic abdominal pain.
Collapse
|
48
|
Enteric purinergic signaling: Shaping the "brain in the gut". Neuropharmacology 2015; 95:477-8. [PMID: 25981956 DOI: 10.1016/j.neuropharm.2015.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022]
|
49
|
Pathophysiological role of extracellular purinergic mediators in the control of intestinal inflammation. Mediators Inflamm 2015; 2015:427125. [PMID: 25944982 PMCID: PMC4405224 DOI: 10.1155/2015/427125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022] Open
Abstract
Purinergic mediators such as adenosine 5′-triphosphate (ATP) are released into the extracellular compartment from damaged tissues and activated immune cells. They are then recognized by multiple purinergic P2X and P2Y receptors. Release and recognition of extracellular ATP are associated with both the development and the resolution of inflammation and infection. Accumulating evidence has recently suggested the potential of purinergic receptors as novel targets for drugs for treating intestinal disorders, including intestinal inflammation and irritable bowel syndrome. In this review, we highlight recent findings regarding the pathophysiological role of purinergic mediators in the development of intestinal inflammation.
Collapse
|
50
|
Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G. Adenosine signalling in diabetes mellitus--pathophysiology and therapeutic considerations. Nat Rev Endocrinol 2015; 11:228-41. [PMID: 25687993 DOI: 10.1038/nrendo.2015.10] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine is a key extracellular signalling molecule that regulates several aspects of tissue function by activating four G-protein-coupled receptors, A1, A2A, A2B and A1 adenosine receptors. Accumulating evidence highlights a critical role for the adenosine system in the regulation of glucose homeostasis and the pathophysiology of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Although adenosine signalling is known to affect insulin secretion, new data indicate that adenosine signalling also contributes to the regulation of β-cell homeostasis and activity by controlling the proliferation and regeneration of these cells as well as the survival of β cells in inflammatory microenvironments. Furthermore, adenosine is emerging as a major regulator of insulin responsiveness by controlling insulin signalling in adipose tissue, muscle and liver; adenosine also indirectly mediates effects on inflammatory and/or immune cells in these tissues. This Review critically discusses the role of the adenosine-adenosine receptor system in regulating both the onset and progression of T1DM and T2DM, and the potential of pharmacological manipulation of the adenosinergic system as an approach to manage T1DM, T2DM and their associated complications.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Balázs Csóka
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, 185 South Orange Avenue, University Heights, Newark, NJ 07103, USA
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratories of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, 185 South Orange Avenue, University Heights, Newark, NJ 07103, USA
| |
Collapse
|