1
|
Patel Y, Mohamed Elfadil O, Patel S, Ghanem OM, Hurt RT, Mundi MS. Rediscovering Sweetness: The Evolution and Impact of Non-Nutritive and Natural Sweeteners. Curr Nutr Rep 2025; 14:54. [PMID: 40175668 DOI: 10.1007/s13668-025-00646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE OF THE REVIEW The escalating incidence of obesity and metabolic syndromes has catalyzed a critical evaluation of dietary sugars, leading to an increased interest in non-nutritive and natural sweeteners as viable alternatives. This manuscript reviews the historical developments, safety profiles, and health-related consequences of these sweeteners, tracing the evolution from early discoveries such as saccharin and cyclamate to contemporary compounds like aspartame, sucralose, and plant-derived sweeteners. RECENT FINDINGS We explore the physiological mechanisms underpinning sweet taste perception, including the roles of T1R and T2R receptors, and the neurochemical pathways involving dopamine in mediating the rewarding effects of sugar consumption. The review underscores the adverse health impacts associated with excessive intake of added sugars, which correlate positively with conditions such as obesity, type 2 diabetes, and cardiovascular diseases. Attention is given to the contrasting profiles of non-nutritive sweeteners and natural sweetener alternatives, with an emphasis on emerging concerns regarding the safety and long-term ramifications of synthetic sweeteners. The regulatory context surrounding the approval and utilization of sweeteners varies significantly across different jurisdictions, warranting careful consideration. As consumer inclination shifts towards healthier dietary choices, a nuanced understanding of the implications of sweetener selection on public health is imperative.
Collapse
Affiliation(s)
- Yash Patel
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Osman Mohamed Elfadil
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Suhena Patel
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Omar M Ghanem
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ryan T Hurt
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Noge S, Kumamoto K, Matsukawa H, Ando Y, Suto H, Kondo A, Kishino T, Oshima M, Suzuki Y, Okano K. Intravenous D‑allose administration improves blood glucose control by maintaining insulin secretion in diabetic mice with transplanted islets. Exp Ther Med 2025; 29:63. [PMID: 39991726 PMCID: PMC11843210 DOI: 10.3892/etm.2025.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Although pancreatic islet transplantation outcomes have improved, further refinements are required to extend the insulin withdrawal period. The present study examined whether intravenous D-allose administration improves insulin secretion when pancreatic islets are transplanted into type 1 diabetes model mice. Alterations in casual blood glucose levels, intraperitoneal glucose tolerance test (IPGGT) results, the number of apoptotic cells in the engrafted cells, and caspase 3, heme oxygenase 1 and nitric oxide synthase 2 (NOS2) expression in the engrafted cells were examined using the following groups of type 1 diabetic model mice with transplanted pancreatic islets: Mice that received an intravenous injection of D-allose (D-group) and those that received physiological saline as a control (C-group). The mice in the D-group had significantly lower casual blood sugar levels for a longer duration than those in the C-group. Regarding IPGGT, mice treated with D-allose exhibited smaller changes in blood glucose levels compared with untreated mice. Consequently, the incremental area under the curve of glucose in D-allose-treated mice was significantly lower than that in D-allose-untreated mice. No difference was observed in the number of engrafted cells between the groups. NOS2 mRNA expression in the engrafted cells of the D-group tended to be higher than that in the C-group. In conclusion, intravenous administration of D-allose significantly improved hyperglycemia and maintained stable blood glucose levels in type 1 diabetic mice after islet transplantation. Since there was no difference in the number of engrafted cells or apoptotic cells with or without intravenous D-allose administration, D-allose was considered to be effective in maintaining the cellular function of insulin secretion.
Collapse
Affiliation(s)
- Seiji Noge
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Kensuke Kumamoto
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
- Department of Genome Medical Science and Medical Genetics, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Hiroyuki Matsukawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Yasuhisa Ando
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Hironobu Suto
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Akihiro Kondo
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Takayoshi Kishino
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Minoru Oshima
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
- Department of Surgery, Hyogo Prefectural Awaji Medical Center, Sumoto, Hyogo 656-0021, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| |
Collapse
|
3
|
Wang Z, Feng T, Zhao L, Li N, Liu J. Enhancing Stability and Catalytic Activity of d-Allulose 3-Epimerase through Multistrategy Computational Design and Cross-Regional Advantageous Mutations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:635-645. [PMID: 39729028 DOI: 10.1021/acs.jafc.4c07342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
d-Allulose 3-epimerase (DAEase) derived from Clostridium bolteae has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of C. bolteae DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction. The effects of these residues were experimentally validated, followed by structural analysis, which led to the generation of multisite mutants through cross-regional structural combinations. The obtained mutant Cb-R2P-E6P-D137C showed 155.6% of the enzyme activity of the wild type, and the Kcat/Km increased by 1.3-fold, an elevated half-life of 15.7 min, and an elevated Tm value of 1.1 °C. The mutant Cb-R2P-E6P-A83D-D137C had 139.7% of the enzyme activity of the wild type, the Kcat/Km increased by 1.2-fold, with an elevated half-life of 12.3 min, an elevated Tm value of 0.8 °C, and maintained 68% of the enzyme activity at pH 5.0. The findings outlined a feasible approach for the rational design of multiple preset functions of target enzymes simultaneously.
Collapse
Affiliation(s)
- Zhiqi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Tingting Feng
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Longyan Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Ning Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
- Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
4
|
Mizuma S, Hayakawa M, Hira T. Intestinal Distension Induced by Luminal D-allulose Promotes GLP-1 Secretion in Male Rats. Endocrinology 2025; 166:bqaf002. [PMID: 39821080 DOI: 10.1210/endocr/bqaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
The secretion of glucagon-like peptide-1 (GLP-1) is promoted by various nutrients, and glucose and fructose stimulate GLP-1 secretion via intracellular metabolism. D-allulose (allulose), a nonmetabolizable epimer of D-fructose, is also effective in stimulating GLP-1 secretion, although its underlying mechanism remains unclear. We previously observed intestinal distension after the oral administration of allulose, accompanied by increased GLP-1 secretion in rats, possibly because of the low or slow absorbability of allulose. In this study, we sought to determine whether intestinal distension caused by allulose and other factors gives rise to GLP-1 secretion in rats. We found that the oral coadministration of carbonated water enhanced allulose-induced GLP-1 secretion. Polyethylene glycol 1000 and D-mannitol, which are water-soluble and poorly absorbable, stimulated GLP-1 secretion. However, cellulose (insoluble), and tetra ethylene glycol (water-soluble and absorbable) did not. The secretion of GLP-1 increased as the absolute amount of allulose increased, independent of the concentration. The extent of the GLP-1 secretory response was positively correlated with the intestinal content volume and diameter after allulose administration. Furthermore, the intraileal administration of air expanded the intestine-induced secretion of GLP-1. Our results demonstrate that allulose promotes GLP-1 secretion, at least in part, via intestinal distension as a novel GLP-1 secretory mechanism. Physical stimulation may also contribute to postprandial GLP-1 secretion.
Collapse
Affiliation(s)
- Shiori Mizuma
- Laboratory of Nutritional Biochemistry, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masaki Hayakawa
- Laboratory of Nutritional Biochemistry, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tohru Hira
- Laboratory of Nutritional Biochemistry, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
5
|
Tamai N, Kamiya M, Kiriyama N, Goto M, Fukada K, Matsuki H. Effect of Monosaccharides Including Rare Sugars on the Bilayer Phase Behavior of Dimyristoylphosphatidylcholine. MEMBRANES 2024; 14:258. [PMID: 39728708 DOI: 10.3390/membranes14120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
We observed bilayer phase transitions of dimyristoylphosphatidylcholine (DMPC) in aqueous solutions of four kinds of monosaccharides, namely, D-glucose, D-fructose, D-allose and D-psicose, using differential scanning calorimetry (DSC). D-allose (C3-epimer of D-glucose) and D-psicose (C3-epimer of D-fructose) are rare sugars. We performed DSC measurements using two types of sugar-containing sample dispersions of the DMPC vesicles: one is a normal sample dispersion with no concentration asymmetry between the inside and outside of the vesicles and the other is an unusual sample dispersion with a concentration asymmetry. DSC measurements using normal sample dispersions with different sugar concentrations revealed that the temperatures and transition enthalpies of the pre- and main transition of the DMPC bilayer membrane did not significantly depend on the sugar concentration for all monosaccharides. DSC measurements using the unusual sample dispersions demonstrated that the concentration asymmetry caused the splitting of the endothermic peak of the main transition similarly irrespective of the sort of monosaccharides present. From all these DSC results, we conclude that (i) most monosaccharide molecules exist in the bulk water phase, (ii) no specific interaction depending on the molecular structure of each monosaccharide directly occurs between the DMPC and each monosaccharide molecule, and (iii) almost all the effects of the monosaccharides observed in this study are understandable as the general colligative properties of solutions.
Collapse
Affiliation(s)
- Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Mei Kamiya
- Department of Applied Life Science, Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Nono Kiriyama
- Department of Applied Life Science, Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita 761-0795, Japan
| | - Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
6
|
Ayesh H, Suhail S, Ayesh S. Impact of allulose on blood glucose in type 2 diabetes: A meta-analysis of clinical trials. Metabol Open 2024; 24:100329. [PMID: 39583955 PMCID: PMC11585728 DOI: 10.1016/j.metop.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Objective This meta-analysis aims to evaluate the impact of allulose on blood glucose levels in patients with type 2 diabetes mellitus (T2DM). Primary outcomes include postprandial blood glucose, while secondary outcomes are time in range (TIR), time above range (TAR), fasting plasma glucose (FPG), and insulin area under the curve (AUC). Methods A systematic search was conducted across PubMed/MEDLINE, Web of Science, Scopus, and Cochrane Library until May 20, 2024. Randomized controlled trials assessing the effect of allulose on glycemic parameters in T2DM patients were included. Data were synthesized using a random-effects meta-analysis model, and the quality of studies was assessed using the Cochrane Risk of Bias tool. Results Six studies involving 126 participants were included. Allulose significantly reduced glucose AUC (SMD: -0.6662, 95 % CI [-1.1360, -0.1964], p = 0.0054) with moderate heterogeneity (I2 = 58.3 %). Insulin AUC showed a non-significant reduction (SMD: -0.3648, 95 % CI [-0.7783, 0.0488], p = 0.0839). FPG demonstrated a non-significant reduction (MD: -5.8925, 95 % CI [-20.4892, 8.7043], p = 0.4288), while TAR significantly decreased (MD: -8.8204, 95 % CI [-14.4101, -3.2307], p = 0.0020). No significant changes were observed in TIR (MD: 7.1211, 95 % CI [-1.6028, 15.8450], p = 0.1096). Conclusion Allulose demonstrated a significant reduction in postprandial glucose levels and TAR, supporting its role as a dietary intervention for glycemic control in T2DM patients. The findings are robust, though further research is needed to confirm its long-term effects on insulin sensitivity and metabolic health.
Collapse
Affiliation(s)
- Hazem Ayesh
- Deaconess Health System, Evansville, IN, USA
| | | | | |
Collapse
|
7
|
Guo Q, Dong ZX, Luo X, Zheng LJ, Fan LH, Zheng HD. Engineering Escherichia coli for D-allulose biosynthesis from glycerol. J Biotechnol 2024; 394:103-111. [PMID: 39181208 DOI: 10.1016/j.jbiotec.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
D-allulose, a naturally occurring monosaccharide, is present in small quantities in nature. It is considered a valuable low-calorie sweetener due to its low absorption in the digestive tract and zero energy for growth. Most of the recent efforts to produce D-allulose have focused on in vitro enzyme catalysis. However, microbial fermentation is emerging as a promising alternative that offers the advantage of combining enzyme manufacturing and product synthesis within a single bioreactor. Here, a novel approach was proposed for the efficient biosynthesis of D-allulose from glycerol using metabolically engineered Escherichia coli. FbaA, Fbp, AlsE, and A6PP were used to construct the D-allulose synthesis pathway. Subsequently, PfkA, PfkB, and Pgi were disrupted to block the entry of the intermediate fructose-6-phosphate (F6P) into the Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PP) pathways. Additionally, GalE and FryA were inactivated to reduce D-allulose consumption by the cells. Finally, a fed-batch fermentation process was implemented to optimize the performance of the cell factory. As a result, the titer of D-allulose reached 7.02 g/L with a maximum yield of 0.287 g/g.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China
| | - Zhen-Xing Dong
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China
| | - Xuan Luo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| |
Collapse
|
8
|
Xu B, Liu LH, Lai S, Chen J, Wu S, Lei W, Lin H, Zhang Y, Hu Y, He J, Chen X, He Q, Yang M, Wang H, Zhao X, Wang M, Luo H, Ge Q, Gao H, Xia J, Cao Z, Zhang B, Jiang A, Wu YR. Directed Evolution of Escherichia coli Nissle 1917 to Utilize Allulose as Sole Carbon Source. SMALL METHODS 2024; 8:e2301385. [PMID: 38415955 DOI: 10.1002/smtd.202301385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Sugar substitutes are popular due to their akin taste and low calories. However, excessive use of aspartame and erythritol can have varying effects. While D-allulose is presently deemed a secure alternative to sugar, its excessive consumption is not devoid of cellular stress implications. In this study, the evolution of Escherichia coli Nissle 1917 (EcN) is directed to utilize allulose as sole carbon source through a combination of adaptive laboratory evolution (ALE) and fluorescence-activated droplet sorting (FADS) techniques. Employing whole genome sequencing (WGS) and clustered regularly interspaced short palindromic repeats interference (CRISPRi) in conjunction with compensatory expression displayed those genetic mutations in sugar and amino acid metabolic pathways, including glnP, glpF, gmpA, nagE, pgmB, ybaN, etc., increased allulose assimilation. Enzyme-substrate dynamics simulations and deep learning predict enhanced substrate specificity and catalytic efficiency in nagE A247E and pgmB G12R mutants. The findings evince that these mutations hold considerable promise in enhancing allulose uptake and facilitating its conversion into glycolysis, thus signifying the emergence of a novel metabolic pathway for allulose utilization. These revelations bear immense potential for the sustainable utilization of D-allulose in promoting health and well-being.
Collapse
Affiliation(s)
- Bo Xu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, 515063, P. R. China
| | - Shijing Lai
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Jingjing Chen
- Yeasen Biotechnology (Shanghai) Co., Ltd, Shanghai, 200000, P. R. China
| | - Song Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Wei Lei
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Houliang Lin
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Yu Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Yucheng Hu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Jingtao He
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Xipeng Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Qian He
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Haimei Wang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Xuemei Zhao
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Man Wang
- Yeasen Biotechnology (Shanghai) Co., Ltd, Shanghai, 200000, P. R. China
| | - Haodong Luo
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, 515063, P. R. China
| | - Qijun Ge
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Huamei Gao
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Jiaqi Xia
- School of Basic Medicine, Jiamusi University, Jiamusi, 154000, P. R. China
| | - Zhen Cao
- Yeasen Biotechnology (Shanghai) Co., Ltd, Shanghai, 200000, P. R. China
| | - Baoxun Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| |
Collapse
|
9
|
Li Z, Hu Y, Yu C, Fei K, Shen L, Liu Y, Nakanishi H. Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor. Biotechnol J 2024; 19:e2400280. [PMID: 39167550 DOI: 10.1002/biot.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND D-Allulose is one of the most well-known rare sugars widely used in food, cosmetics, and pharmaceutical industries. The most popular method for D-allulose production is the conversion from D-fructose catalyzed by D-allulose 3-epimerase (DAEase). To address the general problem of low catalytic efficiency and poor thermostability of wild-type DAEase, D-allulose biosensor was adopted in this study to develop a convenient and efficient method for high-throughput screening of DAEase variants. RESULTS The catalytic activity and thermostability of DAEase from Caballeronia insecticola were simultaneously improved by semi-rational molecular modification. Compared with the wild-type enzyme, DAEaseS37N/F157Y variant exhibited 14.7% improvement in the catalytic activity and the half-time value (t1/2) at 65°C increased from 1.60 to 27.56 h by 17.23-fold. To our delight, the conversion rate of D-allulose was 33.6% from 500-g L-1 D-fructose in 1 h by Bacillus subtilis WB800 whole cells expressing this DAEase variant. Furthermore, the practicability of cell immobilization was evaluated and more than 80% relative activity of the immobilized cells was maintained from the second to seventh cycle. CONCLUSION All these results indicated that the DAEaseS37N/F157Y variant would be a potential candidate for the industrial production of D-allulose.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yangfan Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Liqun Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yishi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Hammond L, Wurtele M, de Almeida R, Silva C, DeBlasi J, Lu Y, Bellissimo N. The Effect of Allulose on the Attenuation of Glucose Release from Rice in a Static In Vitro Digestion Model. Foods 2024; 13:2308. [PMID: 39123501 PMCID: PMC11312296 DOI: 10.3390/foods13152308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Allulose is a rare sugar that provides <10% of the energy but 70% of the sweetness of sucrose. Allulose has been shown to attenuate glycemic responses to carbohydrate-containing foods in vivo. This study aimed to determine the optimal allulose dose for minimizing in vitro glucose release from rice compared to a rice control and fructose. A triphasic static in vitro digestion method was used to evaluate the in vitro digestion of a rice control compared to the co-digestion of rice with allulose (10 g, 20 g, and 40 g) and fructose (40 g). In vitro glucose release was affected by treatment (p < 0.001), time (p < 0.001), and treatment-by-time interaction (p = 0.002). Allulose (40 g) resulted in a reduction in in vitro glucose release from rice alone and rice digested with allulose (10 g), allulose (20 g), and fructose. The incremental area under the curve (iAUC) for in vitro glucose release was lower after allulose (40 g) (p = 0.005) compared to rice control and allulose (10 g) but did not differ from allulose (20 g) or fructose. This study demonstrates that allulose reduces glucose release from carbohydrates, particularly at higher doses, underscoring its potential as a food ingredient with functional benefits.
Collapse
Affiliation(s)
- Leila Hammond
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Megan Wurtele
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Ricardo de Almeida
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Constança Silva
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Janine DeBlasi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Yan Lu
- Heilongjiang Green Food Science Research Institute, Harbin 150086, China
| | - Nick Bellissimo
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
11
|
Kwakye AO, Fukada K, Ishii T, Ogawa M. Impact of Rare Sugar D-Allulose on Hardening of Starch Gels during Refrigerated Storage. Foods 2024; 13:2183. [PMID: 39063268 PMCID: PMC11275381 DOI: 10.3390/foods13142183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The rare sugar D-allulose (Alu), with ca. 10% calories of sucrose (Suc), is a promising alternative sugar that can be used to improve the quality of starch gels in storage. The effects of Alu (compared to Suc) on the hardening and microstructural and molecular order of amylopectin-rich (glutinous rice (GR) and corn amylopectin (CAP)) and amylose-rich (corn (C)) starch gels were investigated. Alu and Suc both suppressed hardening in C gels, while Alu but not Suc was effective in GR and CAP gels. SEM results showed that Alu-containing GR and CAP maintained a relatively large pore size compared to Suc-containing gels. The deconvolution of FTIR spectra revealed that Alu-containing GR and CAP gels had lower ratios of intermolecular hydrogen bonds and higher ratios of loose hydrogen bonds than Suc-containing gels. For amylose-rich C gels, on the other hand, such tendencies were not observed. The influence of Alu on amylopectin-rich gels could be because Alu reduced the ratio of intermolecular hydrogen bonds, which might be involved in amylopectin recrystallization, and increased that of loose hydrogen bonds. The results suggest that Alu is more effective than Suc in inhibiting the hardening of amylopectin-rich starch gels during refrigerated storage.
Collapse
Affiliation(s)
- Alexandra Obenewaa Kwakye
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki 761-0795, Kagawa, Japan; (A.O.K.); (K.F.); (T.I.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Ehime, Japan
| | - Kazuhiro Fukada
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki 761-0795, Kagawa, Japan; (A.O.K.); (K.F.); (T.I.)
| | - Toya Ishii
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki 761-0795, Kagawa, Japan; (A.O.K.); (K.F.); (T.I.)
| | - Masahiro Ogawa
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki 761-0795, Kagawa, Japan; (A.O.K.); (K.F.); (T.I.)
| |
Collapse
|
12
|
Cayabyab KB, Shin MJ, Heimuli MS, Kim IJ, D’Agostino DP, Johnson RJ, Koutnik AP, Bellissimo N, Diamond DM, Norwitz NG, Arroyo JA, Reynolds PR, Bikman BT. The Metabolic and Endocrine Effects of a 12-Week Allulose-Rich Diet. Nutrients 2024; 16:1821. [PMID: 38931176 PMCID: PMC11207032 DOI: 10.3390/nu16121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The global rise in type 2 diabetes (T2D) and obesity necessitates innovative dietary interventions. This study investigates the effects of allulose, a rare sugar shown to reduce blood glucose, in a rat model of diet-induced obesity and T2D. Over 12 weeks, we hypothesized that allulose supplementation would improve body weight, insulin sensitivity, and glycemic control. Our results showed that allulose mitigated the adverse effects of high-fat, high-sugar diets, including reduced body weight gain and improved insulin resistance. The allulose group exhibited lower food consumption and increased levels of glucagon-like peptide-1 (GLP-1), enhancing glucose regulation and appetite control. Additionally, allulose prevented liver triglyceride accumulation and promoted mitochondrial uncoupling in adipose tissue. These findings suggest that allulose supplementation can improve metabolic health markers, making it a promising dietary component for managing obesity and T2D. Further research is needed to explore the long-term benefits and mechanisms of allulose in metabolic disease prevention and management. This study supports the potential of allulose as a safe and effective intervention for improving metabolic health in the context of dietary excess.
Collapse
Affiliation(s)
- Kevin B. Cayabyab
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Marley J. Shin
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Micah S. Heimuli
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Iris J. Kim
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
| | | | | | - Nick Bellissimo
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5S 1A8, Canada
| | - David M. Diamond
- Department of Psychology, University of South Florida, Tampa, FL 33602, USA
| | | | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
13
|
Ding W, Liu C, Huang C, Zhang X, Chi X, Wang T, Guo Q, Wang C. The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability. Int J Mol Sci 2024; 25:6361. [PMID: 38928068 PMCID: PMC11203923 DOI: 10.3390/ijms25126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As a low-calorie sugar, D-allulose is produced from D-fructose catalyzed by D-allulose 3-epimerase (DAE). Here, to improve the catalytic activity, stability, and processability of DAE, we reported a novel method by forming organic-inorganic hybrid nanoflowers (NF-DAEs) and co-immobilizing them on resins to form composites (Re-NF-DAEs). NF-DAEs were prepared by combining DAE with metal ions (Co2+, Cu2+, Zn2+, Ca2+, Ni2+, Fe2+, and Fe3+) in PBS buffer, and were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. All of the NF-DAEs showed higher catalytic activities than free DAE, and the NF-DAE with Ni2+ (NF-DAE-Ni) reached the highest relative activity of 218%. The NF-DAEs improved the thermal stability of DAE, and the longest half-life reached 228 min for NF-DAE-Co compared with 105 min for the free DAE at 55 °C. To further improve the recycling performance of the NF-DAEs in practical applications, we combined resins and NF-DAEs to form Re-NF-DAEs. Resins and NF-DAEs co-effected the performance of the composites, and ReA (LXTE-606 neutral hydrophobic epoxy-based polypropylene macroreticular resins)-based composites (ReA-NF-DAEs) exhibited outstanding relative activities, thermal stabilities, storage stabilities, and processabilities. The ReA-NF-DAEs were able to be reused to catalyze the conversion from D-fructose to D-allulose, and kept more than 60% of their activities after eight cycles.
Collapse
Affiliation(s)
- Wentao Ding
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chensa Liu
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Chi Huang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Xin Zhang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Xinyi Chi
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Tong Wang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Qingbin Guo
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changlu Wang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
14
|
Irie K, Nakamura-Maruyama E, Ishikawa M, Nakamura T, Miyake K. Effects of d-allose on anti-brain edema effects and reduction of tumor necrosis factor-alpha and interleukin-6 in the water intoxication model. Heliyon 2024; 10:e30700. [PMID: 38770322 PMCID: PMC11103412 DOI: 10.1016/j.heliyon.2024.e30700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Rare sugars, which exist only in very small quantities in nature, have recently attracted attention for their various biological functions in medicine. Among them, d-allose is known to have cytoprotective effects by antioxidant effects. In this study, we investigated whether the antioxidant effects of d-allose reduce brain edema in a water intoxication model of cytotoxic brain edema. Methods: Mice were injected intraperitoneally with distilled water (10 % of body weight) to create a model of brain edema. d-allose was administered orally at 400 mg/kg 30 min before the model was created. Two hours later, the degree of brain edema was measured by the dry-weight method to determine whether d-allose reduced brain edema. As an index of antioxidant effects, we measured changes over time in inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) induced by the water intoxication model, and whether d-allose reduced inflammatory cytokines 4 h after model creation. Results: Administration of d-allose significantly suppressed brain edema formation of the water-intoxication model. And it significantly reduced inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6). These results suggest that the antioxidant effect of d-allose exerts an anti-inflammatory effect and reduces brain edema.
Collapse
Affiliation(s)
- Keiichiro Irie
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| | | | - Mai Ishikawa
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Takehiro Nakamura
- Department of Physiology 2, Kawasaki Medical School, Kurashiki, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| |
Collapse
|
15
|
Li C, Gao X, Li H, Wang T, Lu F, Qin H. Growth-Coupled Evolutionary Pressure Improving Epimerases for D-Allulose Biosynthesis Using a Biosensor-Assisted In Vivo Selection Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306478. [PMID: 38308132 PMCID: PMC11005681 DOI: 10.1002/advs.202306478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Indexed: 02/04/2024]
Abstract
Fast screening strategies that enable high-throughput evaluation and identification of desired variants from diversified enzyme libraries are crucial to tailoring biocatalysts for the synthesis of D-allulose, which is currently limited by the poor catalytic performance of ketose 3-epimerases (KEases). Here, the study designs a minimally equipment-dependent, high-throughput, and growth-coupled in vivo screening platform founded on a redesigned D-allulose-dependent biosensor system. The genetic elements modulating regulator PsiR expression levels undergo systematic optimization to improve the growth-responsive dynamic range of the biosensor, which presents ≈30-fold facilitated growth optical density with a high signal-to-noise ratio (1.52 to 0.05) toward D-allulose concentrations from 0 to 100 mm. Structural analysis and evolutionary conservation analysis of Agrobacterium sp. SUL3 D-allulose 3-epimerase (ADAE) reveal a highly conserved catalytic active site and variable hydrophobic pocket, which together regulate substrate recognition. Structure-guided rational design and directed evolution are implemented using the growth-coupled in vivo screening platform to reprogram ADAE, in which a mutant M42 (P38N/V102A/Y201L/S207N/I251R) is identified with a 6.28-fold enhancement of catalytic activity and significantly improved thermostability with a 2.5-fold increase of the half-life at 60 °C. The research demonstrates that biosensor-assisted growth-coupled evolutionary pressure combined with structure-guided rational design provides a universal route for engineering KEases.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Huimin Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Tong Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Hui‐Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| |
Collapse
|
16
|
Shi F, Gao YS, Han SM, Huang CS, Hou QS, Wen XW, Wang BS, Zhu ZY, Zou L. Allulose mitigates chronic enteritis by reducing mitochondria dysfunction via regulating cathepsin B production. Int Immunopharmacol 2024; 129:111645. [PMID: 38354512 DOI: 10.1016/j.intimp.2024.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Metabolic changes have been linked to the development of inflammatory bowel disease (IBD), which includes colitis. Allulose, an endogenous bioactive monosaccharide, is vital to the synthesis of numerous compounds and metabolic processes within living organisms. Nevertheless, the precise biochemical mechanism by which allulose inhibits colitis remains unknown. Allulose is an essential and intrinsic protector of the intestinal mucosal barrier, as it maintains the integrity of tight junctions in the intestines, according to the current research. It is also important to know that there is a link between the severity of inflammatory bowel disease (IBD) and colorectal cancer (CRC), chemically-induced colitis in rodents, and lower levels of allulose in the blood. Mice with colitis, either caused by dextran sodium sulphate (DSS) or naturally occurring colitis in IL-10-/- mice, had less damage to their intestinal mucosa after being given allulose. Giving allulose to a colitis model starts a chain of reactions because it stops cathepsin B from ejecting and helps lysosomes stick together. This system effectively stops the activity of myosin light chain kinase (MLCK) when intestinal epithelial damage happens. This stops the breakdown of tight junction integrity and the start of mitochondrial dysfunction. To summarise, the study's findings have presented data that supports the advantageous impact of allulose in reducing the advancement of colitis. Its ability to stop the disruption of the intestinal barrier enables this. Therefore, allulose has potential as a medicinal supplement for treating colitis.
Collapse
Affiliation(s)
- Fang Shi
- Department of Abdominal Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Yong-Sheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Shu-Mei Han
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Cheng-Suo Huang
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Qing-Sheng Hou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Xiao-Wen Wen
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Ben-Shi Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Zhen-Yu Zhu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
| |
Collapse
|
17
|
Xie X, Huang D, Li Z. Bioproduction of Rare d-Allulose from d-Glucose via Borate-Assisted Isomerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3036-3044. [PMID: 38299460 DOI: 10.1021/acs.jafc.3c07100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
d-Allulose is a low-calorie functional rare sugar with excellent processing suitability and unique physiological efficacy. d-Allulose is primarily produced from d-fructose through enzymatic epimerization, facing the constraints of a low conversion yield and high production cost. In this study, a double-enzyme cascade system with tetraborate-assisted isomerization was constructed for the efficient production of d-allulose from inexpensive d-glucose. With the introduction of sodium tetraborate (STB), capable of forming complexes with diol-bearing sugars, the conversion yield of d-allulose from d-glucose substantially escalated from the initial 17.37% to 44.97%. Furthermore, d-allulose was found to exhibit the most pronounced binding affinity for STB with an association constant of 1980.51 M-1, notably surpassing that of d-fructose (183.31 M-1) and d-glucose (35.37 M-1). Additionally, the structural analysis of the sugar-STB complexes demonstrated that d-allulose reacted with STB via the cis 2,3-hydroxyl groups in the α-furanose form. Finally, the mechanism underlying STB-assisted isomerization was proposed, emphasizing the preferential formation of an allulose-STB complex that effectively shifts the isomerization equilibrium to the allulose side, thereby resulting in high yield of d-allulose. Such an STB-facilitated isomerization system would also provide a guidance for the cost-effective synthesis of other rare sugars.
Collapse
Affiliation(s)
- Xiaofang Xie
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou, Jiangsu 215123, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou, Jiangsu 215123, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| |
Collapse
|
18
|
Iyoshi A, Makura Y, Tanaka M, Ueda A. Stereocontrolled synthesis of α-d-allulofuranosides using α-selective d-fructofuranosidation reaction. Carbohydr Res 2024; 536:109044. [PMID: 38325068 DOI: 10.1016/j.carres.2024.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Stereocontrolled synthesis of rare sugar derivatives, namely α-d-allulofuranosides, was achieved using d-fructose, one of the most abundant carbohydrates in nature. The following are the key steps of the α-d-allulofuranosides' synthesis. (1) An α-selective glycosidation reaction of 1,3,4,6-tetra-O-benzoylated d-fructofuranosyl donor to obtain α-d-fructofuranosides with 98 %-75 % isolated yields. (2) A regioselective 1,4,6-tri-O-pivaloylation reaction of the tetraol of α-d-fructofuranosides with the C3-hydroxy group remaining intact. (3) The oxidation of the C3-hydroxy group followed by the stereoselective reduction of the C3-carbonyl group. Primary and secondary alcohols and sugars can be used as glycosyl acceptors and aglycones for the following pivaloylation and stereoinversion reactions to obtain α-d-allulofuranosides.
Collapse
Affiliation(s)
- Akihiro Iyoshi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
19
|
Jeong S, Kim G, Ryu K, Park J, Lee S. Effect of different sweeteners on the thermal, rheological, and water mobility properties of soft wheat flour and their application to cookies as an alternative to sugar. Food Chem 2024; 432:137193. [PMID: 37633131 DOI: 10.1016/j.foodchem.2023.137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The effects of different sweeteners on the physicochemical properties of soft wheat flour were investigated mainly in terms of thermal, rheological, and water mobility features, and their feasibilities as an alternative to sugar were evaluated in the cookie system. Kestose significantly reduced the solvent retention capacity of wheat flour, followed by sucrose, fructose, and allulose. Thermal analysis showed that the sucrose and kestose distinctly led to an increase in the gelatinization temperature of wheat flour, which was explained by lower T2 relaxation times. In addition, the pasting viscosities and thermo-mechanical properties of wheat flour containing kestose became lower compared to allulose, and these differences were morphologically confirmed by the real-time microscopic measurements during heating. Furthermore, when the sweeteners were incorporated into the cookie formulations, kestose played a positive role as a sugar replacer in the cookie system by presenting a comparable spread factor, texture, and color to cookies with sucrose.
Collapse
Affiliation(s)
- Sungmin Jeong
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| | - Goeun Kim
- Samyang Corporation Food R&D Center, Seongnam-si, Gyeonggi-do, South Korea
| | - Kyunghun Ryu
- Samyang Corporation Food R&D Center, Seongnam-si, Gyeonggi-do, South Korea
| | - Jiwon Park
- Samyang Corporation Food R&D Center, Seongnam-si, Gyeonggi-do, South Korea
| | - Suyong Lee
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea; Department of Food Science & Biotechnology, Sejong University, Seoul, South Korea.
| |
Collapse
|
20
|
Mahmoodi A, Farinas ET. Applications of Bacillus subtilis Protein Display for Medicine, Catalysis, Environmental Remediation, and Protein Engineering. Microorganisms 2024; 12:97. [PMID: 38257924 PMCID: PMC10821481 DOI: 10.3390/microorganisms12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Bacillus subtilis spores offer several advantages that make them attractive for protein display. For example, protein folding issues associated with unfolded polypeptide chains crossing membranes are circumvented. In addition, they can withstand physical and chemical extremes such as heat, desiccation, radiation, ultraviolet light, and oxidizing agents. As a result, the sequence of the displayed protein can be easily obtained even under harsh screening conditions. Next, immobilized proteins have many economic and technological advantages. They can be easily separated from the reaction and the protein stability is increased in harsh environments. In traditional immobilization methods, proteins are expressed and purified and then they are attached to a matrix. In contrast, immobilization occurs naturally during the sporulation process. They can be easily separated from the reaction and the protein stability is increased in harsh environments. Spores are also amenable to high-throughput screening for protein engineering and optimization. Furthermore, they can be used in a wide array of biotechnological and industrial applications such as vaccines, bioabsorbants to remove toxic chemicals, whole-cell catalysts, bioremediation, and biosensors. Lastly, spores are easily produced in large quantities, have a good safety record, and can be used as additives in foods and drugs.
Collapse
|
21
|
Hashimoto K, Niina T, Kobayashi T, Adachi S, Watanabe Y. Isomerization and epimerization of fructose in phosphate buffer under subcritical water conditions. Carbohydr Res 2024; 535:109003. [PMID: 38056027 DOI: 10.1016/j.carres.2023.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Isomerization and epimerization of fructose to glucose, mannose, allulose, and allose were executed using a subcritical phosphate buffer solution to effectively produce useful monosaccharides. The conversion of the substrate and the yield of products were dependent on the reaction temperature, initial pH, initial substrate concentration, and buffer concentration. A high yield of mannose was achieved under the optimal reaction conditions we identified. We subsequently performed the kinetic analysis based on the proposed reaction network, and evaluated the effects of temperature and pH on the reactions. We then estimated the apparent activation energy values for each reaction.
Collapse
Affiliation(s)
- Kenta Hashimoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Tsugumi Niina
- Department Applied Life Science, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takashi Kobayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shuji Adachi
- Department of Agriculture and Food Technology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Kyoto, 621-8555, Japan
| | - Yoshiyuki Watanabe
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
22
|
Mahmood S, Iqbal MW, Tang X, Zabed HM, Chen Z, Zhang C, Ravikumar Y, Zhao M, Qi X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int J Biol Macromol 2024; 254:127859. [PMID: 37924916 DOI: 10.1016/j.ijbiomac.2023.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Muhammad Waheed Iqbal
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xinrui Tang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Ziwei Chen
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuvaraj Ravikumar
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
23
|
Higaki S, Inai R, Mochizuki S, Yoshihara A, Akimitsu K, Matsuo T. Anti-Obesity Effects of a Combination of Whole-Body Vibration Stimulus and Dietary D-Allulose on Rats Fed a High-Fat Diet. J Nutr Sci Vitaminol (Tokyo) 2024; 70:508-513. [PMID: 39756972 DOI: 10.3177/jnsv.70.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Whole-body vibration (WBV) has gained attention as a light-resistance exercise and can increase energy metabolism. The rare sugar D-allulose has anti-obesity effects that are mediated by the suppression of hepatic lipogenesis. In this study, we examined the anti-obesity effects of a combination of WBV and dietary D-allulose in rats fed a high-fat diet. Thirty-two male Wistar rats (3-wk-old) were randomly assigned to four groups: sedentary control (C), WBV (V), D-allulose (A), and WBV+D-allulose (VA). Rats in Groups A and VA were fed a 5% D-allulose diet, and rats in Groups V and VA were subjected to WBV using a vibrating platform during the 8-wk experimental period. Total abdominal adipose tissue was significantly lower in Groups V, A, and VA than that in Group C, whereas no differences were observed between Groups V, A, and VA. Dietary D-allulose significantly decreased the weights and percentages of carcass and total body fats, whereas the WBV stimulus significant reduced only the total body fat mass. We observed that both long-term WBV stimulation and dietary D-allulose intake inhibited body fat accumulation in rats fed a high-fat diet, which led to obesity; however, no synergistic effect of this combination could be confirmed.
Collapse
Affiliation(s)
| | - Reiko Inai
- Department of Food Science and Nutrition, Nara Women's University
| | | | | | | | | |
Collapse
|
24
|
Kishida K, Iida T, Yamada T, Toyoda Y. Intestinal absorption of D-fructose isomers, D-allulose, D-sorbose and D-tagatose, via glucose transporter type 5 (GLUT5) but not sodium-dependent glucose cotransporter 1 (SGLT1) in rats. Br J Nutr 2023; 130:1852-1858. [PMID: 38713062 DOI: 10.1017/s0007114523001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
D-allulose, D-sorbose and D-tagatose are D-fructose isomers that are called rare sugars. These rare sugars have been studied intensively in terms of biological production and food application as well as physiological effects. There are limited papers with regard to the transporters mediating the intestinal absorption of these rare sugars. We examined whether these rare sugars are absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) as well as via GLUT type 5 (GLUT5) using rats. High-fructose diet fed rats, which express more intestinal GLUT5, exhibited significantly higher peripheral concentrations, Cmax and AUC0–180 min when D-allulose, D-sorbose and D-tagatose were orally administrated. KGA-2727, a selective SGLT1 inhibitor, did not affect the peripheral and portal vein concentrations and pharmacokinetic parameters of these rare sugars. The results suggest that D-allulose, D-sorbose and D-tagatose are likely transported via GLUT5 but not SGLT1 in rat small intestine.
Collapse
Affiliation(s)
- Kunihiro Kishida
- Department of Science and Technology on Food Safety, Kindai University, 930 Nishimitani, Kinokawa, Wakayama649-6493, Japan
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Company, Limited, 5-3 Kita-Itami, Itami, Hyogo664-8508, Japan
| | - Takako Yamada
- Research and Development, Matsutani Chemical Industry Company, Limited, 5-3 Kita-Itami, Itami, Hyogo664-8508, Japan
| | - Yukiyasu Toyoda
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi468-8503, Japan
| |
Collapse
|
25
|
Shintani T, Shintani H, Sato M, Ashida H. Calorie restriction mimetic drugs could favorably influence gut microbiota leading to lifespan extension. GeroScience 2023; 45:3475-3490. [PMID: 37389698 PMCID: PMC10643761 DOI: 10.1007/s11357-023-00851-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Calorie restriction (CR) can prolong human lifespan, but enforcing long-term CR is difficult. Thus, a drug that reproduces the effects of CR without CR is required. More than 10 drugs have been listed as CR mimetics (CRM), and some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, whereas the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Intriguingly, recent reports have revealed the beneficial effects of CRMs on the body such as improving the host body condition via intestinal bacteria and their metabolites. This beneficial effect of gut microbiota may lead to lifespan extension. Thus, CRMs may have a dual effect on longevity. However, no reports have collectively discussed them as CRMs; hence, our knowledge about CRM and its physiological effects on the host remains fragmentary. This study is the first to present and collectively discuss the accumulative evidence of CRMs improving the gut environments for healthy lifespan extension, after enumerating the latest scientific findings related to the gut microbiome and CR. The conclusion drawn from this discussion is that CRM may partially extend the lifespan through its effect on the gut microbiota. CRMs increase beneficial bacteria abundance by decreasing harmful bacteria rather than increasing the diversity of the microbiome. Thus, the effect of CRMs on the gut could be different from that of conventional prebiotics and seemed similar to that of next-generation prebiotics.
Collapse
Affiliation(s)
- Tomoya Shintani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada, Kobe, Hyogo, 657-8501, Japan.
- The Japanese Clinical Nutrition Association, 2-16-28 Ohashi, Meguro, Tokyo, 153-0044, Japan.
| | - Hideya Shintani
- Department of Internal Medicine, Towa Hospital, 4-13-15 Tanabe, Higashisumiyoshi, Osaka, 546-0031, Japan
- Department of Internal Medicine, Osaka Saiseikai Izuo Hospital, 3-4-5 Kitamura, Taisho, Osaka, 551-0032, Japan
| | - Masashi Sato
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0701, Japan
| | - Hisashi Ashida
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| |
Collapse
|
26
|
Jin L, Wan Q, Ouyang S, Zheng L, Cai X, Zhang X, Shen J, Jia D, Liu Z, Zheng Y. Isomerase and epimerase: overview and practical application in production of functional sugars. Crit Rev Food Sci Nutr 2023; 64:13133-13148. [PMID: 37807720 DOI: 10.1080/10408398.2023.2260888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The biosynthesis of functional sugars has gained significant attention due to their potential health benefits and increasing demand in the food industry. Enzymatic synthesis has emerged as a promising approach, offering high catalytic efficiency, chemoselectivity, and stereoselectivity. However, challenges such as poor thermostability, low catalytic efficiency, and food safety concerns have limited the commercial production of functional sugars. Protein engineering, including directed evolution and rational design, has shown promise in overcoming these barriers and improving biocatalysts for large-scale production. Furthermore, enzyme immobilization has proven effective in reducing costs and facilitating the production of functional sugars. To ensure food safety, the use of food-grade expression systems has been explored. However, downstream technologies, including separation, purification, and crystallization, still pose challenges in terms of efficiency and cost-effectiveness. Addressing these challenges is crucial to optimize the overall production process. Despite the obstacles, the future outlook for functional sugars is promising, driven by increasing awareness of their health benefits and continuous technological advancements. With further research and technological breakthroughs, industrial-scale production of functional sugars through biosynthesis will become a reality, leading to their widespread incorporation in various industries and products.
Collapse
Affiliation(s)
- Liqun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qing Wan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuiping Ouyang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lin Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaojian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jidong Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Dongxu Jia
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
27
|
Gao Y, Li F, Wang Y, Chen Z, Li Z. An artificial multienzyme cascade for the whole-cell synthesis of rare ketoses from glycerol. Biotechnol Lett 2023; 45:1355-1364. [PMID: 37486554 DOI: 10.1007/s10529-023-03415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE In our previous study, we constructed a one-pot multi-enzyme system for rare ketoses synthesis based on L-rhamnulose-1-phosphate aldolase (RhaD) from accessible glycerol in vitro. To eliminate tedious purification of enzymes, a facile Escherichia coli whole-cell cascade platform was established in this study. METHODS To enhance the conversion rate, the reaction conditions, substrate concentrations and expressions of related enzymes were extensively optimized. RESULTS The biosynthetic route for the cascade synthesis of rare ketoses in whole cells was successfully constructed and three rare ketoses including D-allulose, D-sorbose and L-fructose were produced using glycerol and D/L-glyceraldehyde (GA). Under optimized conditions, the conversion rates of rare ketoses were 85.0% and 93.0% using D-GA and L-GA as the receptor, respectively. Furthermore, alditol oxidase (AldO) was introduced to the whole-cell system to generate D-GA from glycerol, and the total production yield of D-sorbose and D-allulose was 8.2 g l-1 only from the sole carbon source glycerol. CONCLUSION This study demonstrates a feasible and cost-efficient method for rare sugars synthesis and can also be applied to the green synthesis of other value-added chemicals from glycerol.
Collapse
Affiliation(s)
- Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Fen Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yulu Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
28
|
Preechasuk L, Luksameejaroenchai C, Tangjittipokin W, Kunavisarut T. Short-term effects of allulose consumption on glucose homeostasis, metabolic parameters, incretin levels, and inflammatory markers in patients with type 2 diabetes: a double-blind, randomized, controlled crossover clinical trial. Eur J Nutr 2023; 62:2939-2948. [PMID: 37432472 DOI: 10.1007/s00394-023-03205-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Allulose is a rare monosaccharide with almost zero calories. There is no study of short-term allulose consumption in patients with type 2 diabetes (T2D). Thus, we aimed to study the effect of allulose consumption for 12 weeks on glucose homeostasis, lipid profile, body composition, incretin levels, and inflammatory markers in patients with T2D. METHODS A double-blind, randomized, controlled crossover study was conducted on sixteen patients with T2D. Patients were randomly assigned to allulose 7 g twice daily or aspartame 0.03 g twice daily for 12 weeks. After a 2-week washout, patients were crossed over to the other sweetener for an additional 12 weeks. Oral glucose tolerance tests, laboratory measurements, and dual-energy X-ray absorptiometry were conducted before and after each phase. RESULTS This study revealed that short-term allulose consumption exerted no significant effect on glucose homeostasis, incretin levels, or body composition but significantly increased MCP-1 levels (259 ± 101 pg/ml at baseline vs. 297 ± 108 pg/mL after 12 weeks of allulose, p = 0.002). High-density lipoprotein cholesterol (HDL-C) significantly decreased from 51 ± 13 mg/dl at baseline to 41 ± 12 mg/dL after 12 weeks of allulose, p < 0.001. CONCLUSION Twelve weeks of allulose consumption had a neutral effect on glucose homeostasis, body composition, and incretin levels. Additionally, it decreased HDL-C levels and increased MCP-1 levels. TRIAL REGISTRATION This trial was retrospectively registered on the Thai Clinical Trials Registry (TCTR20220516006) on December 5, 2022.
Collapse
Affiliation(s)
- Lukana Preechasuk
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanoknan Luksameejaroenchai
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tada Kunavisarut
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
29
|
Bae HR, Shin SK, Han Y, Yoo JH, Kim S, Young HA, Kwon EY. D-Allulose Ameliorates Dysregulated Macrophage Function and Mitochondrial NADH Homeostasis, Mitigating Obesity-Induced Insulin Resistance. Nutrients 2023; 15:4218. [PMID: 37836502 PMCID: PMC10574141 DOI: 10.3390/nu15194218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
D-allulose, a rare sugar, has been proposed to have potential benefits in addressing metabolic disorders such as obesity and type 2 diabetes (T2D). However, the precise mechanisms underlying these effects remain poorly understood. We aimed to elucidate the mechanisms by which D-allulose influences obesity-induced insulin resistance. We conducted gene set enrichment analysis on the liver and white adipose tissue of mice exposed to a high-fat diet (HFD) along with the white adipose tissue of individuals with obesity. Our study revealed that D-allulose effectively suppressed IFN-γ, restored chemokine signaling, and enhanced macrophage function in the livers of HFD-fed mice. This implies that D-allulose curtails liver inflammation, alleviating insulin resistance and subsequently impacting adipose tissue. Furthermore, D-allulose supplementation improved mitochondrial NADH homeostasis and translation in both the liver and white adipose tissue of HFD-fed mice. Notably, we observed decreased NADH homeostasis and mitochondrial translation in the omental tissue of insulin-resistant obese subjects compared to their insulin-sensitive counterparts. Taken together, these results suggest that supplementation with allulose improves obesity-induced insulin resistance by mitigating the disruptions in macrophage and mitochondrial function. Furthermore, our data reinforce the crucial role that mitochondrial energy expenditure plays in the development of insulin resistance triggered by obesity.
Collapse
Affiliation(s)
- Heekyong R. Bae
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Hyeon Yoo
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suntae Kim
- Omixplus, LLC., Gaithersburg, MD 20850, USA
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
30
|
Tan JH, Chen A, Bi J, Lim YH, Wong FT, Ow DSW. The Engineering, Expression, and Immobilization of Epimerases for D-allulose Production. Int J Mol Sci 2023; 24:12703. [PMID: 37628886 PMCID: PMC10454905 DOI: 10.3390/ijms241612703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The rare sugar D-allulose is a potential replacement for sucrose with a wide range of health benefits. Conventional production involves the employment of the Izumoring strategy, which utilises D-allulose 3-epimerase (DAEase) or D-psicose 3-epimerase (DPEase) to convert D-fructose into D-allulose. Additionally, the process can also utilise D-tagatose 3-epimerase (DTEase). However, the process is not efficient due to the poor thermotolerance of the enzymes and low conversion rates between the sugars. This review describes three newly identified DAEases that possess desirable properties for the industrial-scale manufacturing of D-allulose. Other methods used to enhance process efficiency include the engineering of DAEases for improved thermotolerance or acid resistance, the utilization of Bacillus subtilis for the biosynthesis of D-allulose, and the immobilization of DAEases to enhance its activity, half-life, and stability. All these research advancements improve the yield of D-allulose, hence closing the gap between the small-scale production and industrial-scale manufacturing of D-allulose.
Collapse
Affiliation(s)
- Jin Hao Tan
- Microbial Cell Bioprocessing, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore;
| | - Anqi Chen
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138665, Singapore; (A.C.); (F.T.W.)
| | - Jiawu Bi
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Yee Hwee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138665, Singapore; (A.C.); (F.T.W.)
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Fong Tian Wong
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138665, Singapore; (A.C.); (F.T.W.)
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
| | - Dave Siak-Wei Ow
- Microbial Cell Bioprocessing, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore;
| |
Collapse
|
31
|
Tani Y, Tokuda M, Nishimoto N, Yokoi H, Izumori K. Allulose for the attenuation of postprandial blood glucose levels in healthy humans: A systematic review and meta-analysis. PLoS One 2023; 18:e0281150. [PMID: 37023000 PMCID: PMC10079081 DOI: 10.1371/journal.pone.0281150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/13/2023] [Indexed: 04/07/2023] Open
Abstract
D-Allulose is a rare sugar that exists in nature. It is a food ingredient with nearly zero calories (<0.4 kcal/g) and has many physiological functionalities such as attenuation of postprandial blood glucose levels, attenuation of postprandial fat mass accumulation, and anti-aging property. This study focused on the postprandial blood glucose changes in healthy humans by a systematic review and meta-analysis. They were chosen because of its importance to a prevention from diabetes. The study objective was to examine acute blood glucose concentrations of healthy humans after the meal with and without allulose. The study collected all D-allulose related studies from various databases. A forest plot of the comparison between an allulose intake group and the control group showed both 5g and 10g intake groups have the significantly smaller area under the curve of postprandial blood glucose levels. It means that D-Allulose attenuates postprandial blood glucose concentrations in healthy humans. As the result, D-Allulose is a valuable blood glucose management tool for healthy humans and diabetes patients. Allulose Diet enables reduction of sucrose intake through Sugar Reformulation in the future diet.
Collapse
Affiliation(s)
- Yuma Tani
- Matsutani Chemical Industry Co. Ltd., Itami-city, Japan
| | | | - Naoki Nishimoto
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo-city, Japan
| | - Hideto Yokoi
- Department of Medical Informatics, Kagawa University Hospital, Kita-gun, Japan
| | - Ken Izumori
- Faculty of Agriculture, Kagawa University, Kita-gun, Japan
| |
Collapse
|
32
|
Tak J, Bok M, Rho H, Park JH, Lim Y, Chon S, Lim H. Effect of diabetes-specific oral nutritional supplements with allulose on weight and glycemic profiles in overweight or obese type 2 diabetic patients. Nutr Res Pract 2023; 17:241-256. [PMID: 37009137 PMCID: PMC10042715 DOI: 10.4162/nrp.2023.17.2.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND/OBJECTIVES Diabetes-specific oral nutritional supplements (ONS) have anti-hyperglycemic effects, while D-allulose exerts anti-diabetic and anti-obesity effects. In this study, we investigated the efficacy and safety of diabetes-specific ONS, including allulose, on glycemic and weight changes in overweight or obese patients with type 2 diabetes mellitus (T2DM). SUBJECTS/METHODS A single-arm, historical-control pilot clinical trial was conducted on 26 overweight or obese patients with T2DM (age range: 30-70 yrs). The participants were administered 2 packs of diabetes-specific ONS, including allulose (200 kcal/200 mL), every morning for 8 weeks. The glycemic profiles, obesity-related parameters, and lipid profiles were assessed to evaluate the efficacy of ONS. RESULTS After 8 weeks, fasting blood glucose (FBG) level significantly decreased from 139.00 ± 29.66 mg/dL to 126.08 ± 32.00 mg/dL (P = 0.007) and glycosylated hemoglobin (HbA1c) improved (7.23 ± 0.82% vs. 7.03 ± 0.69%, P = 0.041). Moreover, the fasting insulin (δ: -1.81 ± 3.61 μU/mL, P = 0.017) and homeostasis model assessment for insulin resistance (HOMA-IR) (δ: -0.87 ± 1.57, P = 0.009) levels decreased at 8 weeks, and body weight significantly decreased from 67.20 ± 8.29 kg to 66.43 ± 8.12 kg (P = 0.008). Body mass index (BMI) also decreased in accordance with this (from 25.59 ± 1.82 kg/m2 to 25.30 ± 1.86 kg/m2, P = 0.009), as did waist circumference (δ: -1.31 ± 2.04 cm, P = 0.003). CONCLUSIONS The consumption of diabetes-specific ONS with allulose in overweight or obese patients with T2DM improved glycemic profiles, such as FBG, HbA1c, and HOMA-IR, and reduced body weight and BMI.
Collapse
Affiliation(s)
- Jihye Tak
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Minkyung Bok
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Hyunkyung Rho
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Ju Hyun Park
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
33
|
Wulansari S, Heng S, Ketbot P, Baramee S, Waeonukul R, Pason P, Ratanakhanokchai K, Uke A, Kosugi A, Tachaapaikoon C. A Novel D-Psicose 3-Epimerase from Halophilic, Anaerobic Iocasia fonsfrigidae and Its Application in Coconut Water. Int J Mol Sci 2023; 24:6394. [PMID: 37047367 PMCID: PMC10094494 DOI: 10.3390/ijms24076394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
D-Psicose is a rare, low-calorie sugar that is found in limited quantities in national products. Recently, D-psicose has gained considerable attention due to its potential applications in the food, nutraceutical, and pharmaceutical industries. In this study, a novel D-psicose 3-epimerase (a group of ketose 3-epimerase) from an extremely halophilic, anaerobic bacterium, Iocasia fonsfrigidae strain SP3-1 (IfDPEase), was cloned, expressed in Escherichia coli, and characterized. Unlike other ketose 3-epimerase members, IfDPEase shows reversible epimerization only for D-fructose and D-psicose at the C-3 position but not for D-tagatose, most likely because the Gly218 and Cys6 at the substrate-binding subsites of IfDPEase, which are involved in interactions at the O-1 and O-6 positions of D-fructose, respectively, differ from those of other 3-epimerases. Under optimum conditions (5 µM IfDPEase, 1 mM Mn2+, 50 °C, and pH 7.5), 36.1% of D-psicose was obtained from 10 mg/mL D-fructose. The IfDPEase is highly active against D-fructose under NaCl concentrations of up to 500 mM, possibly due to the excessive negative charges of acidic amino acid residues (aspartic and glutamic acids), which are localized on the surface of the halophilic enzyme. These negative charges may protect the enzyme from Na+ ions from the environment and result in the lowest pI value compared to those of other 3-epimerase members. Moreover, without adjusting any ingredients, IfDPEase could improve coconut water quality by converting D-fructose into D-psicose with a yield of 26.8%. Therefore, IfDPEase is an attractive alternative to enhancing the quality of fructose-containing foods.
Collapse
Affiliation(s)
- Shinta Wulansari
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Sobroney Heng
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Prattana Ketbot
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Sirilak Baramee
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Patthra Pason
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Ayaka Uke
- Biological Resources and Post-Harvest Division, International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba 305-8686, Japan
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba 305-8686, Japan
| | - Chakrit Tachaapaikoon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
34
|
van Laar A, Grootaert C, Rajkovic A, Desmet T, Beerens K, Van Camp J. Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut-Liver-Muscle Axis In Vitro. Nutrients 2023; 15:1593. [PMID: 37049441 PMCID: PMC10096767 DOI: 10.3390/nu15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Rare sugars have recently attracted attention as potential sugar replacers. Understanding the biochemical and biological behavior of these sugars is of importance in (novel) food formulations and prevention of type 2 diabetes. In this study, we investigated whether rare sugars may positively affect intestinal and liver metabolism, as well as muscle insulin sensitivity, compared to conventional sugars. Rare disaccharide digestibility, hepatic metabolism of monosaccharides (respirometry) and the effects of sugars on skeletal muscle insulin sensitivity (impaired glucose uptake) were investigated in, respectively, Caco-2, HepG2 and L6 cells or a triple coculture model with these cells. Glucose and fructose, but not l-arabinose, acutely increased extracellular acidification rate (ECAR) responses in HepG2 cells and impaired glucose uptake in L6 cells following a 24 h exposure at 28 mM. Cellular bioenergetics and digestion experiments with Caco-2 cells indicate that especially trehalose (α1-1α), D-Glc-α1,2-D-Gal, D-Glc-α1,2-D-Rib and D-Glc-α1,3-L-Ara experience delayed digestion and reduced cellular impact compared to maltose (α1-4), without differences on insulin-stimulated glucose uptake in a short-term setup with a Caco-2/HepG2/L6 triple coculture. These results suggest a potential for l-arabinose and specific rare disaccharides to improve metabolic health; however, additional in vivo research with longer sugar exposures should confirm their beneficial impact on insulin sensitivity in humans.
Collapse
Affiliation(s)
- Amar van Laar
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Grootaert
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - John Van Camp
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
35
|
Xu HL, Zhou X, Chen S, Xu S, Li Z, Nakanishi H, Gao XD. Rare sugar L-sorbose exerts antitumor activity by impairing glucose metabolism. Commun Biol 2023; 6:259. [PMID: 36906698 PMCID: PMC10008635 DOI: 10.1038/s42003-023-04638-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Rare sugars are monosaccharides with low natural abundance. They are structural isomers of dietary sugars, but hardly be metabolized. Here, we report that rare sugar L-sorbose induces apoptosis in various cancer cells. As a C-3 epimer of D-fructose, L-sorbose is internalized via the transporter GLUT5 and phosphorylated by ketohexokinase (KHK) to produce L-sorbose-1-phosphate (S-1-P). Cellular S-1-P inactivates the glycolytic enzyme hexokinase resulting in attenuated glycolysis. Consequently, mitochondrial function is impaired and reactive oxygen species are produced. Moreover, L-sorbose downregulates the transcription of KHK-A, a splicing variant of KHK. Since KHK-A is a positive inducer of antioxidation genes, the antioxidant defense mechanism in cancer cells can be attenuated by L-sorbose-treatment. Thus, L-sorbose performs multiple anticancer activities to induce cell apoptosis. In mouse xenograft models, L-sorbose enhances the effect of tumor chemotherapy in combination with other anticancer drugs. These results demonstrate L-sorbose as an attractive therapeutic reagent for cancer treatment.
Collapse
Affiliation(s)
- Hui-Lin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shuai Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Si Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
36
|
Li J, Dai Q, Zhu Y, Xu W, Zhang W, Chen Y, Mu W. Low-calorie bulk sweeteners: Recent advances in physical benefits, applications, and bioproduction. Crit Rev Food Sci Nutr 2023; 64:6581-6595. [PMID: 36705477 DOI: 10.1080/10408398.2023.2171362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
At present, with the continuous improvement of living standards, people are paying increasing attention to dietary nutrition and health. Low sugar and low energy consumption have become important dietary trends. In terms of sugar control, more and more countries have implemented sugar taxes in recent years. Hence, as the substitute for sugar, low-calorie sweeteners have been widely used in beverage, bakery, and confectionary industries. In general, low-calorie sweeteners consist of high-intensity and low-calorie bulk sweeteners (some rare sugars and sugar alcohols). In this review, recent advances and challenges in low-calorie bulk sweeteners are explored. Bioproduction of low-calorie bulk sweeteners has become the focus of many researches, because it has the potential to replace the current industrial scale production through chemical synthesis. A comprehensive summary of the physicochemical properties, physiological functions, applications, bioproduction, and regulation of typical low-calorie bulk sweeteners, such as D-allulose, D-tagatose, D-mannitol, sorbitol, and erythritol, is provided.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
37
|
Li Z, Feng L, Chen Z, Hu Y, Fei K, Xu H, Gao XD. Efficient enzymatic synthesis of d-allulose using a novel d-allulose-3-epimerase from Caballeronia insecticola. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:339-348. [PMID: 35871484 DOI: 10.1002/jsfa.12147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rare sugars have become promising 'sugar alternatives' because of their low calories and unique physiological functions. Among the family of rare sugars, d-allulose is one of the sugars attracting interest. Ketose 3-epimerases (KEase), including d-tagatose 3-epimerase (DTEase) and d-allulose 3-epimerase (DAEase), are mainly used for d-allulose production. RESULTS In this study, a putative xylose isomerase from Caballeronia insecticola was characterized and identified as a novel DAEase. Caballeronia insecticola DAEase displayed prominent enzymatic properties, and 150 g L-1 d-allulose was produced from 500 g L-1 d-fructose in 45 min with a conversion rate of 30% and high productivity of 200 g L-1 h-1 . Furthermore, DAEase was employed in a phosphorylation-dephosphorylation cascade reaction, which significantly increased the conversion rate of d-allulose. Under optimized conditions, the conversion rate of d-allulose was approximately 100% when the concentration of d-fructose was 50 mmol L-1 . CONCLUSION This research described a very beneficial and facile approach for d-allulose production based on C. insecticola DAEase. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Linxue Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yangfan Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Huilin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Sugar reduction in beverages: Current trends and new perspectives from sensory and health viewpoints. Food Res Int 2022; 162:112076. [DOI: 10.1016/j.foodres.2022.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/08/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022]
|
39
|
Efficient Utilization of Fruit Peels for the Bioproduction of D-Allulose and D-Mannitol. Foods 2022; 11:foods11223613. [PMID: 36429205 PMCID: PMC9689084 DOI: 10.3390/foods11223613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, the demand for low-calorie sweeteners has grown dramatically because consumers are more mindful of their health than they used to be. Therefore, bioproduction of low-calorie sweeteners from low-cost raw materials becomes a hot spot. In this study, a two-stage strategy was established to efficiently utilize D-fructose from fruit and vegetable wastes. Firstly, ketose 3-epimerase was used to produce D-allulose from D-fructose of pear peels. Secondly, the residual D-fructose was converted to D-mannitol by the engineered strain co-expression of D-mannitol 2-dehydrogenase and formate dehydrogenase. Approximately 29.4% D-fructose of pear peels was converted to D-allulose. Subsequently, under optimal conditions (35 °C, pH 6.5, 1 mM Mn2+, 2 g/L dry cells), almost all the residual D-fructose was transformed into D-mannitol with a 93.5% conversion rate. Eventually, from 1 kg fresh pear peel, it could produce 10.8 g of D-allulose and 24.6 g of D-mannitol. This bioprocess strategy provides a vital method to biosynthesize high-value functional sugars from low-cost biomass.
Collapse
|
40
|
Liu Z, Wang Y, Liu S, Guo X, Zhao T, Wu J, Chen S. Boosting the Heterologous Expression of d-Allulose 3-Epimerase in Bacillus subtilis through Protein Engineering and Catabolite-Responsive Element Box Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12128-12134. [PMID: 36099523 DOI: 10.1021/acs.jafc.2c04800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a natural sweetener with low calories and various physiological activities, d-allulose has drawn worldwide attention. Currently, d-allulose 3-epimerase (DAEase) is mainly used to catalyze the epimerization of d-fructose to d-allulose. Therefore, it is quite necessary to enhance the food-grade expression of DAEase to meet the surging market demand for d-allulose. In this study, initially, the promising variant H207L/D281G/C289R of Clostridium cellulolyticum H10 DAEase (CcDAEase) was generated by protein engineering, the specific activity and the T1/2 of which were 2.24-fold and 13.45-fold those of the CcDAEase wild type at 60 °C, respectively. After that, PamyE was determined as the optimal promoter for the recombinant expression of CcDAEase in Bacillus subtilis, and catabolite-responsive element (CRE) box engineering was further performed to eliminate the carbon catabolite repression (CCR) effect. Lastly, high-density fermentation was carried out and the final activity peaked at 4971.5 U mL-1, which is the highest expression level and could effectively promote the industrial production of DAEase. This research provides a theoretical basis and technical support for the molecular modification of DAEase and its efficient fermentation preparation.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yifan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Shuhan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Xuehong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Tianlong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
41
|
Higaki S, Inai R, Matsuo T. Effects of Dietary Allitol on Body Fat Accumulation in Rats. J Nutr Sci Vitaminol (Tokyo) 2022; 68:348-352. [PMID: 36047107 DOI: 10.3177/jnsv.68.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allitol is a rare sugar alcohol obtained by reducing d-allulose (d-psicose). However, information on the effects of long-term dietary allitol intake is limited. This study aimed to investigate the effect of allitol supplementation, as a sugar substitute, on body fat accumulation in rats compared with sucrose, rare sugar d-allulose, or erythritol. Thirty-two male Wistar rats (3 wk old) were fed experimental diets including 5% sucrose, allitol, erythritol, or d-allulose for 8 wk ad libitum. Weight gain, food intake, and food efficiency did not differ among the groups. The total body fat mass and percentage, and intra-abdominal adipose tissue weights were significantly lower in rats fed with the allitol diet than in those fed with the sucrose diet. These body fat indicators tended to be lower in rats fed with the erythritol and d-allulose diets than in those fed with the sucrose diet, but there was no significant difference. The serum glucose-lowering effect obtained in rats fed with the d-allulose diet did not appear in rats fed with the allitol diet. These results suggest that the anti-obesity effect of allitol may be equal to or greater than that of d-allulose.
Collapse
Affiliation(s)
| | - Reiko Inai
- Faculty of Nutrition, University of Kochi
| | | |
Collapse
|
42
|
Matsuo T, Yamada T, Iida T, Mochizuki S, Yoshihara A, Akimitsu K. Dietary D-Allulose Reduces Body Fat Accumulation in Rats with and without Medium-Chain Triacylglycerol Supplementation. J Oleo Sci 2022; 71:1387-1395. [PMID: 35965091 DOI: 10.5650/jos.ess22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
d-Allulose (d-psicose) is a rare sugar, that contains no calories and exhibits 70% relative sweetness when compared with sucrose. Recently, several studies have demonstrated the anti-obesity effect of d-allulose, mediated by suppressing lipogenesis and increasing energy expenditure. Medium-chain triacylglycerols (MCTs) are lipids formed by 3 medium-chain fatty acids (MCFAs) with 6-12 carbon atoms attached to glycerol. MCTs have been expensively studied to reduce body fat accumulation in rats and humans. The anti-obesity effect of MCTs was not confirmed depending on the nutritional conditions because MCT might promote lipogenesis. In the present study, we examined the effects of simultaneous intake of diets containing low (5%) or high (13%) MCTs, with or without 5% d-allulose, on body fat accumulation in rats (Experiment 1). Furthermore, we assessed the interaction between 5% MCT and 5% d-allulose in the diet (Experiment 2). In Experiment 1, intra-abdominal adipose tissue weight was significantly greater in the high MCT diet groups than in the commercial diet (control) group. d-Allulose significantly decreased weights of intra-abdominal adipose tissue, carcass fat, and total body fat, however, these weights increased as the amount of MCT added increased. In Experiment 2, d-allulose significantly decreased almost all body fat indicators, and these values were not influenced by the presence or absence of MCT addition. The anti-obesity effect of d-allulose was observed with or without dietary MCT, and no synergistic effect was detected between d-allulose and MCT. These results suggest that d-allulose is a beneficial food ingredient in diets aimed at reducing body fat accumulation. However, further research is required on the synergistic effects between d-allulose and MCTs.
Collapse
Affiliation(s)
| | - Takako Yamada
- Research and Development, Matsutani Chemical Industry Co., Ltd
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co., Ltd
| | | | | | | |
Collapse
|
43
|
Tseng WC, Chen YC, Chang HC, Lin CJ, Fang TY. Altering the substrate specificity of recombinant l-rhamnose isomerase from Thermoanaerobacterium saccharolyticum NTOU1 to favor d-allose production. J Biotechnol 2022; 358:9-16. [PMID: 36030895 DOI: 10.1016/j.jbiotec.2022.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
l-Rhamnose isomerase (l-RhI) catalyzes rare sugar isomerization between aldoses and ketoses. In an attempt to alter the substrate specificity of Thermoanaerobacterium saccharolyticus NTOU1 l-RhI (TsRhI), residue Ile102 was changed to other polar or charged amino acid residues by site-directed mutagenesis. The results of activity-screening using different substrates indicate that I102N, I102Q, and I102R TsRhIs can increase the preference against d-allose in comparison with the wild-type enzyme. The catalytic efficiencies of the purified I102N, I102Q, and I102R TsRhIs against d-allose are 148 %, 277 %, and 191 %, respectively, of that of wild-type enzyme, while those against l-rhamnose are 100 %, 167 % and 87 %, respectively. Mutant I102N, I102Q, and I102R TsRhIs were noted to have the altered substrate specificity, and I102Q TsRhI has the highest catalytic efficiency against d-allose presumably through the formation of an additional hydrogen bond with d-allose. The purified wild-type and mutant TsRhIs were further used to produce d-allose from 100 g/L d-fructose in the presence of d-allulose 3-epimerase, and the yields can reach as high as 22 % d-allulose and 12 % d-allose upon equilibrium. I102Q TsRhI takes only around half of the time to reach the same 12 % d-allose yield, suggesting that this mutant enzyme has a potential to be applied in d-allose production.
Collapse
Affiliation(s)
- Wen-Chi Tseng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Yu-Chun Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.
| | - Hao-Chin Chang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.
| | - Chia-Jui Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.
| | - Tsuei-Yun Fang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
44
|
Jürkenbeck K, Haarhoff T, Spiller A, Schulze M. Does Allulose Appeal to Consumers? Results from a Discrete Choice Experiment in Germany. Nutrients 2022; 14:nu14163350. [PMID: 36014857 PMCID: PMC9414979 DOI: 10.3390/nu14163350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Reducing the sugar content in food is an important goal in many countries in order to counteract obesity and unhealthy eating. Currently, many consumers eat a number of foods with too much sugar content. However, mankind has an innate preference for sweet foods, and thus one strategy is to have food products which taste sweet but consist of a reduced calorie and sugar content. Allulose is a rare monosaccharide and is considered a safe ingredient in foods, for example in the US, Japan, Singapore, and Mexico, while in Europe, it is in the approval process as a novel food. Thus, it is relevant to find out how consumers perceive the different attributes of allulose in comparison to other sweeteners. Therefore, an online survey consisting of a choice experiment was conducted in Germany to find out consumer preferences of sweeteners. The survey data were analyzed using a mixed logit model. The results reveal that taste is the most important attribute for sweeteners, which explains about 40% of the choice. In the attribute level, a typical sugar taste is preferred. As allulose has a typical sugar taste, the likelihood that it appeals to consumers is high. The second most important attribute is the base product.
Collapse
Affiliation(s)
- Kristin Jürkenbeck
- Marketing for Food and Agricultural Products, Department for Agricultural Economics and Rural Development, University of Goettingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
- Correspondence:
| | - Theresa Haarhoff
- Marketing for Food and Agricultural Products, Department for Agricultural Economics and Rural Development, University of Goettingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
| | - Achim Spiller
- Marketing for Food and Agricultural Products, Department for Agricultural Economics and Rural Development, University of Goettingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
| | - Maureen Schulze
- Marketing for Food and Agricultural Products, Department for Agricultural Economics and Rural Development, University of Goettingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
- Department of Management, Society and Communication, Copenhagen Business School, Dalgas Have 15, 2000 Copenhagen, Denmark
| |
Collapse
|
45
|
Smith A, Avery A, Ford R, Yang Q, Goux A, Mukherjee I, Neville DCA, Jethwa P. Rare sugars: metabolic impacts and mechanisms of action: a scoping review. Br J Nutr 2022; 128:389-406. [PMID: 34505561 PMCID: PMC9343225 DOI: 10.1017/s0007114521003524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022]
Abstract
Food manufacturers are under increasing pressure to limit the amount of free sugars in their products. Many have reformulated products to replace sucrose, glucose and fructose with alternative sweeteners, but some of these have been associated with additional health concerns. Rare sugars are ‘monosaccharides and their derivatives that hardly exist in nature’, and there is increasing evidence that they could have health benefits. This review aimed to scope the existing literature in order to identify the most commonly researched rare sugars, to ascertain their proposed health benefits, mechanisms of action and potential uses and to highlight knowledge gaps. A process of iterative database searching identified fifty-five relevant articles. The reported effects of rare sugars were noted, along with details of the research methodologies conducted. Our results indicated that the most common rare sugars investigated are d-psicose and d-tagatose, with the potential health benefits divided into three topics: glycaemic control, body composition and CVD. All the rare sugars investigated have the potential to suppress postprandial elevation of blood glucose and improve glycaemic control in both human and animal models. Some animal studies have suggested that certain rare sugars may also improve lipid profiles, alter the gut microbiome and reduce pro-inflammatory cytokine expression. The present review demonstrates that rare sugars could play a role in reducing the development of obesity, type 2 diabetes and/or CVD. However, understanding of the mechanisms by which rare sugars may exert their effects is limited, and their effectiveness when used in reformulated products is unknown.
Collapse
Affiliation(s)
- Alison Smith
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LoughboroughLE12 5RD, UK
| | - Amanda Avery
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LoughboroughLE12 5RD, UK
| | - Rebecca Ford
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LoughboroughLE12 5RD, UK
| | - Qian Yang
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LoughboroughLE12 5RD, UK
| | - Aurélie Goux
- Mondelēz International, Nutrition Research, 91400Saclay, France
| | | | | | - Preeti Jethwa
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LoughboroughLE12 5RD, UK
| |
Collapse
|
46
|
Comparative Effects of Allulose, Fructose, and Glucose on the Small Intestine. Nutrients 2022; 14:nu14153230. [PMID: 35956407 PMCID: PMC9370476 DOI: 10.3390/nu14153230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Despite numerous studies on the health benefits of the rare sugar allulose, its effects on intestinal mucosal morphology and function are unclear. We therefore first determined its acute effects on the small intestinal transcriptome using DNA microarray analysis following intestinal allulose, fructose and glucose perfusion in rats. Expression levels of about 8-fold more genes were altered by allulose compared to fructose and glucose perfusion, suggesting a much greater impact on the intestinal transcriptome. Subsequent pathway analysis indicated that nutrient transport, metabolism, and digestive system development were markedly upregulated, suggesting allulose may acutely stimulate these functions. We then evaluated whether allulose can restore rat small intestinal structure and function when ingested orally following total parenteral nutrition (TPN). We also monitored allulose effects on blood levels of glucagon-like peptides (GLP) 1 and 2 in TPN rats and normal mice. Expression levels of fatty acid binding and gut barrier proteins were reduced by TPN but rescued by allulose ingestion, and paralleled GLP-2 secretion potentially acting as the mechanism mediating the rescue effect. Thus, allulose can potentially enhance disrupted gut mucosal barriers as it can more extensively modulate the intestinal transcriptome relative to glucose and fructose considered risk factors of metabolic disease.
Collapse
|
47
|
d-Allulose Inhibits Ghrelin-Responsive, Glucose-Sensitive and Neuropeptide Y Neurons in the Arcuate Nucleus and Central Injection Suppresses Appetite-Associated Food Intake in Mice. Nutrients 2022; 14:nu14153117. [PMID: 35956293 PMCID: PMC9370451 DOI: 10.3390/nu14153117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
d-allulose, a rare sugar, has sweetness with few calories. d-allulose regulates feeding and glycemia, and ameliorates hyperphagia, obesity and diabetes. All these functions involve the central nervous system. However, central mechanisms underlying these effects of d-allulose remain unknown. We recently reported that d-allulose activates the anorexigenic neurons in the hypothalamic arcuate nucleus (ARC), the neurons that respond to glucagon-like peptide-1 and that express proopiomelanocortin. However, its action on the orexigenic neurons remains unknown. This study investigated the effects of d-allulose on the ARC neurons implicated in hunger, by measuring cytosolic Ca2+ concentration ([Ca2+]i) in single neurons. d-allulose depressed the increases in [Ca2+]i induced by ghrelin and by low glucose in ARC neurons and inhibited spontaneous oscillatory [Ca2+]i increases in neuropeptide Y (NPY) neurons. d-allulose inhibited 10 of 35 (28%) ghrelin-responsive, 18 of 60 (30%) glucose-sensitive and 3 of 8 (37.5%) NPY neurons in ARC. Intracerebroventricular injection of d-allulose inhibited food intake at 20:00 and 22:00, the early dark phase when hunger is promoted. These results indicate that d-allulose suppresses hunger-associated feeding and inhibits hunger-promoting neurons in ARC. These central actions of d-allulose represent the potential of d-allulose to inhibit the hyperphagia with excessive appetite, thereby counteracting obesity and diabetes.
Collapse
|
48
|
D-Allulose cooperates with glucagon-like peptide-1 and activates proopiomelanocortin neurons in the arcuate nucleus and central injection inhibits feeding in mice. Biochem Biophys Res Commun 2022; 613:159-165. [PMID: 35561584 DOI: 10.1016/j.bbrc.2022.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
Abstract
A rare sugar D-Allulose has sweetness without calorie. Previous studies have shown that D-Allulose improves glucose and energy metabolism and ameliorates obesity. However, underlying mechanisms remain elusive. This study explored the effect of central injection of D-Allulose on feeding behavior in mice. We also examined direct effects of D-Allulose on the neurons in the hypothalamic arcuate nucleus (ARC) that regulate feeding, including the anorexigenic glucagon-like peptide-1 (GLP-1)-responsive neurons and proopiomelanocortin (POMC) neurons. Single neurons were isolated from ARC and cytosolic Ca2+ concentration ([Ca2+]i) was measured by fura-2 microfluorometry. Administration of D-Allulose at 5.6, 16.7 and 56 mM concentration-dependently increased [Ca2+]i in ARC neurons. The [Ca2+]i increases took place similarly when the osmolarity of superfusion solution was kept constant. The majority (40%) of the D-Allulose-responsive neurons also responded to GLP-1 with [Ca2+]i increases. D-Allulose increased [Ca2+]i in 33% of POMC neurons in ARC. D-Allulose potentiated the GLP-1 action to increase [Ca2+]i in ARC neurons including POMC neurons. Intracerebroventricular injection of D-Allulose significantly decreased food intake at 1 and 2 h after injection. These results demonstrate that D-Allulose cooperates with glucagon-like peptide-1 and activates the ARC neurons including POMC neurons. Furthermore, central injection of D-Allulose inhibits feeding. These central actions of D-Allulose may underlie the ability of D-Allulose to counteract obesity and diabetes.
Collapse
|
49
|
Sawettanun S, Ogawa M. Physicochemical parameters, volatile compounds and organoleptic properties of bread prepared with substituted sucrose with rare sugar D‐allulose. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Saranta Sawettanun
- Department of Applied Biological Science, Faculty of Agriculture Kagawa University Kagawa 761‐0795 Japan
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Sciences Ehime University (affiliated with Kagawa University) Ehime 790‐8566 Japan
| | - Masahiro Ogawa
- Department of Applied Biological Science, Faculty of Agriculture Kagawa University Kagawa 761‐0795 Japan
| |
Collapse
|
50
|
Japar S, Fukunaga K, Kobayashi T, Imachi H, Sato S, Saheki T, Ibata T, Yoshimura T, Soh KL, Ong SL, Muhamed Z, Murao K. A pilot study on the effect of D-allulose on postprandial glucose levels in patients with type 2 diabetes mellitus during Ramadan fasting. Diabetol Metab Syndr 2022; 14:86. [PMID: 35729673 PMCID: PMC9209837 DOI: 10.1186/s13098-022-00856-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During Ramadan fasting, postprandial hyperglycemia is commonly observed after iftar (break of fast at sunset) meal. D-allulose is a rare sugar and is reported to have several health benefits, including the suppression of increase in postprandial glucose levels. This study investigates whether D-allulose (a C-3 epimer of D-fructose) improves the postprandial glucose in patients with type 2 diabetes mellitus (T2DM) during Ramadan. METHODS This was a pilot, prospective single-arm study design that was conducted for 10 consecutive days; 5 days of control and 5 days of consumption. The primary outcome was postprandial peak glucose levels. During the consumption period, 8.5 g of D-allulose was consumed by the participants before iftar meal. Postprandial glucose was measured using a continuous glucose monitoring system. RESULTS A total of 12 participants completed the study. Significant lower (p < 0.01) postprandial glucose values and the glucose incremental area under the curve (iAUC) were observed from 0 to 180 min during the consumption period compared to the control period. The consumption period demonstrated significantly higher percentages of time in which glucose values were found in the target range (p = 0.0032), and when the glucose levels above the target range were reduced (p = 0.0015). CONCLUSIONS The supplementation with D-allulose has the potential to improve postprandial hyperglycemia in patients with T2DM after iftar during Ramadan. Further studies are needed to confirm these findings. Trial registration ClinicalTrials.gov NCT05071950. Retrospectively registered, 8 October 2021.
Collapse
Affiliation(s)
- Salimah Japar
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
- Department of Nursing, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takafumi Yoshimura
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kim Lam Soh
- Department of Nursing, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Swee Leong Ong
- School of Nursing Science, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kampung Gong Badak, 21300, Terengganu, Malaysia
| | - Zamri Muhamed
- Department of Medicine, Hospital Sultanah Nur Zahirah, Ministry of Health Malaysia, 20400, Kuala Terengganu, Malaysia
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|