1
|
Tang H, Kong Q, Zhang Z, Wu W, Yuan L, Liu X. Regulation of transcription factor function by purinergic signalling in cardiovascular diseases. Purinergic Signal 2024:10.1007/s11302-024-10045-8. [PMID: 39215950 DOI: 10.1007/s11302-024-10045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, myocardial ischemia, and myocardial infarction, constitute the primary cause of mortality worldwide. Transcription factors play critical roles in the development of CVDs and contribute to the pathophysiology of these diseases by coordinating the transcription of many genes involved in inflammation, oxidative stress, angiogenesis, and glycolytic metabolism. One important regulator of hemostasis in both healthy and pathological settings has been identified as a purinergic signalling pathway. Research has demonstrated that several signalling networks implicated in the pathophysiology of CVDs are formed by transcription factors that are regulated by purinergic substances. Here, we briefly summarize the roles and mechanisms of the transcription factors regulated by purinergic pathways in various types of CVD. This information will be essential for discovering novel approaches for CVD treatment and prevention.
Collapse
Affiliation(s)
- Hao Tang
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenchao Wu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Yuan
- Public Laboratory of West China Second University Hospital and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
3
|
Najmi A, Alam MS, Thangavel N, Taha MME, Meraya AM, Albratty M, Alhazmi HA, Ahsan W, Haque A, Azam F. Synthesis, molecular docking, and in vivo antidiabetic evaluation of new benzylidene-2,4-thiazolidinediones as partial PPAR-γ agonists. Sci Rep 2023; 13:19869. [PMID: 37963936 PMCID: PMC10645977 DOI: 10.1038/s41598-023-47157-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) partial agonists or antagonists, also termed as selective PPAR-γ modulators, are more beneficial than full agonists because they can avoid the adverse effects associated with PPAR-γ full agonists, such as weight gain and congestive heart disorders, while retaining the antidiabetic efficiency. In this study, we designed and synthesized new benzylidene-thiazolidine-2,4-diones while keeping the acidic thiazolidinedione (TZD) ring at the center, which is in contrast with the typical pharmacophore of PPAR-γ agonists. Five compounds (5a-e) were designed and synthesized in moderate to good yields and were characterized using spectral techniques. The in vivo antidiabetic efficacy of the synthesized compounds was assessed on streptozotocin-induced diabetic mice using standard protocols, and their effect on weight gain was also studied. Molecular docking and molecular dynamics (MD) simulation studies were performed to investigate the binding interactions of the title compounds with the PPAR-γ receptor and to establish their binding mechanism. Antidiabetic activity results revealed that compounds 5d and 5e possess promising antidiabetic activity comparable with the standard drug rosiglitazone. No compound showed considerable effect on the body weight of animals after 21 days of administration, and the findings showed statistical difference (p < 0.05 to p < 0.0001) among the diabetic control and standard drug rosiglitazone groups. In molecular docking study, compounds 5c and 5d exhibited higher binding energies (- 10.1 and - 10.0 kcal/mol, respectively) than the native ligand, non-thiazolidinedione PPAR-γ partial agonist (nTZDpa) (- 9.8 kcal/mol). MD simulation further authenticated the stability of compound 5c-PPAR-γ complex over the 150 ns duration. The RMSD, RMSF, rGyr, SASA, and binding interactions of compound 5c-PPAR-γ complex were comparable to those of native ligand nTZDpa-PPAR-γ complex, suggesting that the title compounds have the potential to be developed as partial PPAR-γ agonists.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia.
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Manal M E Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
- Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Anzarul Haque
- Department of Pharmaceutics, Buraydah College of Dentistry and Pharmacy, P.O Box 31717, Buraydah, Al-Qassim, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
4
|
Bruedigam C, van Leeuwen JPTM, van de Peppel J. Gene Expression Analyses in Models of Rosiglitazone-Induced Physiological and Pathological Mineralization Identify Novel Targets to Improve Bone and Vascular Health. Cells 2023; 12:2462. [PMID: 37887306 PMCID: PMC10605243 DOI: 10.3390/cells12202462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Clinical studies revealed detrimental skeletal and vascular effects of the insulin sensitizer rosiglitazone. We have shown earlier that rosiglitazone accelerates osteoblast differentiation from human mesenchymal stem cells (hMSC) at the expense of increased oxidative stress and cell death. In calcifying human vascular cells, rosiglitazone stimulates pathological mineralization, an effect diminished by the antioxidant resveratrol. Here, we aimed to elucidate transcriptional networks underlying the rosiglitazone-enhanced mineralization phenotype. We performed genome-wide transcriptional profiling of osteogenic hMSCs treated with rosiglitazone for short-term periods of 1 up to 48 h during the first two days of differentiation, a phase that we show is sufficient for rosiglitazone stimulation of mineralization. Microarray-based mRNA expression analysis revealed 190 probes that were differently expressed in at least one condition compared to vehicle-treated control. This rosiglitazone gene signature contained well-known primary PPAR targets and was also endogenously regulated during osteogenic hMSC differentiation and osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) into calcifying vascular cells (CVCs). Comparative analysis revealed rosiglitazone targets that were commonly enriched in osteoblasts and CVCs or specifically enriched in either osteoblasts or CVCs. Finally, we compared expression patterns of CVC-specific genes with patient expression data from carotid plaque versus intact adjacent tissue, and identified five rosiglitazone targets to be differentially regulated in CVCs and carotid plaque but not osteoblasts when compared to their non-mineralizing counterparts. These targets, i.e., PDK4, SDC4, SPRY4, TCF4 and DACT1, may specifically control extracellular matrix mineralization in vascular cells, and hence provide target candidates for further investigations to improve vascular health.
Collapse
|
5
|
Zou H, Gong Y, Ye H, Yuan C, Li T, Zhang J, Ren L. Dietary regulation of peroxisome proliferator-activated receptors in metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154904. [PMID: 37267691 DOI: 10.1016/j.phymed.2023.154904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are a class of ligand-activated nuclear transcription factors, members of the type nuclear receptor superfamily, with three subtypes, namely PPARα, PPARβ/δ, and PPARγ, which play a key role in the metabolic syndrome. In the past decades, a large number of studies have shown that natural products can act by regulating metabolic pathways mediated by PPARs. PURPOSE This work summarizes the physiological importance and clinical significance of PPARs and reviews the experimental evidence that natural products mediate metabolic syndrome via PPARs. METHODS This study reviews relevant literature on clinical trials, epidemiology, animals, and cell cultures published in NCBI PubMed, Scopus, Web of Science, Google Scholar, and other databases from 2001 to October 2022. Search keywords were "natural product" OR "botanical" OR "phytochemical" AND "PPAR" as well as free text words. RESULTS The modulatory involvement of PPARs in the metabolic syndrome has been supported by prior research. It has been observed that many natural products can treat metabolic syndrome by altering PPARs. The majority of currently described natural compounds are mild PPAR-selective agonists with therapeutic effects that are equivalent to synthetic medicines but less harmful adverse effects. CONCLUSION PPAR agonists can be combined with natural products to treat and prevent metabolic syndrome. Further human investigations are required because it is unknown how natural products cause harm and how they might have negative impacts.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Kang X, Sun Y, Duan Y, Zhang Y, An X, Jin D, Lian F, Tong X. Jinlida granules combined with metformin improved the standard-reaching rate of blood glucose and clinical symptoms of patients with type 2 diabetes: secondary analysis of a randomized controlled trial. Front Endocrinol (Lausanne) 2023; 14:1142327. [PMID: 37305056 PMCID: PMC10248397 DOI: 10.3389/fendo.2023.1142327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Background Previous studies found that Jinlida granules could significantly reduce blood glucose levels and enhance the low-glucose action of metformin. However, the role of Jinlida in the standard-reaching rate of blood glucose and improving clinical symptoms has yet to be studied. We aimed to elaborate on the efficacy of Jinlida in type 2 diabetes (T2D) patients who experience clinical symptoms based on secondary analysis of a randomized controlled trial. Methods Data were analyzed from a 12-week, randomized, placebo-controlled study of Jinlida. The standard-reaching rate of blood glucose, the symptom disappearance rate, the symptom improvement rate, the efficacy of single symptoms, and the total symptom score were evaluated. The correlation between HbA1c and the improvement of clinical symptoms was analyzed. Results For 12 weeks straight, 192 T2D patients were randomly assigned to receive either Jinlida or a placebo. The treatment group showed statistically significant differences in the standard-reaching rate of HbA1c < 6.5% (p = 0.046) and 2hPG (< 10 mmol/L, 11.1 mmol/L) (p < 0.001), compared with the control group. The standard-reaching rate of HbA1c < 7% (p = 0.06) and FBG < 7.0 mmol/L (p = 0.079) were not significantly different between the treatment and control groups. Five symptoms exhibited a statistical difference in symptom disappearance rate (p < 0.05). All the symptoms exhibited a significant difference in symptom improvement rate (p < 0.05). The mean change in total symptom score from baseline to week 12 was -5.45 ± 3.98 in the treatment group and -2.38 ± 3.11 in the control group, with statistically significant differences (p < 0.001). No significant correlations were noted between symptom improvement and HbA1c after 12 weeks of continuous intervention with Jinlida granules or placebo. Conclusion Jinlida granules can effectively improve the standard-reaching rate of blood glucose and clinical symptoms of T2D patients, including thirst, fatigue, increased eating with rapid hungering, polyuria, dry mouth, spontaneous sweating, night sweat, vexing heat in the chest, palms, and soles, and constipation. Jinlida granules can be used as an effective adjuvant treatment for T2D patients who experience those symptoms.
Collapse
Affiliation(s)
- Xiaomin Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Fengmei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Akter S, Akhter H, Chaudhury HS, Rahman MH, Gorski A, Hasan MN, Shin Y, Rahman MA, Nguyen MN, Choi TG, Kim SS. Dietary carbohydrates: Pathogenesis and potential therapeutic targets to obesity-associated metabolic syndrome. Biofactors 2022; 48:1036-1059. [PMID: 36102254 DOI: 10.1002/biof.1886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is a common feature in obesity, comprising a cluster of abnormalities including abdominal fat accumulation, hyperglycemia, hyperinsulinemia, dyslipidemia, and hypertension, leading to diabetes and cardiovascular diseases (CVD). Intake of carbohydrates (CHO), particularly a sugary diet that rapidly increases blood glucose, triglycerides, and blood pressure levels is the predominant determining factor of MetS. Complex CHO, on the other hand, are a stable source of energy taking a longer time to digest. In particular, resistant starch (RS) or soluble fiber is an excellent source of prebiotics, which alter the gut microbial composition, which in turn improves metabolic control. Altering maternal CHO intake during pregnancy may result in the child developing MetS. Furthermore, lifestyle factors such as physical inactivity in combination with dietary habits may synergistically influence gene expression by modulating genetic and epigenetic regulators transforming childhood obesity into adolescent metabolic disorders. This review summarizes the common pathophysiology of MetS in connection with the nature of CHO, intrauterine nutrition, genetic predisposition, lifestyle factors, and advanced treatment approaches; it also emphasizes how dietary CHO may act as a key element in the pathogenesis and future therapeutic targets of obesity and MetS.
Collapse
Affiliation(s)
- Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Biotechnology, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Hajara Akhter
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Habib Sadat Chaudhury
- Department of Biochemistry, International Medical College Hospital, Tongi 1711, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Andrew Gorski
- Department of Philosophy in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | | | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Minh Nam Nguyen
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Pristine Pharmaceuticals, Patuakhali 8600, Bangladesh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Cao X, Mao M, Diao J, Hou Y, Su H, Gan Y, Li J, Tong X, Wu C, Zuo Z, Xiao X. Ectopic Overexpression of PPARγ2 in the Heart Determines Differences in Hypertrophic Cardiomyopathy After Treatment With Different Thiazolidinediones in a Mouse Model of Diabetes. Front Pharmacol 2021; 12:683156. [PMID: 34305596 PMCID: PMC8293689 DOI: 10.3389/fphar.2021.683156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
The clinical controversy of rosiglitazone as a hypoglycemic agent is potentially associated with heart failure, mainly due to its potent activation of peroxisome proliferator-activated receptor γ (PPARγ). PPARγ partial agonists showed superior pharmacological profiles to rosiglitazone. This study compared differences in cardiac morphology and function of the PPARγ partial agonist CMHX008 with rosiglitazone. High-fat diet (HFD) induced obese mice, ob/ob mice and cardiomyocytes overexpressing PPARγ2 were treated with CMHX008 or rosiglitazone. Heart function, myocardial morphology, and hypertrophy-related gene expression were examined. Clinical information from patients with type 2 diabetes mellitus (T2DM) who had taken rosiglitazone and undergone Doppler echocardiography was collected. HFD and ob/ob mice significantly developed cardiac contractile dysfunction, with upregulated PPARγ2 protein levels in heart tissues. Cardiomyocytes of HFD and ob/ob mice were disorderly arranged, the cell areas expanded, and collagen accumulated. In vitro cardiomyocytes overexpressing PPARγ2 displayed obvious structural abnormalities and high mRNA levels of ANP and BNP, critical cardiac hypertrophy-related genes. HFD-fed mice treated with rosiglitazone or CMHX008 had significantly improved cardiac function, but rosiglitazone induced higher expression of ANP and βMHC and hypertrophic cardiomyopathy, while CMHX008 did not. Patients with T2DM taking rosiglitazone exhibited increased thickness of the posterior wall and the ventricular septum, suggesting cardiac hypertrophy. Our findings show that diabetic cardiomyopathy was associated with ectopic overexpression of PPARγ2. The full agonist rosiglitazone prevents cardiac dysfunction at the expense of compensatory hypertrophy, while the partial agonist CMHX008 shared a comparable protective effect without altering the structure of cardiomyocytes.
Collapse
Affiliation(s)
- Xuemei Cao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Mao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junlin Diao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Hou
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Experimental Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Hong Su
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjun Gan
- Experimental Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Jibin Li
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States
| | - Zhong Zuo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Hartmann M, Bibli SI, Tews D, Ni X, Kircher T, Kramer JS, Kilu W, Heering J, Hernandez-Olmos V, Weizel L, Scriba GKE, Krait S, Knapp S, Chaikuad A, Merk D, Fleming I, Fischer-Posovszky P, Proschak E. Combined Cardioprotective and Adipocyte Browning Effects Promoted by the Eutomer of Dual sEH/PPARγ Modulator. J Med Chem 2021; 64:2815-2828. [PMID: 33620196 DOI: 10.1021/acs.jmedchem.0c02063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The metabolic syndrome (MetS) is a constellation of cardiovascular and metabolic symptoms involving insulin resistance, steatohepatitis, obesity, hypertension, and heart disease, and patients suffering from MetS often require polypharmaceutical treatment. PPARγ agonists are highly effective oral antidiabetics with great potential in MetS, which promote adipocyte browning and insulin sensitization. However, the application of PPARγ agonists in clinics is restricted by potential cardiovascular adverse events. We have previously demonstrated that the racemic dual sEH/PPARγ modulator RB394 (3) simultaneously improves all risk factors of MetS in vivo. In this study, we identify and characterize the eutomer of 3. We provide structural rationale for molecular recognition of the eutomer. Furthermore, we could show that the dual sEH/PPARγ modulator is able to promote adipocyte browning and simultaneously exhibits cardioprotective activity which underlines its exciting potential in treatment of MetS.
Collapse
Affiliation(s)
- Markus Hartmann
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, D-60596 Frankfurt am Main, Germany
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Centre, D-89075 Ulm, Germany
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Theresa Kircher
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Sulaiman Krait
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, D-60596 Frankfurt am Main, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Centre, D-89075 Ulm, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| |
Collapse
|
10
|
Shafiq M, Walmann T, Nutalapati V, Gibson C, Zafar Y. Effects of proprotein convertase subtilisin/kexin type-9 inhibitors on fatty liver. World J Hepatol 2020; 12:1258-1167. [PMID: 33442452 PMCID: PMC7772734 DOI: 10.4254/wjh.v12.i12.1258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Many studies have investigated the progression of nonalcoholic fatty liver disease (NAFLD) and its predisposing risk factors, but the conclusions from these studies have been conflicting. More challenging is the fact that no effective treatment is currently available for NAFLD.
AIM To determine the effects of proprotein convertase subtilisin/kexin type-9 (PCSK9) inhibitors on fatty infiltration of the liver.
METHODS This retrospective, chart review-based study was conducted on patients, 18-year-old and above, who were currently on PCSK9 inhibitor drug therapy. Patients were excluded from the study according to missing pre- or post-treatment imaging or laboratory values, presence of cirrhosis or rhabdomyolysis, or development of acute liver injury during the PCSK9 inhibitor treatment period; the latter being due to false elevation of liver function markers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Radiographic improvement was assessed by a single radiologist, who read both the pre- and post-treatment images to minimize reading bias. Fatty infiltration of the liver was also assessed by changes in ALT and AST, with pre- and post-treatment levels compared by paired t-test (alpha criterion: 0.05).
RESULTS Of the 29 patients included in the study, 8 were male (27.6%) and 21 were female (72.4%). Essential hypertension was present in 25 (86.2%) of the patients, diabetes mellitus in 18 (62.1%) and obesity in 15 (51.7%). In all, patients were on PCSK9 inhibitors for a mean duration of 23.69 ± 11.18 mo until the most recent ALT and AST measures were obtained. Of the 11 patients who received the radiologic diagnosis of hepatic steatosis, 8 (72.73%) achieved complete radiologic resolution upon use of PCSK9 inhibitors (mean duration of 17.6 mo). On average, the ALT level (IU/L) decreased from 21.83 ± 11.89 at pretreatment to 17.69 ± 8.00 at post-treatment (2-tailed P = 0.042) and AST level (IU/L) decreased from 22.48 ± 9.00 pretreatment to 20.59 ± 5.47 post-treatment (2-tailed P = 0.201).
CONCLUSION PCSK9 inhibitors can slow down or even completely resolve NAFLD.
Collapse
Affiliation(s)
- Muhammad Shafiq
- General and Geriatric Medicine, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Timothy Walmann
- Department of Diagnostic Radiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Venkat Nutalapati
- Department of Gastroenterology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Cheryl Gibson
- General and Geriatric Medicine, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Yousaf Zafar
- Internal Medicine, NCH Health Care System, Naples, FL 34102, United States
| |
Collapse
|
11
|
Banerjee M, Khursheed R, Yadav AK, Singh SK, Gulati M, Pandey DK, Prabhakar PK, Kumar R, Porwal O, Awasthi A, Kumari Y, Kaur G, Ayinkamiye C, Prashar R, Mankotia D, Pandey NK. A Systematic Review on Synthetic Drugs and Phytopharmaceuticals Used to Manage Diabetes. Curr Diabetes Rev 2020; 16:340-356. [PMID: 31438829 DOI: 10.2174/1573399815666190822165141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/15/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes is a multifactorial disease and a major cause for many microvascular and macrovascular complications. The disease will ultimately lead to high rate mortality if it is not managed properly. Treatment of diabetes without any side effects has always remained a major challenge for health care practitioners. INTRODUCTION The current review discusses the various conventional drugs, herbal drugs, combination therapy and the use of nutraceuticals for the effective management of diabetes mellitus. The biotechnological aspects of various antidiabetic drugs are also discussed. METHODS Structured search of bibliographic databases for previously published peer-reviewed research papers was explored and data was sorted in terms of various approaches that are used for the treatment of diabetes. RESULTS More than 170 papers including both research and review articles, were included in this review in order to produce a comprehensive and easily understandable article. A series of herbal and synthetic drugs have been discussed along with their current status of treatment in terms of dose, mechanism of action and possible side effects. The article also focuses on combination therapies containing synthetic as well as herbal drugs to treat the disease. The role of pre and probiotics in the management of diabetes is also highlighted. CONCLUSION Oral antihyperglycemics which are used to treat diabetes can cause many adverse effects and if given in combination, can lead to drug-drug interactions. The combination of various phytochemicals with synthetic drugs can overcome the challenge faced by the synthetic drug treatment. Herbal and nutraceuticals therapy and the use of probiotics and prebiotics are a more holistic therapy due to their natural origin and traditional use.
Collapse
Affiliation(s)
- Mayukh Banerjee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Ankit Kumar Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara 144402, Punjab, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Omji Porwal
- Faculty of Pharmacy, Ishik University, Erbil, Iraq
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Clarisse Ayinkamiye
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Rahul Prashar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Diksha Mankotia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Thiazolidinediones (TZDs) are the only pharmacologic agents that specifically treat insulin resistance. The beneficial effects of TZDs on the cardiovascular risk factors associated with insulin resistance have been well documented. TZD use has been limited because of concern about safety issues and side effects. RECENT FINDINGS Recent studies indicate that cardiovascular toxicity with rosiglitazone and increase in bladder cancer with pioglitazone are no longer significant issues. There are new data which show that pioglitazone treatment reduces myocardial infarctions and ischemic strokes. New data concerning TZD-mediated edema, congestive heart failure, and bone fractures improves the clinician's ability to select patients that will have minimal significant side effects. Thiazolidinediones are now generic and less costly than pharmaceutical company-promoted therapies. Better understanding of the side effects coupled with clear benefits on the components of the insulin resistance syndrome should promote TZD use in treating patients with type 2 diabetes.
Collapse
Affiliation(s)
- Harold E Lebovitz
- SUNY Downstate Medical Center, 450 Clarkson Avenue, Box 1205, Brooklyn, NY, 11203, USA.
| |
Collapse
|
13
|
Abstract
Type 2 diabetes mellitus (T2DM) is a common chronic metabolic condition. Before receiving this diagnosis, persons typically have a long period of prediabetes. There is good evidence that T2DM can often be prevented or delayed by means of lifestyle interventions (39%-71%), medications (28%-79%), or metabolic surgery (75%). However, despite consistent data demonstrating their efficacy, these tools are underused, and knowledge about them among primary care physicians is limited. In an effort to engage physicians in addressing this public health crisis more effectively, the authors reviewed the evidence that T2DM can be prevented or delayed in persons at risk.
Collapse
|
14
|
TRPV1 Antagonists as Novel Anti-Diabetic Agents: Regulation of Oral Glucose Tolerance and Insulin Secretion Through Reduction of Low-Grade Inflammation? Med Sci (Basel) 2019; 7:medsci7080082. [PMID: 31344877 PMCID: PMC6722836 DOI: 10.3390/medsci7080082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
With a global prevalence among adults over 18 years of age approaching 9%, Type 2 diabetes mellitus (T2DM) has reached pandemic proportions and represents a major unmet medical need. To date, no disease modifying treatment is available for T2DM patients. Accumulating evidence suggest that the sensory nervous system is involved in the progression of T2DM by maintaining low-grade inflammation via the vanilloid (capsaicin) receptor, Transient Receptor Potential Vanilloid-1 (TRPV1). In this study, we tested the hypothesis that TRPV1 is directly involved in glucose homeostasis in rodents. TRPV1 receptor knockout mice (Trpv1−/−) and their wild-type littermates were kept on high-fat diet for 15 weeks. Moreover, Zucker obese rats were given the small molecule TRPV1 antagonist, N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), per os twice-a-day or vehicle for eight days. Oral glucose tolerance and glucose-stimulated insulin secretion was improved by both genetic inactivation (Trpv1−/− mice) and pharmacological blockade (BCTC) of TRPV1. In the obese rat, the improved glucose tolerance was accompanied by a reduction in inflammatory markers in the mesenteric fat, suggesting that blockade of low-grade inflammation contributes to the positive effect of TRPV1 antagonism on glucose metabolism. We propose that TRPV1 could be a promising therapeutic target in T2DM by improving glucose intolerance and correcting dysfunctional insulin secretion.
Collapse
|
15
|
Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019; 8:cells8070726. [PMID: 31311204 PMCID: PMC6679009 DOI: 10.3390/cells8070726] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and oxidative stress are common and co-substantial pathological processes accompanying and contributing to cancers. Numerous epidemiological studies have indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely associated with both chronic inflammation and oxidative stress in cancers. The administration of NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration. In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression, NSAIDs can control CRs through the regulation of many key circadian genes. The administration of NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 75004 Paris, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
16
|
He J, Qi D, Tang XM, Deng W, Deng XY, Zhao Y, Wang DX. Rosiglitazone promotes ENaC-mediated alveolar fluid clearance in acute lung injury through the PPARγ/SGK1 signaling pathway. Cell Mol Biol Lett 2019; 24:35. [PMID: 31160894 PMCID: PMC6540532 DOI: 10.1186/s11658-019-0154-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pulmonary edema is one of the pathological characteristics of acute respiratory distress syndrome (ARDS). The epithelial sodium channel (ENaC) is thought to be the rate-limiting factor for alveolar fluid clearance (AFC) during pulmonary edema. The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone was shown to stimulate ENaC-mediated salt absorption in the kidney. However, its role in the lung remains unclear. Here, we investigated the role of the PPARγ agonist in the lung to find out whether it can regulate AFC during acute lung injury (ALI). We also attempted to elucidate the mechanism for this. Methods Our ALI model was established through intratracheal instillation of lipopolysaccharide (LPS) in C57BL/6 J mice. The mice were randomly divided into 4 groups of 10. The control group underwent a sham operation and received an equal quantity of saline. The three experimental groups underwent intratracheal instillation of 5 mg/kg LPS, followed by intraperitoneal injection of 4 mg/kg rosiglitazone, 4 mg/kg rosiglitazone plus 1 mg/kg GW9662, or only equal quantity of saline. The histological morphology of the lung, the levels of TNF-α and IL-1β in the bronchoalveolar lavage fluid (BALF), the level of AFC, and the expressions of αENaC and serum and glucocorticoid-induced kinase-1 (SGK1) were determined. Type 2 alveolar (AT II) cells were incubated with rosiglitazone (15 μM) with or without GW9662 (10 μM). The expressions of αENaC and SGK1 were determined 24 h later. Results A mouse model of ALI was successfully established. Rosiglitazone significantly ameliorated the lung injury, decreasing the TNF-α and IL-1β levels in the BALF, enhancing AFC, and promoting the expressions of αENaC and SGK1 in ALI mice, which were abolished by the specific PPARγ blocker GW9662. In vitro, rosiglitazone increased the expressions of αENaC and SGK1. This increase was prevented by GW9662. Conclusions Rosiglitazone ameliorated the lung injury and promoted ENaC-mediated AFC via a PPARγ/SGK1-dependent signaling pathway, alleviating pulmonary edema in a mouse model of ALI.
Collapse
Affiliation(s)
- Jing He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Di Qi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Xu-Mao Tang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Wang Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Xin-Yu Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Dao-Xin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| |
Collapse
|
17
|
Goltsman I, Khoury EE, Aronson D, Nativ O, Feuerstein GZ, Winaver J, Abassi Z. Rosiglitazone treatment restores renal responsiveness to atrial natriuretic peptide in rats with congestive heart failure. J Cell Mol Med 2019; 23:4779-4794. [PMID: 31087547 PMCID: PMC6584517 DOI: 10.1111/jcmm.14366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
The thiazolidinedione (TZD) class of Peroxisome proliferator‐activated receptor gamma agonists has restricted clinical use for diabetes mellitus due to fluid retention and potential cardiovascular risks. These side effects are attributed in part to direct salt‐retaining effect of TZDs at the renal collecting duct. A recent study from our group revealed that prolonged rosiglitazone (RGZ) treatment caused no Na+/H2O retention or up‐regulation of Na+ transport‐linked channels/transporters in experimental congestive heart failure (CHF) induced by surgical aorto‐caval fistula (ACF). The present study examines the effects of RGZ on renal and cardiac responses to atrial natriuretic peptide (ANP), Acetylcholine (Ach) and S‐Nitroso‐N‐acetylpenicillamine (SNAP‐NO donor). Furthermore, we assessed the impact of RGZ on gene expression related to the ANP signalling pathway in animals with ACF. Rats subjected to ACF (or sham) were treated with either RGZ (30 mg/kg/day) or vehicle for 4 weeks. Cardiac chambers pressures and volumes were assessed invasively via Miller catheter. Kidney excretory and renal hemodynamic in response to ANP, Ach and SNAP were examined. Renal clearance along with cyclic guanosine monophosphate (cGMP), gene expression of renal CHF‐related genes and ANP signalling in the kidney were determined. RGZ‐treated CHF rats exhibited significant improvement in the natriuretic responses to ANP infusion. This ‘sensitization’ to ANP was not associated with increases in neither urinary cGMP nor in vitro cGMP production. However, RGZ caused down‐regulation of several genes in the renal cortex (Ace, Nos3 and Npr1) and up‐regulation of ACE2, Agtrla, Mme and Cftr along down‐regulation of Avpr2, Npr1,2, Nos3 and Pde3 in the medulla. In conclusion, CHF+RGZ rats exhibited significant enhancement in the natriuretic responses to ANP infusion, which are known to be blunted in CHF. This ‘sensitization’ to ANP is independent of cGMP signalling, yet may involve post‐cGMP signalling target genes such as ACE2, CFTR and V2 receptor. The possibility that TZD treatment in uncomplicated CHF may be less detrimental than thought before deserves additional investigations.
Collapse
Affiliation(s)
- Ilia Goltsman
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Omri Nativ
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Giora Z Feuerstein
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel.,FARMACON LLC, Translational Medicine Company, Bryn Mawr, Pennsylvania
| | - Joseph Winaver
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel.,Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
18
|
Vallée A, Vallée JN, Lecarpentier Y. PPARγ agonists: potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol Psychiatry 2019; 24:643-652. [PMID: 30104725 DOI: 10.1038/s41380-018-0131-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. No curative treatments are available for ASD. Pharmacological treatments do not address the core ASD behaviors, but target comorbid symptoms. Dysregulation of the core neurodevelopmental pathways is associated with the clinical presentation of ASD, and the canonical WNT/β-catenin pathway is one of the major pathways involved. The canonical WNT/β-catenin pathway participates in the development of the central nervous system, and its dysregulation involves developmental cognitive disorders. In numerous tissues, the canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) act in an opposed manner. In ASD, the canonical WNT/β-catenin pathway is increased while PPARγ seems to be decreased. PPARγ agonists present a beneficial effect in treatment for ASD children through their anti-inflammatory role. Moreover, they induce the inhibition of the canonical WNT/β-catenin pathway in several pathophysiological states. We focus this review on the hypothesis of an opposed interplay between PPARγ and the canonical WNT/β-catenin pathway in ASD and the potential role of PPARγ agonists as treatment for ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Paris-Descartes University; Diagnosis and Therapeutic Center, Hôtel-Dieu Hospital; AP-HP, Paris, France. .,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054, Amiens, France.,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100, Meaux, France
| |
Collapse
|
19
|
Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J, Bayes-Genis A, Brutsaert D, Bugger H, Clarke K, Cosentino F, De Keulenaer G, Dei Cas A, González A, Huelsmann M, Iaccarino G, Lunde IG, Lyon AR, Pollesello P, Rena G, Riksen NP, Rosano G, Staels B, van Laake LW, Wanner C, Farmakis D, Filippatos G, Ruschitzka F, Seferovic P, de Boer RA, Heymans S. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39:4243-4254. [PMID: 30295797 PMCID: PMC6302261 DOI: 10.1093/eurheartj/ehy596] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Heidelberg, Germany
| | - Frank R Heinzel
- Department of Cardiology, Charité—Universitätsmedizin, Berlin, Germany
| | - Jean-Sebastien Hulot
- Paris Cardiovascular Research Center PARCC, INSERM UMR970, CIC 1418, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France
- AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Walter J Paulus
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Rossignol
- Inserm, Centre d’Investigations Cliniques—Plurithématique 14-33, Inserm U1116, CHRU Nancy, Université de Lorraine, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Antoni Bayes-Genis
- Heart Failure Unit and Cardiology Service, Hospital Universitari Germans Trias i Pujol, CIBERCV, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Heiko Bugger
- Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Francesco Cosentino
- Department of Medicine Solna, Cardiology Unit, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Alessandra Dei Cas
- Department of Medicine and Surgery, Endocrinology and Metabolism, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona and CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Martin Huelsmann
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Cardiovascular Research Centre, Royal Brompton Hospital; National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Graham Rena
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giuseppe Rosano
- Cardiovascular Clinical Academic Group, St George's Hospitals NHS Trust University of London, London, UK
- IRCCS San Raffaele Roma, Rome, Italy
| | - Bart Staels
- University of Lille—EGID, Lille, France
- Inserm, U1011, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Hospital CHU Lille, Lille, France
| | - Linda W van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Dimitrios Farmakis
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiovascular Sciences, Leuven University, Belgium
| |
Collapse
|
20
|
Kong Y, Gao Y, Lan D, Zhang Y, Zhan R, Liu M, Zhu Z, Zeng G, Huang Q. Trans-repression of NFκB pathway mediated by PPARγ improves vascular endothelium insulin resistance. J Cell Mol Med 2018; 23:216-226. [PMID: 30398029 PMCID: PMC6307800 DOI: 10.1111/jcmm.13913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Previous study has shown that thiazolidinediones (TZDs) improved endothelium insulin resistance (IR) induced by high glucose concentration (HG)/hyperglycaemia through a PPARγ‐dependent‐NFκB trans‐repression mechanism. However, it is unclear, whether changes in PPARγ expression affect the endothelium IR and what the underlying mechanism is. In the present study, we aimed to address this issue. HG‐treated human umbilical vascular endothelial cells (HUVEC) were transfected by either PPARγ‐overexpressing (Ad‐PPARγ) or PPARγ‐shRNA‐containing (Ad‐PPARγ‐shRNA) adenoviral vectors. Likewise, the rats fed by high‐fat diet (HFD) were infected by intravenous administration of Ad‐PPARγ or Ad‐PPARγ‐shRNA. The levels of nitric oxide (NO), endothelin‐1 (ET‐1) and cytokines (TNFα, IL‐6, sICAM‐1 and sVCAM‐1) and the expression levels of PPARγ, eNOS, AKT, p‐AKT, IKKα/β and p‐IKKα/β and IκBα were examined; and the interaction between PPARγ and NFκB‐P65 as well as vascular function were evaluated. Our present results showed that overexpression of PPARγ notably increased the levels of NO, eNOS, p‐AKT and IκBα as well as the interaction of PPARγ and NFκB‐P65, and decreased the levels of ET‐1, p‐IKKα/β, TNFα, IL‐6, sICAM‐1 and sVCAM‐1. In contrast, down‐expression of PPARγ displayed the opposite effects. The results demonstrate that the overexpression of PPARγ improves while the down‐expression worsens the endothelium IR via a PPARγ‐mediated NFκB trans‐repression dependent manner. The findings suggest PPARγ is a potential therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Ying Kong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Gao
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Dongyi Lan
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Zhang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Rixin Zhan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Meiqi Liu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhouan Zhu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Fu D, Rao X, Xu J, Tanabe G, Muraoka O, Wu X, Xie W. First total synthesis of cyclic pentadepsipeptides Hikiamides A–C. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep 2018; 20:62. [PMID: 29884931 DOI: 10.1007/s11906-018-0860-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Heterogeneous causes can determinate hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS. We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.
Collapse
|
23
|
Del Prato S, Chilton R. Practical strategies for improving outcomes in T2DM: The potential role of pioglitazone and DPP4 inhibitors. Diabetes Obes Metab 2018; 20:786-799. [PMID: 29171700 PMCID: PMC5887932 DOI: 10.1111/dom.13169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
Abstract
T2DM is a complex disease underlined by multiple pathogenic defects responsible for the development and progression of hyperglycaemia. Each of these factors can now be tackled in a more targeted manner thanks to glucose-lowering drugs that have been made available in the past 2 to 3 decades. Recognition of the multiplicity of the mechanisms underlying hyperglycaemia calls for treatments that address more than 1 of these mechanisms, with more emphasis placed on the earlier use of combination therapies. Although chronic hyperglycaemia contributes to and amplifies cardiovascular risk, several trials have failed to show a marked effect from intensive glycaemic control. During the past 10 years, the effect of specific glucose-lowering agents on cardiovascular risk has been explored with dedicated trials. Overall, the cardiovascular safety of the new glucose-lowering agents has been proven with some of the trials summarized in this review, showing significant reduction of cardiovascular risk. Against this background, pioglitazone, in addition to exerting a sustained glucose-lowering effect, also has ancillary metabolic actions of potential interest in addressing the cardiovascular risk of T2DM, such as preservation of beta-cell mass and function. As such, it seems a logical agent to combine with other oral anti-hyperglycaemic agents, including dipeptidyl peptidase-4 inhibitors (DPP4i). DPP4i, which may also have a potential to preserve beta-cell function, is available as a fixed-dose combination with pioglitazone, and could, potentially, attenuate some of the side effects of pioglitazone, particularly if a lower dose of the thiazolidinedione is used. This review critically discusses the potential for early combination of pioglitazone and DPP4i.
Collapse
Affiliation(s)
- Stefano Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Robert Chilton
- Division of CardiologyUniversity of Texas Health Science Center at San Antonio and South Texas Veterans Health Care SystemSan AntonioTexas
| |
Collapse
|
24
|
TRPV1: A Potential Therapeutic Target in Type 2 Diabetes and Comorbidities? Trends Mol Med 2017; 23:1002-1013. [DOI: 10.1016/j.molmed.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
|
25
|
Xian M, Wang T, Zhang W, Gao J, Zhang Y, Li D, Wei J, Yang H. Yixinshu ameliorates hippocampus abnormality induced by heart failure viathe PPARγ signaling pathway. RSC Adv 2017. [DOI: 10.1039/c7ra10650e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Yizinshu (YXS) improves cardiac function and ameliorates hippocampus abnormality induced by heart failureviathe PPARγ signaling pathway.
Collapse
Affiliation(s)
- Minghua Xian
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Tingting Wang
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Wen Zhang
- College of Ethnic Medicine
- Chengdu University of TCM
- Chengdu 610072
- China
| | - Jinhuan Gao
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Yi Zhang
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Defeng Li
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Junying Wei
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Hongjun Yang
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| |
Collapse
|