1
|
Darwesh AM, Fang L, Altamimi TR, Jamieson KL, Bassiouni W, Valencia R, Huang A, Wang F, Zhang H, Ahmed M, Gopal K, Zhang Y, Michelakis ED, Ussher JR, Edin ML, Zeldin DC, Barakat K, Oudit GY, Kassiri Z, Lopaschuk GD, Seubert JM. Cardioprotective effect of 19,20-epoxydocosapentaenoic acid (19,20-EDP) in ischaemic injury involves direct activation of mitochondrial sirtuin 3. Cardiovasc Res 2025; 121:267-282. [PMID: 39658136 PMCID: PMC12012443 DOI: 10.1093/cvr/cvae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
AIMS Although current clinical therapies following myocardial infarction (MI) have improved patient outcomes, morbidity, and mortality rates, secondary to ischaemic and ischaemia reperfusion (IR) injury remains high. Maintaining mitochondrial quality is essential to limit myocardial damage following cardiac ischaemia and IR injury. The mitochondrial deacetylase sirtuin 3 (SIRT3) plays a pivotal role in regulating mitochondrial function and cardiac energy metabolism. In the current study, we hypothesize that 19,20-epoxydocosapentaenoic acid (19,20-EDP) attenuates cardiac IR injury via stimulating mitochondrial SIRT3. METHODS AND RESULTS Ex vivo models of isolated heart perfusions were performed in C57BL/6 mice to assess the effect of 19,20-EDP on cardiac function and energy metabolism following IR injury. In vivo permanent occlusion of the left anterior descending coronary artery was performed to induce MI; mice were administered 19,20-EDP with or without the SIRT3 selective inhibitor 3-TYP. Mitochondrial SIRT3 targets and respiration were assessed in human left ventricular tissues obtained from individuals with ischaemic heart disease (IHD) and compared to non-failing controls (NFCs). Binding affinity of 19,20-EDP to human SIRT3 was assessed using molecular modelling and fluorescence thermal shift assay. Results demonstrated that hearts treated with 19,20-EDP had improved post-ischaemic cardiac function, better glucose oxidation rates, and enhanced cardiac efficiency. The cardioprotective effects were associated with enhanced mitochondrial SIRT3 activity. Interestingly, treatment with 19,20-EDP markedly improved mitochondrial respiration and SIRT3 activity in human left ventricle (LV) fibres with IHD compared to NFC. Moreover, 19,20-EDP was found to bind to the human SIRT3 protein enhancing the NAD+-complex stabilization leading to improved SIRT3 activity. Importantly, the beneficial effects of 19,20-EDP were abolished by SIRT3 inhibition or using the S149A mutant SIRT3. CONCLUSION These data demonstrate that 19,20-EDP-mediated cardioprotective mechanisms against ischaemia and IR injury involve mitochondrial SIRT3, resulting in improved cardiac efficiency.
Collapse
Affiliation(s)
- Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton, AB, Canada T6G 2H7
| | - Tariq R Altamimi
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton, AB, Canada T6G 2H7
| | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton, AB, Canada T6G 2H7
| | - Andy Huang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Faqi Wang
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hao Zhang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
- Quantitative Solutions, API, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Yongneng Zhang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Evangelos D Michelakis
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Matthew L Edin
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Darryl C Zeldin
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
2
|
Yousef A, Fang L, Heidari M, Kranrod J, Seubert JM. The role of CYP-sEH derived lipid mediators in regulating mitochondrial biology and cellular senescence: implications for the aging heart. Front Pharmacol 2024; 15:1486717. [PMID: 39703395 PMCID: PMC11655241 DOI: 10.3389/fphar.2024.1486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart. The link between mitochondrial processes and cellular senescence contributed to the age-related decline in cardiac function. These include changes in mitochondrial functions and behaviours that arise from various factors, including impaired dynamics, dysregulated biogenesis, mitophagy, mitochondrial DNA (mtDNA), reduced respiratory capacity, and mitochondrial structural changes. Thus, regulation of mitochondrial biology has a role in cellular senescence and cardiac function in aging hearts. Targeting senescent cells may provide a novel therapeutic approach for treating and preventing CVD associated with aging. CYP epoxygenases metabolize N-3 and N-6 polyunsaturated fatty acids (PUFA) into epoxylipids that are readily hydrolyzed to diol products by soluble epoxide hydrolase (sEH). Increasing epoxylipids levels or inhibition of sEH has demonstrated protective effects in the aging heart. Evidence suggests they may play a role in cellular senescence by regulating mitochondria, thus reducing adverse effects of aging in the heart. In this review, we discuss how mitochondria induce cellular senescence and how epoxylipids affect the senescence process in the aged heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mobina Heidari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Kvasnička A, Kotaška K, Friedecký D, Ježdíková K, Brumarová R, Hnát T, Kala P. Long-chain polyunsaturated fatty acid-containing phosphatidylcholines predict survival rate in patients after heart failure. Heliyon 2024; 10:e39979. [PMID: 39553601 PMCID: PMC11567051 DOI: 10.1016/j.heliyon.2024.e39979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Background Heart failure (HF) is becoming an increasingly prevalent issue, particularly among the elderly population. Lipids are closely associated with cardiovascular disease (CVD) pathology. Lipidomics as a comprehensive profiling tool is showing to be promising in the prediction of events and mortality due to CVD as well as identifying novel biomarkers. Materials and methods In this study, eicosanoids and lipid profiles were measured in order to predict survival in patients with de novo or acute decompensated HF. Our study included 50 patients (16 females, mean age 73 years and 34 males, mean age 71 years) with de novo or acute decompensated chronic HF with a median follow-up of 7 months. Lipids were semiquantified using targeted lipidomic liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Eicosanoid concentrations were determined using a commercially available sandwich ELISA assay. Results From 736 lipids and 3 eicosanoids, 39 significant lipids were selected (by using the Mann-Whitney U test after Benjamini-Hochberg correction) with the highest number of representatives belonging to the polyunsaturated (PUFA) phosphatidylcholines (PC). PC 42:10 (p = 1.44 × 10-4) was found to be the most statistically significantly elevated in the surviving group with receiver operating characteristics of AUC = 0.84 (p = 3.24 × 10-7). A multivariate supervised discriminant analysis based on the aforementioned lipid panel enabled the classification of the groups of surviving and non-surviving patients with 90 % accuracy. Conclusions In the present study we describe a trend in PUFA esterified in PC that were systematically increased in surviving patients with HF. This trend in low-abundant and rarely identified PUFA PC (mainly very long chain PUFA containing PC such as PC 42:10 or PC 40:9 containing FA 22:6, FA 20:5 and FA 20:4) suggests candidate biomarkers.
Collapse
Affiliation(s)
- Aleš Kvasnička
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacký University in Olomouc, Czech Republic
| | - Karel Kotaška
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Medical Faculty, University Hospital Motol, Prague, Czech Republic
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacký University in Olomouc, Czech Republic
| | - Karolína Ježdíková
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Medical Faculty, University Hospital Motol, Prague, Czech Republic
| | - Radana Brumarová
- Faculty of Medicine and Dentistry, Palacký University in Olomouc, Czech Republic
| | - Tomáš Hnát
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Kala
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Center of Experimental Medicine, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
4
|
Chen W, Liu Y, Deng X, Li B, Wang H, Wei G, Chen K, Wang S. CYP2C19 Loss-of-Function is an Associated Risk Factor for Premature Coronary Artery Disease: A Case-Control Study. Int J Gen Med 2024; 17:5049-5058. [PMID: 39512259 PMCID: PMC11542493 DOI: 10.2147/ijgm.s486187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Cytochrome P450 2C19 (CYP2C19) is a major enzyme involved in the biotransformation and metabolism of various substances. Loss-of-function of the CYP2C19 gene represents downregulation of CYP2C19 enzyme indication limited or no enzymatic function, which may be, in turn, associated with some disease susceptibility. The relationship between CYP2C19 polymorphisms and susceptibility to premature coronary artery disease (PCAD) is not fully understood. This study aimed to assess this relationship. Methods This study included 635 PCAD patients, and 548 age-matched non-CAD individuals as controls, from November 2019 to August 2023. The CYP2C19 rs4244285 (681G > A, *2) and rs4986893 (636G > A, *3) were genotyped, and the distribution of CYP2C19 polymorphisms between patients and controls and the relationship between CYP2C19 polymorphisms and PCAD risk were analyzed. Results A total of 442 (37.4%), 543 (45.9%), and 198 (16.7%) individuals had CYP2C19 extensive metabolizer (EM) (*1/*1), intermediate metabolizer (IM) (*1/*2 and *1/*3), and poor metabolizer (PM) (*2/*2, *2/*3, and *3/*3) phenotypes, respectively. CYP2C19 *2/*2 genotype frequency was higher, *1/*1 genotype was lower in PCAD patients than controls. Individuals with CYP2C19 PM phenotype had higher triglyceride (TG) levels than those with CYP2C19 EM or IM phenotypes. Logistic regression analysis showed that body mass index (BMI) ≥24.0 kg/m2 (≥24.0 kg/m2 vs 18.5-23.9 kg/m2, odds ratio (OR): 1.326, 95% confidence interval (CI): 1.041-1.688, p = 0.022), smoking (OR: 1.974, 95% CI: 1.283-3.306, p = 0.002), hypertension (OR: 1.327, 95% CI: 1.044-1.687, p = 0.021), diabetes mellitus (OR: 1.390, 95% CI: 1.054-1.834, p = 0.020), CYP2C19 PM phenotype (PM phenotype vs EM phenotype, OR: 1.701, 95% CI: 1.200-2.411, p = 0.003), and CYP2C19 IM+PM phenotypes (IM+PM vs EM phenotype, OR: 1.369, 95% CI: 1.077-1.740, p = 0.010) were associated with PCAD. Conclusion CYP2C19 PM or IM+PM phenotypes, overweight, smoking, hypertension, and diabetes mellitus were associated with PCAD.
Collapse
Affiliation(s)
- Wenhao Chen
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Yuanliang Liu
- Department of Computer Tomography, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Xunwei Deng
- Research Experimental Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Bin Li
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Hao Wang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Guoliang Wei
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Kehui Chen
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Shen Wang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
5
|
Li L, Lu Y, Du Z, Fang M, Wei Y, Zhang W, Xu Y, Sun J, Zeng X, Hu G, Wang L, Jiang Y, Liu S, Tang Y, Yu H, Tu P, Guo X. Integrated untargeted/targeted metabolomics identifies a putative oxylipin signature in patients with atrial fibrillation and coronary heart disease. J Transl Int Med 2024; 12:495-509. [PMID: 39513034 PMCID: PMC11538890 DOI: 10.1515/jtim-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Background and Objective Atrial fibrillation (AF) and coronary heart disease (CHD) are closely related to metabolic dysregulation. However, the metabolic characteristics of AF patients with concomitant CHD remain unclear. The aims of this study were to elucidate the metabolic profiles of patients with AF and CHD to seek new therapeutic targets and related factors of AF combined with CHD. Methods Untargeted metabolomics and targeted oxylipins profiling were performed to characterize the serum metabolome landscape of patients with AF, CHD, and AF comorbid CHD. Results The serum metabolic fingerprints of patients with AF comorbid CHD were significantly differentiated from normal controls (NC) and individuals with AF or CHD alone, and the differentiated metabolites dominated by a variety of lipid alterations in the phospholipid and fatty acid metabolism. Furthermore, the targeted profiles of oxylipins demonstrated that the levels of arachidonic acid derivatives including prostaglandins, leukotrienes, hydroxy-docosahexaenoic acids, hydroxy-eicostetraenoic acids and hydroxy-eicosatrienoic acids in patients with AF and CHD were significantly different from those in the NC, AF, and CHD groups. Several prostaglandins were positively associated with echocardiographic indicators of myocardial remodeling. Conclusions This study updates metabolic insights of AF and CHD and provides potential therapeutic targets for preventing or treating AF comorbid CHD.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Zhiyong Du
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing100029, China
| | - Meng Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Ying Wei
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Wenxin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Yisheng Xu
- Waters Technologies Ltd., Beijing102600, China
| | - Jiaxu Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Xiangrui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Guomin Hu
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Lingli Wang
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Shuwang Liu
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Yida Tang
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| |
Collapse
|
6
|
Shi Y, Yang Y, Feng M, Wu H. CYP2C19 loss-of-function variants are independent risk factors for premature cerebral infarction: a hospital based retrospective study. BMC Cardiovasc Disord 2024; 24:602. [PMID: 39472784 PMCID: PMC11520391 DOI: 10.1186/s12872-024-04269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE Cytochrome P450 2C19 (CYP2C19) plays an vital role in the course of cardiovascular and cerebrovascular diseases by affecting lipid metabolism. Triglyceride-glucose (TyG) is a comprehensive index composed of triglyceride and blood glucose, has relationship with some diseases. There was no research report on the association CYP2C19 polymorphisms, TyG with premature cerebral infarction (CI) (onset ≤ 65 years old) susceptibility. METHODS This study retrospectively analyzed 1953 CI patients aged ≤ 65 years old from December 2018 to March 2024, and 1919 age-matched individuals with non-CI as controls. The relationship between CYP2C19 polymorphisms, TyG and premature CI risk were analyzed. RESULTS The proportion of hypertension, and diabetes mellitus in patients with premature CI was higher than those in controls. The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C), and TyG levels in patients with premature CI were significantly higher than those in controls (all p < 0.05). The patients had lower CYP2C19 *1 allele frequency (63.3% vs. 69.6%, p < 0.001) and higher CYP2C19 *2 allele frequency (31.3% vs. 25.4%, p < 0.001) than controls. Logistic regression analysis showed that smoking history (odds ratio (OR): 1.193, 95% confidence interval (CI): 1.002-1.422, p = 0.048), hypertension (OR: 3.371, 95% CI: 2.914-3.898, p < 0.001), diabetes mellitus (OR: 1.911, 95% CI: 1.632-2.237, p < 0.001), CYP2C19 intermediate metabolizer (IM) + poor metabolizer (PM) phenotypes (OR: 1.424, 95% CI: 1.243-1.631, p < 0.001), and dyslipidemia (OR: 1.294, 95% CI: 1.077-1.554, p = 0.006) were independent risk factors for premature CI. CONCLUSIONS History of smoking, hypertension, diabetes mellitus, dyslipidemia, and CYP2C19 IM + PM phenotypes were independently associated with premature CI susceptibility.
Collapse
Affiliation(s)
- Yuliang Shi
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Yuxian Yang
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Miaoling Feng
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Department of Prenatal Diagnostic Center, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
| |
Collapse
|
7
|
Han W, Xiong N, Zhong R, Pan Z. CYP2C19 Poor Metabolizer Status and High System Inflammation Response Index are Independent Risk Factors for Premature Myocardial Infarction: A Hospital-Based Retrospective Study. Int J Gen Med 2024; 17:4959-4969. [PMID: 39494358 PMCID: PMC11529344 DOI: 10.2147/ijgm.s489235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Objective Atherosclerosis (AS) is a sustained chronic vascular inflammatory response caused by lipid metabolism disorders and immune response disorders and is the main cause of premature (men ≤ 55 years old, women ≤ 65 years old) myocardial infarction (PMI). Cytochrome P450 2C19 (CYP2C19) (related to vascular function and lipid metabolism) and peripheral immune cell levels and plays an important role in the course of AS. The association CYP2C19 polymorphisms, comprehensive immunoinflammatory indices with PMI susceptibility is unclear. Methods This study included 485 PMI patients, and 639 age-matched non-PMI individuals as controls, from January 2019 to March 2024. The relationship between CYP2C19 polymorphisms, peripheral immunoinflammatory indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) and PMI risk were analyzed. Results The inflammatory indices levels in PMI patients were higher than those in controls (all p<0.05). The frequencies of the CYP2C19 *1/*2 and *2/*2 genotypes were higher, while the frequency of the *1/*1 genotype was lower in the PMI patients than those in controls. The cut-off values of TC, TG, LDL-C, PIV, SII, and SIRI were 5.065, 1.305, 2.805, 410.485, 869.645, and 1.495 for distinguishing PMI, respectively. Logistic regression analysis showed that male (odds ratio (OR): 1.607, 95% confidence interval (CI): 1.134-2.277, p=0.008), history of smoking (OR: 7.108, 95% CI: 4.351-11.614, p<0.001), diabetes mellitus (OR: 4.906, 95% CI: 3.333-7.223, p<0.001), CYP2C19 poor metabolizer (PM) (*2/*2, *2/*3, and *3/*3) (OR: 2.147, 95% CI: 1.279-3.603, p=0.004), and high TG (≥1.305 vs <1.305, OR: 2.598, 95% CI: 1.864-3.623, p<0.001) and SIRI level (≥1.495 vs <1.495, OR: 2.495, 95% CI: 1.432-4.349, p=0.001) were independent risk factors for PMI. Conclusion CYP2C19 PM phenotype, high SIRI level (≥1.495) and TG level (≥1.305), male, history of smoking, and diabetes mellitus were independently associated with PMI susceptibility.
Collapse
Affiliation(s)
- Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Renkai Zhong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhongyi Pan
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
8
|
Perepechaeva ML, Stefanova NA, Grishanova AY, Kolosova NG. The Expression of Genes CYP1A1, CYP1B1, and CYP2J3 in Distinct Regions of the Heart and Its Possible Contribution to the Development of Hypertension. Biomedicines 2024; 12:2374. [PMID: 39457686 PMCID: PMC11505345 DOI: 10.3390/biomedicines12102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND It is believed that alterations in the functioning of the cytochrome P450 (CYP), which participates in metabolic transformations of endogenous polyunsaturated fatty acids (PUFAs) (with the formation of cardioprotective or cardiotoxic products), affects the development of age-related cardiovascular diseases and reduces the effectiveness of some cardioselective drugs. For example, CYP2J2 activation or CYP1B1 inhibition protects against the cardiovascular toxicity of anticancer drugs. It is currently unclear whether CYPs capable of metabolizing arachidonic acid and ω-3 PUFAs to vasodilatory and vasoconstrictive derivatives are expressed in all heart regions. METHODS The work was performed on senescence-accelerated OXYS rats featuring elevated blood pressure, OXYSb rats (an OXYS substrain with normal blood pressure), and Wistar rats as a "healthy" control. The mRNA level was determined in the right and left ventricles, the right and left atria, and the aorta of 1-, 3-, and 12-month-old rats. RESULTS We showed that all heart regions express CYPs capable of metabolizing arachidonic acid and ω-3 PUFAs and revealed significant differences between heart regions both in the mRNA level of genes CYP1B1, CYP2J3, and CYP1A1 and in the time course of expression changes with age. CONCLUSIONS We noticed that expression levels of these CYPs in the heart regions and aorta differ between hypertensive OXYS rats, normotensive OXYSb rats, and healthy Wistar rats but could not detect any clear-cut patterns associated with the hypertensive status of OXYS rats.
Collapse
Affiliation(s)
- Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| | - Natalia A. Stefanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; (N.A.S.); (N.G.K.)
| | - Alevtina Y. Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; (N.A.S.); (N.G.K.)
| |
Collapse
|
9
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
10
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Hojná S, Malínská H, Hüttl M, Vaňourková Z, Marková I, Miklánková D, Hrdlička J, Papoušek F, Neckář J, Kujal P, Behuliak M, Rauchová H, Kadlecová M, Sedmera D, Neffeová K, Zábrodská E, Olejníčková V, Zicha J, Vaněčková I. Hepatoprotective and cardioprotective effects of empagliflozin in spontaneously hypertensive rats fed a high-fat diet. Biomed Pharmacother 2024; 174:116520. [PMID: 38581924 DOI: 10.1016/j.biopha.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.
Collapse
Affiliation(s)
- Silvie Hojná
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeňka Vaňourková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jaroslav Hrdlička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Papoušek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kujal
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Neffeová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Zábrodská
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Kranrod JW, Darwesh AM, Bassiouni W, Huang A, Fang L, Korodimas JV, Adebesin AM, Munnuri S, Falck JR, Seubert JM. Cardioprotective Action of a Novel Synthetic 19,20-EDP Analog Is Sirt Dependent. J Cardiovasc Pharmacol 2024; 83:105-115. [PMID: 38180457 PMCID: PMC10770468 DOI: 10.1097/fjc.0000000000001495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/30/2023] [Indexed: 01/06/2024]
Abstract
ABSTRACT Mounting evidence suggests that cytochrome P450 epoxygenase-derived metabolites of docosahexaenoic acid, called epoxydocosapentaenoic acids (EDPs), limit mitochondrial damage after cardiac injury. In particular, the 19,20-EDP regioisomer has demonstrated potent cardioprotective action. Thus, we investigated our novel synthetic 19,20-EDP analog SA-22 for protection against cardiac ischemia-reperfusion (IR) injury. Isolated C57BL/6J mouse hearts were perfused through Langendorff apparatus for 20 minutes to obtain baseline function, followed by 30 minutes of global ischemia. Hearts were then treated with vehicle, 19,20-EDP, SA-22, or SA-22 with the pan-sirtuin inhibitor nicotinamide or the SIRT3-selective inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) at the start of 40 minutes reperfusion (N = 5-8). We assessed IR injury-induced changes in recovery of myocardial function, using left ventricular developed pressure and systolic and diastolic pressure change. Tissues were assessed for electron transport chain function, SIRT1 and SIRT3, optic atrophy type 1, and caspase-1. We also used H9c2 cells in an in vitro model of hypoxia/reoxygenation injury (N = 3-6). Hearts perfused with SA-22 had significantly improved postischemic left ventricular developed pressure, systolic and diastolic recovery (64% of baseline), compared with vehicle control (15% of baseline). In addition, treatment with SA-22 led to better catalytic function observed in electron transport chain and SIRT enzymes. The protective action of SA-22 resulted in reduced activation of pyroptosis in both hearts and cells after injury. Interestingly, although nicotinamide cotreatment worsened functional outcomes, cell survival, and attenuated sirtuin activity, it failed to completely attenuate SA-22-induced protection against pyroptosis, possibly indicating EDPs exert cytoprotection through pleiotropic mechanisms. In short, these data demonstrate the potential of our novel synthetic 19,20-EDP analog, SA-22, against IR/hypoxia-reoxygenation injury and justify further development of therapeutic agents based on 19,20-EDP.
Collapse
Affiliation(s)
- Joshua W. Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andy Huang
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada
| | - Liye Fang
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, T6G 1C9, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jacob V. Korodimas
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Adeniyi Michael Adebesin
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sailu Munnuri
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- TCG GreenChem, Inc. Process R&D Center at Princeton South, Ewing, NJ, USA 08628
| | - John R. Falck
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, T6G 1C9, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
13
|
Liu QY, Chen ZM, Li DW, Li AF, Ji Y, Li HY, Yang WD. Toxicity and potential underlying mechanism of Karenia selliformis to the fish Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106643. [PMID: 37549486 DOI: 10.1016/j.aquatox.2023.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Karenia selliformis can produce toxins such as gymnodimines, and form microalgal blooms causing massive mortality of marine life such as fish and shellfish, and resulting in serious economic losses. However, there are a few of studies on the toxic effects of K. selliformis on marine organisms and the underlying mechanisms, and it is not clear whether the toxins produced by K. selliformis affect fish survival through the food chain. In this study, a food chain was simulated and composed by K. selliformis-brine shrimp-marine medaka to investigate the possibility of K. selliformis toxicity transmission through the food chain, in which fish behavior, histopathology and transcriptomics changes were observed after direct or indirect exposure (through the food chain) of K. selliformis. We found that both direct and indirect exposure of K. selliformis could affect the swimming behavior of medaka, manifested as decreased swimming performance and increased "frozen events". Meanwhile, exposure to K. selliformis caused pathological damage to the intestine and liver tissues of medaka to different degree. The effect of direct exposure to K. selliformis on swimming behavior and damage to fish tissues was more severe. In addition, K. selliformis exposure induced significant changes in the expression of genes related to energy metabolism, metabolic detoxification and immune system in medaka. These results suggest that toxins produced by K. selliformis can be transferred through the food chain, and that K. selliformis can destroy the intestinal integrity of medaka and increase the absorption of toxins, leading to energy metabolism disorders in fish, affecting the metabolic detoxification capacity of the liver. Our finding provides novel insight into the toxicity of K. selliformis to marine fish.
Collapse
Affiliation(s)
- Qin-Yuan Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Zi-Min Chen
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Ai-Feng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Abdrabouh AES. Toxicological and histopathological alterations in the heart of young and adult albino rats exposed to mosquito coil smoke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93070-93087. [PMID: 37501034 PMCID: PMC10447284 DOI: 10.1007/s11356-023-28812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Mosquito coil repellents are well-known indoor air pollutant with significant health concerns. The present study investigated the toxic effects of mosquito coil smoke on the heart of young and adult male rats. The animals were subjected to the smoke for 6 h/day, 6 days/week, for 4 weeks. Within the first hour after lighting the coil, significant amounts of formaldehyde, total volatile organic compounds, and particulate matter (PM2.5 and PM10) were detected. Both exposed ages, particularly the young group, showed a significant increase in the activities of serum aspartate aminotransferase, lactate dehydrogenase, creatine kinase-MB, and the levels of troponin I, myoglobin, Na+ levels, lipid profile, and inflammatory markers (interleukin-6 and C-reactive protein) as well as a significant decrease in K+ levels and cardiac Na-K ATPase activity, indicating development of cardiac inflammation and dysfunction. Furthermore, the toxic stress response was validated by significant downregulation at expression of the detoxifying enzyme cytochrome p450. Histopathological studies in both age groups, especially the young group, revealed cardiomyocyte degeneration and necrotic areas. Moreover, upregulation at the pro-apoptotic markers, caspase3, P53, and cytochrome C expressions, was detected by immunohistochemical approach in heart sections of the exposed groups. Finally, the myocardial dysfunctional effects of the coil active ingredient, meperfluthrin, were confirmed by the docking results which indicated a high binding affinity of meperfluthrin, with Na-K ATPase and caspase 3. In conclusion, both the young and adult exposed groups experienced significant cardiac toxicity changes evidenced by cell apoptosis and histopathological alterations as well as disruption of biochemical indicators.
Collapse
|
15
|
Leow JWH, Gu Y, Chan ECY. Investigating the relevance of CYP2J2 inhibition for drugs known to cause intermediate to high risk torsades de pointes. Eur J Pharm Sci 2023; 187:106475. [PMID: 37225005 DOI: 10.1016/j.ejps.2023.106475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Cardiac cytochrome P450 2J2 (CYP2J2) metabolizes endogenous polyunsaturated fatty acid, arachidonic acid (AA), to bioactive regioisomeric epoxyeicosatrienoic acid (EET) metabolites. This endogenous metabolic pathway has been postulated to play a homeostatic role in cardiac electrophysiology. However, it is unknown if drugs that cause intermediate to high risk torsades de pointes (TdP) exhibit inhibitory effects against CYP2J2 metabolism of AA to EETs. In this study, we demonstrated that 11 out of 16 drugs screened with intermediate to high risk of TdP as defined by the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative are concurrently reversible inhibitors of CYP2J2 metabolism of AA, with unbound inhibitory constant (Ki,AA,u) values ranging widely from 0.132 to 19.9 µM. To understand the physiological relevancy of Ki,AA,u, the in vivo unbound drug concentration within human heart tissue (Cu,heart) was calculated via experimental determination of in vitro unbound partition coefficient (Kpuu) for 10 CYP2J2 inhibitors using AC16 human ventricular cardiomyocytes as well as literature-derived values of fraction unbound in plasma (fu,p) and plasma drug concentrations in clinical scenarios leading to TdP. Notably, all CYP2J2 inhibitors screened belonging to the high TdP risk category, namely vandetanib and bepridil, exhibited highest Kpuu values of 18.2 ± 1.39 and 7.48 ± 1.16 respectively although no clear relationship between Cu,heart and risk of TdP could eventually be determined. R values based on basic models of reversible inhibition as per FDA guidelines were calculated using unbound plasma drug concentrations (Cu,plasma) and adapted using Cu,heart which suggested that 4 out of 10 CYP2J2 inhibitors with intermediate to high risk of TdP demonstrate greatest potential for clinically relevant in vivo cardiac drug-AA interactions. Our results shed novel insights on the relevance of CYP2J2 inhibition in drugs with risk of TdP. Further studies ascertaining the role of CYP2J2 metabolism of AA in cardiac electrophysiology, characterizing inherent cardiac ion channel activities of drugs with risk of TdP as well as in vivo evidence of drug-AA interactions will be required prior to determining if CYP2J2 inhibition could be an alternative mechanism contributing to drug-induced TdP.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Yuxiang Gu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543.
| |
Collapse
|
16
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
17
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
18
|
Abstract
INTRODUCTION Cytochrome P450s (CYPs) are a superfamily of monooxygenases with diverse biological roles. CYP2J2 is an isozyme highly expressed in the heart where it metabolizes endogenous substrates such as N-3/N-6 polyunsaturated fatty acids (PUFA) to produce lipid mediators involved in homeostasis and cardioprotective responses. Expanding our knowledge of the role CYP2J2 has within the heart is important for understanding its impact on cardiac health and disease. AREAS COVERED The objective of this review was to assess the state of knowledge regarding cardiac CYP2J2. A literature search was conducted using PubMed-MEDLINE (from 2022 and earlier) to evaluate relevant studies regarding CYP2J2 mediated cardioprotection, small molecule modulators, effects of CYP2J2 substrates toward biologically relevant effects and implications of CYP2J2 polymorphisms and sexual dimorphism in the heart. EXPERT OPINION Cardiac CYP2J2-mediated metabolism of endogenous and exogenous substrates have been shown to impact cardiac function. Identifying individual factors, like sex and age, that affect CYP2J2 require further elucidation to better understand CYP2J2's clinical relevance. Resolving the biological targets and activities of CYP2J2-derived PUFA metabolites will be necessary to safely target CYP2J2 and design novel analogues. Targeting CYP2J2 for therapeutic aims offers a potential novel approach to regulating cardiac homeostasis, drug metabolism and cardioprotection.
Collapse
|
19
|
Atypical kinetics of cytochrome P450 enzymes in pharmacology and toxicology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:131-176. [PMID: 35953154 DOI: 10.1016/bs.apha.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atypical kinetics are observed in metabolic reactions catalyzed by cytochrome P450 enzymes (P450). Yet, this phenomenon is regarded as experimental artifacts in some instances despite increasing evidence challenging the assumptions of typical Michaelis-Menten kinetics. As P450 play a major role in the metabolism of a wide range of substrates including drugs and endogenous compounds, it becomes critical to consider the impact of atypical kinetics on the accuracy of estimated kinetic and inhibitory parameters which could affect extrapolation of pharmacological and toxicological implications. The first half of this book chapter will focus on atypical non-Michaelis-Menten kinetics (e.g. substrate inhibition, biphasic and sigmoidal kinetics) as well as proposed underlying mechanisms supported by recent insights in mechanistic enzymology. In particular, substrate inhibition kinetics in P450 as well as concurrent drug inhibition of P450 in the presence of substrate inhibition will be further discussed. Moreover, mounting evidence has revealed that despite the high degree of sequence homology between CYP3A isoforms (i.e. CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different susceptibilities and potencies of mechanism-based inactivation (MBI) with a common drug inhibitor. These experimental observations pertaining to the presence of these atypical isoform- and probe substrate-specific complexities in CYP3A isoforms by several clinically-relevant drugs will therefore be expounded and elaborated upon in the second half of this book chapter.
Collapse
|
20
|
Mo HY, Wei QY, Zhong QH, Zhao XY, Guo D, Han J, Noracharttiyapot W, Visser L, van den Berg A, Xu YM, Lau ATY. Cytochrome P450 27C1 Level Dictates Lung Cancer Tumorigenicity and Sensitivity towards Multiple Anticancer Agents and Its Potential Interplay with the IGF-1R/Akt/p53 Signaling Pathway. Int J Mol Sci 2022; 23:7853. [PMID: 35887201 PMCID: PMC9324654 DOI: 10.3390/ijms23147853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Cytochrome P450 enzymes (CYP450s) exert mighty catalytic actions in cellular metabolism and detoxication, which play pivotal roles in cell fate determination. Preliminary data shows differential expression levels of CYP27C1, one of the "orphan P450s" in human lung cancer cell lines. Here, we study the functions of CYP27C1 in lung cancer progression and drug endurance, and explore its potential to be a diagnostic and therapeutic target for lung cancer management. Quantitative real-time PCR and immunoblot assays were conducted to estimate the transcription and protein expression level of CYP27C1 in human lung cancer cell lines, which was relatively higher in A549 and H1975 cells, but was lower in H460 cells. Stable CYP27C1-knockdown A549 and H1975 cell lines were established, in which these cells showed enhancement in cell proliferation, colony formation, and migration. In addition, aberrant IGF-1R/Akt/p53 signal transduction was also detected in stable CYP27C1-knockdown human lung cancer cells, which exhibited greater tolerance towards the treatments of anticancer agents (including vinorelbine, picropodophyllin, pacritinib, and SKLB610). This work, for the first time, reveals that CYP27C1 impacts lung cancer cell development by participating in the regulation of the IGF-1R/Akt/p53 signaling pathway, and the level of CYP27C1 plays indispensable roles in dictating the cellular sensitivity towards multiple anticancer agents.
Collapse
Affiliation(s)
- Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Dan Guo
- Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Jin Han
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Wachiraporn Noracharttiyapot
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
21
|
Zhang M, Shu H, Chen C, He Z, Zhou Z, Wang DW. Epoxyeicosatrienoic acid: A potential therapeutic target of heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 153:113326. [PMID: 35759865 DOI: 10.1016/j.biopha.2022.113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) reduces the quality of life, costs substantial medical resources, and has a high mortality. However, we lack an effective therapy for HFpEF due to our limited knowledge of its mechanism. Therefore, it is crucial to explore novel therapeutics, such as those with endogenous protective roles, and seek new targeted therapies. Epoxyeicosatrienoic acids (EETs) are endogenous bioactive metabolites of arachidonic acids produced by cytochrome P450 (CYP) epoxygenases. EETs can function as endogenous cardioprotective factors with potent inhibitory roles in inflammation, endothelial dysfunction, cardiac remodeling, and fibrosis, which are the fundamental mechanisms of HFpEF. This suggests that EETs have the potential function to protect against HFpEF. Therefore, we present an overview of the ever-expanding world of EETs and how they might help alleviate the pathophysiology underlying HFpEF to provide new insights for research in this field.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
22
|
Gao L, Kong X, Wu W, Feng Z, Zhi H, Zhang Z, Long H, Lei M, Hou J, Wu W, Guo DA. Dissecting the Regulation of Arachidonic Acid Metabolites by Uncaria rhynchophylla (Miq). Miq. in Spontaneously Hypertensive Rats and the Predictive Target sEH in the Anti-Hypertensive Effect Based on Metabolomics and Molecular Docking. Front Pharmacol 2022; 13:909631. [PMID: 35712719 PMCID: PMC9196077 DOI: 10.3389/fphar.2022.909631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
Uncariarhynchophylla (Miq). Miq. (UR), as a traditional Chinese medicine, was employed in treating hypertension as a safe and effective therapy. The pharmacological properties of UR have characteristics of multiple biological targets and multiple functional pathways. Hypertension is related to impaired metabolic homeostasis and is especially associated with the abnormal regulation of arachidonic acid metabolites, the classical cardiovascular active compounds. This study aimed to examine the anti-hypertensive effect of UR extract (URE) and its regulating role in differential metabolic pathways. The results showed that daily administration of URE at a dose of 4 g crude drug/kg orally could exert hypotensive effects on spontaneously hypertensive rats (SHRs) for 8 weeks. Non-targeted metabolomics analysis of the plasma samples suggested that the anti-hypertension effect of URE in SHRs was associated with the reorganization of the perturbed metabolic network, such as the pathways of glycerophospholipid metabolism, linoleic acid metabolism, and arachidonic acid metabolism. For the targeted metabolomics, twenty-eight arachidonic acid metabolites in SHRs were quantitatively analyzed for the first time based on ultra-high performance liquid chromatography-tandem mass spectrometry method after URE administration. URE restored the functions of these cardiovascular active compounds and rebalanced the dynamics of arachidonic acid metabolic flux. Among them, the inhibition of soluble epoxide hydrolase (sEH) enzyme activity and up-regulation of vasodilators epoxyeicosatrienoic acids (EETs) were identified as contributors to the anti-hypertension effect of URE on SHRs, and sEH represented an attractive and promising drug-binding target of URE. With the molecular docking approach, 13 potential anti-hypertension ingredients as well as sEH inhibitors were discovered, which were worthy of further investigation and verification in future studies.
Collapse
Affiliation(s)
- Lei Gao
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinqin Kong
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenyong Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijin Feng
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haijuan Zhi
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zijia Zhang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huali Long
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Lei
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinjun Hou
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jinjun Hou, ; Wanying Wu,
| | - Wanying Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jinjun Hou, ; Wanying Wu,
| | - De-an Guo
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Integrated Gut-Heart Axis and Network Pharmacology to Reveal the Mechanisms of the Huoxue Wentong Formula Against Myocardial Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9538512. [PMID: 35600966 PMCID: PMC9117028 DOI: 10.1155/2022/9538512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022]
Abstract
Background Myocardial ischemia (MI) is a major public health problem with high mortality and morbidity worldwide. Huoxue Wentong formula (HX), a traditional Chinese medicine (TCM) formula, exhibits unambiguous effects on treating MI and preventing cardiovascular diseases. However, the molecular mechanism of the therapeutic effects of HX on MI remains largely unknown. Objective This study combined microbiology, metabolomics, and network pharmacology to explore the relationship between the gut microbiota and its metabolites in MI rats and the efficacy of HX. Methods First, the MI rat model was established by ligation of left anterior descending. Echocardiography, Masson's staining, and hematoxylin and eosin staining were used to evaluate the effect of HX on MI. Then, fecal metabolomics and 16S rRNA sequencing were used to obtain the microbial and metabolic characteristics of HX on MI. After that, network pharmacology was used to predict the target and action pathway of HX in treating MI. Finally, the relationship between fecal metabolites and target was explored through bioinformatics. Results HX can improve the cardiac function and ameliorated myocardial fibrosis in MI rats. Moreover, HX can affect the gut microbiota community and metabolites of MI rats, especially Bacteroides, Deferribacteres, Ruminococcus_sp._zagget7, Acidobacteria, daidzein, L-lactic acid, and malate. Network pharmacology found that HX can function through tumor necrosis factor (TNF), tumor protein p53 (TP53), interleukin 6 (IL6), vascular endothelial growth factor A (VEGFA), fos proto-oncogene (FOS), bcl2-associated X (BAX), myeloperoxidase (MPO), PI3K-Akt signaling pathways, and HIF-1 signaling pathway. The mechanism study showed that the anti-MI effect of HX was related to valine, leucine, and isoleucine biosynthesis, fatty acid biosynthesis, and arachidonic acid metabolism. Conclusion This study demonstrates that HX treated MI rats in a multitarget and multipathway manner. Its mechanism is related to the change of gut microbiota and the regulation of valine, leucine and isoleucine biosynthesis, fatty acid biosynthesis, and arachidonic acid metabolism.
Collapse
|
24
|
Ali J, Aziz MA, Rashid MMO, Basher MA, Islam MS. Propagation of age‐related diseases due to the changes of lipid peroxide and antioxidant levels in elderly people: A narrative review. Health Sci Rep 2022; 5:e650. [PMID: 35620545 PMCID: PMC9125877 DOI: 10.1002/hsr2.650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Aims Lipid peroxidation end products are the major culprit for inducing chronic diseases in elderly people. Along with the elevated level of lipid peroxide biomarkers, there is a significant disruption of antioxidants balance, which combinedly propagate the diseases of elderly people. The aim of the present review is to bridge the connection of changes in lipid peroxides biomarkers and antioxidants level with age‐associated diseases in elderly people. Methods This narrative review was performed following a comprehensive search for suitable articles in multiple online databases, including PubMed, Google Scholar, EMBASE, Web of Science, Cochrane Library, and ScienceDirect using selected search terms. The most appropriate literature was included based on the selection criteria. Results From the review, it is found that many age‐related diseases propagated with an increased level of the end products of lipid peroxide and reduced levels of antioxidants in elderly people. When the end products of lipid peroxidation increase in the body, it creates oxidative stress, which ultimately leads to many complicated diseases, including cancers, cardiovascular and neurogenic diseases, and many other chronic inflammatory diseases. The oxidative stress induced by peroxidation can be assessed by different lipid peroxide end products such as malondialdehyde, oxidized low‐density lipoprotein, isoprostanes, neuroprostanes, lipoperoxides, oxysterols (7‐ketocholesterol, 7β‐hydroxycholesterol), and many more. Conclusions This study definitively answers the correlation between the changes in lipid peroxides and antioxidants level and age‐related diseases. Our narrative article recommends future investigations for elucidating the mechanisms rigorously to establish a compact correlation.
Collapse
Affiliation(s)
- Julfikar Ali
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
| | - Md. Abdul Aziz
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy Noakhali Science and Technology University Noakhali Bangladesh
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences State University of Bangladesh Dhaka Bangladesh
| | - Md. Mamun Or Rashid
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
| | - Mohammad Anwarul Basher
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy Noakhali Science and Technology University Noakhali Bangladesh
| |
Collapse
|
25
|
Liu Y, Yao M, Li S, Wei X, Ding L, Han S, Wang P, Lv B, Chen Z, Sun Y. Integrated application of multi-omics approach and biochemical assays provides insights into physiological responses to saline-alkaline stress in the gills of crucian carp (Carassius auratus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153622. [PMID: 35124035 DOI: 10.1016/j.scitotenv.2022.153622] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Given the decline of freshwater resources in recent years, the accessible space for freshwater aquaculture is rapidly shrinking, and aquaculture in saline-alkaline water has become a critical approach to meet the rising demand. However, the molecular mechanism behind the adverse effects of saline-alkaline water on fish and the regulatory mechanism in fish tolerance remains unclear. Here, adult crucian carp (Carassius auratus) were exposed to 60 mmol/L NaHCO3 for 30 days. It was observed that long-term carbonate alkalinity (CA) exposure not only caused gill oxidative stress but also changed the levels of several physiological parameters associated with ammonia transport, including blood ammonia, urea nitrogen (BUN), glutamine (Gln), and glutamine synthetase (GS). According to the metabolomics study, differential metabolites (DMs) engaged in various metabolic pathways, such as glycerophospholipid metabolism, sphingolipid metabolism, and arachidonic acid metabolism. In addition, transcriptomics data showed that differentially expressed genes (DEGs) were closely related to ammonia transport, apoptosis, and immunological response. In general, comprehensive multi-omics and biochemical analysis revealed that crucian carp might adopt Rh glycoprotein as a carrier to mediate ammonia transport and increase glutamine and urea synthesis under long-term high saline-alkaline stress to mitigate the adverse effects of blocked ammonia excretion. Simultaneously, saline-alkaline stress caused the destruction of the antioxidant system and the disorder of lipid metabolism in the crucian carp gills, which induced apoptosis and immunological response. To our knowledge, this is the first study to investigate fish's molecular and metabolic mechanisms under saline-alkaline stress using integrated metabolomics, transcriptomics, and biochemical assays. Overall, the results of this study provided new insights into the molecular mechanism behind the adverse effects of saline-alkaline water on fish and the regulatory mechanism in fish tolerance.
Collapse
Affiliation(s)
- Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingzhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shanwei Li
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaofeng Wei
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Food Science and Engineering, School of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shicheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Bochuan Lv
- First of Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
26
|
Sosnowski DK, Jamieson KL, Darwesh AM, Zhang H, Keshavarz-Bahaghighat H, Valencia R, Viveiros A, Edin ML, Zeldin DC, Oudit GY, Seubert JM. Changes in the Left Ventricular Eicosanoid Profile in Human Dilated Cardiomyopathy. Front Cardiovasc Med 2022; 9:879209. [PMID: 35665247 PMCID: PMC9160304 DOI: 10.3389/fcvm.2022.879209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Metabolites derived from N−3 and N−6 polyunsaturated fatty acids (PUFAs) have both beneficial and detrimental effects on the heart. However, contribution of these lipid mediators to dilated cardiomyopathy (DCM)-associated mitochondrial dysfunction remains unknown. This study aimed to characterize DCM-specific alterations in the PUFA metabolome in conjunction with cardiac mitochondrial quality in human explanted heart tissues. Methods Left ventricular tissues obtained from non-failing control (NFC) or DCM explanted hearts, were assessed for N−3 and N−6 PUFA metabolite levels using LC-MS/MS. mRNA and protein expression of CYP2J2, CYP2C8 and epoxide hydrolase enzymes involved in N−3 and N−6 PUFA metabolism were quantified. Cardiac mitochondrial quality was assessed by transmission electron microscopy, measurement of respiratory chain complex activities and oxygen consumption (respiratory control ratio, RCR) during ADP-stimulated ATP production. Results Formation of cardioprotective CYP-derived lipid mediators, epoxy fatty acids (EpFAs), and their corresponding diols were enhanced in DCM hearts. These findings were corroborated by increased expression of CYP2J2 and CYP2C8 enzymes, as well as microsomal and soluble epoxide hydrolase enzymes, suggesting enhanced metabolic flux and EpFA substrate turnover. DCM hearts demonstrated marked damage to mitochondrial ultrastructure and attenuated mitochondrial function. Incubation of fresh DCM cardiac fibers with the protective EpFA, 19,20-EDP, significantly improved mitochondrial function. Conclusions The current study demonstrates that increased expressions of CYP-epoxygenase enzymes and epoxide hydrolases in the DCM heart correspond with enhanced PUFA-derived EpFA turnover. This is accompanied by severe mitochondrial functional impairment which can be rescued by the administration of exogenous EpFAs.
Collapse
Affiliation(s)
- Deanna K. Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - K. Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Hao Zhang
- Department of Medicine, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | | | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Department of Medicine, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Durham, NC, United States
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Durham, NC, United States
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: John M. Seubert
| |
Collapse
|
27
|
He Z, Wang DW. The roles of eicosanoids in myocardial diseases. ADVANCES IN PHARMACOLOGY 2022; 97:167-200. [DOI: 10.1016/bs.apha.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Imig JD, Cervenka L, Neckar J. Epoxylipids and soluble epoxide hydrolase in heart diseases. Biochem Pharmacol 2022; 195:114866. [PMID: 34863976 PMCID: PMC8712413 DOI: 10.1016/j.bcp.2021.114866] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.
Collapse
Affiliation(s)
- John D Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ludek Cervenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Neckar
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
29
|
Snyder NW, O'Brien J, Singh B, Buchan G, Arroyo AD, Liu X, Bostwick A, Varner EL, Angajala A, Sobol RW, Blair IA, Mesaros C, Wendell SG. Primary saturation of α, β-unsaturated carbonyl containing fatty acids does not abolish electrophilicity. Chem Biol Interact 2021; 350:109689. [PMID: 34634267 PMCID: PMC8574066 DOI: 10.1016/j.cbi.2021.109689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Metabolism of polyunsaturated fatty acids results in the formation of hydroxylated fatty acids that can be further oxidized by dehydrogenases, often resulting in the formation of electrophilic, α,β-unsaturated ketone containing fatty acids. As electrophiles are associated with redox signaling, we sought to investigate the metabolism of the oxo-fatty acid products in relation to their double bond architecture. Using an untargeted liquid chromatography mass spectrometry approach, we identified mono- and di-saturated products of the arachidonic acid-derived 11-oxoeicosatetraenoic acid (11-oxoETE) and mono-saturated metabolites of 15-oxoETE and docosahexaenoic acid-derived 17-oxodocosahexaenoinc acid (17-oxoDHA) in both human A549 lung carcinoma and umbilical vein endothelial cells. Notably, mono-saturated oxo-fatty acids maintained their electrophilicity as determined by nucleophilic conjugation to glutathione while a second saturation of 11-oxoETE resulted in a loss of electrophilicity. These results would suggest that prostaglandin reductase 1 (PTGR1), known only for its reduction of the α,β-unsaturated double bond, was not responsible for the saturation of oxo-fatty acids at alternative double bonds. Surprisingly, knockdown of PTGR1 expression by shRNA confirmed its participation in the formation of 15-oxoETE and 17-oxoDHA mono-saturated metabolites. Furthermore, overexpression of PTGR1 in A549 cells increased the rate and total amount of oxo-fatty acid saturation. These findings will further facilitate the study of electrophilic fatty acid metabolism and signaling in the context of inflammatory diseases and cancer where they have been shown to have anti-inflammatory and anti-proliferative signaling properties.
Collapse
Affiliation(s)
- Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - James O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bhupinder Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gregory Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alejandro D Arroyo
- Department of Systems Pharmacology and Translational Therapeutics, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Anna Bostwick
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Erika L Varner
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Anusha Angajala
- Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36688, USA
| | - Robert W Sobol
- Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36688, USA
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
30
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Amin NH, Hamed MIA, Abdel-Fattah MM, Abusabaa AHA, El-Saadi MT. Design, synthesis and mechanistic study of novel diarylpyrazole derivatives as anti-inflammatory agents with reduced cardiovascular side effects. Bioorg Chem 2021; 116:105394. [PMID: 34619468 DOI: 10.1016/j.bioorg.2021.105394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
Abstract
Novel diarylpyrazole (5a-d, 6a-e, 12, 13, 14, 15a-c and 11a-g) derivatives were designed, synthesized and evaluated for their dual COX-2/sEH inhibitory activities via recombinant enzyme assays to explore their anti-inflammatory activities and cardiovascular safety profiles. Comprehensively, the structures of the synthesized compounds were established via spectral and elemental analyses, followed by the assessment of both their in vitro COX inhibitory and in vivo anti-inflammatory activities. The most active compounds as COX inhibitors were further evaluated for their in vitro 5-LOX and sEH inhibitory activities, alongside with their in vivo analgesic and ulcerogenic effects. Compounds 6d and 11f showed excellent inhibitory activities against both COX-2 and sEH (COX-2 IC50 = 0.043 and 0.048 µM; sEH IC50 = 83.58 and 83.52 μM, respectively). Moreover, the compounds demonstrated promising results as anti-inflammatory and analgesic agents with considerable ED50 values and gastric safety profiles. Remarkably, the most active COX inhibitors 6d and 11f possessed improved cardiovascular safety profiles, if compared to celecoxib, as shown by the laboratory evaluation of both essential cardiac biochemical parameters (troponin-1, prostacyclin, tumor necrosis factor-α, lactate dehydrogenase, reduced glutathione and creatine kinase-M) and histopathological studies. On the other hand, docking simulations confirmed that the newly synthesized compounds displayed sufficient structural features required for binding to the target COX-2 and sEH enzymes. Also, in silico ADME studies prediction and drug-like properties of the compounds revealed favorable oral bioavailability results. Collectively, the present work could be featured as a promising future approach towards novel selective COX-2 inhibitors with declined cardiovascular risks.
Collapse
Affiliation(s)
- Noha H Amin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H A Abusabaa
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Mohammed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch, Egypt
| |
Collapse
|
32
|
Lu J, Liu J, Guo Y, Zhang Y, Xu Y, Wang X. CRISPR-Cas9: A method for establishing rat models of drug metabolism and pharmacokinetics. Acta Pharm Sin B 2021; 11:2973-2982. [PMID: 34745851 PMCID: PMC8551406 DOI: 10.1016/j.apsb.2021.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
The 2020 Nobel Prize in Chemistry recognized CRISPR-Cas9, a super-selective and precise gene editing tool. CRISPR-Cas9 has an obvious advantage in editing multiple genes in the same cell, and presents great potential in disease treatment and animal model construction. In recent years, CRISPR-Cas9 has been used to establish a series of rat models of drug metabolism and pharmacokinetics (DMPK), such as Cyp, Abcb1, Oatp1b2 gene knockout rats. These new rat models are not only widely used in the study of drug metabolism, chemical toxicity, and carcinogenicity, but also promote the study of DMPK related mechanism, and further strengthen the relationship between drug metabolism and pharmacology/toxicology. This review systematically introduces the advantages and disadvantages of CRISPR-Cas9, summarizes the methods of establishing DMPK rat models, discusses the main challenges in this field, and proposes strategies to overcome these problems.
Collapse
Key Words
- AAV, adeno-associated virus
- ADMET, absorption, distribution, metabolism, excretion and toxicity
- Animal model
- BSEP, bile salt export pump
- CRISPR-Cas, clustered regularly interspaced short palindromic repeats-CRISPR-associated
- CRISPR-Cas9
- DDI, drug–drug interaction
- DMPK, drug metabolism and pharmacokinetics
- DSB, double-strand break
- Drug metabolism
- Gene editing
- HBV, hepatitis B virus
- HDR, homology directed repair
- HIV, human immunodeficiency virus
- HPV, human papillomaviruses
- KO, knockout
- NCBI, National Center for Biotechnology Information
- NHEJ, non-homologous end joining
- OATP1B, organic anion transporting polypeptides 1B
- OTS, off-target site
- PAM, protospacer-associated motif
- Pharmacokinetics
- RNP, ribonucleoprotein
- SD, Sprague–Dawley
- SREBP-2, sterol regulatory element-binding protein 2
- T7E I, T7 endonuclease I
- TALE, transcriptional activator-like effector
- TALEN, transcriptional activators like effector nucleases
- WT, wild-type
- ZFN, zinc finger nucleases
- crRNAs, CRISPR RNAs
- pre-crRNA, pre-CRISPR RNA
- sgRNA, single guide RNA
- tracRNA, trans-activating crRNA
Collapse
|
33
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2021; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
34
|
Barsheshet M, Ertracht O, Boginya A, Reuveni T, Atar S, Szuchman-Sapir A. Vasodilation and blood pressure-lowering effect mediated by 5,6-EEQ lactone in 5/6 nephrectomy hypertensive rats. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159031. [PMID: 34428548 DOI: 10.1016/j.bbalip.2021.159031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Microvascular dysfunction is a key contributor to vascular hypertension, one of the most common chronic diseases in the world. Microvascular dysfunction leads to the loss of nitric oxide-mediated endothelial dilation and the subsequent compensatory function of endothelium-derived hyperpolarizing (EDH) factors in the regulation of vascular tone. Previously, we showed that lactone metabolite derived from arachidonic acid induces endothelial-dependent vasodilation in isolated human microvessels. Based on structural similarities, we hypothesize that additional lactone metabolites formed from eicosapentaenoic fatty acid (EPA) may bear EDH properties. AIM To elucidate the vasodilatory and blood pressure (BP)-reducing characteristics of the 5,6-EEQ (5,6-epoxyeicosatetraenoic acids) lactone (EPA-L) in hypertensive 5/6 nephrectomy (5/6Nx) rats. METHODS 5/6Nx hypertensive rats intravenously administrated with EPA-L for five days. BP, blood and urine chemistry, and kidney function were detected and analyzed. Vascular dilation was detected using a pressure myograph with or without Ca2+ - activated K+ (KCa) endothelial channel inhibitors. KCNN3 and KCNN4 gene expression (mRNA) detected in mesenteric arteries from 5/6Nx and NT rats. RESULTS EPA-L administration to 5/6Nx rats significantly (p < 0.05) reduced BP and heart rate without affecting kidney function. 5/6Nx rat mesenteric arterioles exhibited a lower dilation response to acetylcholine (10-7 mol/l) than normotensive (NT) vessels, while EPA-L administration restored the vessel relaxation response. The EPA-L-driven relaxation of mesenteric arteries was significantly reduced by pretreatment with TRAM-34 and apamin. However, KCa channel expression did not significantly differ between 5/6Nx and NT mesenteric arteries. CONCLUSION EPA-L reduces BP by improving microvessel dilation involving calcium-dependent potassium endothelial channels.
Collapse
Affiliation(s)
- Michal Barsheshet
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Offir Ertracht
- The Cardiovascular Research Laboratory, Research institute, Galilee Medical Center, Nahariya, Israel
| | - Alexandra Boginya
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel
| | - Tal Reuveni
- The Cardiovascular Research Laboratory, Research institute, Galilee Medical Center, Nahariya, Israel
| | - Shaul Atar
- The Cardiovascular Research Laboratory, Research institute, Galilee Medical Center, Nahariya, Israel; The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; The Cardiology Department, Galilee Medical Center, Nahariya, Israel
| | - Andrea Szuchman-Sapir
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
35
|
Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation. Biomedicines 2021; 9:biomedicines9081053. [PMID: 34440257 PMCID: PMC8393645 DOI: 10.3390/biomedicines9081053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.
Collapse
|
36
|
Sun D, Lu J, Zhang Y, Liu J, Liu Z, Yao B, Guo Y, Wang X. Characterization of a Novel CYP1A2 Knockout Rat Model Constructed by CRISPR/Cas9. Drug Metab Dispos 2021; 49:638-647. [PMID: 34074728 DOI: 10.1124/dmd.121.000403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
CYP1A2, as one of the most important cytochrome P450 isoforms, is involved in the biotransformation of many important endogenous and exogenous substances. CYP1A2 also plays an important role in the development of many diseases because it is involved in the biotransformation of precancerous substances and poisons. Although the generation of Cyp1a2 knockout (KO) mouse model has been reported, there are still no relevant rat models for the study of CYP1A2-mediated pharmacokinetics and diseases. In this report, CYP1A2 KO rat model was established successfully by CRISPR/Cas9 without any detectable off-target effect. Compared with wild-type rats, this model showed a loss of CYP1A2 protein expression in the liver. The results of pharmacokinetics in vivo and incubation in vitro of specific substrates of CYP1A2 confirmed the lack of function of CYP1A2 in KO rats. In further studies of potential compensatory effects, we found that CYP1A1 was significantly upregulated, and CYP2E1, CYP3A2, and liver X receptor β were downregulated in KO rats. In addition, CYP1A2 KO rats exhibited a significant increase in serum cholesterol and free testosterone accompanied by mild liver damage and lipid deposition, suggesting that CYP1A2 deficiency affects lipid metabolism and liver function to a certain extent. In summary, we successfully constructed the CYP1A2 KO rat model, which provides a useful tool for studying the metabolic function and physiologic function of CYP1A2. SIGNIFICANCE STATEMENT: Human CYP1A2 not only metabolizes clinical drugs and pollutants but also mediates the biotransformation of endogenous substances and plays an important role in the development of many diseases. However, there are no relevant CYP1A2 rat models for the research of pharmacokinetics and diseases. This study successfully established CYP1A2 knockout rat model by using CRISPR/Cas9. This rat model provides a powerful tool to study the function of CYP1A2 in drug metabolism and diseases.
Collapse
Affiliation(s)
- Dongyi Sun
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian Lu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zongjun Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Metformin Affects Cardiac Arachidonic Acid Metabolism and Cardiac Lipid Metabolite Storage in a Prediabetic Rat Model. Int J Mol Sci 2021; 22:ijms22147680. [PMID: 34299301 PMCID: PMC8305829 DOI: 10.3390/ijms22147680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin can reduce cardiovascular risk independent of glycemic control. The mechanisms behind its non-glycemic benefits, which include decreased energy intake, lower blood pressure and improved lipid and fatty acid metabolism, are not fully understood. In our study, metformin treatment reduced myocardial accumulation of neutral lipids—triglycerides, cholesteryl esters and the lipotoxic intermediates—diacylglycerols and lysophosphatidylcholines in a prediabetic rat model (p < 0.001). We observed an association between decreased gene expression and SCD-1 activity (p < 0.05). In addition, metformin markedly improved phospholipid fatty acid composition in the myocardium, represented by decreased SFA profiles and increased n3-PUFA profiles. Known for its cardioprotective and anti-inflammatory properties, metformin also had positive effects on arachidonic acid metabolism and CYP-derived arachidonic acid metabolites. We also found an association between increased gene expression of the cardiac isoform CYP2c with increased 14,15-EET (p < 0.05) and markedly reduced 20-HETE (p < 0.001) in the myocardium. Based on these results, we conclude that metformin treatment reduces the lipogenic enzyme SCD-1 and the accumulation of the lipotoxic intermediates diacylglycerols and lysophosphatidylcholine. Increased CYP2c gene expression and beneficial effects on CYP-derived arachidonic acid metabolites in the myocardium can also be involved in cardioprotective effect of metformin.
Collapse
|
38
|
Pascale JV, Lucchesi PA, Garcia V. Unraveling the Role of 12- and 20- HETE in Cardiac Pathophysiology: G-Protein-Coupled Receptors, Pharmacological Inhibitors, and Transgenic Approaches. J Cardiovasc Pharmacol 2021; 77:707-717. [PMID: 34016841 PMCID: PMC8523029 DOI: 10.1097/fjc.0000000000001013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
ABSTRACT Arachidonic acid-derived lipid mediators play crucial roles in the development and progression of cardiovascular diseases. Eicosanoid metabolites generated by lipoxygenases and cytochrome P450 enzymes produce several classes of molecules, including the epoxyeicosatrienoic acid (EET) and hydroxyeicosatetraenoic acids (HETE) family of bioactive lipids. In general, the cardioprotective effects of EETs have been documented across a number of cardiac diseases. In contrast, members of the HETE family have been shown to contribute to the pathogenesis of ischemic cardiac disease, maladaptive cardiac hypertrophy, and heart failure. The net effect of 12(S)- and 20-HETE depends upon the relative amounts generated, ratio of HETEs:EETs produced, timing of synthesis, as well as cellular and subcellular mechanisms activated by each respective metabolite. HETEs are synthesized by and affect multiple cell types within the myocardium. Moreover, cytochrome P450-derived and lipoxygenase- derived metabolites have been shown to directly influence cardiac myocyte growth and the regulation of cardiac fibroblasts. The mechanistic data uncovered thus far have employed the use of enzyme inhibitors, HETE antagonists, and the genetic manipulation of lipid-producing enzymes and their respective receptors, all of which influence a complex network of outcomes that complicate data interpretation. This review will summarize and integrate recent findings on the role of 12(S)-/20-HETE in cardiac diseases.
Collapse
Affiliation(s)
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY
| |
Collapse
|
39
|
Leow JWH, Verma RK, Lim ABH, Fan H, Chan ECY. Atypical kinetics of cytochrome P450 2J2: Epoxidation of arachidonic acid and reversible inhibition by xenobiotic inhibitors. Eur J Pharm Sci 2021; 164:105889. [PMID: 34044117 DOI: 10.1016/j.ejps.2021.105889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extrahepatic CYP2J2 metabolism of arachidonic acid (AA) to bioactive regioisomeric epoxyeicosatrienoic acids (EETs) is implicated in both physiological and pathological conditions. Here, we aimed to characterize atypical substrate inhibition kinetics of this endogenous metabolic pathway and its reversible inhibition by xenobiotic inhibitors when AA is used as the physiologically-relevant substrate vis-à-vis conventional probe substrate astemizole (AST). As compared to typical Michaelis-Menten kinetics observed for AST, complete substrate inhibition was observed for CYP2J2 metabolism of AA to 14,15-EET whereby velocity of the reaction declined significantly at concentrations of AA above 20-30 µM with an estimated substrate inhibition constant (Ks) of 31 µM. In silico sequential docking of two AA substrates to orthosteric (OBS) and adjacent secondary binding sites (SBS) within a 3-dimensional homology model of CYP2J2 revealed favorable and comparable binding poses of glide-scores -3.1 and -3.8 respectively. Molecular dynamics (MD) simulations ascertained CYP2J2 conformational stability with dual AA substrate binding as time-dependent root mean squared deviation (RMSD) of protein Cα atoms and ligand heavy atoms stabilized to a plateau in all but one trajectory (n=6). The distance between heme-iron and ω6 (C14, C15) double bond of AA in OBS also increased from 7.5 ± 1.4 Å to 8.5 ± 1.8 Å when CYP2J2 was simulated with only AA in OBS versus the presence of AA in both OBS and SBS (p<0.001), supporting the observed in vitro substrate inhibition phenomenon. Poor correlation was observed between inhibitory constants (Ki) determined for a panel of nine competitive and mixed mode xenobiotic inhibitors against CYP2J2 metabolism of AA as compared to AST, whereby 4 out of 9 drugs had a greater than 5-fold difference between Ki values. Nonlinear Eadie-Hofstee plots illustrated that complete substrate inhibition of CYP2J2 by AA was not attenuated even at high concentrations of xenobiotic inhibitors which further corroborates that CYP2J2 may accommodate three or more ligands simultaneously. In light of the atypical kinetics, our results highlight the importance of using physiologically-relevant substrates in in vitro enzymatic inhibition assays for the characterization of xenobiotic-endobiotic interactions which is applicable to other complex endogenous metabolic pathways beyond CYP2J2 metabolism of AA to EETs. The accurate determination of Ki would further facilitate the association of xenobiotic-endobiotic interactions to observed therapeutic or toxic outcomes.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Amos Boon Hao Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543.
| |
Collapse
|
40
|
Pérez-Torres I, Guarner-Lans V, Soria-Castro E, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, Domínguez-Cherit JG, Herrera-Bello H, Castillejos-Suastegui H, Moreno-Castañeda L, Alanís-Estrada G, Hernández F, González-Marcos O, Márquez-Velasco R, Soto ME. Alteration in the Lipid Profile and the Desaturases Activity in Patients With Severe Pneumonia by SARS-CoV-2. Front Physiol 2021; 12:667024. [PMID: 34045976 PMCID: PMC8144632 DOI: 10.3389/fphys.2021.667024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
The kidnapping of the lipid metabolism of the host's cells by severe acute respiratory syndrome (SARS-CoV-2) allows the virus to transform the cells into optimal machines for its assembly and replication. Here we evaluated changes in the fatty acid (FA) profile and the participation of the activity of the desaturases, in plasma of patients with severe pneumonia by SARS-CoV-2. We found that SARS-CoV-2 alters the FA metabolism in the cells of the host. Changes are characterized by variations in the desaturases that lead to a decrease in total fatty acid (TFA), phospholipids (PL) and non-esterified fatty acids (NEFAs). These alterations include a decrease in palmitic and stearic acids (p ≤ 0.009) which could be used for the formation of the viral membranes and for the reparation of the host's own membrane. There is also an increase in oleic acid (OA; p = 0.001) which could modulate the inflammatory process, the cytokine release, apoptosis, necrosis, oxidative stress (OS). An increase in linoleic acid (LA) in TFA (p = 0.03) and a decreased in PL (p = 0.001) was also present. They result from damage of the internal mitochondrial membrane. The arachidonic acid (AA) percentage was elevated (p = 0.02) in the TFA and this can be participated in the inflammatory process. EPA was decreased (p = 0.001) and this may decrease of pro-resolving mediators with increase in the inflammatory process. The total of NEFAs (p = 0.03), PL (p = 0.001), cholesterol, HDL and LDL were decreased, and triglycerides were increased in plasma of the COVID-19 patients. Therefore, SARS-CoV-2 alters the FA metabolism, the changes are characterized by alterations in the desaturases that lead to variations in the TFA, PL, and NEFAs profiles. These changes may favor the replication of the virus but, at the same time, they are part of the defense system provided by the host cell metabolism in its eagerness to repair damage caused by the virus to cell membranes.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica Guarner-Lans
- Departament of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Elizabeth Soria-Castro
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Linaloe Manzano-Pech
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Adrián Palacios-Chavarría
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Rafael Ricardo Valdez-Vázquez
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Jose Guillermo Domínguez-Cherit
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnológico de Monterrey EMCS, Mexico City, Mexico
| | - Hector Herrera-Bello
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Humberto Castillejos-Suastegui
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Lidia Moreno-Castañeda
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Gabriela Alanís-Estrada
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Fabián Hernández
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Omar González-Marcos
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnológico de Monterrey EMCS, Mexico City, Mexico
| | - Ricardo Márquez-Velasco
- Departament of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Elena Soto
- American British Cowdray Medical Center, Mexico City, Mexico
- Departament of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
41
|
Vincent T, Gaillet B, Garnier A. Optimisation of Cytochrome P450 BM3 Assisted by Consensus-Guided Evolution. Appl Biochem Biotechnol 2021; 193:2893-2914. [PMID: 33860879 DOI: 10.1007/s12010-021-03573-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Cytochrome P450 enzymes have attracted much interest over the years given their ability to insert oxygen into saturated carbon-hydrogen bonds, a difficult feat to accomplish by traditional chemistry. Much of the activity in this field has centered on the bacterial enzyme CYP102A1, or BM3, from Bacillus megaterium, as it has shown itself capable of hydroxylating/acting upon a wide range of substrates, thereby producing industrially relevant pharmaceuticals, fine chemicals, and hormones. In addition, unlike most cytochromes, BM3 is both soluble and fused to its natural redox partner, thus facilitating its use. The industrial use of BM3 is however stifled by its instability and its requirement for the expensive NADPH cofactor. In this work, we added several mutations to the BM3 mutant R966D/W1046S that enhanced the turnover number achievable with the inexpensive cofactors NADH and NBAH. These new mutations, A769S, S847G, S850R, E852P, and V978L, are localized on the reductase domain of BM3 thus leaving the oxidase domain intact. For NBAH-driven reactions by new mutant NTD5, this led to a 5.24-fold increase in total product output when compared to the BM3 mutant R966D/W1046S. For reactions driven by NADH by new mutant NTD6, this enhanced total product output by as much as 2.3-fold when compared to the BM3 mutant R966D/W1046S. We also demonstrated that reactions driven by NADH with the NTD6 mutant not only surpassed total product output achievable by wild-type BM3 with NADPH but also retained the ability to use this latter cofactor with greater total product output as well.
Collapse
Affiliation(s)
- Thierry Vincent
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Bruno Gaillet
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Alain Garnier
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
42
|
Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021; 12:642470. [PMID: 33716791 PMCID: PMC7943617 DOI: 10.3389/fphys.2021.642470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by cytochrome P450 (CYP) epoxygenases, which include four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Each of them possesses beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardiovascular diseases. Numerous studies have demonstrated that elevation of EETs by overexpression of CYP2J2, inhibition of sEH, or treatment with EET analogs showed protective effects in various cardiovascular diseases, including hypertension, myocardial infarction, and heart failure. As is known to all, cardiac remodeling is the major pathogenesis of cardiovascular diseases. This review will begin with the introduction of EETs and their protective effects in cardiovascular diseases. In the following, the roles of EETs in cardiac remodeling, with a particular emphasis on myocardial hypertrophy, apoptosis, fibrosis, inflammation, and angiogenesis, will be summarized. Finally, it is suggested that upregulation of EETs is a potential therapeutic strategy for cardiovascular diseases. The EET-related drug development against cardiac remodeling is also discussed, including the overexpression of CYP2J2, inhibition of sEH, and the analogs of EET.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Darwesh AM, Bassiouni W, Sosnowski DK, Seubert JM. Can N-3 polyunsaturated fatty acids be considered a potential adjuvant therapy for COVID-19-associated cardiovascular complications? Pharmacol Ther 2021; 219:107703. [PMID: 33031856 PMCID: PMC7534795 DOI: 10.1016/j.pharmthera.2020.107703] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has currently led to a global pandemic with millions of confirmed and increasing cases around the world. The novel SARS-CoV-2 not only affects the lungs causing severe acute respiratory dysfunction but also leads to significant dysfunction in multiple organs and physiological systems including the cardiovascular system. A plethora of studies have shown the viral infection triggers an exaggerated immune response, hypercoagulation and oxidative stress, which contribute significantly to poor cardiovascular outcomes observed in COVID-19 patients. To date, there are no approved vaccines or therapies for COVID-19. Accordingly, cardiovascular protective and supportive therapies are urgent and necessary to the overall prognosis of COVID-19 patients. Accumulating literature has demonstrated the beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFA) toward the cardiovascular system, which include ameliorating uncontrolled inflammatory reactions, reduced oxidative stress and mitigating coagulopathy. Moreover, it has been demonstrated the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors to a group of potent bioactive lipid mediators, generated endogenously, which mediate many of the beneficial effects attributed to their parent compounds. Considering the favorable safety profile for n-3 PUFAs and their metabolites, it is reasonable to consider n-3 PUFAs as potential adjuvant therapies for the clinical management of COVID-19 patients. In this article, we provide an overview of the pathogenesis of cardiovascular complications secondary to COVID-19 and focus on the mechanisms that may contribute to the likely benefits of n-3 PUFAs and their metabolites.
Collapse
Affiliation(s)
- Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
44
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 574] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
45
|
Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 2021; 10:antiox10020313. [PMID: 33669824 PMCID: PMC7923022 DOI: 10.3390/antiox10020313] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are a chemically defined group of reactive molecules derived from molecular oxygen. ROS are involved in a plethora of processes in cells in all domains of life, ranging from bacteria, plants and animals, including humans. The importance of ROS for macrophage-mediated immunity is unquestioned. Their functions comprise direct antimicrobial activity against bacteria and parasites as well as redox-regulation of immune signaling and induction of inflammasome activation. However, only a few studies have performed in-depth ROS analyses and even fewer have identified the precise redox-regulated target molecules. In this review, we will give a brief introduction to ROS and their sources in macrophages, summarize the versatile roles of ROS in direct and indirect antimicrobial immune defense, and provide an overview of commonly used ROS probes, scavengers and inhibitors.
Collapse
|
46
|
Soluble Epoxide Hydrolase in Aged Female Mice and Human Explanted Hearts Following Ischemic Injury. Int J Mol Sci 2021; 22:ijms22041691. [PMID: 33567578 PMCID: PMC7915306 DOI: 10.3390/ijms22041691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) accounts for a significant proportion of death and morbidity in aged individuals. The risk for MI in females increases as they enter the peri-menopausal period, generally occurring in middle-age. Cytochrome (CYP) 450 metabolizes N-3 and N-6 polyunsaturated fatty acids (PUFA) into numerous lipid mediators, oxylipids, which are further metabolised by soluble epoxide hydrolase (sEH), reducing their activity. The objective of this study was to characterize oxylipid metabolism in the left ventricle (LV) following ischemic injury in females. Human LV specimens were procured from female patients with ischemic cardiomyopathy (ICM) or non-failing controls (NFC). Female C57BL6 (WT) and sEH null mice averaging 13–16 months old underwent permanent occlusion of the left anterior descending coronary artery (LAD) to induce myocardial infarction. WT (wild type) mice received vehicle or sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (tAUCB), in their drinking water ad libitum for 28 days. Cardiac function was assessed using echocardiography and electrocardiogram. Protein expression was determined using immunoblotting, mitochondrial activity by spectrophotometry, and cardiac fibre respiration was measured using a Clark-type electrode. A full metabolite profile was determined by LC–MS/MS. sEH was significantly elevated in ischemic LV specimens from patients, associated with fundamental changes in oxylipid metabolite formation and significant decreases in mitochondrial enzymatic function. In mice, pre-treatment with tAUCB or genetic deletion of sEH significantly improved survival, preserved cardiac function, and maintained mitochondrial quality following MI in female mice. These data indicate that sEH may be a relevant pharmacologic target for women with MI. Although future studies are needed to determine the mechanisms, in this pilot study we suggest targeting sEH may be an effective strategy for reducing ischemic injury and mortality in middle-aged females.
Collapse
|
47
|
Effects of Three-Month Feeding High Fat Diets with Different Fatty Acid Composition on Myocardial Proteome in Mice. Nutrients 2021; 13:nu13020330. [PMID: 33498641 PMCID: PMC7911225 DOI: 10.3390/nu13020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Westernized diet is characterized by a high content of saturated fatty acids (SFA) and a low level of omega-3 polyunsaturated fatty acids (PUFA), often accompanied by an imbalance in the omega-6/omega-3 PUFA ratio. Since increased intake of SFA and n-6 PUFA is considered as a cardiovascular disease risk factor, this study was conducted to determine whether a three-month dietary supplementation of high-fat diets (HFDs) with saturated fatty acids and a significant proportion of various n-6 and n-3 PUFA ratios would affect the architecture and protein expression patterns of the murine heart. Therefore, three HFD (n = 6) feeding groups: rich in SFA, dominated by PUFA with the n-6/n-3–14:1, and n-6/n-3–5:1, ratios were compared to animals fed standard mouse chow. For this purpose, we performed two-dimensional electrophoresis with MALDI-ToF mass spectrometry-based identification of differentially expressed cardiac proteins, and a histological examination of cardiac morphology. The results indicated that mice fed with all HFDs developed signs of hypertrophy and cardiac fibrosis. Animals fed SFA-rich HFD manifested the most severe cardiac hypertrophy and fibrosis lesions, whereas less pronounced changes were observed in the group of animals that ingested the highest amount of omega-3 FA. In general, all HFDs, regardless of FA composition, evoked a comparable pattern of cardiac protein changes and affected the following biological processes: lipid metabolism and FA β-oxidation, glycolysis, TCA cycle, respiratory chain, myocardium contractility, oxidative stress and PUFA eicosanoid metabolism. However, it should be noted that three proteins, namely IDH3A, LDHB, and AK1, were affected differently by various FA contents. High expression of these myocardial proteins found in the group of animals fed a HFD with the highest n-3 PUFA content could be closely related to the observed development of hypertrophy.
Collapse
|
48
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
49
|
Stading R, Couroucli X, Lingappan K, Moorthy B. The role of cytochrome P450 (CYP) enzymes in hyperoxic lung injury. Expert Opin Drug Metab Toxicol 2020; 17:171-178. [PMID: 33215946 DOI: 10.1080/17425255.2021.1853705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hyperoxic lung injury is a condition that can occur in patients in need of supplemental oxygen, such as premature infants with bronchopulmonary dysplasia or adults with acute respiratory distress syndrome. Cytochrome P450 (CYP) enzymes play critical roles in the metabolism of endogenous and exogenous compounds. AREAS COVERED Through their complex pathways, some subfamilies of these enzymes may contribute to or protect against hyperoxic lung injury. Oxidative stress from reactive oxygen species (ROS) production is most likely a major contributor of hyperoxic lung injury. CYP1A enzymes have been shown to protect against hyperoxic lung injury while CYP1B enzymes seem to contribute to it. CYP2J2 enzymes help protect against hyperoxic lung injury by triggering EET production, thereby, increasing antioxidant enzymes. The metabolism of arachidonic acid to ω-terminal hydroxyeicosatetraenoic acid (20-HETEs) by CYP4A and CYP4F enzymes could impact hyperoxic lung injury via the vasodilating effects of 20-HETE. CYP2E1 and CYP2A enzymes may contribute to the oxidative stress in the lungs caused by ethanol- and nicotine-metabolism, respectively. EXPERT OPINION Overall, the CYP enzymes, depending upon the isoform, play a contributory or protective role in hyperoxic lung injury, and are, therefore, ideal candidates for developing drugs that can treat oxygen-mediated lung injury.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Xanthi Couroucli
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| |
Collapse
|
50
|
Yasukawa K, Okuno T, Yokomizo T. Eicosanoids in Skin Wound Healing. Int J Mol Sci 2020; 21:ijms21228435. [PMID: 33182690 PMCID: PMC7698125 DOI: 10.3390/ijms21228435] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Wound healing is an important process in the human body to protect against external threats. A dysregulation at any stage of the wound healing process may result in the development of various intractable ulcers or excessive scar formation. Numerous factors such as growth factors, cytokines, and chemokines are involved in this process and play vital roles in tissue repair. Moreover, recent studies have demonstrated that lipid mediators derived from membrane fatty acids are also involved in the process of wound healing. Among these lipid mediators, we focus on eicosanoids such as prostaglandins, thromboxane, leukotrienes, and specialized pro-resolving mediators, which are produced during wound healing processes and play versatile roles in the process. This review article highlights the roles of eicosanoids on skin wound healing, especially focusing on the biosynthetic pathways and biological functions, i.e., inflammation, proliferation, migration, angiogenesis, remodeling, and scarring.
Collapse
Affiliation(s)
- Ken Yasukawa
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.Y.); (T.Y.)
- Drug Discovery Research Department, Sato Pharmaceutical Co., Ltd., Tokyo 140-0011, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.Y.); (T.Y.)
- Correspondence: ; Tel.: +81-3-5802-1031
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.Y.); (T.Y.)
| |
Collapse
|