1
|
Aksakal A, Kerget B, Gülbahar BN, Laloğlu E, Sağlam L. Can apelins guide the diagnosis of coronary artery disease in COPD patients? Heart Lung 2025; 71:90-97. [PMID: 40073766 DOI: 10.1016/j.hrtlng.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/06/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Apelins are adipokines known for their anti-inflammatory, vasodilator, and antiatherosclerotic effects. They are involved in the pathogenesis of chronic diseases like chronic obstructive pulmonary disease (COPD) and coronary artery disease (CAD). OBJECTIVES This study aims to investigate apelin as a potential biomarker for early diagnosis and management of CAD in COPD patients. METHODS The study included 73 stable COPD patients admitted between June 2023 and June 2024 and 35 healthy volunteers matched by age and gender. COPD patients were categorized into two groups: those without CAD (Group 1) and those with CAD (Group 2). Serum levels of apelin 12, 13, 17, and 36 were measured using ELISA. RESULTS Serum apelin levels were significantly lower in COPD patients than in controls (p < 0.001). Among COPD patients, those with CAD showed lower serum apelin levels compared to those without CAD (p = 0.005 for apelin 12, p < 0.001 for apelin 13, 17, and 36). ROC analysis indicated high sensitivity and specificity for apelin 13 and 36 in predicting CAD in COPD patients. Apelin 13 and 36 were positively correlated with ejection fraction (EF) (R = 0.43, p = 0.01; R = 0.4, p = 0.01), and apelin 12 was positively correlated with FEV1 and FVC (R = 0.24, p = 0.04; R = 0.27, p = 0.02). CONCLUSION While CAD worsens the prognosis in COPD patients, it remains underdiagnosed. Serum apelin, especially apelin 13 and 36, may assist in the early diagnosis and management of CAD in COPD patients.
Collapse
Affiliation(s)
- Alperen Aksakal
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey.
| | - Buğra Kerget
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Burcu Nur Gülbahar
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Esra Laloğlu
- Depertment of Biochemistry, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Leyla Sağlam
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| |
Collapse
|
2
|
Jayakody T, Budagoda DK, Mendis K, Dilshan WD, Bethmage D, Dissasekara R, Dawe GS. Biased agonism in peptide-GPCRs: A structural perspective. Pharmacol Ther 2025; 269:108806. [PMID: 39889970 DOI: 10.1016/j.pharmthera.2025.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
G protein-coupled receptors (GPCRs) are dynamic membrane receptors that transduce extracellular signals to the cell interior by forming a ligand-receptor-effector (ternary) complex that functions via allosterism. Peptides constitute an important class of ligands that interact with their cognate GPCRs (peptide-GPCRs) to form the ternary complex. "Biased agonism", a therapeutically relevant phenomenon exhibited by GPCRs owing to their allosteric nature, has also been observed in peptide-GPCRs, leading to the development of selective therapeutics with fewer side effects. In this review, we have focused on the structural basis of signalling bias at peptide-GPCRs of classes A and B, and reviewed the therapeutic relevance of bias at peptide-GPCRs, with the hope of contributing to the discovery of novel biased peptide drugs.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Krishan Mendis
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Duvindu Bethmage
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | - Rashmi Dissasekara
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka; The Graduate School, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Anto S, Sun C, O'Rourke ST. Activation of APJ Receptors by CMF-019, But Not Apelin, Causes Endothelium-Dependent Relaxation of Spontaneously Hypertensive Rat Coronary Arteries. J Cardiovasc Pharmacol 2025; 85:287-296. [PMID: 39836102 DOI: 10.1097/fjc.0000000000001671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
ABSTRACT Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal through G-protein-independent pathways, including G-protein-coupled receptor kinase 2 (GRK2), which inhibits endothelial nitric oxide synthase (eNOS) activity and nitric oxide production in endothelial cells. Apelin causes endothelium-dependent, nitric oxide-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown. We hypothesized that apelin-induced relaxation is impaired in coronary arteries from spontaneously hypertensive rats (SHR). Western blot and mRNA analysis revealed increased GRK2 expression in cultured SHR coronary endothelial cells. Apelin failed to cause relaxation in isolated SHR coronary arteries but, in the presence of apelin, relaxations to acetylcholine were impaired. Apelin had no effect on relaxation to diethylamine NONOate. The GRK2 inhibitor, CMPD101, increased apelin-induced phosphorylation of Akt and eNOS in SHR endothelial cells and restored relaxation to apelin in SHR arteries. CMPD101 also blocked the inhibitory effect of apelin on ACh-induced relaxation. Relaxations to the APJ receptor-biased agonist, CMF-019, which preferentially activates the G-protein-dependent pathway with minimal effect on GRK2, were similar in SHR and Wistar Kyoto coronary arteries. Immunoblot analysis in SHR coronary endothelial cells demonstrated that CMF-019 increased Akt and eNOS phosphorylation whereas apelin had no effect. Thus, APJ receptor signaling through GRK2 impairs nitric oxide production or release from SHR endothelial cells. APJ receptor-biased agonists, such as CMF-019, may be more effective than apelin in causing vasodilation of SHR coronary arteries.
Collapse
Affiliation(s)
- Santo Anto
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND
| | | | | |
Collapse
|
4
|
Li Q, Yu S, Wang Y, Zhao H, Gao Z, Du H, Yang H, Shen L, Zhou H. Programmable embedded bioprinting for one-step manufacturing of arterial models with customized contractile and metabolic functions. Trends Biotechnol 2025; 43:918-945. [PMID: 39779422 DOI: 10.1016/j.tibtech.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Replicating the contractile function of arterial tissues in vitro requires precise control of cell alignment within 3D structures, a challenge that existing bioprinting techniques struggle to meet. In this study, we introduce the voxel-based embedded construction for tailored orientational replication (VECTOR) method, a voxel-based approach that controls cellular orientation and collective behavior within bioprinted filaments. By fine-tuning voxel vector magnitude and using an omnidirectional printing trajectory, we achieve structural mimicry at both the macroscale and the cellular alignment level. This dual-scale approach enhances vascular smooth muscle cell (VSMC) function by regulating contractile and synthetic pathways. The VECTOR method facilitates the construction of 3D arterial structures that closely replicate natural coronary architectures, significantly improving contractility and metabolic function. Moreover, the resulting multilayered arterial models (AMs) exhibit precise responses to pharmacological stimuli, similar to native arteries. This work highlights the critical role of structural mimicry in tissue functionality and advances the replication of complex tissues in vitro.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shuyuan Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yuxuan Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hui Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, People's Republic of China
| | - Ziqi Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huilong Du
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Luqi Shen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, People's Republic of China.
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
5
|
Naldi L, Peri A, Fibbi B. Apelin/APJ: Another Player in the Cancer Biology Network. Int J Mol Sci 2025; 26:2986. [PMID: 40243599 PMCID: PMC11988549 DOI: 10.3390/ijms26072986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The apelinergic system exerts multiple biological activities in human pathologies, including cancer. Overactivation of apelin/APJ, which has been detected in many malignant tumors, and the strong correlation with progression-free and overall survival, suggested the role of an oncogene for the apelin gene. Emerging evidence sheds new light on the effects of apelin on cellular functions and homeostasis in cancer cells and supports a direct role for this pathway on different hallmarks of cancer: "sustaining proliferative signaling", "resisting cell death", "activating invasion and metastasis", "inducing/accessing vasculature", "reprogramming cellular metabolism", "avoiding immune destruction" and "tumor-promoting inflammation", and "enabling replicative immortality". This article reviews the currently available literature on the intracellular processes regulated by apelin/APJ, focusing on those pathways correlated with tumor development and progression. Furthermore, the association between the activity of the apelinergic axis and the resistance of cancer cells to oncologic treatments (chemotherapy, immunotherapy, radiation) suggests apelin/APJ as a possible target to potentiate traditional therapies, as well as to develop diagnostic and prognostic applications. This issue will be also covered in the review.
Collapse
Affiliation(s)
- Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
6
|
Li Z, Liu Y, Liu K, Tao X, Hu N, Li W, Duan J. Saponins from Aralia taibaiensis protect against brain ischemia/reperfusion injuries by regulating the apelin/AMPK pathway. Chin J Nat Med 2025; 23:299-310. [PMID: 40122660 DOI: 10.1016/s1875-5364(25)60841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/07/2024] [Accepted: 05/10/2024] [Indexed: 03/25/2025]
Abstract
Aralia taibaiensi, widely distributed in western China, particularly in the Qinba Mountains, has been utilized as a folk medicine for treating diabetes, gastropathy, rheumatism, and cardiovascular diseases. Saponins from A. taibaiensis (sAT) have demonstrated protective effects against oxidative stress and mitochondrial dysfunction induced by ischemia/reperfusion (I/R). However, the underlying mechanisms remain unclear. In vivo, middle cerebral artery occlusion/reperfusion (MCAO/R) induced inflammatory infiltration, neuronal injury, cell apoptosis, mitochondrial dysfunction, and oxidative stress in the ischaemic penumbra, which were effectively mitigated by sAT. sAT increased the mRNA and protein expression levels of apelin and its receptor apelin/apelin receptors (ARs) both in vivo and in vitro. (Ala13)-Apelin-13 (F13A) and small interfering RNA (siRNA) abolished the regulatory effects of sAT on neuroprotection mediated by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/protein kinase B (Akt). Furthermore, sAT induced apelin/AR expression by simultaneously inhibiting P38 mitogen-activated protein kinase (P38 MAPK)/activating transcription factor 4 (ATF4) and upregulating hypoxia-inducible factor-1α (HIF-1α). Our findings indicate that sAT regulates apelin/AR/AMPK by inhibiting P38 MAPK/ATF4 and upregulating HIF-1a, thereby suppressing oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhengrong Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuwen Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kedi Liu
- TANK Medicinal Biology Institute of Xi'an, Xi'an 710065, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Naping Hu
- Department of Pharmacy, General Hospital of Xinjiang Production and Construction Corps, Urumqi 830092, China
| | - Wangting Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jialin Duan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Shanghai Minhang Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai 201108, China.
| |
Collapse
|
7
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Zhao J, Li X, Liang C, Yan Y. Can Exercise-Mediated Adipose Browning Provide an Alternative Explanation for the Obesity Paradox? Int J Mol Sci 2025; 26:1790. [PMID: 40076419 PMCID: PMC11898606 DOI: 10.3390/ijms26051790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Overweight patients with cardiovascular disease (CVD) tend to survive longer than normal-weight patients, a phenomenon known as the "obesity paradox". The phenotypic characteristics of adipose distribution in these patients (who survive longer) often reveal a larger proportion of subcutaneous white adipose tissue (scWAT), suggesting that the presence of scWAT is negatively associated with all-cause mortality and that scWAT appears to provide protective benefits in patients facing unhealthy states. Exercise-mediated browning is a crucial aspect of the benign remodeling process of adipose tissue (AT). Reduced accumulation, reduced inflammation, and associated adipokine secretion are directly related to the reduction in CVD mortality. This paper summarized the pathogenetic factors associated with AT accumulation in patients with CVD and analyzed the possible role and pathway of exercise-mediated adipose browning in reducing the risk of CVD and CVD-related mortality. It is suggested that exercise-mediated browning may provide a new perspective on the "obesity paradox"; that is, overweight CVD patients who have more scWAT may gain greater cardiovascular health benefits through exercise.
Collapse
Affiliation(s)
- Jiani Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Chunyu Liang
- School of Physical Education, Guangxi University (GXU), Nanning 530004, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University (BSU), Beijing 100084, China
- Exercise and Physical Fitness, Beijing Sport University (BSU), Beijing 100084, China
| |
Collapse
|
9
|
Alotaiq N, Dermawan D. Evaluation of Structure Prediction and Molecular Docking Tools for Therapeutic Peptides in Clinical Use and Trials Targeting Coronary Artery Disease. Int J Mol Sci 2025; 26:462. [PMID: 39859178 PMCID: PMC11765240 DOI: 10.3390/ijms26020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluates the performance of various structure prediction tools and molecular docking platforms for therapeutic peptides targeting coronary artery disease (CAD). Structure prediction tools, including AlphaFold 3, I-TASSER 5.1, and PEP-FOLD 4, were employed to generate accurate peptide conformations. These methods, ranging from deep-learning-based (AlphaFold) to template-based (I-TASSER 5.1) and fragment-based (PEP-FOLD), were selected for their proven capabilities in predicting reliable structures. Molecular docking was conducted using four platforms (HADDOCK 2.4, HPEPDOCK 2.0, ClusPro 2.0, and HawDock 2.0) to assess binding affinities and interactions. A 100 ns molecular dynamics (MD) simulation was performed to evaluate the stability of the peptide-receptor complexes, along with Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) calculations to determine binding free energies. The results demonstrated that Apelin, a therapeutic peptide, exhibited superior binding affinities and stability across all platforms, making it a promising candidate for CAD therapy. Apelin's interactions with key receptors involved in cardiovascular health were notably stronger and more stable compared to the other peptides tested. These findings underscore the importance of integrating advanced computational tools for peptide design and evaluation, offering valuable insights for future therapeutic applications in CAD. Future work should focus on in vivo validation and combination therapies to fully explore the clinical potential of these therapeutic peptides.
Collapse
Affiliation(s)
- Nasser Alotaiq
- Health Sciences Research Center (HSRC), Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Doni Dermawan
- Department of Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-661 Warsaw, Poland;
| |
Collapse
|
10
|
Wang W, Wang Q, Li W, Xu H, Liang X, Wang W, Li N, Yang H, Xu Y, Bai J, Yang S, Geng D. Targeting APJ drives BNIP3-PINK1-PARKIN induced mitophagy and improves systemic inflammatory bone loss. J Adv Res 2024:S2090-1232(24)00611-8. [PMID: 39725007 DOI: 10.1016/j.jare.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood. OBJECTIVE This study aims to investigate how APJ regulates macrophage polarization to mitigate inflammatory bone loss. METHODS Lipopolysaccharide induced systemic inflammatory bone loss model in mice was used to explore the relationship between bone loss and osteoclast activation, macrophage polarization and APJ. In vitro studies, Bone marrow derived macrophages and siRNA were used to elucidate the regulatory influence of APJ on the immune microenvironment and osteoclast differentiation, while high-throughput sequencing is leveraged to uncover the underlying mechanisms through which APJ modulates macrophage polarization. RESULTS Our study established a link between APJ and macrophage M1 polarization in systemic inflammatory bone loss mice. The activation of APJ effectively mitigated M1 polarization in macrophages, suppressed excessive osteoclast activation, and alleviated systemic inflammatory bone loss. In vitro high-throughput sequencing analysis revealed that APJ modulates macrophage polarization, linking to mitochondrial autophagy and the NOD-like receptor signaling pathway and the involvement of the AMPK and MAPK signaling pathways in signal transduction after APJ activation was also suggested. Subsequent experiments substantiated that APJ predominantly enhances mitophagy and diminishes the accumulation of reactive oxygen species by regulating the AMPK/BNIP3/PINK1/PARKIN axis, thereby suppressing the activation of macrophage M1 polarization and osteoclastogenesis. CONCLUSION This study elucidated the underlying mechanism by which APJ modulates macrophage polarization, thereby proposing a new therapeutic target for addressing inflammatory bone loss.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Qing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Hao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xiaolong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Wei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Shuli Yang
- College of Clinical Medicine, Suzhou Vocational Health College, 215009, No.28 Kehua Road, Suzhou city, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
11
|
Meng W, Gao Y. Urinary Proteome Characterization of Stroke-Prone Spontaneously Hypertensive Rats. Int J Mol Sci 2024; 26:21. [PMID: 39795879 PMCID: PMC11720275 DOI: 10.3390/ijms26010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Hypertension is a multifactorial and complex disease influenced by genetic and environmental factors, and it has become one of the most serious public health challenges. This study aimed to investigate the changes in hypertension based on urinary proteome. The stroke-prone spontaneously hypertensive rats (SHRSPs) model was used to examined urinary proteome changes during the development of hypertension. Urine proteome profiling was conducted at months 1, 4, 8, 10, 12, and 14 using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Given that the progression of hypertension may vary among individuals, each rat was compared before and after hypertension developed to screen for differential proteins. Differential proteins in each rat can be enriched into some important biological processes and pathways associated with hypertension, such as the regulation of systemic arterial blood pressure by renin-angiotensin, renin-angiotensin signaling, response to glucocorticoid and glucocorticoid receptor signaling, calcium transport I, aldosterone adipocyte signaling pathway, apelin adipocyte signaling pathway, and oxidative stress response. The biological processes and pathways enriched at the same time point in the progression of hypertension differed significantly among different rat individuals. This study demonstrated that the changes in hypertension can be reflected in urine proteins. Urinary proteomics has potential in researching the mechanisms underlying hypertension, discovering new drug targets, and developing personalized strategies for antihypertensive treatment.
Collapse
Affiliation(s)
- Wenshu Meng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Karimi M, Shirsalimi N, Sedighi E. Apelin-13 as a novel diagnostic laboratory biomarker in thromboembolic disorders: a review of literature with prospective insights. Int J Emerg Med 2024; 17:190. [PMID: 39695958 DOI: 10.1186/s12245-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Thromboembolic disorders, including deep vein thrombosis (DVT) and pulmonary embolism (PE), are major global health concerns, causing significant morbidity and mortality. Early diagnosis is crucial for effective treatment and improved patient outcomes. Recent research has identified Apelin-13, a bioactive peptide in the apelin family, as a promising diagnostic biomarker for Thromboembolic disorders. Apelin-13 supports vascular health by regulating protease balance through plasminogen activator inhibitors and modulating endothelial cell function. Additionally, it plays a vital role in coagulation, with elevated levels associated with an increased risk of clot formation, suggesting its utility in predicting thrombosis risk, particularly in preoperative evaluations. Findings indicate that the Apelin-13 pathway shows significant promise as a biomarker for Thromboembolic disorders, underscoring its potential therapeutic applications and the need for further investigation. This review synthesizes current literature on thromboembolic disorders and associated laboratory biomarkers, with a particular focus on Apelin-13. It examines Apelin-13's role in disease mechanisms, its physiological functions, and its potential as a diagnostic biomarker in thromboembolic conditions.
Collapse
Affiliation(s)
- Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine.
| | - Niyousha Shirsalimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Eshagh Sedighi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
- Department of Veterinary Medicine, Islamic Azad University Branch of Urmia, Urmia, Iran
| |
Collapse
|
13
|
Li J, Kong X, Liu T, Xian M, Wei J. The Role of ACE2 in Neurological Disorders: From Underlying Mechanisms to the Neurological Impact of COVID-19. Int J Mol Sci 2024; 25:9960. [PMID: 39337446 PMCID: PMC11431863 DOI: 10.3390/ijms25189960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has become a hot topic in neuroscience research in recent years, especially in the context of the global COVID-19 pandemic, where its role in neurological diseases has received widespread attention. ACE2, as a multifunctional metalloprotease, not only plays a critical role in the cardiovascular system but also plays an important role in the protection, development, and inflammation regulation of the nervous system. The COVID-19 pandemic further highlights the importance of ACE2 in the nervous system. SARS-CoV-2 enters host cells by binding to ACE2, which may directly or indirectly affect the nervous system, leading to a range of neurological symptoms. This review aims to explore the function of ACE2 in the nervous system as well as its potential impact and therapeutic potential in various neurological diseases, providing a new perspective for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Xiangrui Kong
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Matusik K, Kamińska K, Sobiborowicz-Sadowska A, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. The significance of the apelinergic system in doxorubicin-induced cardiotoxicity. Heart Fail Rev 2024; 29:969-988. [PMID: 38990214 PMCID: PMC11306362 DOI: 10.1007/s10741-024-10414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cancer is the leading cause of death worldwide, and the number of cancer-related deaths is expected to increase. Common types of cancer include skin, breast, lung, prostate, and colorectal cancers. While clinical research has improved cancer therapies, these treatments often come with significant side effects such as chronic fatigue, hair loss, and nausea. In addition, cancer treatments can cause long-term cardiovascular complications. Doxorubicin (DOX) therapy is one example, which can lead to decreased left ventricle (LV) echocardiography (ECHO) parameters, increased oxidative stress in cellular level, and even cardiac fibrosis. The apelinergic system, specifically apelin and its receptor, together, has shown properties that could potentially protect the heart and mitigate the damages caused by DOX anti-cancer treatment. Studies have suggested that stimulating the apelinergic system may have therapeutic benefits for heart damage induced by DOX. Further research in chronic preclinical models is needed to confirm this hypothesis and understand the mechanism of action for the apelinergic system. This review aims to collect and present data on the effects of the apelinergic system on doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Katarzyna Matusik
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kamińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Aleksandra Sobiborowicz-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Hubert Borzuta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kasper Buczma
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Salvail W, Salvail D, Chagnon F, Lesur O. Apelin-13 administration allows for norepinephrine sparing in a rat model of cecal ligation and puncture-induced septic shock. Intensive Care Med Exp 2024; 12:68. [PMID: 39103658 DOI: 10.1186/s40635-024-00650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/21/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Infusion of exogenous catecholamines (i.e., norepinephrine [NE] and dobutamine) is a recommended treatment for septic shock with myocardial dysfunction. However, sustained catecholamine infusion is linked to cardiac toxicity and impaired responsiveness. Several pre-clinical and clinical studies have investigated the use of alternative vasopressors in the treatment of septic shock, with limited benefits and generally no effect on mortality. Apelin-13 (APL-13) is an endogenous positive inotrope and vasoactive peptide and has been demonstrated cardioprotective with vasomodulator and sparing life effects in animal models of septic shock. A primary objective of this study was to evaluate the NE-sparing effect of APL-13 infusion in an experimental sepsis-induced hypotension. METHODS For this goal, sepsis was induced by cecal ligation and puncture (CLP) in male rats and the arterial blood pressure (BP) monitored continuously via a carotid catheter. Monitoring, fluid resuscitation and experimental treatments were performed on conscious animals. Based on pilot assays, normal saline fluid resuscitation (2.5 mL/Kg/h) was initiated 3 h post-CLP and maintained up to the endpoint. Thus, titrated doses of NE, with or without fixed-doses of APL-13 or the apelin receptor antagonist F13A co-infusion were started when 20% decrease of systolic BP (SBP) from baseline was achieved, to restore SBP values ≥ 115 ± 1.5 mmHg (baseline average ± SEM). RESULTS A reduction in mean NE dose was observed with APL-13 but not F13A co-infusion at pre-determined treatment time of 4.5 ± 0.5 h (17.37 ± 1.74 µg/Kg/h [APL-13] vs. 25.64 ± 2.61 µg/Kg/h [Control NE] vs. 28.60 ± 4.79 µg/Kg/min [F13A], P = 0.0491). A 60% decrease in NE infusion rate over time was observed with APL-13 co-infusion, (p = 0.008 vs NE alone), while F13A co-infusion increased the NE infusion rate over time by 218% (p = 0.003 vs NE + APL-13). Associated improvements in cardiac function are likely mediated by (i) enhanced left ventricular end-diastolic volume (0.18 ± 0.02 mL [Control NE] vs. 0.30 ± 0.03 mL [APL-13], P = 0.0051), stroke volume (0.11 ± 0.01 mL [Control NE] vs. 0.21 ± 0.01 mL [APL-13], P < 0.001) and cardiac output (67.57 ± 8.63 mL/min [Control NE] vs. 112.20 ± 8.53 mL/min [APL-13], P = 0.0036), and (ii) a reduced effective arterial elastance (920.6 ± 81.4 mmHg/mL/min [Control NE] vs. 497.633.44 mmHg/mL/min. [APL-13], P = 0.0002). APL-13 administration was also associated with a decrease in lactate levels compared to animals only receiving NE (7.08 ± 0.40 [Control NE] vs. 4.78 ± 0.60 [APL-13], P < 0.01). CONCLUSION APL-13 exhibits NE-sparing benefits in the treatment of sepsis-induced shock, potentially reducing deleterious effects of prolonged exogenous catecholamine administration.
Collapse
Affiliation(s)
- William Salvail
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- IPS Therapeutique Inc., Sherbrooke, QC, Canada
| | | | - Frédéric Chagnon
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Lesur
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Département de Soins Intensifs et Service de PneumologieCHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12th Avenue Nord, SherbrookeSherbrooke, QC, J1H 5N4, Canada.
- Département de Médecine, CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
16
|
Weijie Z, Meng Z, Chunxiao W, Lingjie M, Anguo Z, Yan Z, Xinran C, Yanjiao X, Li S. Obesity-induced chronic low-grade inflammation in adipose tissue: A pathway to Alzheimer's disease. Ageing Res Rev 2024; 99:102402. [PMID: 38977081 DOI: 10.1016/j.arr.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive impairment worldwide. Overweight and obesity are strongly associated with comorbidities, such as hypertension, diabetes, and insulin resistance (IR), which contribute substantially to the development of AD and subsequent morbidity and mortality. Adipose tissue (AT) is a highly dynamic organ composed of a diverse array of cell types, which can be classified based on their anatomic localization or cellular composition. The expansion and remodeling of AT in the context of obesity involves immunometabolic and functional shifts steered by the intertwined actions of multiple immune cells and cytokine signaling within AT, which contribute to the development of metabolic disorders, IR, and systemic markers of chronic low-grade inflammation. Chronic low-grade inflammation, a prolonged, low-dose stimulation by specific immunogens that can progress from localized sites and affect multiple organs throughout the body, leads to neurodystrophy, increased apoptosis, and disruption of homeostasis, manifesting as brain atrophy and AD-related pathology. In this review, we sought to elucidate the mechanisms by which AT contributes to the onset and progression of AD in obesity through the mediation of chronic low-grade inflammation, particularly focusing on the roles of adipokines and AT-resident immune cells.
Collapse
Affiliation(s)
- Zhai Weijie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wei Chunxiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Lingjie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Anguo
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000 China
| | - Zhang Yan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Cui Xinran
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xu Yanjiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Sun Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
17
|
Xu S, Cui W, Zhang X, Song W, Wang Y, Zhao Y. Exploring the mechanisms of Guizhifuling pills in the treatment of coronary spastic angina based on network pharmacology combined with molecular docking. Medicine (Baltimore) 2024; 103:e39014. [PMID: 39029023 PMCID: PMC11398759 DOI: 10.1097/md.0000000000039014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Coronary spastic angina (CSA) is common, and treatment options for refractory vasospastic angina are sometimes limited. Guizhifuling pills (GFP) have demonstrated efficacy in reducing CSA episodes, but their pharmacological mechanism remains unclear. To explore the mechanism of action of GFP in preventing and treating CSA, we employed network pharmacology and molecular docking to predict targets and analyze networks. We searched GFP chemical composition information and related targets from databases. The drug-target and drug-target pathway networks were constructed using Cytoscape. Then the protein-protein interaction was analyzed using the STRING database. Gene Ontology biological functions and Kyoto Encyclopedia of Genes and Genomes pathways were performed by the Metascape database, and molecular docking validation of vital active ingredients and action targets of GFP was performed using AutoDock Vina software. The 51 active components in GFP are expected to influence CSA by controlling 279 target genes and 151 signaling pathways. Among them, 6 core components, such as quercetin, β-sitosterol, and baicalein, may regulate CSA by affecting 10 key target genes such as STAT3, IL-6, TP53, AKT1, and EGFR. In addition, they are involved in various critical signaling pathways such as apelin, calcium, advanced glycation end product-receptor for advanced glycation end product, and necroptosis. Molecular docking analysis confirms favorable binding interactions between the active components of GFP and the selected target proteins. The effects of GFP in treating CSA involve multiple components, targets, and pathways, offering a theoretical basis for its clinical use and enhancing our understanding of how it works.
Collapse
Affiliation(s)
- Shuaimin Xu
- Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
18
|
Bandala C, Carro-Rodríguez J, Cárdenas-Rodríguez N, Peña-Montero I, Gómez-López M, Hernández-Roldán AP, Huerta-Cruz JC, Muñoz-González F, Ignacio-Mejía I, Domínguez B, Lara-Padilla E. Comparative Effects of Gymnema sylvestre and Berberine on Adipokines, Body Composition, and Metabolic Parameters in Obese Patients: A Randomized Study. Nutrients 2024; 16:2284. [PMID: 39064727 PMCID: PMC11280467 DOI: 10.3390/nu16142284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Gymnema sylvestre (GS) and berberine (BBR) are natural products that have demonstrated therapeutic potential for the management of obesity and its comorbidities, as effective and safe alternatives to synthetic drugs. Although their anti-obesogenic and antidiabetic properties have been widely studied, comparative research on their impact on the gene expression of adipokines, such as resistin (Res), omentin (Ome), visfatin (Vis) and apelin (Ap), has not been reported. METHODOLOGY We performed a comparative study in 50 adult Mexican patients with obesity treated with GS or BBR for 3 months. The baseline and final biochemical parameters, body composition, blood pressure, gene expression of Res, Ome, Vis, and Ap, and safety parameters were evaluated. RESULTS BBR significantly decreased (p < 0.05) body weight, blood pressure and Vis and Ap gene expression and increased Ome, while GS decreased fasting glucose and Res gene expression (p < 0.05). A comparative analysis of the final measurements revealed a lower gene expression of Ap and Vis (p < 0.05) in patients treated with BBR than in those treated with GS. The most frequent adverse effects in both groups were gastrointestinal symptoms, which attenuated during the first month of treatment. CONCLUSION In patients with obesity, BBR has a better effect on body composition, blood pressure, and the gene expression of adipokines related to metabolic risk, while GS has a better effect on fasting glucose and adipokines related to insulin resistance, with minimal side effects.
Collapse
Affiliation(s)
- Cindy Bandala
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Jazmín Carro-Rodríguez
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | | | - Itzel Peña-Montero
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| | - Modesto Gómez-López
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| | - Ana Paola Hernández-Roldán
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, Secretaria de Salud, Mexico City 14080, Mexico;
| | - Felipe Muñoz-González
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Mexico City 11340, Mexico
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados en Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Brayan Domínguez
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Eleazar Lara-Padilla
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| |
Collapse
|
19
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
20
|
Yan Z, Yang T, Li X, Jiang Z, Jia W, Zhou J, Fang H. Apelin-13: a novel approach to suppressing renin production in RVHT. Am J Physiol Cell Physiol 2024; 326:C1683-C1696. [PMID: 38646785 DOI: 10.1152/ajpcell.00092.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Renovascular hypertension (RVHT) is characterized by renal artery stenosis and overactivated renin-angiotensin system (RAS). Apelin, known for its negative modulation of RAS, has protective effects against cardiovascular diseases. The role and mechanisms of the primary active form of apelin, apelin-13, in RVHT are unclear. In this study, male Sprague-Dawley rats were divided into control, two-kidney one-clip (2K1C) model, and 2K1C with apelin-13 treatment groups. Renin expression was analyzed using immunohistochemistry and molecular techniques. Full-length (pro)renin receptor (fPRR) and soluble PRR (sPRR) levels were assessed via Western blotting, and cAMP levels were measured using ELISA. Plasma renin content, plasma renin activity (PRA), angiotensin II (ANG II), and sPRR levels were determined by ELISA. Human Calu-6 and mouse As4.1 cells were used to investigate renin production mechanisms. The 2K1C model exhibited increased systolic blood pressure, plasma renin content, PRA, sPRR, and ANG II levels, while apelin-13 treatment reduced these elevations. Apelin-13 inhibited cAMP production, renin mRNA expression, protein synthesis, and PRR/sPRR protein expression in renal tissue. In Calu-6 cells, cAMP-induced fPRR and site-1 protease (S1P)-derived sPRR expression, which was blocked by cAMP-responsive element-binding protein (CREB) inhibition. Apelin-13 suppressed cAMP elevation, CREB phosphorylation, fPRR/sPRR protein expression, and renin production. Recombinant sPRR (sPRR-His) stimulated renin production, which was inhibited by the PRR decoy peptide PRO20 and S1P inhibitor PF429242. These findings suggest that apelin-13 inhibits plasma renin expression through the cAMP/PKA/sPRR pathway, providing a potential therapeutic approach for RVHT. Understanding the regulation of renin production is crucial for developing effective treatments.NEW & NOTEWORTHY Our research elucidated that apelin-13 inhibits renin production through the cAMP/PKA/soluble (pro)renin receptor pathway, presenting a promising therapeutic approach for renovascular hypertension (RVHT) by targeting renin expression mechanisms. These findings underscore the potential of apelin-13 as a novel strategy to address RVHT.
Collapse
Affiliation(s)
- Ziqing Yan
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Teng Yang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Xinxuan Li
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Zipeng Jiang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Wankun Jia
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Jin Zhou
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Hui Fang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| |
Collapse
|
21
|
Luo D, Bai M, Zhang W, Wang J. The possible mechanism and research progress of ACE2 involved in cardiovascular injury caused by COVID-19: a review. Front Cardiovasc Med 2024; 11:1409723. [PMID: 38863899 PMCID: PMC11165996 DOI: 10.3389/fcvm.2024.1409723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
ACE2 is the earliest receptor discovered to mediate the entry of SARS-CoV-2. In addition to the receptor, it also participates in complex pathological and physiological processes, including regulating the RAS system, apelin, KKS system, and immune system. In addition to affecting the respiratory system, viral infections also interact with cardiovascular diseases. SARS-CoV-2 can directly invade the cardiovascular system through ACE2; Similarly, cardiovascular diseases such as hypertension and coronary heart disease can affect ACE2 levels and exacerbate the disease, and ACE2 dysregulation may also be a potential mechanism for long-term acute sequelae of COVID-19. Since the SARS CoV-2 epidemic, many large population studies have tried to clarify the current focus of debate, that is, whether we should give COVID-19 patients ACEI and ARB drug treatment, but there is still no conclusive conclusion. We also discussed potential disease treatment options for ACE2 at present. Finally, we discussed the researchers' latest findings on ACE2 and their prospects for future research.
Collapse
Affiliation(s)
| | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Monnerat S, Drivakos N, Chapman FA, Dhaun N, Refardt J, Christ-Crain M. Apelin and Copeptin Levels in Patients With Chronic SIAD Treated With Empagliflozin. J Endocr Soc 2024; 8:bvae106. [PMID: 38872994 PMCID: PMC11170659 DOI: 10.1210/jendso/bvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 06/15/2024] Open
Abstract
Background Empagliflozin increases sodium levels in patients with a chronic syndrome of inappropriate antidiuresis (SIAD), and dapagliflozin increases apelin levels in patients with diabetes mellitus. Exogenous apelin increases sodium levels in rats with SIAD. We aimed to investigate whether an increase in plasma apelin concentration may contribute to the efficacy of empagliflozin in SIAD. Methods Post hoc secondary analysis of a double-blind, crossover, placebo-controlled trial performed from December 2017 to August 2021 at the University Hospital Basel, Switzerland, investigating the effect of 4-week treatment with empagliflozin 25 mg/day as compared to placebo in 14 outpatients with chronic SIAD (NCT03202667). The objective was to investigate the effect of empagliflozin on plasma apelin and copeptin concentrations and their ratio. Results Fourteen patients, 50% female, with a median [interquartile range] age of 72 years [65-77] were analyzed. Median apelin concentration was 956 pmol/L [853, 1038] at baseline. Median [interquartile range] apelin relative changes were +11% [0.7, 21] and +8% [-5, 25] (P = .672) at the end of the placebo and empagliflozin phases, respectively. Median copeptin concentration was 2.6 [2.2, 4.5] pmol/L at baseline and had a relative change of +5 [-2. 11]% and +25% [10, 28] (P = .047) over the placebo and empagliflozin phases, respectively. Conclusion Empagliflozin did not lead to significant changes in apelin or the apelin/copeptin ratio in patients with chronic SIAD but led to an increase in copeptin. This suggests that the efficacy of empagliflozin in SIAD is independent of apelin and is not blunted by the adaptative increase in copeptin.
Collapse
Affiliation(s)
- Sophie Monnerat
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Nikolaos Drivakos
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Department of Nephrology, Hospital Center of Biel, 2501 Biel, Switzerland
| | - Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
23
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
24
|
Cao Z, Li W, Shao Z, Liu X, Zeng Y, Lin P, Lin C, Zhao Y, Li T, Zhao Z, Li X, Zhang Y, Hu B. Apelin ameliorates sepsis-induced myocardial dysfunction via inhibition of NLRP3-mediated pyroptosis of cardiomyocytes. Heliyon 2024; 10:e24568. [PMID: 38356599 PMCID: PMC10864914 DOI: 10.1016/j.heliyon.2024.e24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SMD) is the major cause of death in sepsis. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis contributes to the occurrence and development of SMD. Although Apelin confers direct protection against SMD, the potential mechanisms remain unclear. This study aimed to determine whether Apelin protects against SMD via regulation of NLRP3-mediated pyroptosis of cardiomyocytes. Experimental SMD was induced in wild-type (WT) control mice and Apelin knockout (Apelin-/-) mice by cecal ligation and puncture (CLP). Neonatal mouse cardiomyocytes (NMCs) were treated with lipopolysaccharide (LPS) to simulate the physiological environment of SMD in vitro. The expression of Apelin was greatly decreased in the plasma from septic patients and septic mouse heart. Knockout of Apelin aggravated SMD, evidenced by decreased cardiac function, and increased cardiac fibrosis and NLRP3 inflammasome and pyroptosis levels in CLP-treated Apelin-/- mice compared with WT mice. Overexpression of Apelin activated the AMPK pathway and thereby inhibited NLRP3 inflammasome-mediated pyroptosis of NMCs induced by LPS in vitro These protective effects were partially abrogated by AMPK inhibitor. In conclusion, Apelin attenuated SMD by inhibiting NLRP3-mediated pyroptosis via activation of the AMPK pathway. Apelin may serve as a promising therapeutic target for SMD.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuang Shao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinqiang Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zeng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Peijun Lin
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chuangqiang Lin
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Yuechu Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zichao Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Lyu JX, Guo DD, Song YC, Zhang MR, Ge FQ, Zhao J, Zhu H, Hang PZ. Circulating Myokines as Novel Biomarkers for Cardiovascular Diseases. Rev Cardiovasc Med 2024; 25:56. [PMID: 39077334 PMCID: PMC11263177 DOI: 10.31083/j.rcm2502056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 07/31/2024] Open
Abstract
Myokines are a group of cytokines or polypeptides released from skeletal muscle during exercise. Growing evidence suggests that myokines are associated with the development of cardiovascular disease (CVD). Moreover, several myokines in peripheral blood exhibit dynamic changes in different CVD stages. This review summarizes the potential roles of myokines such as myostatin, irisin, brain-derived neurotrophic factor, mitsugumin 53, meteorin-like, and apelin in various CVD, including myocardial infarction, heart failure, atherosclerosis, hypertension, and diabetes. The association of these myokines with biomarkers currently being used in clinical practice is also discussed. Furthermore, the review considers the emerging role of myokines in CVD and addresses the challenges remaining in translating these discoveries into novel clinical biomarkers for CVD.
Collapse
Affiliation(s)
- Jin-xiu Lyu
- Department of Pharmacy, Clinical Medical College, Yangzhou University,
Northern Jiangsu People's Hospital, 225001 Yangzhou, Jiangsu, China
| | - Dan-dan Guo
- Department of Pharmacy, Clinical Medical College, Yangzhou University,
Northern Jiangsu People's Hospital, 225001 Yangzhou, Jiangsu, China
- Medical College, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Yu-chen Song
- Department of Pharmacy, Clinical Medical College, Yangzhou University,
Northern Jiangsu People's Hospital, 225001 Yangzhou, Jiangsu, China
- Medical College, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Man-ru Zhang
- Department of Pharmacy, Clinical Medical College, Yangzhou University,
Northern Jiangsu People's Hospital, 225001 Yangzhou, Jiangsu, China
- College of Pharmacy, Dalian Medical University, 116044 Dalian, Liaoning,
China
| | - Feng-qin Ge
- Department of Pharmacy, Clinical Medical College, Yangzhou University,
Northern Jiangsu People's Hospital, 225001 Yangzhou, Jiangsu, China
| | - Jing Zhao
- Department of Pharmacy, Clinical Medical College, Yangzhou University,
Northern Jiangsu People's Hospital, 225001 Yangzhou, Jiangsu, China
| | - Hua Zhu
- Department of Pharmacy, Clinical Medical College, Yangzhou University,
Northern Jiangsu People's Hospital, 225001 Yangzhou, Jiangsu, China
| | - Peng-zhou Hang
- Department of Pharmacy, Clinical Medical College, Yangzhou University,
Northern Jiangsu People's Hospital, 225001 Yangzhou, Jiangsu, China
| |
Collapse
|
26
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
27
|
Kim JW, Kim JH, Lee YJ. The Role of Adipokines in Tumor Progression and Its Association with Obesity. Biomedicines 2024; 12:97. [PMID: 38255203 PMCID: PMC10813163 DOI: 10.3390/biomedicines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity is a well-established risk factor for various malignancies and emerging evidence suggests that adipokines play a pivotal role in linking excess adiposity to tumorigenesis. Adipokines are bioactive molecules secreted by adipose tissue and their altered expression in obesity contributes to a pro-inflammatory, pro-angiogenic, and growth-promoting microenvironment conducive to tumorigenesis. Leptin, a key adipokine, activates survival and proliferative signaling pathways whereas adiponectin exhibits tumor-suppressive effects by inducing apoptosis and cell cycle arrest. Visfatin has also been documented to promote tumor growth, angiogenesis, migration, and invasion. Moreover, emerging studies suggest that adipokines, such as resistin, apelin, and chemerin, which are overexpressed in obesity, may also possess oncogenic functions. Despite advancements in our understanding of the roles of individual adipokines in cancer, the intricate interplay and crosstalk between adipokines, tumor cells, and the tumor microenvironment remain complex and multifaceted. This review highlights the evolving knowledge of how adipokines contribute to obesity-related tumorigenesis, shedding light on the potential of targeting adipokine signaling pathways as a novel therapeutic approach for obesity-associated cancers. Further research on the specific mechanisms and interactions between adipokines and tumor cells is crucial for a comprehensive understanding of obesity-associated cancer pathogenesis.
Collapse
Affiliation(s)
| | | | - Yoon Jae Lee
- Department of Plastic and Reconstructive Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea; (J.W.K.); (J.H.K.)
| |
Collapse
|
28
|
Guo L, Yang Q, Wei R, Zhang W, Yin N, Chen Y, Xu C, Li C, Carney RP, Li Y, Feng M. Enhanced pericyte-endothelial interactions through NO-boosted extracellular vesicles drive revascularization in a mouse model of ischemic injury. Nat Commun 2023; 14:7334. [PMID: 37957174 PMCID: PMC10643472 DOI: 10.1038/s41467-023-43153-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Despite improvements in medical and surgical therapies, a significant portion of patients with critical limb ischemia (CLI) are considered as "no option" for revascularization. In this work, a nitric oxide (NO)-boosted and activated nanovesicle regeneration kit (n-BANK) is constructed by decorating stem cell-derived nanoscale extracellular vesicles with NO nanocages. Our results demonstrate that n-BANKs could store NO in endothelial cells for subsequent release upon pericyte recruitment for CLI revascularization. Notably, n-BANKs enable endothelial cells to trigger eNOS activation and form tube-like structures. Subsequently, eNOS-derived NO robustly recruits pericytes to invest nascent endothelial cell tubes, giving rise to mature blood vessels. Consequently, n-BANKs confer complete revascularization in female mice following CLI, and thereby achieve limb preservation and restore the motor function. In light of n-BANK evoking pericyte-endothelial interactions to create functional vascular networks, it features promising therapeutic potential in revascularization to reduce CLI-related amputations, which potentially impact regeneration medicine.
Collapse
Affiliation(s)
- Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China.
| | - Qiang Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Runxiu Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Wenjun Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Na Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Yuling Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Chao Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Changrui Li
- Guangzhou Zhixin High School, Zhixin South Road, Guangzhou, 510080, P.R. China
| | - Randy P Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA.
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA.
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China.
| |
Collapse
|
29
|
Hoyek S, Cruz NFSD, Patel NA, Al-Khersan H, Fan KC, Berrocal AM. Identification of novel biomarkers for retinopathy of prematurity in preterm infants by use of innovative technologies and artificial intelligence. Prog Retin Eye Res 2023; 97:101208. [PMID: 37611892 DOI: 10.1016/j.preteyeres.2023.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Retinopathy of prematurity (ROP) is a leading cause of preventable vision loss in preterm infants. While appropriate screening is crucial for early identification and treatment of ROP, current screening guidelines remain limited by inter-examiner variability in screening modalities, absence of local protocol for ROP screening in some settings, a paucity of resources and an increased survival of younger and smaller infants. This review summarizes the advancements and challenges of current innovative technologies, artificial intelligence (AI), and predictive biomarkers for the diagnosis and management of ROP. We provide a contemporary overview of AI-based models for detection of ROP, its severity, progression, and response to treatment. To address the transition from experimental settings to real-world clinical practice, challenges to the clinical implementation of AI for ROP are reviewed and potential solutions are proposed. The use of optical coherence tomography (OCT) and OCT angiography (OCTA) technology is also explored, providing evaluation of subclinical ROP characteristics that are often imperceptible on fundus examination. Furthermore, we explore several potential biomarkers to reduce the need for invasive procedures, to enhance diagnostic accuracy and treatment efficacy. Finally, we emphasize the need of a symbiotic integration of biologic and imaging biomarkers and AI in ROP screening, where the robustness of biomarkers in early disease detection is complemented by the predictive precision of AI algorithms.
Collapse
Affiliation(s)
- Sandra Hoyek
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Natasha F S da Cruz
- Bascom Palmer Eye Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Hasenin Al-Khersan
- Bascom Palmer Eye Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Kenneth C Fan
- Bascom Palmer Eye Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Audina M Berrocal
- Bascom Palmer Eye Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
30
|
Wang L, Tu W, Li X, Li C, Lu J, Dai P, Chen Y, Gu M, Li M, Jiang S, Yang G, Li S. Exercise improves cardiac function and attenuates myocardial inflammation and apoptosis by regulating APJ/STAT3 in mice with stroke. Life Sci 2023; 332:122041. [PMID: 37657526 DOI: 10.1016/j.lfs.2023.122041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Stroke can induce cardiac dysfunction without a primary cardiac disease. Exercise can promote the overall rehabilitation of stroke patients and be beneficial for all kinds of heart diseases. However, the mechanisms underlying the protective effects of exercise in stroke-induced cardiac dysfunction are poorly understood. Hence, we aimed to distinguish the different effects of acute and long-term exercise and further study the mechanism of protection against cardiomyopathy caused by stroke. Mice underwent a single acute session or long-term exercise for 30 days, followed by middle cerebral artery occlusion surgery. The expression of apoptosis-related proteins and proinflammatory factors in the heart was evaluated. Then, overexpression of apelin peptide jejunum (APJ) transfected adeno-associated virus type 9 (AAV9) and inhibition of signal transducer and activator of transcription 3 (STAT3) by Stattic were used in stroke mice or hypoxic cardiomyocytes. ML221 were used to inhibit APJ activity in exercise mouse. Thereafter, changes in apoptotic and proinflammatory factors were evaluated. The results demonstrated that chronic exercise prevented myocardial inflammation, apoptosis and cardiac dysfunction after stroke. However, acute exercise did not have similar effects. Exercise maintained the levels of APJ expression and decreased phosphorylated-STAT3 (p-STAT3) activation to protect cardiomyocytes. Moreover, APJ overexpression promoted cardiomyocyte survival and reduced p-STAT3 levels. STAT3 inhibition also reduced apoptosis and proinflammatory factors in mice hearts. Conversely, the protective effect of exercise was eliminated by APJ inhibition. This study showed that exercise can maintain APJ expression and inhibit p-STAT3, thus, conferring protection against myocardial inflammation and apoptosis induced by stroke.
Collapse
Affiliation(s)
- Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xuqing Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Caiyan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Junhong Lu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Peng Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yuewei Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Meilin Gu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ming Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Guanhu Yang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China; Department of Specialty Medicine, Ohio University, Athens, OH 45701, United States
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
31
|
Pisarenko OI, Studneva IM. Apelin C-Terminal Fragments: Biological Properties and Therapeutic Potential. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1874-1889. [PMID: 38105205 DOI: 10.1134/s0006297923110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
Creation of bioactive molecules for treatment of cardiovascular diseases based on natural peptides is the focus of intensive experimental research. In the recent years, it has been established that C-terminal fragments of apelin, an endogenous ligand of the APJ receptor, reduce metabolic and functional disorders in experimental heart damage. The review presents literature data and generalized results of our own experiments on the effect of apelin-13, [Pyr]apelin-13, apelin-12, and their chemically modified analogues on the heart under normal and pathophysiological conditions in vitro and in vivo. It has been shown that the spectrum of action of apelin peptides on the damaged myocardium includes decrease in the death of cardiomyocytes from necrosis, reduction of damage to cardiomyocyte membranes, improvement in myocardial metabolic state, and decrease in formation of reactive oxygen species and lipid peroxidation products. The mechanisms of protective action of these peptides associated with activation of the APJ receptor and manifestation of antioxidant properties are discussed. The data presented in the review show promise of the molecular design of APJ receptor peptide agonists, which can serve as the basis for the development of cardioprotectors that affect the processes of free radical oxidation and metabolic adaptation.
Collapse
Affiliation(s)
- Oleg I Pisarenko
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia.
| | - Irina M Studneva
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
32
|
Ye L, Huang Y, Liu X, Zhang X, Cao Y, Kong X, Yuan X, Xu J, Zhu H. Apelin/APJ system protects placental trophoblasts from hypoxia-induced oxidative stress through activating PI3K/Akt signaling pathway in preeclampsia. Free Radic Biol Med 2023; 208:759-770. [PMID: 37774802 DOI: 10.1016/j.freeradbiomed.2023.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Preeclampsia is a placentally induced syndrome with diverse clinical presentation that currently has no cure. Oxidative stress is a potent inducer of placental dysfunction. The apelin receptor (APJ) system is a pleiotropic pathway with a potential for therapeutic targeting in preeclampsia. This study examines the alteration of circulating apelin levels and placental APJ expression in preeclampsia and investigates whether apelin/APJ system can protect placental trophoblast from hypoxia-induced oxidative stress injury through PI3K/AKT signaling pathway. RESULTS Our results confirmed that maternal apelin concentration was increased in women with preeclampsia, but APJ expression was reduced in the preeclamptic placentas. Apelin-13 treatment not only specifically attenuated CoCl2-induced superoxide production, but also prevented CoCl2-induced reduction of SOD activity and SOD1 expression. In addition, apelin-13 suppressed CoCl2-induced apoptosis by increasing the expression of bcl-2/bax ratio and by decreasing the expression of active caspase-3 in placental trophoblasts. Furthermore, we found that apelin-13 binding APJ activated the PI3K and AKT kinases and inhibition of PI3K kinase significantly blocked the anti-oxidative effects of apelin-13 in placental trophoblasts. CONCLUSIONS Decrease of placental APJ expression is associated with oxidative stress-induced placental dysfunction in preeclampsia, and increased circulating apelin could be a moderately successful marker to differentiate subjects with preeclampsia from healthy pregnant women. Inhibition of superoxide production and caspase-3 cleavage, together with upregulation of SOD activity/expression and bcl-2/bax ratio, could be the potential molecular mechanisms by which apelin-13/APJ protects placental trophoblasts from oxidative stress injury.
Collapse
Affiliation(s)
- Lingyu Ye
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Yujia Huang
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Xueqing Liu
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Xinyu Zhang
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Xiangju Kong
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiaolei Yuan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jie Xu
- Department of Physiology, Harbin Medical University, Harbin, 150081, China.
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
33
|
Kinjo T, Ebisawa S, Nokubo T, Hashimoto M, Yamada T, Oshio M, Nakamura R, Uno K, Kuramoto N. Post-translational modifications of the apelin receptor regulate its functional expression. AIMS Neurosci 2023; 10:282-299. [PMID: 38188005 PMCID: PMC10767067 DOI: 10.3934/neuroscience.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/09/2024] Open
Abstract
Post-translational modifications (PTMs) are protein modifications that occur after protein biosynthesis, playing a crucial role in regulating protein function. They are involved in the functional expression of G-protein-coupled receptors (GPCRs), as well as intracellular and secretory protein signaling. Here, we aimed to investigate the PTMs of the apelin receptor (APLNR), a GPCR and their potential influence on the receptor's function. In an in vitro experiment using HEK cells, we only observed glycosylation as a PTM of the APLNR and ineffective receptor signaling by the agonist, (Pyr1)-apelin-13. In contrast, when analyzing mouse spinal cord, we detected glycosylation and other PTMs, excluding isopeptidation. This suggests that additional PTMs are involved in the functional expression of the APLNR in vitro. In summary, these findings suggest that the APLNR in vivo requires multiple PTMs for functional expression. To comprehensively understand the pharmacological effects of the APLNR, it is essential to establish an in vitro system that adequately replicates the receptor's PTM profile. Nonetheless, it is crucial to overcome the challenge of heat-sensitive proteolysis in APLNR studies. By elucidating the regulation of PTMs, further research has the potential to advance the analysis and pharmacological studies of both the apelin/APLNR system and GPCR signal modulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
34
|
Shao Y, Sun L, Ma B, Jin R, Ban Y, Li R, Wang J, Lian H, Yue H. VCAM-1 Promotes Angiogenesis of Bone Marrow Mesenchymal Stem Cells Derived from Patients with Trauma-Induced Osteonecrosis of the Femoral Head by Regulating the Apelin/CCN2 Pathway. Stem Cells Int 2023; 2023:6684617. [PMID: 37868703 PMCID: PMC10586908 DOI: 10.1155/2023/6684617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
Trauma-induced osteonecrosis of the femoral head (TI-ONFH) is a pathological process in which the destruction of blood vessels supplying blood to the femoral head causes the death of bone tissue cells. Vascular cell adhesion molecule 1 (VCAM-1) has been shown to have potent proangiogenic activity, but the role in angiogenesis of TI-ONFH is unclear. In this work, we discovered that VCAM-1 was significantly downregulated in the bone marrow mesenchymal stem cells (BMSCs) derived from patients with TI-ONFH. Subsequently, we constructed BMSCs overexpressing VCAM-1 using a lentiviral vector. VCAM-1 enhances the migration and angiogenesis of BMSCs. We further performed mRNA transcriptome sequencing to explore the mechanisms by which VCAM-1 promotes angiogenesis. Gene ontology biological process enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were related to blood vessel development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that upregulated DEGs were engaged in the Apelin signaling pathway. Apelin-13 is the endogenous ligand of the APJ receptor and activates this G protein-coupled receptor. Treatment with Apelin-13 activated the Apelin signaling pathway and suppressed the expression of cellular communication network factor 2 in BMSCs. Furthermore, Apelin-13 also inhibits the migration and angiogenesis of VCAM-1-BMSCs. In summary, VCAM-1 plays an important role in vascular microcirculation disorders of TI-ONFH, which provides a new direction for the molecular mechanism and treatment of TI-ONFH.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Lei Sun
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Baodong Ma
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Ranran Jin
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Yueyao Ban
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Ruibo Li
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Jianfa Wang
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Hongkai Lian
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Han Yue
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
35
|
Niemczyk A, Waśkiel-Burnat A, Zaremba M, Czuwara J, Rudnicka L. The profile of adipokines associated with fibrosis and impaired microcirculation in systemic sclerosis. Adv Med Sci 2023; 68:298-305. [PMID: 37696138 DOI: 10.1016/j.advms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/03/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Adipokines belong to a group of molecules mostly produced by adipose tissue. Abnormalities in the secretion of several adipokines have already implicated to play a pathogenic role in systemic sclerosis (SSc). However, the possible role of numerous molecules still needs to be clarified. The aim of the study was to determine whether the altered level of selected circulating adipokines might correlate with the intensity of fibrosis and vasculopathy in the course of SSc. MATERIALS AND METHODS Serum concentrations of chemerin, adipsin, retinol-binding protein 4, apelin, visfatin, omentin-1, and vaspin were determined with ELISA in the sera of patients with SSc (n = 55) and healthy controls (n = 25). RESULTS The serum concentration of adipsin (p = 0.03) and visfatin (p = 0.04) was significantly increased and the level of retinol-binding protein 4 (p = 0.03) was decreased in diffuse compared to limited cutaneous SSc. Moreover, serum adipsin level correlated positively with the intensity of skin fibrosis measured with the modified Rodnan skin score (r = 0.31, p = 0.02) and was significantly higher in patients with pulmonary arterial hypertension than in those without the condition (p = 0.03). The concentrations of adipsin (p = 0.01) and visfatin (p = 0.04) were significantly increased and the level of apelin (p = 0.02) was decreased in patients with active digital ulcerations compared to individuals without this complication. CONCLUSION Adipsin may be considered a pivotal protein in the development of both fibrosis and impaired microcirculation. Its abnormal concentration reflects the intensity of skin thickening and the presence of pulmonary arterial hypertension. Adipsin, visfatin, and apelin are adipose tissue-derived molecules associated with digital vasculopathy.
Collapse
Affiliation(s)
- Anna Niemczyk
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland.
| | | | - Michał Zaremba
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Yao F, Niloy SI, Shen Y, Zhang Q, O'Rourke ST, Sun C. Intravenous administration of apeling-13 induces a depressor response by releasing an unidentified substance. Biochem Biophys Res Commun 2023; 665:202-207. [PMID: 37167808 PMCID: PMC10250002 DOI: 10.1016/j.bbrc.2023.04.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Apelin and APJ receptor play an important role in the regulating cardiovascular function; however, conflicting results have been reported regarding the effect of apelin on cardiovascular regulation. In this study, blood pressure and heart rate were measured by femoral arterial catheterization; and cardiac contractility was recorded by left ventricular catheterization through the right carotid artery in rats before and after intravenous administration of [pyr1]-apelin-13. The results show that intravenous administration of apelin-13 caused a dramatic reduction in BP but did not significantly alter heart rate and contractility. To study the mechanism of the apelin-induced depressor response, isometric tension was measured in isolated mesenteric arteries using a myograph approach. Surprisingly, treatment of the arteries with [pyr1]-apelin-13 did not cause relaxation of mesenteric arteries preconstricted with norepinephrine; however, treatment with plasma collected from rats that received intravenous administration of [pyr1]-apelin-13 caused pronounced relaxation of isolated arteries. Incubation with the guanylyl cyclase inhibitor, ODQ, blocked NO-induced relaxation, but did not significantly alter the relaxation response to the plasma from apelin-treated rats. Taken together, these findings demonstrate that intravenous injection of apelin causes a significant depressor response that is mediated by a NO-independent mechanism involving an unidentified substance released into the bloodstream leading to vasodilation.
Collapse
Affiliation(s)
- Fanrong Yao
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Sayeman Islam Niloy
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Yue Shen
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Qi Zhang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
37
|
Abdelwahab AH, Negm AM, Mahmoud ES, Salama RM, Schaalan MF, El-Sheikh AAK, Ramadan BK. The cardioprotective effects of secoisolariciresinol diglucoside (flaxseed lignan) against cafeteria diet-induced cardiac fibrosis and vascular injury in rats: an insight into apelin/AMPK/FOXO3a signaling pathways. Front Pharmacol 2023; 14:1199294. [PMID: 37497114 PMCID: PMC10367100 DOI: 10.3389/fphar.2023.1199294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: Fast food is a major risk factor for atherosclerosis, a leading cause of morbidity and mortality in the Western world. Apelin, the endogenous adipokine, can protect against cardiovascular disease via activating its receptor, APJ. Concurrently, secoisolariciresinol diglucoside (SDG), a flaxseed lignan extract (FLE), showed a therapeutic impact on atherosclerosis. The current study aimed to examine the effect of SDG on cafeteria diet (CAFD)-induced vascular injury and cardiac fibrosis via tracking the involvement of the apelin/APJ pathway. Methods: Thirty male rats were allocated into control, FLE-, CAFD-, CAFD/FLE-, and CAFD/FLE/F13A-treated rats, where F13A is an APJ blocker. All treatments lasted for 12 weeks. Results and discussion: The CAFD-induced cardiovascular injury was evidenced by histological distortions, dyslipidemia, elevated atherogenic indices, cardiac troponin I, collagen percentage, glycogen content, and apoptotic markers. CAFD increased both the gene and protein expression levels of cardiac APJ, apelin, and FOXO3a, in addition to increasing endothelin-1, VCAM1, and plasminogen activator inhibitor-1 serum levels and upregulating cardiac MMP-9 gene expression. Moreover, CAFD reduced serum paraoxonase 1 and nitric oxide levels, cardiac AMPK, and nuclear Nrf2 expression. FLE attenuated CAFD-induced cardiovascular injury. Such effect was reduced in rats receiving the APJ blocker, implicating the involvement of apelin/APJ in FLE protective mechanisms. Conclusion: FLE supplementation abrogated CAFD-induced cardiac injury and endothelial dysfunction in an apelin/APJ-dependent manner.
Collapse
Affiliation(s)
- Azza H. Abdelwahab
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Amira M. Negm
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S. Mahmoud
- Histology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mona F. Schaalan
- Clinical Pharmacy Department, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Basma K. Ramadan
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
- Medical Sciences Department, Faculty of Oral and Dental Medicine, Misr International University, Cairo, Egypt
| |
Collapse
|
38
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Demirel O, Berezin AE, Mirna M, Boxhammer E, Gharibeh SX, Hoppe UC, Lichtenauer M. Biomarkers of Atrial Fibrillation Recurrence in Patients with Paroxysmal or Persistent Atrial Fibrillation Following External Direct Current Electrical Cardioversion. Biomedicines 2023; 11:1452. [PMID: 37239123 PMCID: PMC10216298 DOI: 10.3390/biomedicines11051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Atrial fibrillation (AF) is associated with atrial remodeling, cardiac dysfunction, and poor clinical outcomes. External direct current electrical cardioversion is a well-developed urgent treatment strategy for patients presenting with recent-onset AF. However, there is a lack of accurate predictive serum biomarkers to identify the risks of AF relapse after electrical cardioversion. We reviewed the currently available data and interpreted the findings of several studies revealing biomarkers for crucial elements in the pathogenesis of AF and affecting cardiac remodeling, fibrosis, inflammation, endothelial dysfunction, oxidative stress, adipose tissue dysfunction, myopathy, and mitochondrial dysfunction. Although there is ample strong evidence that elevated levels of numerous biomarkers (such as natriuretic peptides, C-reactive protein, galectin-3, soluble suppressor tumorigenicity-2, fibroblast growth factor-23, turn-over collagen biomarkers, growth differential factor-15) are associated with AF occurrence, the data obtained in clinical studies seem to be controversial in terms of their predictive ability for post-cardioversion outcomes. Novel circulating biomarkers are needed to elucidate the modality of this approach compared with conventional predictive tools. Conclusions: Biomarker-based strategies for predicting events after AF treatment require extensive investigation in the future, especially in the presence of different gender and variable comorbidity profiles. Perhaps, a multiple biomarker approach exerts more utilization for patients with different forms of AF than single biomarker use.
Collapse
Affiliation(s)
- Ozan Demirel
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| | - Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Sarah X. Gharibeh
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| |
Collapse
|
40
|
Zhou Y, Zhang X, Liu Z, Wang N, Zhao X, Guo R. DNMT1 mediates proliferation, migration and invasion of extravillous trophoblasts by regulating the methylation level of APLNR. Placenta 2023; 138:33-43. [PMID: 37167781 DOI: 10.1016/j.placenta.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Proliferation, migration and invasion of extravillous trophoblasts (EVTs) play an important role in the progression of preeclampsia (PE). The purpose of this study was to investigate the molecular mechanism by which DNA methylase regulates the transcription level of APLNR and affects the phenotypic function of EVTs. MATERIALS AND METHODS PE mice model and H/R model in HTR8/Svneo cells were constructed. Clinical samples of normal pregnant women and PE patients were collected. Expression and methylation level of APLNR in vivo and in vitro were detected. ChIP-qPCR was used to detect the binding of DNA methyltransferase at the APLNR promoter. The expression of DNA methyltransferase 1 (DNMT1), NO and eNOS in vitro were detected. EVTs proliferation, migration and invasion in vitro were detected. RESULTS In placental tissues or HTR8/Svneo cells of the PE model group, the expression of APLNR was reduced and APLNR methylation level was up-regulated. There was no significant difference in the APLNR expression in placental tissues between normal pregnant women and PE patients. H/R conditions only promote the binding of DNMT1 at the APLNR promoter. DNMT1 interference decreased the enrichment degree of DNMT1 in APLNR promoter region and up-regulated the mRNA and protein levels of APLNR in vivo and in vitro. The activation of APLNR by Elabela (ELA) can promote eNOS transcription, thereby promoting cell proliferation and NO level, while eNOS inhibitor can reverse this effect. DNMT1 down-regulation inhibted APLNR methylation level, promoted eNOS transcription, and promoted EVTs proliferation, migration and invasion, which could be revised by the interference of APLNR. DISCUSSION DNMT1 promotes eNOS transcription by inhibting APLNR methylation level, and promotes EVTs proliferation, migration and invasion, thus providing a new and broad application prospect for PE treatment.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Xiaoyan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Zhuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Ning Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Xianlan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China.
| |
Collapse
|
41
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
42
|
Zhang Q, Shen Y, Niloy SI, O'Rourke ST, Sun C. Chronic Effects of Apelin on Cardiovascular Regulation and Angiotensin II-Induced Hypertension. Pharmaceuticals (Basel) 2023; 16:ph16040600. [PMID: 37111357 PMCID: PMC10145143 DOI: 10.3390/ph16040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Apelin, by stimulation of APJ receptors, induces transient blood pressure (BP) reduction and positive inotropic effects. APJ receptors share high homology with the Ang II type 1 receptor; thus, apelin was proposed to play a protective role in cardiovascular disease by antagonizing the actions of Ang II. In this regard, apelin and apelin-mimetics are currently being studied in clinical trials. However, the chronic effect of apelin in cardiovascular regulation has not been fully investigated. In the current study, blood pressure (BP) and heart rate (HR) were recorded using a telemetry implantation approach in conscious rats, before and during chronic subcutaneous infusion of apelin-13, using osmotic minipumps. At the end of the recording, the cardiac myocyte morphology was examined using H&E staining, and cardiac fibrosis was evaluated by Sirius Red in each group of rats. The results demonstrated that the chronic infusion of apelin-13 did not change either BP or HR. However, under the same condition, the chronic infusion of Ang II induced significant BP elevation, cardiac hypertrophy, and fibrosis. Co-administration of apelin-13 did not significantly alter the Ang II-induced elevation in BP, changes in cardiac morphology, and fibrosis. Taken together, our experiments showed an unexpected result indicating that the chronic administration of apelin-13 did not alter basal BP, nor did it change Ang II-induced hypertension and cardiac hypertrophy. The findings suggest that an APJ receptor biased agonist could be a better therapeutic alternative for treatment of hypertension.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Yue Shen
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Sayeman Islam Niloy
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
43
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
44
|
Fibbi B, Marroncini G, Naldi L, Peri A. The Yin and Yang Effect of the Apelinergic System in Oxidative Stress. Int J Mol Sci 2023; 24:4745. [PMID: 36902176 PMCID: PMC10003082 DOI: 10.3390/ijms24054745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.
Collapse
Affiliation(s)
- Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giada Marroncini
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
45
|
Théroux L, Van Den Hauwe R, Trân K, Fournier J, Desgagné M, Meneboo N, Lavallée A, Fröhlich U, Côté J, Hollanders C, Longpré JM, Murza A, Marsault E, Sarret P, Boudreault PL, Ballet S. Signaling Modulation via Minimal C-Terminal Modifications of Apelin-13. ACS Pharmacol Transl Sci 2023; 6:290-305. [PMID: 36798478 PMCID: PMC9926529 DOI: 10.1021/acsptsci.2c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 01/27/2023]
Abstract
Apelin is an endogenous peptide that is involved in many diseases such as cardiovascular diseases, obesity, and cancer, which has made it an attractive target for drug discovery. Herein, we explore the penultimate and final sequence positions of [Pyr1]-apelin-13 (Ape13) via C-terminal N α-alkylated amide bonds and the introduction of positive charges, potentially targeting the allosteric sodium pocket, by assessing the binding affinity and signaling profiles at the apelin receptor (APJ). Synthetic analogues modified within this segment of Ape13 showed high affinity (K i 0.12-0.17 nM vs Ape13 K i 0.7 nM), potent Gαi1 activation (EC50 Gαi1 0.4-0.9 nM vs Ape13 EC50 1.1 nM), partial agonist behavior disfavoring β-arrestin 2 recruitment for positively charged ligands (e.g., 49 (SBL-AP-058), EC50 β-arr2 275 nM, E max 54%) and high plasma stability for N-alkyl ligands (t 1/2 > 7 h vs Ape13 t 1/2 0.5 h). Combining the benefits of the N α-alkylated amide bond with the guanidino substitution in a constrained ligand led to 63 (SBL-AP-049), which displayed increased plasma stability (t 1/2 5.3 h) and strong reduction of β-arrestin 2 signaling with partial maximal efficacy (EC50 β-arr 864 nM, E max 48%), significantly reducing the hypotensive effect in vivo.
Collapse
Affiliation(s)
- Léa Théroux
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Robin Van Den Hauwe
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Kien Trân
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Justin Fournier
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Michael Desgagné
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathan Meneboo
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Alexis Lavallée
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Ulrike Fröhlich
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jérôme Côté
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Charlie Hollanders
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jean-Michel Longpré
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Alexandre Murza
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eric Marsault
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Philippe Sarret
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
46
|
Muacevic A, Adler JR, Torres R, Maita K, Garcia J, Serrano L, Ho O, Forte AJ. Modulation of Burn Hypermetabolism in Preclinical Models. Cureus 2023; 15:e33518. [PMID: 36779088 PMCID: PMC9904913 DOI: 10.7759/cureus.33518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Severe burns elicit a state of physiological stress and increased metabolism to help the body compensate for the changes associated with the traumatic injury. However, this hypermetabolic state is associated with increased insulin resistance, cardiovascular dysfunction, skeletal muscle catabolism, impaired wound healing, and delayed recovery. Several interventions were attempted to modulate burn hypermetabolism, including nutritional support, early excision and grafting, and growth hormone application. However, burn hypermetabolism still imposes significant morbidity and mortality in burn patients. Due to the limitations of in vitro models, animal models are indispensable in burn research. Animal models provide researchers with invaluable tools to test the safety and efficacy of novel treatments or advance our knowledge of previously utilized agents. Several animal studies evaluated novel therapies to modulate burn hypermetabolism in the last few years, including recombinant human growth hormone, erythropoietin, acipimox, apelin, anti-interleukin-6 monoclonal antibody, and ghrelin therapies. Results from these studies are promising and may be effectively translated into human studies. In addition, other studies revisited drugs previously used in clinical practice, such as insulin and metformin, to further investigate their underlying mechanisms as modulators of burn hypermetabolism. This review aims to update burn experts with the novel therapies under investigation in burn hypermetabolism with a focus on applicability and translation. Furthermore, we aim to guide researchers in selecting the correct animal model for their experiments by providing a summary of the methodology and the rationale of the latest studies.
Collapse
|
47
|
Adiarto S, Prakoso R, Firdaus I, Indriani S, Rudiktyo E, Widyantoro B, Ambari AM, Sukmawan R. A Novel Peptide Elabela is Associated with Hypertension-Related Subclinical Atherosclerosis. High Blood Press Cardiovasc Prev 2023; 30:37-44. [PMID: 36449232 DOI: 10.1007/s40292-022-00554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Elabela is a newly identified peptide which, alongside apelin, acts as an endogenous ligand that activates the angiotensin receptor-like 1 receptor. Previous studies have shown the association of elabela with hypertension, but information about the role of elabela in hypertension-related subclinical atherosclerosis is scarce. AIM We aimed to determine the elabela levels in hypertensive patients and explore its association with subclinical atherosclerosis. METHODS A total of 104 subjects with hypertension were included in the study. Elabela levels were measured using an enzyme-linked immunosorbent assay, by first extracting the peptide following the manufacturer's instructions. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (IMT) using ultrasound. RESULTS Compared to stage 1, elabela levels decreased in stage 2 hypertension (0.23 [0.13, 0.45] ng/ml vs. 0.14 [0.09, 0.23] ng/ml; P = 0.000), and in the group with increased carotid IMT compared to normal IMT (0.24 [0.13, 0.38] ng/ml vs. 0.15 [0.10, 0.23] ng/ml; P = 0.005). Additionally, a linear correlation analysis showed that elabela had a significant negative correlation with systolic blood pressure (r = - 0.340, P = 0.000) and carotid IMT (r = - 0.213; P = 0.030). In multivariate analysis, lower elabela levels were associated with a higher cardiovascular risk group in this study (OR 5.0, 95% CI 1.8-13.5, P < 0.001). CONCLUSIONS This study demonstrated for the first time that circulating elabela declined in a higher stage of hypertension and hypertensive patients with increased carotid IMT, implicating that elabela may be involved in the pathogenesis of hypertension-associated subclinical atherosclerosis.
Collapse
Affiliation(s)
- Suko Adiarto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia.
| | - Radityo Prakoso
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Isman Firdaus
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Suci Indriani
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Estu Rudiktyo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Bambang Widyantoro
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Ade Meidian Ambari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Renan Sukmawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| |
Collapse
|
48
|
Chronic Low or High Nutrient Intake and Myokine Levels. Nutrients 2022; 15:nu15010153. [PMID: 36615810 PMCID: PMC9824657 DOI: 10.3390/nu15010153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Inadequate nutrient availability has been demonstrated to be one of the main factors related to endocrine and metabolic dysfunction. We investigated the role of inadequate nutrient intakes in the myokine levels of runners. Sixty-one amateur runners participated in this study. The myokine levels were determined using the Human Magnetic Bead Panel from plasma samples collected before and after the marathon. Dietary intake was determined using a prospective method of three food records. The runners with lower carbohydrate and calcium intakes had higher percentages of fat mass (p < 0.01). The runners with a sucrose intake comprising above 10% of their energy intake and an adequate sodium intake had higher levels of BDNF (p = 0.027 and p = 0.031). After the race and in the recovery period, the runners with adequate carbohydrate intakes (g/kg) (>5 g/kg/day) had higher levels of myostatin and musclin (p < 0.05). The runners with less than 45% of carbohydrate of EI had lower levels of IL-15 (p = 0.015) and BNDF (p = 0.013). The runners with higher cholesterol intakes had lower levels of irisin (p = 0.011) and apelin (p = 0.020), and those with a low fiber intake had lower levels of irisin (p = 0.005) and BDNF (p = 0.049). The inadequate intake influenced myokine levels, which promoted cardiometabolic tissue repair and adaptations to exercise.
Collapse
|
49
|
Chen B, Wu J, Hu S, Liu Q, Yang H, You Y. Apelin-13 Improves Cognitive Impairment and Repairs Hippocampal Neuronal Damage by Activating PGC-1α/PPARγ Signaling. Neurochem Res 2022; 48:1504-1515. [PMID: 36512295 DOI: 10.1007/s11064-022-03844-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that is prevalent around the world. Both Apelin-13 and proliferator-activated receptor-γ (PPARγ)/PPARγ co-activator 1α (PGC-1α) are regarded as candidate targets for treating AD. The investigation examined whether Apelin-13 exerts neuroprotective effects via PGC-1α/PPARγ signaling. In this study, Apelin-13 improved cognitive deficits in AD mice, while SR-18,292 (a PGC-1α inhibitor) interfered with the therapeutic effects of Apelin-13. Mechanistically, Apelin-13, PGC-1α and PPARγ were decreased in AD mice and oxygen-glucose deprivation (OGD)-induced neuronal cells. Apelin-13 bound to PGC-1α and negatively regulated the expression of PGC-1α and PPARγ. In turn, PGC-1α accelerated the accumulation of Apelin-13 and PPARγ. Additionally, neuronal apoptosis was inhibited, and the abundance of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase 3) was induced. The content of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) fluctuated. The level of inflammatory factors (interleukin-6, IL-6, IL-10, tumor necrosis factor-α, TNF-α) was regulated. In short, Apelin-13 exerted anti-apoptosis, anti-oxidant stress and anti-inflammatory effects. Interestingly, PGC-1α silencing promoted neuronal apoptosis, oxidant stress and inflammation, and overexpression of PGC-1α exhibited the opposite. More importantly, inhibition of PGC-1α attenuated Apelin-13-enhanced cognitive impairment and neuronal damage. Therefore, our findings suggested that Apelin-13 exerted neuroprotective effects in part via the PGC-1α/PPARγ pathway.
Collapse
Affiliation(s)
- Bin Chen
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China.,Key Laboratory of Brain Science Research & Transformation In Tropical Environment of Hainan Province, 571199, Haikou, China.,International Center for Aging and Cancer (ICAC), 571199, Haikou, China
| | - Jingwei Wu
- Department of Radiology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China
| | - Sheng Hu
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Qingli Liu
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Hui Yang
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Yong You
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China. .,Hainan Medical University, 571199, Haikou, China. .,Key Laboratory of Brain Science Research & Transformation In Tropical Environment of Hainan Province, 571199, Haikou, China. .,International Center for Aging and Cancer (ICAC), 571199, Haikou, China.
| |
Collapse
|
50
|
The apelin/APJ signaling system and cytoprotection: Role of its cross-talk with kappa opioid receptor. Eur J Pharmacol 2022; 936:175353. [DOI: 10.1016/j.ejphar.2022.175353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
|