1
|
Kumari N, Adhikari A, Bhagat S, Mishra AK, Tiwari AK. Benzoxazolone-based FITC-conjugated fluorescent probe for locating in-vivo expression level of translocator protein (TSPO) during lung inflammation. Mol Divers 2025:10.1007/s11030-025-11192-9. [PMID: 40259117 DOI: 10.1007/s11030-025-11192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Translocator protein 18 kDa (TSPO) has been a salient target for probing and monitoring inflammation in the central nervous system (CNS) and peripheral systems. Leveraging our previously developed, TSPO specific, modified acetamidobenzoxazolone derivative, the present work describes the synthesis and development of an optical probe for lung inflammation imaging: 2-(3,6-dihydroxy-9H-xanthen-9-yl)-5-(3-(3-(2-(methyl(phenyl)amino)-2-oxoethyl)-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)thioureido)benzoic acid (FITC-MBP). The FITC-MBP is prepared through facile methodology by conjugating MBP to fluorophore dye FITC. Spectral properties remained equivalent to FITC dye with absorption and emission wavelength at 486 and 520 nm, respectively. Cellular uptake studies established overexpression of TSPO in lipopolysaccharide (LPS)-induced inflammation in H1299 lung cells. Reduced mean fluorescence intensity (MFI) during blocking experiments with PK11195 in flow cytometry suggests the specificity of the fluorescent probe towards TSPO. In-vivo optical imaging analysis on LPS-induced lung-inflamed balb/c mice revealed major sequestration of FITC-MBP in the lungs compared to control at 25 min post-injection that significantly decreased on pretreatment with PK11195 due to competitive binding to TSPO. On ground of these findings, we believe the novel fluorescent probe (FITC-MBP) might be utilized to visualize the overexpressed TSPO.
Collapse
Affiliation(s)
- Neelam Kumari
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Sunita Bhagat
- Organic Synthesis Research Laboratory, Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India
| | - Anjani K Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India.
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Espinoza N, Papadopoulos V. Role of Mitochondrial Dysfunction in Neuropathy. Int J Mol Sci 2025; 26:3195. [PMID: 40243998 PMCID: PMC11989173 DOI: 10.3390/ijms26073195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Diabetes mellitus is characterized by a state of hyperglycemia, which can lead to severe complications if left untreated or poorly managed. Diabetic peripheral neuropathy (DPN) is one common complication. This condition is characterized by damage to the nerves that supply the legs and feet as well as problems with blood vessels, the heart, or urinary tract. To alleviate pain for patients, clinicians resort to long-term treatment regimens of nerve pain medications, which are usually either anticonvulsants or antidepressants. However, little is understood about the underlying mechanisms of DPN. Many pathogenic pathways have been proposed, one of which is mitochondrial dysfunction. Mitochondrial dysfunction includes a range of possible deficiencies given the number of functions controlled by or located in mitochondria, including their core function of bioenergetics. This review focuses on mitochondrial bioenergetics, including respiration/ATP synthesis and reactive oxygen species (ROS) production, as well as calcium homeostasis and apoptosis, and their potential as targets for the effective treatment of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Sendai Y, Takeda K, Ohta K, Nakae S, Koshika K, Kitamura K, Higuchi M, Ichinohe T, Azuma T, Okumura K, Ohno T. Ro5-4864, a translocator protein ligand, regulates T cell-mediated inflammatory responses in skin. Int Immunol 2025; 37:221-234. [PMID: 39460731 DOI: 10.1093/intimm/dxae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/24/2024] [Indexed: 10/28/2024] Open
Abstract
Translocator protein (TSPO) is a mitochondrial outer membrane protein expressed on a variety of immune cells, including macrophages, dendritic cells, and T cells, in addition to neurons and steroid-producing cells. Previous studies of TSPO ligands have suggested that TSPO is involved in multiple cellular functions, including steroidogenesis, immunomodulation, and cell proliferation. Currently, there are limited reports on the effects of TSPO or TSPO ligands on T cell-mediated immune responses. Here, we investigated the involvement of TSPO/TSPO ligand in T cell responses using a 2,4-dinitro-1-fluorobenzene (DNFB)-induced contact hypersensitivity (CH) model. Treatment with Ro5-4864, a TSPO ligand, during DNFB sensitization reduced the number and activation status of CD4+ and CD8+ T cells in draining lymph nodes and alleviated skin inflammation after DNFB challenge. Adoptive transfer of Ro5-4864-treated mouse-derived DNFB-sensitized T cells to naive mice inhibited CH responses after DNFB challenge. Ro5-4864-treated sensitized T cells showed lower proliferative responses when stimulated with DNFB-pulsed antigen-presenting cells compared to control-treated sensitized T cells. Ro5-4864 also suppressed cell proliferation, as well as adenosine triphosphate and lactate production, during T cell activation. Moreover, the inhibitory effects of Ro5-4864 on T cell responses were conserved in TSPO-deficient cells. Our results suggest that Ro5-4864 inhibits CH responses by suppressing energy metabolism, at least via glycolysis, to reduce the T cell primary response in a TSPO-independent manner.
Collapse
Affiliation(s)
- Yuka Sendai
- Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo 113-8412, Japan
- Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8511, Japan
| | - Kyotaro Koshika
- Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo 113-8412, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8412, Japan
| | - Tatsukuni Ohno
- Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo 113-8412, Japan
| |
Collapse
|
4
|
Gong R, Long G, Wang Q, Hu X, Luo H, Zhang D, Shang J, Han Y, Huang C, Shang Y. Piplartine alleviates sepsis-induced acute kidney injury by inhibiting TSPO-mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167687. [PMID: 39862996 DOI: 10.1016/j.bbadis.2025.167687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Sepsis-induced acute kidney injury (SI-AKI) is the most common organ dysfunction of sepsis, characterized with prolonged hospitalization periods and significantly elevated mortality rates. Piplartine (PLG), an alkaloid extracted from Piper longum within the Piperaceae family, has exhibited diverse pharmacological activities, including anti-inflammatory, anti-atherosclerotic, and anti-tumor effects. Herein, we investigated whether the PLG could reverse SI-AKI and explore its possible anti-inflammatory mechanisms. We constructed an SI-AKI model using cecal ligation and puncture (CLP) and systematically evaluated the protective effect of PLG administered by gavage in the SI-AKI mice. Subsequently, we performed proteomic sequencing of the kidney and integrated data from the GeneCards and SwissTargetPrediction databases to identify potential targets and mechanisms. Immunofluorescence and western blotting were used to examine the expression of relevant targets and pathways in vivo and in vitro. The influence of PLG on the predicted target and pathway was verified using an agonist of the target protein and a series of biochemical experiments. PLG exhibited significant efficacy against pathological damage, neutrophil and macrophage infiltration, and macrophage pyroptosis in kidneys at 30 mg/kg. An integrated analysis of proteomic data identified the translocator protein (TSPO) as a potential target for the renoprotective effects of PLG. Moreover, a TSPO agonist (RO5-4864) prominently reversed the protective effect of PLG in SI-AKI mice, as manifested by a deterioration in renal function, histopathological lesions and macrophage pyroptosis in the kidneys. Our results suggest that PLG may ameliorate SI-AKI, potentially through partial inhibition of the TSPO-macrophage pyroptosis pathway.
Collapse
Affiliation(s)
- Rui Gong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Gangyu Long
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China
| | - Qian Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China
| | - Hong Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dingyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jun Shang
- SpecAlly Life Technology Co., Ltd, Wuhan 430073, Hubei, China
| | - Yang Han
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China.
| | - Chaolin Huang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
5
|
Liao K, Chen JH, Ma J, Dong CC, Bi CY, Gao YB, Jiang YF, Wang T, Wei HY, Hou L, Hu JQ, Wei JJ, Zeng CY, Li YL, Yan S, Xu H, Liang SH, Wang L. Preclinical characterization of [ 18F]D 2-LW223: an improved metabolically stable PET tracer for imaging the translocator protein 18 kDa (TSPO) in neuroinflammatory rodent models and non-human primates. Acta Pharmacol Sin 2025; 46:393-403. [PMID: 39210042 PMCID: PMC11747005 DOI: 10.1038/s41401-024-01375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Positron emission tomography (PET) targeting translocator protein 18 kDa (TSPO) can be used for the noninvasive detection of neuroinflammation. Improved in vivo stability of a TSPO tracer is beneficial for minimizing the potential confounding effects of radiometabolites. Deuteration represents an important strategy for improving the pharmacokinetics and stability of existing drug molecules in the plasma. This study developed a novel tracer via the deuteration of [18F]LW223 and evaluated its in vivo stability and specific binding in neuroinflammatory rodent models and nonhuman primate (NHP) brains. Compared with LW223, D2-LW223 exhibited improved binding affinity to TSPO. Compared with [18F]LW223, [18F]D2-LW223 has superior physicochemical properties and favorable brain kinetics, with enhanced metabolic stability and reduced defluorination. Preclinical investigations in rodent models of LPS-induced neuroinflammation and cerebral ischemia revealed specific [18F]D2-LW223 binding to TSPO in regions affected by neuroinflammation. Two-tissue compartment model analyses provided excellent model fits and allowed the quantitative mapping of TSPO across the NHP brain. These results indicate that [18F]D2-LW223 holds significant promise for the precise quantification of TSPO expression in neuroinflammatory pathologies of the brain.
Collapse
Affiliation(s)
- Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jia-Hui Chen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chen-Chen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chun-Yang Bi
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Ya-Biao Gao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Yuan-Fang Jiang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Tao Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China
| | - Hui-Yi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun-Qi Hu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun-Jie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chun-Yuan Zeng
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yin-Long Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Sen Yan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Guangzhou Key Laboratory of Basic and Translational Research on Chronic Disease, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Herzog S, Bartlett EA, Zanderigo F, Galfalvy HC, Burke A, Mintz A, Schmidt M, Hauser E, Huang YY, Melhem N, Sublette ME, Miller JM, Mann JJ. Neuroinflammation, Stress-Related Suicidal Ideation, and Negative Mood in Depression. JAMA Psychiatry 2025; 82:85-93. [PMID: 39504032 PMCID: PMC11541744 DOI: 10.1001/jamapsychiatry.2024.3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/17/2024] [Indexed: 11/09/2024]
Abstract
Importance Brain translocator protein 18k Da (TSPO) binding, a putative marker of neuroinflammatory processes (eg, gliosis), is associated with stress and elevated in depressed and suicidal populations. However, it is unclear whether neuroinflammation moderates the impact of daily life stress on suicidal ideation and negative affect, thereby increasing risk for suicidal behavior. Objective To examine the association of TSPO binding in participants with depression with real-world daily experiences of acute stress-related suicidal ideation and negative affect, as well as history of suicidal behavior and clinician-rated suicidal ideation. Design, Setting, and Participants Data for this cross-sectional study were collected from June 2019 through July 2023. Procedures were conducted at a hospital-based research center in New York, New York. Participants were recruited via clinical referrals, the Columbia University research subject web portal, and from responses to internet advertisements. Of 148 participants who signed informed consent for study protocols, 53 adults aged 18 to 60 years who met DSM-5 diagnostic criteria for current major depressive disorder completed procedures with approved data and were enrolled. Participants were free of schizophrenia spectrum disorders, active physical illness, cognitive impairment, and substance intoxication or withdrawal at the time of scan. Exposures All participants underwent positron emission tomography imaging of TSPO binding with 11C-ER176 and concurrent arterial blood sampling. Main Outcome and Measures A weighted average of 11C-ER176 total distribution volume (VT) was computed across 11 a priori brain regions and made up the primary outcome measure. Clinician-rated suicidal ideation was measured via the Beck Scale for Suicidal Ideation (BSS). A subset of participants (n = 21) completed 7 days of ecological momentary assessment (EMA), reporting daily on suicidal ideation, negative affect, and stressors. Results In the overall sample of 53 participants (mean [SD] age, 29.5 [9.8] years; 37 [69.8%] female and 16 [30.2%] male), 11C-ER176 VT was associated at trend levels with clinician-rated suicidal ideation severity (β, 0.19; 95% CI, -0.03 to 0.39; P = .09) and did not differ by suicide attempt history (n = 15; β, 0.18; 95% CI, -0.04 to 0.37; P = .11). Exploratory analyses indicated that presence of suicidal ideation (on BSS or EMA) was associated with higher 11C-ER176 VT (β, 0.21; 95% CI, 0.01 to 0.98; P = .045). In 21 participants who completed EMA, 11C-ER176 VT was associated with greater suicidal ideation and negative affect during EMA periods with stressors compared with nonstress periods (β, 0.12; SE, 0.06; 95% CI, 0.01 to 0.23; P = .03 and β, 0.19; SE, 0.06; 95% CI, 0.08 to 0.30; P < .001, respectively). Conclusion and Relevance TSPO binding in individuals with depression may be a marker of vulnerability to acute stress-related increases in suicidal ideation and negative affect. Continued study is needed to determine the causal direction of TSPO binding and stress-related suicidal ideation or negative affect and whether targeting neuroinflammation may improve resilience to life stress in patients with depression.
Collapse
Affiliation(s)
- Sarah Herzog
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Elizabeth A. Bartlett
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Francesca Zanderigo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Hanga C. Galfalvy
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Biostatistics, Columbia University, New York, New York
| | - Ainsley Burke
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, New York
| | - Mike Schmidt
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Eric Hauser
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Yung-yu Huang
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Nadine Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - M. Elizabeth Sublette
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Jeffrey M. Miller
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - J. John Mann
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Radiology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
7
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
8
|
White AM, Craig AJ, Richie DL, Corley C, Sadek SM, Barton HN, Gipson CD. Nicotine is an Immunosuppressant: Implications for Women's Health and Disease. J Neuroimmunol 2024; 397:578468. [PMID: 39461120 PMCID: PMC11653054 DOI: 10.1016/j.jneuroim.2024.578468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
A plethora of evidence supports that nicotine, the primary alkaloid in tobacco products that is generally accepted for maintaining use, is immunoregulatory and may function as an immunosuppressant. Women have unique experiences with use of nicotine-containing products and also undergo significant reproductive transitions throughout their lifespan which may be impacted by nicotine use. Within the extant literature, there is conflicting evidence that nicotine may confer beneficial health effects in specific disease states (e.g., in ulcerative colitis). Use prevalence of nicotine-containing products is exceptionally high in individuals presenting with some comorbid disease states that impact immune system health and can be a risk factor for the development of diseases which disproportionately impact women; however, the mechanisms underlying these relationships are largely unclear. Further, little is known regarding the impacts of nicotine's immunosuppressive effects on women's health during the menopausal transition, which is arguably an inflammatory event characterized by a pro-inflammatory peri-menopause period. Given that post-menopausal women are at a higher risk than men for the development of neurodegenerative diseases such as Alzheimer's disease and are also more vulnerable to negative health effects associated with diseases such as HIV-1 infection, it is important to understand how use of nicotine-containing products may impact the immune milieu in women. In this review, we define instances in which nicotine use confers immunosuppressive, anti-inflammatory, or pro-inflammatory effects in the context of comorbid disease states, and focus on how nicotine impacts neuroimmune signaling to maintain use. We posit that regardless of potential health benefits, nicotine use cessation should be a priority in the clinical care of women. The synthesis of this review demonstrates the importance of systematically defining the relationships between volitional nicotine use, immune system function, and comorbid disease states in women to better understand how nicotine impacts women's health and disease.
Collapse
Affiliation(s)
- Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley J Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Daryl L Richie
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah M Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Heather N Barton
- Beebe Health, Gastroenterology and Internal Medicine, Lewes, Delaware, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Andrew PM, MacMahon JA, Bernardino PN, Tsai YH, Hobson BA, Porter VA, Huddleston SL, Luo AS, Bruun DA, Saito NH, Harvey DJ, Brooks-Kayal A, Chaudhari AJ, Lein PJ. Shifts in the spatiotemporal profile of inflammatory phenotypes of innate immune cells in the rat brain following acute intoxication with the organophosphate diisopropylfluorophosphate. J Neuroinflammation 2024; 21:285. [PMID: 39497181 PMCID: PMC11533402 DOI: 10.1186/s12974-024-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS+ proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1+ microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3+ pro-inflammatory and S100A10+ anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.
Collapse
Affiliation(s)
- Peter M Andrew
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Valerie A Porter
- Department of Biomedical Engineering, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Sydney L Huddleston
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Audrey S Luo
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Abhijit J Chaudhari
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
- Department of Radiology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Hattori M, Kikutani K, Hosokawa K, Kyo M, Nishikimi M, Ota K, Ohshimo S, Aizawa H, Shime N. Diagnostic utility of plasma translocator protein 18 kDa (TSPO) in sepsis: A case-control study. Medicine (Baltimore) 2024; 103:e40396. [PMID: 39495982 PMCID: PMC11537663 DOI: 10.1097/md.0000000000040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Translocator protein 18 kDa (TSPO) is a mitochondrial membrane protein that is involved in inflammation, oxidative stress, and steroidogenesis. TSPO may be a marker of inflammatory responses in the brain and other organs, but there have been few studies of the potential clinical significance of measuring the circulating TSPO concentration, especially in patients with sepsis. In this study, we compared the circulating TSPO concentrations of patients with sepsis and healthy controls to investigate the utility of plasma TSPO for the diagnosis of sepsis. Patients with sepsis admitted to the intensive care unit of Hiroshima University Hospital between January 2020 and April 2024 were enrolled. Plasma samples were collected from patients within 24 hours of admission and also from healthy volunteers, and their plasma TSPO concentrations were compared. Receiver operating characteristic analysis was used to evaluate the usefulness of plasma TSPO concentration for the diagnosis of sepsis. We also investigated the relationships of TSPO concentration with the severity of sepsis, complications, and prognosis of the patients. Eighty subjects (52 patients and 28 controls) were included in this study. The plasma TSPO concentrations of the patients with sepsis were significantly lower than those of the healthy controls (0.094 vs 0.25 ng/mL, P < .001), and receiver operating characteristic analysis generated an area under the curve of 0.81 (95% confidence interval: 0.72-0.91). In patients with sepsis, the TSPO concentration was not associated with the severity of sepsis, complications, or prognosis. Plasma TSPO may be a useful biomarker for the diagnosis of sepsis.
Collapse
Affiliation(s)
- Miyuki Hattori
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Hosokawa
- Department of Anesthesiology and Reanimatology, Faculty of Medicine Sciences, University of Fukui, Fukui, Japan
| | - Michihito Kyo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mitsuaki Nishikimi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Emvalomenos GM, Kang JWM, Jupp B, Mychasiuk R, Keay KA, Henderson LA. Recent developments and challenges in positron emission tomography imaging of gliosis in chronic neuropathic pain. Pain 2024; 165:2184-2199. [PMID: 38713812 DOI: 10.1097/j.pain.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo / in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.
Collapse
Affiliation(s)
- Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
12
|
Salerno S, Viviano M, Baglini E, Poggetti V, Giorgini D, Castagnoli J, Barresi E, Castellano S, Da Settimo F, Taliani S. TSPO Radioligands for Neuroinflammation: An Overview. Molecules 2024; 29:4212. [PMID: 39275061 PMCID: PMC11397380 DOI: 10.3390/molecules29174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.
Collapse
Affiliation(s)
- Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| |
Collapse
|
13
|
Song H, Lv A, Zhu Z, Li R, Zhao Q, Yu X, Jiang J, Lin X, Zhang C, Li R, Yan Y, Chen W, Wang N, Fu Y. CYP7B1 deficiency impairs myeloid cell activation in autoimmune disease of the central nervous system. PNAS NEXUS 2024; 3:pgae334. [PMID: 39262855 PMCID: PMC11388006 DOI: 10.1093/pnasnexus/pgae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Dysregulation of cholesterol metabolism underlies neurodegenerative disease and is increasingly implicated in neuroinflammatory diseases, such as multiple sclerosis (MS). Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) is a key enzyme in alternative cholesterol metabolism. A recessive mutation in the gene CYP7B1 is known to cause a neurodegenerative disease, hereditary spastic paraplegia type 5 and oxysterol accumulation. However, the role of CYP7B1 in neuroinflammation has been little revealed. In this study, we induced experimental autoimmune encephalomyelitis (EAE), as a murine model of MS, using CYP7B1 homozygous knockout (KO) mice. We found that CYP7B1 deficiency can significantly attenuate EAE severity. CYP7B1 deficiency is sufficient to reduce leukocyte infiltration into the central nervous system, suppress proliferation of pathogenic CD4+ T cells, and decrease myeloid cell activation during EAE. Additionally, live-animal imaging targeting translocator protein expression, an outer mitochondrial membrane protein biomarker of neuroinflammation, showed that CYP7B1 deficiency results in suppressed neuroinflammation. Using human monocyte-derived microglia-like cellular disease model and primary microglia of CYP7B1 KO mice, we also found that activation of microglia of CYP7B1 deficiency was impaired. These cumulative results suggest that CYP7B1 can regulate neuroinflammation, thus providing potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Huanhuan Song
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Aowei Lv
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Zhibao Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Runyun Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Qiuping Zhao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Xintong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Junyi Jiang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Cunjin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rui Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
- Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China
| | - Yaping Yan
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (the Ministry of Education), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710000, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
14
|
Guillemain G, Khemtemourian L, Brehat J, Morin D, Movassat J, Tourrel-Cuzin C, Lacapere JJ. TSPO in pancreatic beta cells and its possible involvement in type 2 diabetes. Biochimie 2024; 224:104-113. [PMID: 38908539 DOI: 10.1016/j.biochi.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Amyloidosis forms a large family of pathologies associated with amyloid deposit generated by the formation of amyloid fibrils or plaques. The amyloidogenic proteins and peptides involved in these processes are targeted against almost all organs. In brain they are associated with neurodegenerative disease, and the Translocator Protein (TSPO), overexpressed in these inflammatory conditions, is one of the target for the diagnostic. Moreover, TSPO ligands have been described as promising therapeutic drugs for neurodegenerative diseases. Type 2 diabetes, another amyloidosis, is due to a beta cell mass decrease that has been linked to hIAPP (human islet amyloid polypeptide) fibril formation, leading to the reduction of insulin production. In the present study, in a first approach, we link overexpression of TSPO and inflammation in potentially prediabetic patients. In a second approach, we observed that TSPO deficient rats have higher level of insulin secretion in basal conditions and more IAPP fibrils formation compared with wild type animals. In a third approach, we show that diabetogenic conditions also increase TSPO overexpression and IAPP fibril formation in rat beta pancreatic cell line (INS-1E). These data open the way for further studies in the field of type 2 diabetes treatment or prevention.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- Sorbonne Université, Institut Hospitalo-Universitaire, INSERM UMR_S938, Institute of Cardiometabolism and Nutrition (ICAN), Centre de Recherche de St-Antoine (CRSA), 27 Rue de Chaligny, 75012, Paris, France.
| | | | - Juliette Brehat
- INSERM, U955, IMRB, équipe Ghaleh, Faculté de Médecine, UPEC, 94010, Créteil, France
| | - Didier Morin
- INSERM, U955, IMRB, équipe Ghaleh, Faculté de Médecine, UPEC, 94010, Créteil, France
| | - Jamileh Movassat
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Team "Biologie et Pathologie du Pancréas Endocrine", Paris, France
| | - Cécile Tourrel-Cuzin
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Team "Biologie et Pathologie du Pancréas Endocrine", Paris, France
| | - Jean-Jacques Lacapere
- Sorbonne Université, Ecole normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.
| |
Collapse
|
15
|
Shaykin JD, Olyha LN, Van Doorn CE, Hales JD, Chandler CM, Hopkins DM, Nixon K, Beckmann JS, Pauly JR, Bardo MT. Effects of isolation stress and voluntary ethanol exposure during adolescence on ethanol and nicotine co-use in adulthood using male rats. DRUG AND ALCOHOL DEPENDENCE REPORTS 2024; 12:100277. [PMID: 39262667 PMCID: PMC11387808 DOI: 10.1016/j.dadr.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Background Alcohol use in adolescence may increase susceptibility to substance use disorders (SUDs) in adulthood. This study determined if voluntary ethanol (EtOH) consumption during adolescence, combined with social isolation, alters the trajectory of EtOH and nicotine intake during adulthood, as well as activating brain neuroinflammation. Methods Adolescent male isolate- and group-housed rats were given 0.2 % saccharin/20 % EtOH (Sacc/EtOH) or water using intermittent 2-bottle choice; controls were given water in both bottles (n=17-20 per group). Some rats from each group (n=5-6) were euthanized one week later to measure autoradiographic [3H]PK-11195 binding, an indicator of microglial reactivity, and the remainder (n=11-14 per group) were tested in adulthood in 2-bottle choice, followed by nicotine self-administration using an incremental fixed ratio (FR) schedule with Sacc/EtOH and water concurrently available. Results Isolation housing increased adolescent intake of Sacc/EtOH, but the increase did not produce an observable neuroimmunological response in brain. Adolescent EtOH exposure decreased adult intake of both Sacc/EtOH and unsweetened EtOH, with isolate-housed rats showing a greater effect than group-housed rats. In the co-use model, a cross-price economic demand analysis revealed a substitutional relationship between Sacc/EtOH and nicotine, but no effect of adolescent Sacc/EtOH exposure. Compared to group-housed rats, isolate-housed rats were more sensitive to the changing price of nicotine and showed greater substitutability of Sacc/EtOH for nicotine. Conclusion The current results suggest that adolescent EtOH exposure per se, with or without isolation stress, does not likely explain the enhanced risk for either alcohol or nicotine use later in life.
Collapse
Affiliation(s)
- Jakob D. Shaykin
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Lydia N. Olyha
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Joshua D. Hales
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Deann M. Hopkins
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, TX 78712, USA
| | - Joshua S. Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - James R. Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
16
|
Zhong S, Lian Y, Zhou B, Ren R, Duan L, Pan Y, Gong Y, Wu X, Cheng D, Zhang P, Lu B, Wang X, Ding J. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol 2024; 148:21. [PMID: 39150562 DOI: 10.1007/s00401-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Binbin Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiqing Ren
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lewei Duan
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyin Pan
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boxun Lu
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
17
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
18
|
Chen Y, Veenman L, Liao M, Huang W, Yu J, Zeng J. Enhanced angiogenesis in the thalamus induced by a novel TSPO ligand ameliorates cognitive deficits after focal cortical infarction. J Cereb Blood Flow Metab 2024; 44:477-490. [PMID: 37988123 PMCID: PMC10981401 DOI: 10.1177/0271678x231214671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 11/22/2023]
Abstract
Neuronal loss in the ipsilateral thalamus after focal cortical infarction participates in post-stroke cognitive deficits, and enhanced angiogenesis in the thalamus is expected to reduce neuronal damage. We hypothesize that novel translocator protein (TSPO) ligand, 2-Cl-MGV-1, can promote angiogenesis, attenuate neuronal loss in the thalamus, and ameliorate post-stroke cognitive deficits. Cortical infarction was induced by distal middle cerebral artery occlusion (dMCAO) in stroke-prone renovascular hypertensive rats. 2-Cl-MGV-1 or dimethyl sulfoxide was administered 24 h after dMCAO and then for 6 or 13 days. Spatial learning and memory were assessed using the Morris water maze. Neuronal loss, TSPO expression, angiogenesis, and intrinsic pathway were determined by immunofluorescence and immunoblotting 7 and 14 days after dMCAO. Cortical infarction caused post-stroke cognitive deficits and secondary neuronal loss with gliosis in the ipsilateral thalamus within 14 days of dMCAO. Increased angiogenesis and elevated expression of vascular TSPO were detected in the ipsilateral thalamus, and treatment with 2-Cl-MGV-1 enhanced angiogenesis by stimulating the PI3K-AKT-mTOR pathway. The effects of 2-Cl-MGV-1 on angiogenesis coincided with reduced neuronal loss in the thalamus and contributed to improvements in post-stroke cognitive deficits. Our findings suggest that 2-Cl-MGV-1 stimulates angiogenesis, ameliorates neuronal loss in the thalamus, and improves post-stroke cognitive deficits.
Collapse
Affiliation(s)
- Yicong Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Leo Veenman
- Department of Neuroscience, Israel Institute of Technology, Haifa, Israel
| | - Mengshi Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Weixian Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jian Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
19
|
Chang Y, Xie X, Liu Y, Liu M, Zhang H. Exploring clinical applications and long-term effectiveness of benzodiazepines: An integrated perspective on mechanisms, imaging, and personalized medicine. Biomed Pharmacother 2024; 173:116329. [PMID: 38401518 DOI: 10.1016/j.biopha.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
Benzodiazepines have been long-established treatments for various conditions, including anxiety disorders and insomnia. Recent FDA warnings emphasize the risks of misuse and dependence associated with benzodiazepines. This article highlights their benefits and potential drawbacks from various perspectives. It achieves this by explaining how benzodiazepines work in terms of neuroendocrinology, immunomodulation, sleep, anxiety, cognition, and addiction, ultimately improving their clinical effectiveness. Benzodiazepines play a regulatory role in the HPA axis and impact various systems, including neuropeptide Y and cholecystokinin. Benzodiazepines can facilitate sleep-dependent memory consolidation by promoting spindle wave activity, but they can also lead to memory deficits in older individuals due to reduced slow-wave sleep. The cognitive effects of chronic benzodiazepines use remain uncertain; however, no adverse findings have been reported in clinical imaging studies. This article aims to comprehensively review the evidence on benzodiazepines therapy, emphasizing the need for more clinical studies, especially regarding long-term benzodiazepines use.
Collapse
Affiliation(s)
- Yiheng Chang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xueting Xie
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yudan Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meichen Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Huimin Zhang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
20
|
Wheeler S, Bhardwaj M, Kenyon V, Ferraz MJ, Aerts JMFG, Sillence DJ. Mitochondrial dysfunction in NPC1-deficiency is not rescued by drugs targeting the glucosylceramidase GBA2 and the cholesterol-binding proteins TSPO and StARD1. FEBS Lett 2024; 598:477-484. [PMID: 38302739 DOI: 10.1002/1873-3468.14802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
Niemann-Pick type C disease (NPCD) is a rare neurodegenerative disorder most commonly caused by mutations in the lysosomal protein Niemann-Pick C1 (NPC1), which is implicated in cholesterol export. Mitochondrial insufficiency forms a significant feature of the pathology of this disease, yet studies attempting to address this are rare. The working hypothesis is that mitochondria become overloaded with cholesterol which renders them dysfunctional. We examined two potential protein targets-translocator protein (TSPO) and steroidogenic acute regulatory protein D1 (StARD1)-which are implicated in cholesterol transport to mitochondria, in addition to glucocerbrosidase 2 (GBA2), the target of miglustat, which is currently the only approved treatment for NPCD. However, inhibiting these proteins did not correct the mitochondrial defect in NPC1-deficient cells.
Collapse
Affiliation(s)
- Simon Wheeler
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | | | - Maria J Ferraz
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | - Dan J Sillence
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
21
|
Baglini E, Poggetti V, Cavallini C, Petroni D, Forini F, Nicolini G, Barresi E, Salerno S, Costa B, Iozzo P, Neglia D, Menichetti L, Taliani S, Da Settimo F. Targeting the Translocator Protein (18 kDa) in Cardiac Diseases: State of the Art and Future Opportunities. J Med Chem 2024; 67:17-37. [PMID: 38113353 PMCID: PMC10911791 DOI: 10.1021/acs.jmedchem.3c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Mitochondria dysfunctions are typical hallmarks of cardiac disorders (CDs). The multiple tasks of this energy-producing organelle are well documented, but its pathophysiologic involvement in several manifestations of heart diseases, such as altered electromechanical coupling, excitability, and arrhythmias, is still under investigation. The human 18 kDa translocator protein (TSPO) is a protein located on the outer mitochondrial membrane whose expression is altered in different pathological conditions, including CDs, making it an attractive therapeutic and diagnostic target. Currently, only a few TSPO ligands are employed in CDs and cardiac imaging. In this Perspective, we report an overview of the emerging role of TSPO at the heart level, focusing on the recent literature concerning the development of TSPO ligands used for fighting and imaging heart-related disease conditions. Accordingly, targeting TSPO might represent a successful strategy to achieve novel therapeutic and diagnostic strategies to unravel the fundamental mechanisms and to provide solutions to still unanswered questions in CDs.
Collapse
Affiliation(s)
- Emma Baglini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Valeria Poggetti
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Chiara Cavallini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Debora Petroni
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Francesca Forini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Giuseppina Nicolini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Elisabetta Barresi
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Silvia Salerno
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Barbara Costa
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Patricia Iozzo
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Danilo Neglia
- Fondazione
CNR/Regione Toscana Gabriele Monasterio, Cardiovascular and Imaging
Departments, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Luca Menichetti
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Sabrina Taliani
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Federico Da Settimo
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| |
Collapse
|
22
|
Zhuang C, Chen B, Wu S, Xu L, Zhang X, Zheng X, Chen Y, Geng Y, Guan J, Lin Y, Wilman AH, Wu R. Repurposing of the PET Probe Prototype PiB for Label and Radiation-Free CEST MRI Molecular Imaging of Amyloid. ACS Chem Neurosci 2023; 14:4344-4351. [PMID: 38061891 PMCID: PMC10741654 DOI: 10.1021/acschemneuro.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Positron emission tomography (PET) probes are specific and sensitive while suffering from radiation risk. It is worthwhile to explore the chemical emission saturation transfer (CEST) effects of the probe prototypes and repurpose them for CEST imaging to avoid radiation. In this study, we used 11C-PiB as an example of a PET probe for detecting amyloid and tested the feasibility of repurposing this PET probe prototype, PiB, for CEST imaging. After optimizing the parameters through preliminary phantom experiments, we used APP/PS1 transgenic mice and age-matched C57 mice for in vivo CEST magnetic resonance imaging (MRI) of amyloid. Furthermore, the pathological assessment was conducted on the same brain slices to evaluate the correlation between the CEST MRI signal abnormality and β-amyloid deposition detected by immunohistochemical staining. In our results, the Z-spectra revealed an apparent CEST effect that peaked at approximately 6 ppm. APP/PS1 mice as young as 9 months injected with PiB showed a significantly higher CEST effect compared to the control groups. The hyperintense region was correlated with the Aβ deposition shown by pathological staining. In conclusion, repurposing the PET probe prototype for CEST MRI imaging is feasible and enables label- and radiation-free detection of the amyloid while maintaining the sensitivity and specificity of the ligand. This study opens the door to developing CEST probes based on PET probe prototypes.
Collapse
Affiliation(s)
- Caiyu Zhuang
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Department
of Radiology, First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Beibei Chen
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Shuohua Wu
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Liang Xu
- Department
of Medical Imaging, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaolei Zhang
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Xinhui Zheng
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yue Chen
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yiqun Geng
- Laboratory
of Molecular Pathology, Shantou University
Medical College, Shantou 515041, China
| | - Jitian Guan
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yan Lin
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Provincial
Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou 515041, China
| | - Alan H. Wilman
- The Department
of Biomedical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Renhua Wu
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Provincial
Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou 515041, China
| |
Collapse
|
23
|
Mahemuti Y, Kadeer K, Su R, Abula A, Aili Y, Maimaiti A, Abulaiti S, Maimaitituerxun M, Miao T, Jiang S, Axier A, Aisha M, Wang Y, Cheng X. TSPO exacerbates acute cerebral ischemia/reperfusion injury by inducing autophagy dysfunction. Exp Neurol 2023; 369:114542. [PMID: 37717810 DOI: 10.1016/j.expneurol.2023.114542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Autophagy is considered a double-edged sword, with a role in the regulation of the pathophysiological processes of the central nervous system (CNS) after cerebral ischemia-reperfusion injury (CIRI). The 18-kDa translocator protein (TSPO) is a highly conserved protein, with its expression level in the nervous system closely associated with the regulation of pathophysiological processes. In addition, the ligand of TSPO reduces neuroinflammation in brain diseases, but the potential role of TSPO in CIRI is largely undiscovered. On this basis, we investigated whether TSPO regulates neuroinflammatory response by affecting autophagy in microglia. In our study, increased expression of TSPO was detected in rat brain tissues with transient middle cerebral artery occlusion (tMCAO) and in BV2 microglial cells exposed to oxygen-glucose deprivation or reoxygenation (OGD/R) treatment, respectively. In addition, we confirmed that autophagy was over-activated during CIRI by increased expression of autophagy activation related proteins with Beclin-1 and LC3B, while the expression of p62 was decreased. The degradation process of autophagy was inhibited, while the expression levels of LAMP-1 and Cathepsin-D were significantly reduced. Results of confocal laser microscopy and transmission electron microscopy (TEM) indicated that autophagy flux was disordered. In contrast, inhibition of TSPO prevented autophagy over-activation both in vivo and in vitro. Interestingly, suppression of TSPO alleviated nerve cell damage by reducing reactive oxygen species (ROS) and pro-inflammatory factors, including TNF-α and IL-6 in microglia cells. In summary, these results indicated that TSPO might affect CIRI by mediating autophagy dysfunction and thus might serve as a potential target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Yusufu Mahemuti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China; School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, PR China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, Zhejiang, PR China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Kaheerman Kadeer
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Riqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Abudureheman Abula
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Aierpati Maimaiti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Subinuer Abulaiti
- Department of Epidemiology and Biostatistics, Institute of Public Health, Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | | | - Tong Miao
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Shihao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Aximujiang Axier
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Maimaitili Aisha
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Xiaojiang Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China.
| |
Collapse
|
24
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Weidner L, Lorenz J, Quach S, Braun FK, Rothhammer-Hampl T, Ammer LM, Vollmann-Zwerenz A, Bartos LM, Dekorsy FJ, Holzgreve A, Kirchleitner SV, Thon N, Greve T, Ruf V, Herms J, Bader S, Milenkovic VM, von Baumgarten L, Menevse AN, Hussein A, Sax J, Wetzel CH, Rupprecht R, Proescholdt M, Schmidt NO, Beckhove P, Hau P, Tonn JC, Bartenstein P, Brendel M, Albert NL, Riemenschneider MJ. Translocator protein (18kDA) (TSPO) marks mesenchymal glioblastoma cell populations characterized by elevated numbers of tumor-associated macrophages. Acta Neuropathol Commun 2023; 11:147. [PMID: 37697350 PMCID: PMC10496331 DOI: 10.1186/s40478-023-01651-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.
Collapse
Affiliation(s)
- Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Frank K Braun
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Laura-Marie Ammer
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | | | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Niklas Thon
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Tobias Greve
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ayse N Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
26
|
Nutma E, Fancy N, Weinert M, Tsartsalis S, Marzin MC, Muirhead RCJ, Falk I, Breur M, de Bruin J, Hollaus D, Pieterman R, Anink J, Story D, Chandran S, Tang J, Trolese MC, Saito T, Saido TC, Wiltshire KH, Beltran-Lobo P, Phillips A, Antel J, Healy L, Dorion MF, Galloway DA, Benoit RY, Amossé Q, Ceyzériat K, Badina AM, Kövari E, Bendotti C, Aronica E, Radulescu CI, Wong JH, Barron AM, Smith AM, Barnes SJ, Hampton DW, van der Valk P, Jacobson S, Howell OW, Baker D, Kipp M, Kaddatz H, Tournier BB, Millet P, Matthews PM, Moore CS, Amor S, Owen DR. Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases. Nat Commun 2023; 14:5247. [PMID: 37640701 PMCID: PMC10462763 DOI: 10.1038/s41467-023-40937-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria Weinert
- Department of Brain Sciences, Imperial College London, London, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Irene Falk
- Viral Immunology Section, NIH, Bethesda, MD, USA
- Flow and Imaging Cytometry Core Facility, NIH, Bethesda, MD, USA
| | - Marjolein Breur
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Robin Pieterman
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Jasper Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - David Story
- UK Dementia Research Institute at Edinburgh, Edinburgh, UK
| | | | - Jiabin Tang
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria C Trolese
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Takaomi C Saido
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | | | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra Phillips
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Jack Antel
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Luke Healy
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Marie-France Dorion
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Dylan A Galloway
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Quentin Amossé
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Kelly Ceyzériat
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | | | - Enikö Kövari
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Caterina Bendotti
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Carola I Radulescu
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Amy M Smith
- UK Dementia Research Institute at Imperial College London, London, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Samuel J Barnes
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | | | - Paul van der Valk
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | | | - Owain W Howell
- Institute of Life Science (ILS), Swansea University Medical School, Swansea, UK
| | - David Baker
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany
| | | | - Philippe Millet
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Division of Adult Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Craig S Moore
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands.
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK.
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany.
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| |
Collapse
|
27
|
Nieuwland JM, Nutma E, Philippens IHCHM, Böszörményi KP, Remarque EJ, Bakker J, Meijer L, Woerdman N, Fagrouch ZC, Verstrepen BE, Langermans JAM, Verschoor EJ, Windhorst AD, Bontrop RE, de Vries HE, Stammes MA, Middeldorp J. Longitudinal positron emission tomography and postmortem analysis reveals widespread neuroinflammation in SARS-CoV-2 infected rhesus macaques. J Neuroinflammation 2023; 20:179. [PMID: 37516868 PMCID: PMC10387202 DOI: 10.1186/s12974-023-02857-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) patients initially develop respiratory symptoms, but they may also suffer from neurological symptoms. People with long-lasting effects after acute infections with severe respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., post-COVID syndrome or long COVID, may experience a variety of neurological manifestations. Although we do not fully understand how SARS-CoV-2 affects the brain, neuroinflammation likely plays a role. METHODS To investigate neuroinflammatory processes longitudinally after SARS-CoV-2 infection, four experimentally SARS-CoV-2 infected rhesus macaques were monitored for 7 weeks with 18-kDa translocator protein (TSPO) positron emission tomography (PET) using [18F]DPA714, together with computed tomography (CT). The baseline scan was compared to weekly PET-CTs obtained post-infection (pi). Brain tissue was collected following euthanasia (50 days pi) to correlate the PET signal with TSPO expression, and glial and endothelial cell markers. Expression of these markers was compared to brain tissue from uninfected animals of comparable age, allowing the examination of the contribution of these cells to the neuroinflammatory response following SARS-CoV-2 infection. RESULTS TSPO PET revealed an increased tracer uptake throughout the brain of all infected animals already from the first scan obtained post-infection (day 2), which increased to approximately twofold until day 30 pi. Postmortem immunohistochemical analysis of the hippocampus and pons showed TSPO expression in cells expressing ionized calcium-binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and collagen IV. In the hippocampus of SARS-CoV-2 infected animals the TSPO+ area and number of TSPO+ cells were significantly increased compared to control animals. This increase was not cell type specific, since both the number of IBA1+TSPO+ and GFAP+TSPO+ cells was increased, as well as the TSPO+ area within collagen IV+ blood vessels. CONCLUSIONS This study manifests [18F]DPA714 as a powerful radiotracer to visualize SARS-CoV-2 induced neuroinflammation. The increased uptake of [18F]DPA714 over time implies an active neuroinflammatory response following SARS-CoV-2 infection. This inflammatory signal coincides with an increased number of TSPO expressing cells, including glial and endothelial cells, suggesting neuroinflammation and vascular dysregulation. These results demonstrate the long-term neuroinflammatory response following a mild SARS-CoV-2 infection, which potentially precedes long-lasting neurological symptoms.
Collapse
Affiliation(s)
- Juliana M Nieuwland
- Department of Neurobiology and Aging, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Erik Nutma
- Department of Neurobiology and Aging, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ingrid H C H M Philippens
- Department of Neurobiology and Aging, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Edmond J Remarque
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Jaco Bakker
- Department of Radiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Lisette Meijer
- Department of Radiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Noor Woerdman
- Department of Radiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Zahra C Fagrouch
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Jan A M Langermans
- Department of Animal Sciences, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam (TCA), Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
- Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Marieke A Stammes
- Department of Radiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Jinte Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands.
| |
Collapse
|
28
|
Ceyzériat K, Nicolaides A, Amossé Q, Fossey C, Cailly T, Fabis F, Garibotto V, Escartin C, Tournier BB, Millet P. Reactive astrocytes mediate TSPO overexpression in response to sustained CNTF exposure in the rat striatum. Mol Brain 2023; 16:57. [PMID: 37408083 PMCID: PMC10320938 DOI: 10.1186/s13041-023-01041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is a classical marker of neuroinflammation targeted for in vivo molecular imaging. Microglial cells were originally thought to be the only source of TSPO overexpression but astrocytes, neurons and endothelial cells can also up-regulate TSPO depending on the pathological context. This study aims to determine the cellular origin of TSPO overexpression in a simplified model of neuroinflammation and to identify the molecular pathways involved. This is essential to better interpret TSPO molecular imaging in preclinical and clinical settings. We used lentiviral vectors (LV) to overexpress the ciliary neurotrophic factor (CNTF) in the right striatum of 2-month-old Sprague Dawley rats. A LV encoding for β-Galactosidase (LV-LacZ) was used as control. One month later, TSPO expression was measured by single-photon emission computed tomography (SPECT) imaging using [125I]CLINDE. The fluorescence-activated cell sorting to radioligand-treated tissue (FACS-RTT) method was used to quantify TSPO levels in acutely sorted astrocytes, microglia, neurons and endothelial cells. A second cohort was injected with LV-CNTF and a LV encoding suppressor of cytokine signaling 3 (SOCS3), to inhibit the JAK-STAT3 pathway specifically in astrocytes. GFAP and TSPO expressions were quantified by immunofluorescence. We measured a significant increase in TSPO signal in response to CNTF by SPECT imaging. Using FACS-RTT, we observed TSPO overexpression in reactive astrocytes (+ 153 ± 62%) but also in microglia (+ 2088 ± 500%) and neurons (+ 369 ± 117%), accompanied by an increase in TSPO binding sites per cell in those three cell populations. Endothelial cells did not contribute to TSPO signal increase. Importantly, LV-SOCS3 reduced CNTF-induced astrocyte reactivity and decreased global TSPO immunoreactivity (-71% ± 30%), suggesting that TSPO overexpression is primarily mediated by reactive astrocytes. Overall, this study reveals that CNTF induces TSPO in multiple cell types in the rat striatum, through the JAK2-STAT3 pathway in astrocytes, identifying this cell type as the primary mediator of CNTF effects neuroinflammatory processes. Our results highlight the difficulty to interpret TSPO imaging in term of cellular origin without addition cellular analysis by FACS-RTT or quantitative immunostainings. Consequently, TSPO should only be used as a global marker of neuroinflammation.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.
- Department of Psychiatry, University of Geneva, Avenue de la Roseraie, 64, Geneva, 1205, Switzerland.
- CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Alekos Nicolaides
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Avenue de la Roseraie, 64, Geneva, 1205, Switzerland
| | - Quentin Amossé
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Avenue de la Roseraie, 64, Geneva, 1205, Switzerland
| | - Christine Fossey
- Normandie Univ, UNICAEN, Centre d'Études et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Thomas Cailly
- Normandie Univ, UNICAEN, Centre d'Études et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
- Department of Nuclear Medicine, CHU Cote de Nacre, Caen, France
- Normandie Univ, UNICAEN, IMOGERE, Caen, France
- Institut Blood and Brain @Caen-Normandie (BB@C) Boulevard Henri Becquerel, Caen, 14074, France
| | - Frédéric Fabis
- Normandie Univ, UNICAEN, Centre d'Études et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Valentina Garibotto
- CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of nuclear medicine and molecular imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, Gif-sur-Yvette, France
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Avenue de la Roseraie, 64, Geneva, 1205, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Avenue de la Roseraie, 64, Geneva, 1205, Switzerland
| |
Collapse
|
29
|
Mamah D. A Review of Potential Neuroimaging Biomarkers of Schizophrenia-Risk. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230005. [PMID: 37427077 PMCID: PMC10327607 DOI: 10.20900/jpbs.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The risk for developing schizophrenia is increased among first-degree relatives of those with psychotic disorders, but the risk is even higher in those meeting established criteria for clinical high risk (CHR), a clinical construct most often comprising of attenuated psychotic experiences. Conversion to psychosis among CHR youth has been reported to be about 15-35% over three years. Accurately identifying individuals whose psychotic symptoms will worsen would facilitate earlier intervention, but this has been difficult to do using behavior measures alone. Brain-based risk markers have the potential to improve the accuracy of predicting outcomes in CHR youth. This narrative review provides an overview of neuroimaging studies used to investigate psychosis risk, including studies involving structural, functional, and diffusion imaging, functional connectivity, positron emission tomography, arterial spin labeling, magnetic resonance spectroscopy, and multi-modality approaches. We present findings separately in those observed in the CHR state and those associated with psychosis progression or resilience. Finally, we discuss future research directions that could improve clinical care for those at high risk for developing psychotic disorders.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, 63110, USA
| |
Collapse
|
30
|
Tan Z, Haider A, Zhang S, Chen J, Wei J, Liao K, Li G, Wei H, Dong C, Ran W, Li Y, Li Y, Rong J, Li Y, Liang SH, Xu H, Wang L. Quantitative assessment of translocator protein (TSPO) in the non-human primate brain and clinical translation of [ 18F]LW223 as a TSPO-targeted PET radioligand. Pharmacol Res 2023; 189:106681. [PMID: 36746361 DOI: 10.1016/j.phrs.2023.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Translocator protein 18 kDa (TSPO) positron emission tomography (PET) can be harnessed for the non-invasive detection of macrophage-driven inflammation. [18F]LW223, a newly reported TSPO PET tracer which was insensitive to rs6971 polymorphism, showed favorable performance characteristics in a recent imaging study involving a rat myocardial infarction model. To enable quantitative neuroimaging with [18F]LW223, we conducted kinetic analysis in the non-human primate (NHP) brain. Further, we sought to assess the utility of [18F]LW223-based TSPO imaging in a first-in-human study. METHODS Radiosynthesis of [18F]LW223 was accomplished on an automated module, whereas molar activities, stability in formulation, lipophilicity and unbound free fraction (fu) of the probe were measured. Brain penetration and target specificity of [18F]LW223 in NHPs were corroborated by PET-MR imaging under baseline and pre-blocking conditions using the validated TSPO inhibitor, (R)-PK11195, at doses ranging from 5 to 10 mg/kg. Kinetic modeling was performed using one-tissue compartment model (1TCM), two-tissue compartment model (2TCM) and Logan graphical analyses, using dynamic PET data acquisition, arterial blood collection and metabolic stability testing. Clinical PET scans were performed in two healthy volunteers (HVs). Regional brain standard uptake value ratio (SUVr) was assessed for different time intervals. RESULTS [18F]LW223 was synthesized in non-decay corrected radiochemical yields (n.d.c. RCYs) of 33.3 ± 6.5% with molar activities ranging from 1.8 ± 0.7 Ci/µmol (n = 11). [18F]LW223 was stable in formulation for up to 4 h and LogD7.4 of 2.31 ± 0.13 (n = 6) and fu of 5.80 ± 1.42% (n = 6) were determined. [18F]LW223 exhibited good brain penetration in NHPs, with a peak SUV value of ca. 1.79 in the whole brain. Pre-treatment with (R)-PK11195 substantially accelerated the washout and attenuated the area under the time-activity curve, indicating in vivo specificity of [18F]LW223 towards TSPO. Kinetic modeling demonstrated that 2TCM was the most suitable model for [18F]LW223-based neuroimaging. Global transfer rate constants (K1) and total volumes of distribution (VT) were found to be 0.10 ± 0.01 mL/cm3/min and 2.30 ± 0.17 mL/cm3, respectively. Dynamic PET data analyses across distinct time windows revealed that the VT values were relatively stable after 60 min post-injection. In a preliminary clinical study with two healthy volunteers, [18F]LW223 exhibited good brain uptake and considerable tracer retention across all analyzed brain regions. Of note, an excellent correlation between SUVr with VT was obtained when assessing the time interval from 20 to 40 min post tracer injection (SUVr(20-40 min), R2 = 0.94, p < 0.0001), suggesting this time window may be suitable to estimate specific binding to TSPO in human brain. CONCLUSION Our findings indicate that [18F]LW223 is suitable for quantitative TSPO-targeted PET imaging in higher species. Employing state-of-the-art kinetic modeling, we found that [18F]LW223 was effective in mapping TSPO throughout the NHP brain, with best model fits obtained from 2TCM and Logan graphical analyses. Overall, our results indicate that [18F]LW223 exhibits favorable tracer performance characteristics in higher species, and this novel imaging tool may hold promise to provide effective neuroinflammation imaging in patients with neurological disease.
Collapse
Affiliation(s)
- Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou 510555, China
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
31
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
32
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Boyko AN, Dolgushin MB, Karalkina MA. [New neuroimaging methods in assessing the activity of neuroinflammation in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:8-14. [PMID: 37560828 DOI: 10.17116/jnevro20231230728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The review presents current data on the use of positron emission tomography and single-photon emission computed tomography in multiple sclerosis (MS) to assess the activity of the pathological process, including neuroinflammation, demyelination, activation of microglia, neurodegeneration and local blood flow disorders. These methodologies are a new approach for studying the mechanisms of action and evaluating the clinical effect of disease modifying therapy of MS, especially those capable of penetrating into brain tissue. Among them, the most attention is attracted by cladribine tablets acting on the mechanism of immune reconstitution therapy, most likely with the modulation of immune reactions directly in the brain tissue.
Collapse
Affiliation(s)
- A N Boyko
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M B Dolgushin
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - M A Karalkina
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
34
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
35
|
Drieu A, Lanquetin A, Prunotto P, Gulhan Z, Pédron S, Vegliante G, Tolomeo D, Serrière S, Vercouillie J, Galineau L, Tauber C, Kuhnast B, Rubio M, Zanier ER, Levard D, Chalon S, Vivien D, Ali C. Persistent neuroinflammation and behavioural deficits after single mild traumatic brain injury. J Cereb Blood Flow Metab 2022; 42:2216-2229. [PMID: 35945692 PMCID: PMC9670002 DOI: 10.1177/0271678x221119288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Despite an apparently silent imaging, some patients with mild traumatic brain injury (TBI) experience cognitive dysfunctions, which may persist chronically. Brain changes responsible for these dysfunctions are unclear and commonly overlooked. It is thus crucial to increase our understanding of the mechanisms linking the initial event to the functional deficits, and to provide objective evidence of brain tissue alterations underpinning these deficits. We first set up a murine model of closed-head controlled cortical impact, which provoked persistent cognitive and sensorimotor deficits, despite no evidence of brain contusion or bleeding on MRI, thus recapitulating features of mild TBI. Molecular MRI for P-selectin, a key adhesion molecule, detected no sign of cerebrovascular inflammation after mild TBI, as confirmed by immunostainings. By contrast, in vivo PET imaging with the TSPO ligand [18F]DPA-714 demonstrated persisting signs of neuroinflammation in the ipsilateral cortex and hippocampus after mild TBI. Interestingly, immunohistochemical analyses confirmed these spatio-temporal profiles, showing a robust parenchymal astrogliosis and microgliosis, at least up to 3 weeks post-injury in both the cortex and hippocampus. In conclusion, we show that even one single mild TBI induces long-term behavioural deficits, associated with a persistent neuro-inflammatory status that can be detected by PET imaging.
Collapse
Affiliation(s)
- Antoine Drieu
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Anastasia Lanquetin
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Paul Prunotto
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Zuhal Gulhan
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Swannie Pédron
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Gloria Vegliante
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Sophie Serrière
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | | | | | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Bertrand Kuhnast
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm,
Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Marina Rubio
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Elisa R Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Damien Levard
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
- Department of Clinical Research, Caen-Normandie Hospital (CHU),
Caen, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| |
Collapse
|
36
|
18F-Radiolabeled Translocator Protein (TSPO) PET Tracers: Recent Development of TSPO Radioligands and Their Application to PET Study. Pharmaceutics 2022; 14:pharmaceutics14112545. [PMID: 36432736 PMCID: PMC9697781 DOI: 10.3390/pharmaceutics14112545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is a transmembrane protein in the mitochondrial membrane, which has been identified as a peripheral benzodiazepine receptor. TSPO is generally present at high concentrations in steroid-producing cells and plays an important role in steroid synthesis, apoptosis, and cell proliferation. In the central nervous system, TSPO expression is relatively modest under normal physiological circumstances. However, some pathological disorders can lead to changes in TSPO expression. Overexpression of TSPO is associated with several diseases, such as neurodegenerative diseases, neuroinflammation, brain injury, and cancers. TSPO has therefore become an effective biomarker of related diseases. Positron emission tomography (PET), a non-invasive molecular imaging technique used for the clinical diagnosis of numerous diseases, can detect diseases related to TSPO expression. Several radiolabeled TSPO ligands have been developed for PET. In this review, we describe recent advances in the development of TSPO ligands, and 18F-radiolabeled TSPO in particular, as PET tracers. This review covers pharmacokinetic studies, preclinical and clinical trials of 18F-labeled TSPO PET ligands, and the synthesis of TSPO ligands.
Collapse
|
37
|
Zhang M, Kou L, Qin Y, Chen J, Bai D, Zhao L, Lin H, Jiang G. A bibliometric analysis of the recent advances in diazepam from 2012 to 2021. Front Pharmacol 2022; 13:1042594. [PMID: 36438847 PMCID: PMC9686836 DOI: 10.3389/fphar.2022.1042594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 12/27/2024] Open
Abstract
Background: Diazepam is a classic benzodiazepine drug that has been widely used for disorders such as anxiety, sleep disorders, and epilepsy, over the past 59 years. The study of diazepam has always been an important research topic. However, there are few bibliometric analyses or systematic studies in this field. This study undertook bibliometric and visual analysis to ascertain the current status of diazepam research, and to identify research hotspots and trends in the past 10 years, to better understand future developments in basic and clinical research. Methods: Articles and reviews of diazepam were retrieved from the Web of Science core collection. Using CiteSpace, VOSviewer, and Scimago Graphica software, countries, institutions, authors, journals, references, and keywords in the field were visually analyzed. Results: A total of 3,870 publications were included. Diazepam-related literature had high volumes of publications and citations. The majority of publications were from the USA and China. The highest number of publications and co-citations, among the authors, was by James M Cook. Epilepsia and the Latin American Journal of Pharmacy were the journals with the most publications on diazepam and Epilepsia was the most frequently cited journal. Through a comprehensive analysis of keywords and references, we found that current research on diazepam has focused on its mechanism of action, application in disease, pharmacokinetics, risk, assessment, and management of use, status epilepticus, gamma-aminobutyric acid receptors (GABAR), intranasal formulation, gephyrin, and that ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is the current research hotspot. Conclusion: Research on diazepam is flourishing. We identified research hotspots and trends in diazepam research using bibliometric and visual analytic methods. The clinical applications, mechanisms of action, pharmacokinetics, and assessment and management of the use of diazepam are the focus of current research and the development trend of future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
38
|
Cognitive dysfunction in SLE: An understudied clinical manifestation. J Autoimmun 2022; 132:102911. [PMID: 36127204 DOI: 10.1016/j.jaut.2022.102911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric lupus (NPSLE) is a debilitating manifestation of SLE which occurs in a majority of SLE patients and has a variety of clinical manifestations. In the central nervous system, NPSLE may result from ischemia or penetration of inflammatory mediators and neurotoxic antibodies through the blood brain barrier (BBB). Here we focus on cognitive dysfunction (CD) as an NPSLE manifestation; it is common, underdiagnosed, and without specific therapy. For a very long time, clinicians ignored cognitive dysfunction and researchers who might be interested in the question struggled to find an approach to understanding mechanisms for this manifestation. Recent years, however, propelled by a more patient-centric approach to disease, have seen remarkable progress in our understanding of CD pathogenesis. This has been enabled through the use of novel imaging modalities and numerous mouse models. Overall, these studies point to a pivotal role of an impaired BBB and microglial activation in leading to neuronal injury. These insights suggest potential therapeutic modalities and make possible clinical trials for cognitive impairment.
Collapse
|
39
|
The Anti-Inflammatory Effect of Preventive Intervention with Ketogenic Diet Mediated by the Histone Acetylation of mGluR5 Promotor Region in Rat Parkinson’s Disease Model: A Dual-Tracer PET Study. PARKINSON'S DISEASE 2022; 2022:3506213. [PMID: 36105302 PMCID: PMC9467749 DOI: 10.1155/2022/3506213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Materials and Methods The neuroprotective effect of ketosis state prior to the onset of PD (preventive KD, KDp) was compared with that receiving KD after the onset (therapeutic KD, KDt) in the lipopolysaccharide- (LPS-) induced rat PD model. A total of 100 rats were randomly assigned to the following 4 groups: sham, LPS, LPS + KDp, and LPS + KDt groups. Results Significant dopamine deficient behaviors (rotational behavior and contralateral forelimb akinesia), upregulation of proinflammatory mediators (TNF-α, IL-1β, and IL-6), loss of dopaminergic neurons, reduction of mGluR5+ microglia cells, increase of TSPO+ microglia cells, reduction of H3K9 acetylation in the mGluR5 promoter region and mGluR5 mRNA expression, and decline in the phosphorylation levels of Akt/GSK-3β/CREB pathway were observed after the intervention of LPS (P < 0.01). TSPO and DAT PET imaging revealed the increased uptake of 18F-DPA-714 in substantia nigra and decreased uptake of 18F-FP-CIT in substantia nigra and striatum in LPS-treated rats (P < 0.001). These impairments were alleviated by the dietary intervention of KD, especially with the strategy of KDp (P < 0.05). Conclusions The anti-inflammatory effect of KD on PD was supposed to be related to the modulation of Akt/GSK-3β/CREB signaling pathway mediated by the histone acetylation of mGluR5 promotor region. The KD intervention should be initiated prior to the PD onset in high-risk population to achieve a more favorable outcome.
Collapse
|
40
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Wongso H. Recent progress on the development of fluorescent probes targeting the translocator protein 18 kDa (TSPO). Anal Biochem 2022; 655:114854. [PMID: 35963341 DOI: 10.1016/j.ab.2022.114854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/06/2022] [Indexed: 11/01/2022]
Abstract
The translocator protein 18 kDa (TSPO) was first identified in 1997, and has now become one of the appealing subcellular targets in medicinal chemistry and its related fields. TSPO involves in a variety of diseases, covering neurodegenerative diseases, psychiatric disorders, cancers, and so on. To date, various high-affinity TSPO ligands labelled with single-photon emission computed tomography (SPECT)/positron emission tomography (PET) radionuclides have been reported, with some third-generation radioligands advanced to clinical trials. On the other hand, only a few number of TSPO ligands have been labelled with fluorophores for disease diagnosis. It is noteworthy that the majority of the TSPO fluorescent probes synthesised to date are based on visible fluorophores, suggesting that their applications are limited to in vitro studies, such as in vitro imaging of cancer cells, post-mortem analysis, and tissue biopsies examinations. In this context, the potential application of TSPO ligands can be broadened for in vivo investigations of human diseases by labelling with near-infrared (NIR)-fluorophores or substituting visible fluorophores with NIR-fluorophores on the currently developed fluorescent probes. In this review article, recent progress on fluorescent probes targeting the TSPO are summarised, with an emphasis on development trend in recent years and application prospects in the future.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia.
| |
Collapse
|
42
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Adhikari A, Pandey A, Kumar D, Tiwari AK. Determination of Hybrid TSPO Ligands with Minimal Impact of SNP
(rs6971) through Molecular Docking and MD Simulation Study. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210413130326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In an endeavor to ascertain high-affinity TSPO ligands with minimal single
nucleotide polymorphism (SNP), six hybrid molecules have been identified as new leads for future
inflammation PET imaging.
Objective:
Genesis for chemical design was encouraged from structural families of well-known ligands
FEBMP and PBR28/ DAA1106 that have demonstrated remarkable TSPO binding characteristics.
Methods:
All proposed hybrid ligands 1-6 are subjected to molecular docking and simulation studies
with wild and mutant protein to study their interactions, binding, consistency of active conformations
and are correlated with well-established TSPO ligands.
Results:
Each hybrid ligand demonstrate better docking score > -11.00 kcal/mol with TSPO with
respect to gold standard PK11195, i.e., -11.00 kcal/mol for 4UC3 and -12.94 kcal/mol for 4UC1. On
comparison with FEBMP and GE-180 (-12.57, -7.24 kcal/mol for 4UC3 and -14.10, -11.32
kcal/mol for 4UC1), ligand 3 demonstrates maximum docking energy (> -15.50 kcal/mol) with
minimum SNP (0.26 kcal/mol).
Discussion:
Presence of strong hydrogen bond Arg148-3.27Å (4UC1) and Trp50-2.43Å, Asp28-
2.57Å (4UC3) apart from short-range interactions, including π–π interactions with the aromatic residues,
such as (Trp39, Phe46, Trp135) and (Trp39, Trp108), attributes towards its strong binding.
Conclusion:
Utilizing the results of binding energy, we concluded stable complex formation of these
hybrid ligands that could bind to TSPO with the least effect of SNP with similar interactions to
known ligands. Overall, ligand 3 stands out as the best ligand having insignificant deviations per
residue of protein that can be further explored and assessed in detail for future inflammation PET
application after subsequent detailed biological evaluation.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Anwesh Pandey
- Department of
Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Devesh Kumar
- Department of
Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Anjani K. Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
44
|
Garcia-Hernandez R, Cerdán Cerdá A, Trouve Carpena A, Drakesmith M, Koller K, Jones DK, Canals S, De Santis S. Mapping microglia and astrocyte activation in vivo using diffusion MRI. SCIENCE ADVANCES 2022; 8:eabq2923. [PMID: 35622913 PMCID: PMC9140964 DOI: 10.1126/sciadv.abq2923] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 05/04/2023]
Abstract
While glia are increasingly implicated in the pathophysiology of psychiatric and neurodegenerative disorders, available methods for imaging these cells in vivo involve either invasive procedures or positron emission tomography radiotracers, which afford low resolution and specificity. Here, we present a noninvasive diffusion-weighted magnetic resonance imaging (MRI) method to image changes in glia morphology. Using rat models of neuroinflammation, degeneration, and demyelination, we demonstrate that diffusion-weighted MRI carries a fingerprint of microglia and astrocyte activation and that specific signatures from each population can be quantified noninvasively. The method is sensitive to changes in glia morphology and proliferation, providing a quantitative account of neuroinflammation, regardless of the existence of a concomitant neuronal loss or demyelinating injury. We prove the translational value of the approach showing significant associations between MRI and histological microglia markers in humans. This framework holds the potential to transform basic and clinical research by clarifying the role of inflammation in health and disease.
Collapse
Affiliation(s)
| | | | | | - Mark Drakesmith
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Kristin Koller
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K. Jones
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Santiago Canals
- Instituto de Neurociencias, CSIC/UMH, San Juan de Alicante, Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias, CSIC/UMH, San Juan de Alicante, Alicante, Spain
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
45
|
Schmidt CW. Hemispheres of Influence: Bridging the Disconnect between Environmental Neurotoxicology and Clinical Practice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:52001. [PMID: 35543742 PMCID: PMC9093734 DOI: 10.1289/ehp9013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 06/14/2023]
|
46
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
47
|
Wang J, Jin L, Zhang X, Yu H, Ge J, Deng B, Li M, Zuo C, Chen X. Activated microglia by 18F-DPA714 PET in a case of anti-LGI1 autoimmune encephalitis. J Neuroimmunol 2022; 368:577879. [DOI: 10.1016/j.jneuroim.2022.577879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
|
48
|
TSPO Ligands Protect against Neuronal Damage Mediated by LPS-Induced BV-2 Microglia Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5896699. [PMID: 35401924 PMCID: PMC8986436 DOI: 10.1155/2022/5896699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is a critical pathological process of neurodegenerative diseases, and alleviating the inflammatory response caused by abnormally activated microglia might be valuable for treatment. The 18 kDa translocator protein (TSPO), a biomarker of neuroinflammation, is significantly elevated in activated microglia. However, the role of TSPO in microglia activation has not been well demonstrated. In this study, we evaluated the role of TSPO and its ligands PK11195 and Midazolam in LPS-activated BV-2 microglia cells involving mitophagy process and the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation. In the microglia-neuron coculture system, the neurotoxicity induced by LPS-activated microglia and the neuroprotective effects of PK11195 and Midazolam were evaluated. Our results showed that after being stimulated by LPS, the expression of TSPO was increased, and the process of mitophagy was inhibited in BV-2 microglia cells. Inhibition of mitophagy was reversed by pretreatment with PK11195 and Midazolam. And the NLRP3 inflammasome was increased in LPS-activated BV-2 microglia cells in the microglia-neuron coculture system; pretreatment with PK11195 and Midazolam limited this undesirable situation. Lastly, PK11195 and Midazolam improved the cell viability and reduced apoptosis of neuronal cells in the microglia-neuron coculture system. Taken together, TSPO ligands PK11195 and Midazolam showed neuroprotective effects by reducing the inflammatory response of LPS-activated microglia, which may be related to the enhancement of mitophagy and the inhibition of NLRP3 inflammasome.
Collapse
|
49
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
50
|
Weiss F, Labrador-Garrido A, Dzamko N, Halliday G. Immune responses in the Parkrtdinson's disease brain. Neurobiol Dis 2022; 168:105700. [DOI: 10.1016/j.nbd.2022.105700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
|