1
|
Wang B, Shen C, Liu D, Dong Z, Lin X, Liao H. A Comprehensive Review of Advances in Molecular Mechanisms and Targeted Therapies for the Specific Type of Cystic Lung Cancer. Onco Targets Ther 2025; 18:211-224. [PMID: 39959914 PMCID: PMC11829588 DOI: 10.2147/ott.s495018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/02/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Cystic lung cancer (CLC) presents diagnostic and treatment challenges due to its complex imaging features and unclear molecular mechanisms. Although surgery and standard chemotherapy are frequently used, there is limited information on targeted therapy and other precision treatments. It is crucial to comprehensively understand the molecular mechanisms and explore precision treatments based on targeted therapy. METHODS Topic keywords including "CLC", "cystic lung cancer", "cavitary lung cancer", "Lung cancer associated with cystic airspaces", and "lung cancer" with ("sac cavity" OR "cystic degeneration" OR "thin-walled cavity" OR "adenocystic carcinoma" OR "cystic airspaces" OR "pulmonary cysts" OR "adenoid cystic carcinoma") searched in the relevant databases, such as PubMed, Google Scholar, and CNKI (China National Knowledge Infrastructure). Then, we reviewed and analyzed the molecular mechanism and its precision therapeutics of CLC. KEY CONTENT AND FINDINGS Various subtypes of CLC can be identified through histopathological examination, such as cystic adenocarcinoma, and squamous cell carcinoma. However, we still have much to learn about the molecular mechanisms behind CLC. Gene mutation, the abnormal tumor microenvironment, and immune dysfunction are the main mechanisms, along with potential factors like epigenetic modifications and gene susceptibility related to COPD. Recent advancements in treatment include targeted therapies, such as targeted inhibitors for EGFR, ALK, ROS1, BRAF, and MET. Surgical treatment, standardized chemotherapy, immunotherapy, and combination therapy remain important. Future research should focus on genomic and molecular profiling, and the development of precision medicine based on insights into the heterogeneity of CLC. Additionally, investigating resistance mechanisms and developing predictive biomarkers are important for future CLC research. CONCLUSION The key molecular mechanisms of CLC involve gene mutations and TME immune dysfunction. CLC still requires standard comprehensive treatment based on lung cancer staging, and targeted therapy has shown significant advantages and development prospects.
Collapse
Affiliation(s)
- Beinuo Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, People’s Republic of China
| | - Cheng Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, People’s Republic of China
| | - Danlu Liu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610044, People’s Republic of China
| | - Zhenghao Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, People’s Republic of China
| | - Xiang Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, People’s Republic of China
| | - Hu Liao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, People’s Republic of China
| |
Collapse
|
2
|
Geng W, Li P, Zhang G, Zhong R, Xu L, Kang L, Liu X, Wu M, Ji M, Guan H. Targeted Activation of OGG1 Inhibits Paraptosis in Lens Epithelial Cells of Early Age-Related Cortical Cataract. Invest Ophthalmol Vis Sci 2025; 66:29. [PMID: 39804629 PMCID: PMC11734758 DOI: 10.1167/iovs.66.1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies. Methods Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy. Cell death-associated protein markers were quantified via Western blot analysis, including those for paraptosis (ALIX, GRP78), apoptosis (cleaved caspase 3 and caspase 9), pyroptosis (N-GSDMD), and ferroptosis (GPX4). Intracellular vesicle-organelle colocalization was assessed through immunofluorescence. OGG1 protein expression and activity were evaluated through multiple methods, including Western blot, laser micro-irradiation, and immunofluorescence. The therapeutic potential of the OGG1 activator TH10785 on paraptosis was investigated using an ex vivo rat lens model. Results Morphologic changes revealed significant endoplasmic reticulum (ER) swelling in ARCC patient LECs, with no characteristic apoptotic features. Paraptosis-related proteins exhibited significant alterations, while other cell death pathway markers (apoptosis, pyroptosis, and ferroptosis) remained unchanged. In the reactive oxygen species-induced paraptosis model, vesicular structures showed exclusive colocalization with ER-specific fluorescence. Elevated levels of the DNA damage marker 7,8-dihydro-8-oxoguanine were observed concurrent with decreased OGG1 activity. The OGG1 activator TH10785 showed efficacy in suppressing LECs paraptosis in ex vivo rat lens cultures. Conclusions Paraptosis was identified in the LECs of patients with early ARCC. TH10785 activates OGG1 to suppress paraptosis in LECs, suggesting a novel therapeutic approach for early ARCC intervention.
Collapse
Affiliation(s)
- Wenjing Geng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Renhao Zhong
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Linhui Xu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Wu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
5
|
Ding S, Yuan Y, Dong J, Du F, Cui X, Shi Z, Tang Z. Leveraging CRISPR/Cas12 signal amplifier to sensitive detection of apurinic/apyrimidinic endonuclease 1 and high-throughput inhibitor screening. Anal Chim Acta 2024; 1291:342212. [PMID: 38280781 DOI: 10.1016/j.aca.2024.342212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
As an essential protein in DNA repair, apurinic/apyrimidinic endonuclease 1 (APE1) plays multiple critical functions in maintaining homeostasis, making it a significant biomarker and therapeutic target for many disorders. Here, we describe a simple method to detect APE1 based on the Releasing-Extension-Signal amplification Test (REST) strategy that leverages the dsDNA as the activator to fully unlock the trans-cleavage activity of CRISPR/Cas12a. This assay provides a rapid and specific APE1 detection with a detection limit down to 1.05 × 10-5 U/mL. We also combined this method with an automated pipetting platform and a microplate reader for high-throughput screening of potential inhibitors of APE1. Besides, by changing the modification on the probe, the REST strategy was easily repurposed to detect various DNA glycosylases. Taken together, the simplicity and robustness of the method offer a new choice for APE1 detection and inhibitor screening, showing great potential in practical use. Furthermore, the REST strategy devised in this study provides a new example of applying CRISPR/Cas12a signal amplifier to non-nucleic acid biosensing and inhibitor screening, which broadens the CRISPR-Dx toolbox.
Collapse
Affiliation(s)
- Sheng Ding
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610041, PR China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China.
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China
| | - Zheng Shi
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610041, PR China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China.
| |
Collapse
|
6
|
Qiu Y, Liu B, Zhou W, Tao X, Liu Y, Mao L, Wang H, Yuan H, Yang Y, Li B, Wang W, Qiu Y. Repair-driven DNA tetrahedral nanomachine combined with DNAzyme for 8-oxo guanine DNA glycosylase activity assay, drug screening and intracellular imaging. Analyst 2024; 149:537-545. [PMID: 38088097 DOI: 10.1039/d3an01521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
8-oxo guanine DNA glycosylase (8-oxoG DNA glycosylase), a crucial DNA repair enzyme, is essential for maintaining genome integrity and preventing diseases caused by DNA oxidative damage. Imaging 8-oxoG DNA glycosylase in living cells requires a dependable technique. In this study, we designed a DNAzyme-modified DNA tetrahedral nanomachine (DTDN) powered by 8-oxoG restoration. Incorporating a molecular beacon probe (MB), the constructed platform was used for amplified in situ monitoring of 8-oxoG DNA glycosylase. Under normal conditions, duplexing with a complementary strand modified with two 8-oxoG sites inhibited the activity of DNAzyme. The restoration of DNAzyme activity by the repair of intracellular 8-oxoG DNA glycosylase on 8-oxoG bases can initiate a signal amplification reaction. This detection system can detect 8-oxoG DNA glycosylase activity linearly between 0 and 20 U mL-1, with a detection limit as low as 0.52 U mL-1. Using this method, we were able to screen 14 natural compounds and identify 6 of them as 8-oxoG DNA glycosylase inhibitors. In addition, a novel approach was utilized to assess the activity of 8-oxoG DNA glycosylase in living cells. In conclusion, this method provides a universal tool for monitoring the activity of 8-oxoG DNA glycosylase in vitro and in living cells, which holds great promise for elucidating the enzyme's functionality and facilitating drug screening endeavors.
Collapse
Affiliation(s)
- Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenchao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Xueqing Tao
- College of Biology, Hunan University, Changsha 410082, China
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Linxi Mao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
7
|
Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T, Boldogh I. OGG1 as an Epigenetic Reader Affects NFκB: What This Means for Cancer. Cancers (Basel) 2023; 16:148. [PMID: 38201575 PMCID: PMC10778025 DOI: 10.3390/cancers16010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
8-oxoguanine glycosylase 1 (OGG1), which was initially identified as the enzyme that catalyzes the first step in the DNA base excision repair pathway, is now also recognized as a modulator of gene expression. What is important for cancer is that OGG1 acts as a modulator of NFκB-driven gene expression. Specifically, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, such as NFκB to their cognate sites, enabling the expression of cytokines and chemokines, with ensuing recruitment of inflammatory cells. Recently, we highlighted chief aspects of OGG1 involvement in regulation of gene expression, which hold significance in lung cancer development. However, OGG1 has also been implicated in the molecular underpinning of acute myeloid leukemia. This review analyzes and discusses how these cells adapt through redox-modulated intricate connections, via interaction of OGG1 with NFκB, which provides malignant cells with alternative molecular pathways to transform their microenvironment, enabling adjustment, promoting cell proliferation, metastasis, and evading killing by therapeutic agents.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| | - Lang Pan
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA;
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Theodoros Karantanos
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Istvan Boldogh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA;
| |
Collapse
|
8
|
Dancik GM, Varisli L, Tolan V, Vlahopoulos S. Aldehyde Dehydrogenase Genes as Prospective Actionable Targets in Acute Myeloid Leukemia. Genes (Basel) 2023; 14:1807. [PMID: 37761947 PMCID: PMC10531322 DOI: 10.3390/genes14091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
It has been previously shown that the aldehyde dehydrogenase (ALDH) family member ALDH1A1 has a significant association with acute myeloid leukemia (AML) patient risk group classification and that AML cells lacking ALDH1A1 expression can be readily killed via chemotherapy. In the past, however, a redundancy between the activities of subgroup members of the ALDH family has hampered the search for conclusive evidence to address the role of specific ALDH genes. Here, we describe the bioinformatics evaluation of all nineteen member genes of the ALDH family as prospective actionable targets for the development of methods aimed to improve AML treatment. We implicate ALDH1A1 in the development of recurrent AML, and we show that from the nineteen members of the ALDH family, ALDH1A1 and ALDH2 have the strongest association with AML patient risk group classification. Furthermore, we discover that the sum of the expression values for RNA from the genes, ALDH1A1 and ALDH2, has a stronger association with AML patient risk group classification and survival than either one gene alone does. In conclusion, we identify ALDH1A1 and ALDH2 as prospective actionable targets for the treatment of AML in high-risk patients. Substances that inhibit both enzymatic activities constitute potentially effective pharmaceutics.
Collapse
Affiliation(s)
- Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey; (L.V.); (V.T.)
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey; (L.V.); (V.T.)
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
9
|
Kohutova A, Münzova D, Pešl M, Rotrekl V. α 1-Adrenoceptor agonist methoxamine inhibits base excision repair via inhibition of apurinic/apyrimidinic endonuclease 1 (APE1). ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:281-291. [PMID: 37307375 DOI: 10.2478/acph-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 06/14/2023]
Abstract
Methoxamine (Mox) is a well-known α1-adrenoceptor agonist, clinically used as a longer-acting analogue of epinephrine. 1R,2S-Mox (NRL001) has been also undergoing clinical testing to increase the canal resting pressure in patients with bowel incontinence. Here we show, that Mox hydrochloride acts as an inhibitor of base excision repair (BER). The effect is mediated by the inhibition of apurinic/apyrimidinic endonuclease APE1. We link this observation to our previous report showing the biologically relevant effect of Mox on BER - prevention of converting oxidative DNA base damage to double-stranded breaks. We demonstrate that its effect is weaker, but still significant when compared to a known BER inhibitor methoxyamine (MX). We further determined Mox's relative IC 50 at 19 mmol L-1, demonstrating a significant effect of Mox on APE1 activity in clinically relevant concentrations.
Collapse
Affiliation(s)
- Aneta Kohutova
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
| | - Dita Münzova
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
| | - Martin Pešl
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
- 2International Clinical Research Center (ICRC), St.Anne's University hospital in Brno, 625 00, Brno, Czech Republic
| | - Vladimir Rotrekl
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
- 2International Clinical Research Center (ICRC), St.Anne's University hospital in Brno, 625 00, Brno, Czech Republic
| |
Collapse
|
10
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
11
|
Tian T, Zhang K, Yang W, Zhong Q, Wang B, Guo W, Liu B. A ratiometric SERS aptasensor array for human DNA glycosylaseat single-cell sensitivity/resolution. Talanta 2023; 259:124544. [PMID: 37086683 DOI: 10.1016/j.talanta.2023.124544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) is involved in the cellular genomic 8-oxoguanine (8-oxoG) excision repair to maintain genome stability. Accurate detection of hOGG1 activity is essential for clinical diagnosis and treatment of various human pathology. Yet, the quantitative detection of hOGG1 remains challenging for existing methods due to poor reproducibility and portability. Herein, we propose a ratiometric array-based SERS point-of-care testing method for hOGG1 activity. A kind of reproducible, uniform and stable plasmonic multi-microarray reaction cells was constructed by assembling AuNPs on the substrate modified by aminosilane and segmented by silica gel gasket, which greatly improved the sensitivity, portability and repeatability of SERS measurement. Based on this, the ratiometric method is further used to effectively overcome the instability of single SERS signal intensity, which allows signal rationing and provides built-in correction for environment effects. In specific, we designed two different Raman-labeled probes for the detection of hOGG1, a thiol- and Cy3-labeled aptamer as an internal standard and a Rox-labeled 8-oxoG-modified complementary aptamer as a signal probe. The ratio value between Cy3 and Rox SERS intensity is well linear with the hOGG1 activity on logarithmic scales in the range from 5 × 10-5 to 5 × 10-3 U/mL, and the limit of detection reaches 3.3 × 10-5 U/mL. Moreover, this strategy can be applied for the screening of inhibitors and the monitoring of cellular hOGG1 activity fluctuation at single-cell levels, providing a flexible and adaptive tool for clinical diagnosis, biochemical processes and drug discovery.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Qingmei Zhong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
| | - Baohong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
12
|
Wang ZX, Li YL, Pu JL, Zhang BR. DNA Damage-Mediated Neurotoxicity in Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24076313. [PMID: 37047285 PMCID: PMC10093980 DOI: 10.3390/ijms24076313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Collapse
Affiliation(s)
| | | | - Jia-Li Pu
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| | - Bao-Rong Zhang
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| |
Collapse
|
13
|
A Triphenylphosphonium-Functionalized Delivery System for an ATM Kinase Inhibitor That Ameliorates Doxorubicin Resistance in Breast Carcinoma Mammospheres. Cancers (Basel) 2023; 15:cancers15051474. [PMID: 36900267 PMCID: PMC10000448 DOI: 10.3390/cancers15051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The enzyme ataxia-telangiectasia mutated (ATM) kinase is a pluripotent signaling mediator which activates cellular responses to genotoxic and metabolic stress. It has been shown that ATM enables the growth of mammalian adenocarcinoma stem cells, and therefore the potential benefits in cancer chemotherapy of a number of ATM inhibitors, such as KU-55933 (KU), are currently being investigated. We assayed the effects of utilizing a triphenylphosphonium-functionalized nanocarrier delivery system for KU on breast cancer cells grown either as a monolayer or in three-dimensional mammospheres. We observed that the encapsulated KU was effective against chemotherapy-resistant mammospheres of breast cancer cells, while having comparably lower cytotoxicity against adherent cells grown as monolayers. We also noted that the encapsulated KU sensitized the mammospheres to the anthracycline drug doxorubicin significantly, while having only a weak effect on adherent breast cancer cells. Our results suggest that triphenylphosphonium-functionalized drug delivery systems that contain encapsulated KU, or compounds with a similar impact, are a useful addition to chemotherapeutic treatment schemes that target proliferating cancers.
Collapse
|
14
|
Tanner L, Single AB, Bhongir RKV, Heusel M, Mohanty T, Karlsson CAQ, Pan L, Clausson CM, Bergwik J, Wang K, Andersson CK, Oommen RM, Erjefält JS, Malmström J, Wallner O, Boldogh I, Helleday T, Kalderén C, Egesten A. Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model. Nat Commun 2023; 14:643. [PMID: 36746968 PMCID: PMC9902543 DOI: 10.1038/s41467-023-36314-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Interstitial lung diseases such as idiopathic pulmonary fibrosis (IPF) are caused by persistent micro-injuries to alveolar epithelial tissues accompanied by aberrant repair processes. IPF is currently treated with pirfenidone and nintedanib, compounds which slow the rate of disease progression but fail to target underlying pathophysiological mechanisms. The DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) has significant roles in the modulation of inflammation and metabolic syndromes. Currently, no pharmaceutical solutions targeting OGG1 have been utilized in the treatment of IPF. In this study we show Ogg1-targeting siRNA mitigates bleomycin-induced pulmonary fibrosis in male mice, highlighting OGG1 as a tractable target in lung fibrosis. The small molecule OGG1 inhibitor, TH5487, decreases myofibroblast transition and associated pro-fibrotic gene expressions in fibroblast cells. In addition, TH5487 decreases levels of pro-inflammatory mediators, inflammatory cell infiltration, and lung remodeling in a murine model of bleomycin-induced pulmonary fibrosis conducted in male C57BL6/J mice. OGG1 and SMAD7 interact to induce fibroblast proliferation and differentiation and display roles in fibrotic murine and IPF patient lung tissue. Taken together, these data suggest that TH5487 is a potentially clinically relevant treatment for IPF but further study in human trials is required.
Collapse
Affiliation(s)
- L Tanner
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden.
| | - A B Single
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - R K V Bhongir
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - M Heusel
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - T Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - C A Q Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - L Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - C-M Clausson
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - J Bergwik
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - K Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - C K Andersson
- Respiratory Cell Biology, Department of Experimental Medical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - R M Oommen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - J S Erjefält
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - J Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - O Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - I Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - T Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, SE-113 34, Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - C Kalderén
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, SE-113 34, Stockholm, Sweden
| | - A Egesten
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| |
Collapse
|
15
|
Pan L, Xue Y, Wang K, Zheng X, Boldogh I. Detection of Oxidatively Modified Base Lesion(s) in Defined DNA Sequences by FLARE Quantitative PCR. Methods Mol Biol 2023; 2701:115-134. [PMID: 37574478 DOI: 10.1007/978-1-0716-3373-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Assessment of DNA base and strand damage can be determined using a quantitative PCR assay that is based on the concept that damage blocks the progression of a thermostable polymerase thus resulting in decreased amplification. However, some of the mutagenic DNA base lesions cause little or no distortion in Watson-Crick base pairing. One of the most abundant such lesion is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo(d)Gua), although it affects the thermodynamic stability of the DNA, duplex 8-oxo(d)Gua does not inhibit DNA synthesis or arrest most of DNA or RNA polymerases during replication and transcription. When unrepaired, it is a pre-mutagenic base as it pairs with adenine in anti-syn conformation. Recent studies considered 8-oxo(d)Gua as an epigenetic-like mark and along with 8-oxoguanine DNA glycosylase1 (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1) has roles in gene expression via nucleating transcription factor's promoter occupancy. Here, we introduce its identification through fragment length analysis with repair enzyme (FLARE)-coupled quantitative (q)-PCR. One of the strengths of the assay is that 8-oxo(d)Gua can be identified within short stretches of nuclear and mitochondrial DNA in ng quantities. Bellow we describe the benefits and limits of using FLARE qPCR to assess DNA damage in mammalian cells and provide a detailed protocol of the assay.
Collapse
Affiliation(s)
- Lang Pan
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Yaoyao Xue
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ke Wang
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xu Zheng
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Istvan Boldogh
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
16
|
Haq MFU, Hussain MZ, Mahjabeen I, Akram Z, Saeed N, Shafique R, Abbasi SF, Kayani MA. Oncometabolic role of mitochondrial sirtuins in glioma patients. PLoS One 2023; 18:e0281840. [PMID: 36809279 PMCID: PMC9943017 DOI: 10.1371/journal.pone.0281840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Mitochondrial sirtuins have diverse role specifically in aging, metabolism and cancer. In cancer, these sirtuins play dichotomous role as tumor suppressor and promoter. Previous studies have reported the involvement of sirtuins in different cancers. However, till now no study has been published with respect to mitochondrial sirtuins and glioma risks. Present study was purposed to figure out the expression level of mitochondrial sirtuins (SIRT3, SIRT4, SIRT5) and related genes (GDH, OGG1-2α, SOD1, SOD2, HIF1α and PARP1) in 153 glioma tissue samples and 200 brain tissue samples from epilepsy patients (taken as controls). To understand the role of selected situins in gliomagenesis, DNA damage was measured using the comet assay and oncometabolic role (oxidative stress level, ATP level and NAD level) was measured using the ELISA and quantitative PCR. Results analysis showed significant down-regulation of SIRT4 (p = 0.0337), SIRT5 (p<0.0001), GDH (p = 0.0305), OGG1-2α (p = 0.0001), SOD1 (p<0.0001) and SOD2 (p<0.0001) in glioma patients compared to controls. In case of SIRT3 (p = 0.0322), HIF1α (p = 0.0385) and PARP1 (p = 0.0203), significant up-regulation was observed. ROC curve analysis and cox regression analysis showed the good diagnostic and prognostic value of mitochondrial sirtuins in glioma patients. Oncometabolic rate assessment analysis showed significant increased ATP level (p<0.0001), NAD+ level [(NMNAT1 (p<0.0001), NMNAT3 (p<0.0001) and NAMPT (p<0.04)] and glutathione level (p<0.0001) in glioma patients compared to controls. Significant increased level of damage ((p<0.04) and decrease level of antioxidant enzymes include superoxide dismutase (SOD, p<0.0001), catalase (CAT, p<0.0001) and glutathione peroxidase (GPx, p<0.0001) was observed in patients compared to controls. Present study data suggest that variation in expression pattern of mitochondrial sirtuins and increased metabolic rate may have diagnostic and prognostic significance in glioma patients.
Collapse
Affiliation(s)
- Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- * E-mail:
| | - Zertashia Akram
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Shafique
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sumaira Fida Abbasi
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
17
|
OGG1 in the Kidney: Beyond Base Excision Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5774641. [PMID: 36620083 PMCID: PMC9822757 DOI: 10.1155/2022/5774641] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
8-Oxoguanine DNA glycosylase (OGG1) is a repair protein for 8-oxoguanine (8-oxoG) in eukaryotic atopic DNA. Through the initial base excision repair (BER) pathway, 8-oxoG is recognized and excised, and subsequently, other proteins are recruited to complete the repair. OGG1 is primarily located in the cytoplasm and can enter the nucleus and mitochondria to repair damaged DNA or to exert epigenetic regulation of gene transcription. OGG1 is involved in a wide range of physiological processes, such as DNA repair, oxidative stress, inflammation, fibrosis, and autophagy. In recent years, studies have found that OGG1 plays an important role in the progression of kidney diseases through repairing DNA, inducing inflammation, regulating autophagy and other transcriptional regulation, and governing protein interactions and functions during disease and injury. In particular, the epigenetic effects of OGG1 in kidney disease have gradually attracted widespread attention. This study reviews the structure and biological functions of OGG1 and the regulatory mechanism of OGG1 in kidney disease. In addition, the possibility of OGG1 as a potential therapeutic target in kidney disease is discussed.
Collapse
|
18
|
Yuan Y, Fu D, Xu Y, Wang X, Deng X, Zhou S, Du F, Cui X, Deng Y, Tang Z. Pt(IV) Prodrug as a Potential Antitumor Agent with APE1 Inhibitory Activity. J Med Chem 2022; 65:15344-15357. [DOI: 10.1021/acs.jmedchem.2c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dingqiang Fu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan Xu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xuyang Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiongfei Deng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
19
|
Inhibition of 8-oxoguanine DNA glycosylase (OGG1) expression suppresses polycystic ovarian syndrome via the NF-κB signaling pathway. Reprod Biol 2022; 22:100679. [PMID: 35961097 DOI: 10.1016/j.repbio.2022.100679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
It has been reported that oxidative stress and chronic inflammation may be involved in the pathogenesis of polycystic ovary syndrome (PCOS). 8-oxoguanine DNA glycosylase (OGG1) is the main glycosylase that catalyzes the excision of DNA oxidation products. In this study, we investigated the role and potential mechanisms of OGG1 in the development of PCOS. We first analyzed OGG1 levels in serum and follicular fluid (FF) of PCOS patients, and significantly elevated OGG1 levels were noted in PCOS patients. We similarly observed a significant upregulation of OGG1 expression levels in ovarian tissue of the dehydroepiandrosterone (DHEA)-induced PCOS rat model. In addition, increased apoptosis and increased production of reactive oxygen species (ROS) were observed after the addition of OGG1-specific inhibitor (TH5487) in human granulosa-like tumor cell line (KGN) cells following a concentration gradient, along with a significant decrease in mRNA levels of inflammatory factors such as CXCL2, IL-6, MCP1, IL-1β, and IL-18. Significant decreases in protein phosphorylation levels of P65 and IκBα were also observed in cells. In addition, we found a significant positive correlation between OGG1 and IL-6 expression levels in human and DHEA-induced PCOS rat models. In conclusion, our results suggest that OGG1 might be involved in the pathogenesis of PCOS by regulating the secretion of IL-6 through NF-κB signaling pathway, and there might be a balance between the inhibition of oxidative stress and the promotion of chronic inflammation by OGG1 on KGN cells.
Collapse
|
20
|
Small molecule-mediated allosteric activation of the base excision repair enzyme 8-oxoguanine DNA glycosylase and its impact on mitochondrial function. Sci Rep 2022; 12:14685. [PMID: 36038587 PMCID: PMC9424235 DOI: 10.1038/s41598-022-18878-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023] Open
Abstract
8-Oxoguanine DNA glycosylase (OGG1) initiates base excision repair of the oxidative DNA damage product 8-oxoguanine. OGG1 is bifunctional; catalyzing glycosyl bond cleavage, followed by phosphodiester backbone incision via a β-elimination apurinic lyase reaction. The product from the glycosylase reaction, 8-oxoguanine, and its analogues, 8-bromoguanine and 8-aminoguanine, trigger the rate-limiting AP lyase reaction. The precise activation mechanism remains unclear. The product-assisted catalysis hypothesis suggests that 8-oxoguanine and analogues bind at the product recognition (PR) pocket to enhance strand cleavage as catalytic bases. Alternatively, they may allosterically activate OGG1 by binding outside of the PR pocket to induce an active-site conformational change to accelerate apurinic lyase. Herein, steady-state kinetic analyses demonstrated random binding of substrate and activator. 9-Deazaguanine, which can't function as a substrate-competent base, activated OGG1, albeit with a lower Emax value than 8-bromoguanine and 8-aminoguanine. Random compound screening identified small molecules with Emax values similar to 8-bromoguanine. Paraquat-induced mitochondrial dysfunction was attenuated by several small molecule OGG1 activators; benefits included enhanced mitochondrial membrane and DNA integrity, less cytochrome c translocation, ATP preservation, and mitochondrial membrane dynamics. Our results support an allosteric mechanism of OGG1 and not product-assisted catalysis. OGG1 small molecule activators may improve mitochondrial function in oxidative stress-related diseases.
Collapse
|
21
|
Generation of 3'-OH terminal-triggered encoding of multicolor fluorescence for simultaneous detection of different DNA glycosylases. Anal Bioanal Chem 2022; 414:6989-7000. [PMID: 35982252 DOI: 10.1007/s00216-022-04267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/01/2022]
Abstract
Uracil DNA glycosylase (UDG) and human alkyladenine DNA glycosylase (hAAG) are the important DNA glycosylases for initiating the repair of DNA damage, and the aberrant expression of DNA glycosylases is closely associated with various diseases, such as Parkinson's disease, several cancers, and human immunodeficiency. The simultaneous detection of UDG and hAAG is helpful for the study of early clinical diagnosis. However, the reported methods for multiple DNA glycosylase assay suffer from the application of an expensive single-molecule instrument, labor-tedious magnetic separation, and complicated design. Herein, we develop a simple fluorescence method with only three necessary DNA strands for the selective and sensitive detection of multiple DNA glycosylase activity based on the generation of 3'-OH terminal-triggered encoding of multicolor fluorescence. The method can achieve the detection limits of 5.5 × 10-5 U/mL for UDG and 3.3 × 10-3 U/mL for hAAG, which are lower than those of the reported fluorescence methods. Moreover, it can be further used to detect multiple DNA glycosylases in the human cervical carcinoma cell line (HeLa cells), normal human renal epithelial cells (293 T cells), and biological fluid and measure the enzyme kinetic parameters of UDG and hAAG.
Collapse
|
22
|
Kong W, Ji Y, Zhu X, Dai X, You C. Development and Application of a Chemical Labeling‐based Biosensing Assay for Rapid Detection of 8‐oxoguanine and its Repair
in vitro
and in Human Cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weiheng Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| | - Yongqin Ji
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
| | - Xiaowen Zhu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
| |
Collapse
|
23
|
Wang H, Jiang Y, Liang Y, Wei L, Zhang W, Li L. Observation of the cervical microbiome in the progression of cervical intraepithelial neoplasia. BMC Cancer 2022; 22:362. [PMID: 35379200 PMCID: PMC8981842 DOI: 10.1186/s12885-022-09452-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Cervical microbial community in the cervical intraepithelial neoplasia and cervical cancer patients was analysed to study its composition, diversity and signalling pathways by high-throughput 16S rDNA sequencing,and the candidate genes associated with occurrence and progression of cervical intraepithelial neoplasia were screened out and the model was established to predict the evolution of cervical intraepithelial neoplasia malignant transformation from the cervical microbial genes aspect. METHODS Cervical tissues of normal, cervical intraepithelial neoplasia and cervical cancer patients without receiving any treatment were collected. The correlation between candidate genes and cervical intraepithelial neoplasia progression was initially determined by analyzing the microbial flora. Real-time fluorescence quantitative PCR was used to detect the expression of candidate genes in different cervical tissues, ROC curve and logistic regression was used to analyse and predict the risk factors related to the occurrence and progression of cervical intraepithelial neoplasia. Finally, the early warning model of cervical intraepithelial neoplasia occurrence and progression is established. RESULTS Cervical tissues from normal, cervical intraepithelial neoplasia and cervical cancer patients were collected for microbial community high-throughput 16S rDNA sequencing. The analysis revealed five different pathways related to cervical intraepithelial neoplasia. 10 candidate genes were selected by further bioinformatics analysis and preliminary screening. Real time PCR, ROC curve and Logistic regression analysis showed that human papillomavirus infection, TCT severity, ABCG2, TDG, PCNA were independent risk factors for cervical intraepithelial neoplasia. We used these indicators to establish a random forest model. Seven models were built through different combinations. The model 4 (ABCG2 + PCNA + TDG) was the best early warning model for the occurrence and progression of CIN. CONCLUSIONS A total of 5 differential pathways and 10 candidate genes related to occurrence and progression of cervical intraepithelial neoplasia were found in cervical microbial community. This study firstly identified the genes from cervical microbial community that play an important role in the occurrence and progression of cervical intraepithelial neoplasia. At the same time, the early warning model including ABCG2 + PCNA+TDG genes provided a new idea and target for clinical prediction and blocking the evolution of cervical intraepithelial neoplasia malignant transformation from the aspect of cervical microbiological related genes.
Collapse
Affiliation(s)
- He Wang
- Department of gynecologic oncology, Guangxi Medical University Cancer Hospital, 71 He Di Road, Nanning, 530021, Guangxi, China
| | - Yanming Jiang
- Department of Obstetrics and Gynecology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuejuan Liang
- Department of Obstetrics and Gynecology, Liuzhou People's Hospital, Liuzhou, China
| | - Lingjia Wei
- Department of Obstetrics and Gynecology, Guangxi Medical University, Nanning, China
| | - Wei Zhang
- Department of gynecologic oncology, Guangxi Medical University Cancer Hospital, 71 He Di Road, Nanning, 530021, Guangxi, China
| | - Li Li
- Department of gynecologic oncology, Guangxi Medical University Cancer Hospital, 71 He Di Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
24
|
Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep 2022; 49:3321-3331. [PMID: 35028852 DOI: 10.1007/s11033-021-07073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The expression and activity of enzymes that belong to the aldehyde dehydrogenases is a characteristic of both normal and malignant stem cells. ALDH1A1 is an enzyme critical in cancer stem cells. In acute myeloid leukemia (AML), ALDH1A1 protects leukemia-initiating cells from a number of antineoplastic agents, which include inhibitors of protein tyrosine kinases. Furthermore, ALDH1A1 proves vital for the establishment of human AML xenografts in mice. We review here important studies characterizing the role of ALDH1A1 in AML and its potential as a therapeutic target. We also analyze datasets from leading studies, and show that decreased ALDH1A1 RNA expression consistently characterizes the AML patient risk group with a favorable prognosis, while there is a consistent association of high ALDH1A1 RNA expression with high risk and poor overall survival. Our review and analysis reinforces the notion to employ both novel as well as existing inhibitors of the ALDH1A1 protein against AML.
Collapse
|
25
|
Jang S, Wang F, Cho B, Shin J, Hao S. Humulus japonicus extract alleviates oxidative stress and apoptosis in 6-hydroxydopamine-induced PC12 cells. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Dlamini NZ, Somboro AM, Amoako DG, Arhin I, Khumalo HM, Khan RB. Toxicogenicity and mechanistic pathways of aflatoxin B1 induced renal injury. ENVIRONMENTAL TOXICOLOGY 2021; 36:1857-1872. [PMID: 34089297 DOI: 10.1002/tox.23306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The study investigated the toxicogenic effects, molecular mechanisms and proteomic assessment of aflatoxin B1 (AFB1 ) on human renal cells. Hek293 cells were exposed to AFB1 (0-100 μM) for 24 h. The effect on cell viability was assessed using the methylthiazol tetrazolium (MTT) assay, which also produced the half maximal inhibitory concentration (IC50 ) used in subsequent assays. Free radical production was evaluated by quantifying malondialdehyde (MDA) and nitrate concentration, while DNA fragmentation was determined using the single cell gel electrophoresis (SCGE) assay and DNA gel electrophoresis. Damage to cell membranes was ascertained using the lactate dehydrogenase (LDH) assay. The concentration of ATP, reduced glutathione (GSH), necrosis, annexin V and caspase activity was measured by luminometry. Western blotting and quantitative PCR was used to assess the expression of proteins and genes associated with apoptosis and oxidative stress. The MTT assay revealed a reduction in cell viability of Hek293 cells as the AFB1 concentration was increased, with a half maximum inhibitory concentration (IC50 ) of 32.60 μM. The decreased viability corresponded to decreased ATP concentration. The upregulation of Hsp70 indicated that oxidative stress was induced in the AFB1 -treated cells. While this implies an increased production of free radicals, the accompanying upregulation of the antioxidant system indicates the activation of defense mechanisms to prevent cellular damage. Thus, membrane damage associated with increased radical formation was prevented as indicated by the reduced LDH release and necrosis. In addition, cytotoxic effects were evident as AFB1 activated the intrinsic pathway of apoptosis with corresponding increased DNA fragmentation, p53 and Bax upregulation and increased caspase activity, but externalization of phosphatidylserine (PS), a major hallmark of apoptosis, did not occur in AFB1 treated renal cells. The results suggest that AFB1 induced oxidative stress leading to cell death by the intrinsic pathway of apoptosis in renal cells.
Collapse
Affiliation(s)
- Nomali Zanele Dlamini
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Anou M Somboro
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Isaiah Arhin
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M Khumalo
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Rene B Khan
- Drug and Innovation Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
27
|
Ramachandran S, Verma AK, Dev K, Goyal Y, Bhatt D, Alsahli MA, Rahmani AH, Almatroudi A, Almatroodi SA, Alrumaihi F, Khan NA. Role of Cytokines and Chemokines in NSCLC Immune Navigation and Proliferation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5563746. [PMID: 34336101 PMCID: PMC8313354 DOI: 10.1155/2021/5563746] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
With over a million deaths every year around the world, lung cancer is found to be the most recurrent cancer among all types. Nonsmall cell lung carcinoma (NSCLC) amounts to about 85% of the entire cases. The other 15% owes it to small cell lung carcinoma (SCLC). Despite decades of research, the prognosis for NSCLC patients is poorly understood with treatment options limited. First, this article emphasises on the part that tumour microenvironment (TME) and its constituents play in lung cancer progression. This review also highlights the inflammatory (pro- or anti-) roles of different cytokines (ILs, TGF-β, and TNF-α) and chemokine (CC, CXC, C, and CX3C) families in the lung TME, provoking tumour growth and subsequent metastasis. The write-up also pinpoints recent developments in the field of chemokine biology. Additionally, it covers the role of extracellular vesicles (EVs), as alternate carriers of cytokines and chemokines. This allows the cytokines/chemokines to modulate the EVs for their secretion, trafficking, and aid in cancer proliferation. In the end, this review also stresses on the role of these factors as prognostic biomarkers for lung immunotherapy, apart from focusing on inflammatory actions of these chemoattractants.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Main Campus, Penang, Malaysia
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Amit K Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Naushad Ahmad Khan
- Department of Biochemistry, Faculty of Medical Sciences, Alatoo International University, Bishkek, Kyrgyzstan
- Department of Trauma and Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
28
|
Zhang A, Yang J, Ma C, Li F, Luo H. Development and Validation of a Robust Ferroptosis-Related Prognostic Signature in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:616271. [PMID: 34249899 PMCID: PMC8264775 DOI: 10.3389/fcell.2021.616271] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Ferroptosis is a newly recognized process of cell death, which is different from other forms of cell death in morphology, biochemistry, and genetics, and has played a vital role in cancer biology. This study aimed to identify a ferroptosis-related gene signature associated with LUAD prognosis. Methods Dataset TCGA-LUAD which came from the TCGA portal was taken as the training cohort. GSE72094 and GSE68465 from the GEO database were treated as validation cohorts. Two hundred fifty-nine ferroptosis-related genes were retrieved from the FerrDb database. In the training cohort, Kaplan–Meier and univariate Cox analyses were conducted for preliminary screening of ferroptosis-related genes with potential prognostic capacity. These genes then entered into the LASSO Cox regression model, constructing a gene signature. The latter was then evaluated in the training and validation cohorts via Kaplan–Meier, Cox, and ROC analyses. In addition, the correlations between risk score and autophagy were examined by Pearson correlation coefficient. The analyses of GSEA and immune infiltrating were performed for better studying the function annotation of the gene signature and the character of each kind of immune cells played in the tumor microenvironment. Results A 15-gene signature was found from the training cohort and validated by Kaplan–Meier and Cox regression analyses, revealing its independent prognosis value in LUAD. Moreover, the ROC analysis was conducted, confirming a strong predictive ability that this signature owned for LUAD prognosis. One hundred fifty-one of 222 (68.01%) autophagy-related genes were discovered significantly correlated with risk scores. Analyses of GSEA and immune infiltration exhibited in detail the specific pathways that associate with the 15-gene signature and identified the crucial roles of resting mast cells and resting dendritic cells owned in the prognosis of the 15-gene signature. Conclusion In this present study, a novel ferroptosis-related 15-gene signature (RELA, ACSL3, YWHAE, EIF2S1, CISD1, DDIT4, RRM2, PANX1, TLR4, ARNTL, LPIN1, HERPUD1, NCOA4, PEBP1, and GLS2) was built. It could accurately predict the prognosis of LUAD and was related to resting mast cells and resting dendritic cells, which provide potential for the personalized outcome prediction and the development of new therapies in LUAD population.
Collapse
Affiliation(s)
- Anran Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Jinpo Yang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chao Ma
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Feng Li
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Surgery, Competence Center of Thoracic Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
29
|
Hu J, Liu W, Wang J, Qiu JG, Zhang CY. Simple Mix-and-Read Assay with Multiple Cyclic Enzymatic Repairing Amplification for Rapid and Sensitive Detection of DNA Glycosylase. Anal Chem 2021; 93:6913-6918. [PMID: 33929831 DOI: 10.1021/acs.analchem.1c01111] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) can initiate base excision repair of genomic 8-oxoguanine (8-oxoG), and it can locate and remove damaged 8-oxoG through extrusion and excision. Sensitive detection of hOGG1 is critical for clinical diagnosis. Herein, we develop a simple mix-and-read assay for the sensitive detection of DNA glycosylase using multiple cyclic enzymatic repairing amplification. The hOGG1 can excise the 8-oxoG base of the DNA substrate to produce an apurinic/apyrimidinic (AP) site, and then, the AP site can be cleaved by apurinic/apyrimidic endonuclease 1 (APE1), producing the substrate fragment with a free 3'-OH terminus. Subsequently, the substrate fragment can initiate cyclic enzymatic repairing amplification, generating two triggers. The resultant two triggers can function as the primers to induce three cyclic enzymatic repairing amplification, respectively, producing more and more triggers. We experimentally verify the occurrence of each cyclic enzymatic repairing amplification and uracil DNA glycosylase (UDG)-mediated exponential amplification. The amplification products can be simply detected using SYBR Green II as the fluorescent dye. This mix-and-read assay is very simple and rapid (within 40 min) without the requirement of any extra primers and modification/separation steps. This method can sensitively measure hOGG1 with a detection limit of 2.97 × 10-8 U/μL, and it can be applied for the screening of inhibitors and the monitoring of cellular hOGG1 activity at the single-cell level, providing an adaptive and flexible tool for clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | - Wen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jufeng Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou, Henan 450000, China
| | - Jian-Ge Qiu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou, Henan 450000, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
30
|
Wu T, Zhang D, Lin M, Yu L, Dai T, Li S, Yu F, Lu L, Zheng L, Zhong S. Exploring the Role and Mechanism of pAMPK α-Mediated Dysregulation of Brf1 and RNA Pol III Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5554932. [PMID: 33995823 PMCID: PMC8081602 DOI: 10.1155/2021/5554932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023]
Abstract
TF IIB-related factor 1 (Brf1) is a key transcription factor of RNA polymerase III (Pol III) genes. Our early studies have demonstrated that Brf1 and Pol III genes are epigenetically modulated by histone H3 phosphorylation. Here, we have further investigated the relationship of the abnormal expression of Brf1 with a high level of phosphorylated AMPKα (pAMPKα) and explored the role and molecular mechanism of pAMPKα-mediated dysregulation of Brf1 and Pol III genes in lung cancer. Brf1 is significantly overexpressed in lung cancer cases. The cases with high Brf1 expression display short overall survival times. Elevation of Brf1 expression is accompanied by a high level of pAMPKα. Brf1 and pAMPKα colocalize in nuclei. Further analysis indicates that the carcinogen MNNG induces pAMPKα to upregulate Brf1 expression, resulting in the enhancement of Pol III transcription. In contrast, inhibiting pAMPKα decreases cellular levels of Brf1, resulting in the reduction of Pol III gene transcription to attenuate the rates of cell proliferation and colony formation of lung cancer cells. These outcomes demonstrate that high Brf1 expression reveals a worse prognosis in lung cancer patients. pAMPKα-mediated dysregulation of Brf1 and Pol III genes plays important roles in cell proliferation, colony formation, and tumor development of lung cancer. Brf1 may be a biomarker for establishing the prognosis of lung cancer. It is a new mechanism that pAMPKα mediates dysregulation of Brf1 and Pol III genes to promote lung cancer development.
Collapse
Affiliation(s)
- Teng Wu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongkun Zhang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingen Lin
- The First Affiliated Hospital of Shantou University Medical College, China
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuai Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fenghai Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lei Lu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China
| | - Shuping Zhong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Hamad SH, Brinkman MC, Tsai YH, Mellouk N, Cross K, Jaspers I, Clark PI, Granville CA. Pilot Study to Detect Genes Involved in DNA Damage and Cancer in Humans: Potential Biomarkers of Exposure to E-Cigarette Aerosols. Genes (Basel) 2021; 12:genes12030448. [PMID: 33809907 PMCID: PMC8004185 DOI: 10.3390/genes12030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
There is a paucity of data on how gene expression enables identification of individuals who are at risk of exposure to carcinogens from e-cigarette (e-cig) vaping; and how human vaping behaviors modify these exposures. This pilot study aimed to identify genes regulated from acute exposure to e-cig using RT-qPCR. Three subjects (2M and 1F) made three visits to the lab (nTOT = 9 visits); buccal and blood samples were collected before and immediately after scripted vaping 20 puffs (nTOT = 18 samples); vaping topography data were collected in each session. Subjects used their own e-cig containing 50:50 propylene glycol (PG):vegetable glycerine (VG) +3-6 mg/mL nicotine. The tumor suppressor TP53 was significantly upregulated in buccal samples. TP53 expression was puff volume and flow rate dependent in both tissues. In blood, the significant downregulation of N-methylpurine DNA glycosylase (MPG), a base excision repair gene, was consistent across all subjects. In addition to DNA repair pathway, cell cycle and cancer pathways were the most enriched pathways in buccal and blood samples, respectively. This pilot study demonstrates that vaping 20 puffs significantly alters expression of TP53 in human tissues; vaping behavior is an important modifier of this response. A larger study is needed to confirm these relationships.
Collapse
Affiliation(s)
- Samera H. Hamad
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: (S.H.H.); (P.I.C.); (C.A.G.); Tel.: +1-608-217-2829 (S.H.H.); +1-443-791-3553 (P.I.C.); +1-614-607-2766 (C.A.G.)
| | | | - Yi-Hsuan Tsai
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Namya Mellouk
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Kandice Cross
- Gad Consulting Services, Risk Assessment, Consulting in Raleigh, Raleigh, NC 27609, USA;
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pamela I. Clark
- School of Public Health, University of Maryland, College Park, MD 20742, USA
- Correspondence: (S.H.H.); (P.I.C.); (C.A.G.); Tel.: +1-608-217-2829 (S.H.H.); +1-443-791-3553 (P.I.C.); +1-614-607-2766 (C.A.G.)
| | - Courtney A. Granville
- Drug Information Association, Washington, DC 20036, USA
- Correspondence: (S.H.H.); (P.I.C.); (C.A.G.); Tel.: +1-608-217-2829 (S.H.H.); +1-443-791-3553 (P.I.C.); +1-614-607-2766 (C.A.G.)
| |
Collapse
|
32
|
Plausible Role of Estrogens in Pathogenesis, Progression and Therapy of Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020648. [PMID: 33466597 PMCID: PMC7828659 DOI: 10.3390/ijerph18020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Malignant neoplasms are among the most common diseases and are responsible for the majority of deaths in the developed world. In contrast to men, available data show a clear upward trend in the incidence of lung cancer in women, making it almost as prevalent as breast cancer. Women might be more susceptible to the carcinogenic effect of tobacco smoke than men. Furthermore, available data indicate a much more frequent mutation of the tumor suppressor gene-p53 in non-small cell lung cancer (NSCLC) female patients compared to males. Another important factor, however, might lie in the female sex hormones, whose mitogenic or carcinogenic effect is well known. Epidemiologic data show a correlation between hormone replacement therapy (HRT) or oral contraceptives (OCs), and increased mortality rates due to the increased incidence of malignant tumors, including lung cancer. Interestingly, two types of estrogen receptors have been detected in lung cancer cells: ERα and ERβ. The presence of ERα has been detected in tissues and non-small-cell lung carcinoma (NSCLC) cell lines. In contrast, overexpression of ERβ is a prognostic marker in NSCLC. Herein, we summarize the current knowledge on the role of estrogens in the etiopathogenesis of lung cancer, as well as biological, hormonal and genetic sex-related differences in this neoplasm.
Collapse
|
33
|
Akbari F, Peymani M, Salehzadeh A, Ghaedi K. Integrative in silico and in vitro transcriptomics analysis revealed new lncRNAs related to intrinsic apoptotic genes in colorectal cancer. Cancer Cell Int 2020; 20:546. [PMID: 33292233 PMCID: PMC7653898 DOI: 10.1186/s12935-020-01633-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background Pathogenesis of colorectal cancer (CRC) is connected to deregulation of apoptosis while the effect of lncRNAs, as critical regulatory molecules, on this pathway is not clear well. The present study aimed to identify differential expression of genes and their related lncRNAs which are significantly associated with intrinsic apoptotic pathway in CRC. Methods The connection between CRC and apoptosis was investigated by literature reviews and the genes were enriched by using Enrichr. At the next step, differential expression of enriched genes were evaluated between normal and tumor populations in data sets and were downloaded from GEO. Then, meta-analysis and probe re-annotation were performed. For lncRNAs selection through the highest expression correlation with each of candidate genes, mRNA-lncRNA interaction of screened genes and all of lncRNAs were visualized using Cytoscape. Identified differential expression genes and lncRNAs were validated using TCGA-COAD and the obtained data were confirmed by in vitro studies in the presence of Ag@Glu-TSC nanoparticle as an apoptotic inducer. Cytotoxicity and apoptosis induction effect of Ag@Glu-TSC on Caco-2 cells was determined via MTT and Annexin V/PI, respectively. The expression of genes and lncRNAs were assayed in presence of mentioned nanoparticle. Finally, the expression level of desired genes and lncRNAs were proven in CRC tissues compared to adjacent normal tissues. Results After detection of 48 genes associated with intrinsic apoptosis in CRC according to literature, Enrichr screened 12 common genes involved in this pathway. Among them, 6 genes including BCL2, BCL2L11, BAD, CASP7, CASP9, and CYCS expression reduced in tumor tissue compared to normal according to meta-analysis studies and RNA-seq TCGA data. Afterwards, association of 8 lncRNAs comprising CDKN2B-AS1, LOC102724156, HAGLR, ABCC13, LOC101929340, LINC00675, FAM120AOS, PDCD4-AS1 with more than 5 candidate genes were identified. In vitro studies revealed that four selected lncRNAs including, CDKN2B-AS1, LOC102724156, HAGLR and FAM120AOS were significantly increased in the presence of in optimum concentration of Ag@Glu/TSC and decreased in tumor tissues versus adjacent normal tissues. Conclusion This study developed a new data mining method to screen differentially expressed lncRNAs which are involved in regulation of intrinsic apoptosis pathway in CRC quickly using published gene expression profiling microarrays. Moreover, we could validate a number of these regulators in the cellular and laboratory disease models.
Collapse
Affiliation(s)
- Fatemeh Akbari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
34
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
35
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Genomic alterations and abnormal expression of APE2 in multiple cancers. Sci Rep 2020; 10:3758. [PMID: 32111912 PMCID: PMC7048847 DOI: 10.1038/s41598-020-60656-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
Although APE2 plays essential roles in base excision repair and ATR-Chk1 DNA damage response (DDR) pathways, it remains unknown how the APE2 gene is altered in the human genome and whether APE2 is differentially expressed in cancer patients. Here, we report multiple-cancer analyses of APE2 genomic alterations and mRNA expression from cancer patients using available data from The Cancer Genome Atlas (TCGA). We observe that APE2 genomic alterations occur at ~17% frequency in 14 cancer types (n = 21,769). Most frequent somatic mutations of APE2 appear in uterus (2.89%) and skin (2.47%) tumor samples. Furthermore, APE2 expression is upregulated in tumor tissue compared with matched non-malignant tissue across 5 cancer types including kidney, breast, lung, liver, and uterine cancers, but not in prostate cancer. We also examine the mRNA expression of 13 other DNA repair and DDR genes from matched samples for 6 cancer types. We show that APE2 mRNA expression is positively correlated with PCNA, APE1, XRCC1, PARP1, Chk1, and Chk2 across these 6 tumor tissue types; however, groupings of other DNA repair and DDR genes are correlated with APE2 with different patterns in different cancer types. Taken together, this study demonstrates alterations and abnormal expression of APE2 from multiple cancers.
Collapse
|
37
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
38
|
Paz-Elizur T, Leitner-Dagan Y, Meyer KB, Markus B, Giorgi FM, O’Reilly M, Kim H, Evgy Y, Fluss R, Freedman LS, Rintoul RC, Ponder B, Livneh Z. DNA Repair Biomarker for Lung Cancer Risk and its Correlation With Airway Cells Gene Expression. JNCI Cancer Spectr 2020; 4:pkz067. [PMID: 32064457 PMCID: PMC7012022 DOI: 10.1093/jncics/pkz067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/23/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Improving lung cancer risk assessment is required because current early-detection screening criteria miss most cases. We therefore examined the utility for lung cancer risk assessment of a DNA Repair score obtained from OGG1, MPG, and APE1 blood tests. In addition, we examined the relationship between the level of DNA repair and global gene expression. METHODS We conducted a blinded case-control study with 150 non-small cell lung cancer case patients and 143 control individuals. DNA Repair activity was measured in peripheral blood mononuclear cells, and the transcriptome of nasal and bronchial cells was determined by RNA sequencing. A combined DNA Repair score was formed using logistic regression, and its correlation with disease was assessed using cross-validation; correlation of expression to DNA Repair was analyzed using Gene Ontology enrichment. RESULTS DNA Repair score was lower in case patients than in control individuals, regardless of the case's disease stage. Individuals at the lowest tertile of DNA Repair score had an increased risk of lung cancer compared to individuals at the highest tertile, with an odds ratio (OR) of 7.2 (95% confidence interval [CI] = 3.0 to 17.5; P < .001), and independent of smoking. Receiver operating characteristic analysis yielded an area under the curve of 0.89 (95% CI = 0.82 to 0.93). Remarkably, low DNA Repair score correlated with a broad upregulation of gene expression of immune pathways in patients but not in control individuals. CONCLUSIONS The DNA Repair score, previously shown to be a lung cancer risk factor in the Israeli population, was validated in this independent study as a mechanism-based cancer risk biomarker and can substantially improve current lung cancer risk prediction, assisting prevention and early detection by computed tomography scanning.
Collapse
Affiliation(s)
- Tamar Paz-Elizur
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Leitner-Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Barak Markus
- Bioinformatics Unit, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martin O’Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hyunjin Kim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Yentl Evgy
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Fluss
- Biostatistics Unit, Gertner Institute for Epidemiology and Public Health Policy Sheba Medical Center, Tel Hashomer, Israel
| | - Laurence S Freedman
- Biostatistics Unit, Gertner Institute for Epidemiology and Public Health Policy Sheba Medical Center, Tel Hashomer, Israel
| | - Robert C Rintoul
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Thoracic Oncology, Royal Papworth Hospital, Cambridge, UK
| | - Bruce Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
The Combination of Astragalus membranaceus and Angelica sinensis Inhibits Lung Cancer and Cachexia through Its Immunomodulatory Function. JOURNAL OF ONCOLOGY 2019; 2019:9206951. [PMID: 31781219 PMCID: PMC6875282 DOI: 10.1155/2019/9206951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/11/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer and its related cachexia are the leading cause of cancer death in the world. In this study, we report the inhibitory effect of the combined therapy of Astragalus membranaceus and Angelica sinensis, on tumor growth and cachexia in tumor-bearing mice. Lewis lung carcinoma cells were inoculated into male C57BL/6 and CAnN.Cg-Foxn1nu nude mice. After tumor inoculation, mice were fed orally by the combination of AM and AS in different doses. In C57BL/6 mice, the combination of AM and AS significantly inhibited the growth of cancer tumor and prevented the loss of body weight and skeletal muscle. It also diminished the formation of free radicals and cytokines, stimulated the differentiation of NK and Tc cells, and rebalanced the ratios of Th/Tc cells, Th1/Th2 cytokines, and M1/M2 tumor-associated macrophages. The herbal combination also downregulated the expression of NFκΒ, STAT3, HIF-1α, and VEGF in tumors. In contrast, the findings were not observed in the nude mice. Therefore, the combination of AM and AS is confirmed to inhibit the progression of lung cancer, cancer cachexia, and cancer inflammation through the immunomodulatory function.
Collapse
|
40
|
Abstract
Cellular damage produced by conditions generating oxidative stress have far-reaching implications in human disease that encompass, but are not restricted to aging, cardiovascular disease, type 2 diabetes, airway inflammation/asthma, cancer, and metabolic syndrome including visceral obesity, insulin resistance, fatty liver disease, and dyslipidemia. Although there are numerous sources and cellular targets of oxidative stress, this review will highlight literature that has investigated downstream consequences of oxidatively-induced DNA damage in both nuclear and mitochondrial genomes. The presence of such damage can in turn, directly and indirectly modulate cellular transcriptional and repair responses to such stressors. As such, the persistence of base damage can serve as a key regulator in coordinated gene-response cascades. Conversely, repair of these DNA lesions serves as both a suppressor of mutagenesis and by inference carcinogenesis, and as a signal for the cessation of ongoing oxidative stress. A key enzyme in all these processes is 8-oxoguanine DNA glycosylase (OGG1), which, via non-catalytic binding to oxidatively-induced DNA damage in promoter regions, serves as a nucleation site around which changes in large-scale regulation of inflammation-associated gene expression can occur. Further, the catalytic function of OGG1 can alter the three-dimensional structure of specialized DNA sequences, leading to changes in transcriptional profiles. This review will concentrate on adverse deleterious health effects that are associated with both the diminution of OGG1 activity via population-specific polymorphic variants and the complete loss of OGG1 in murine models. This mouse model displays diet- and age-related induction of metabolic syndrome, highlighting a key role for OGG1 in protecting against these phenotypes. Conversely, recent investigations using murine models having enhanced global expression of a mitochondrial-targeted OGG1 demonstrate that they are highly resistant to diet-induced disease. These data suggest strategies through which therapeutic interventions could be designed for reducing or limiting adverse human health consequences to these ubiquitous stressors.
Collapse
Affiliation(s)
- Harini Sampath
- Department of Nutritional Sciences and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, United States.
| | - R Stephen Lloyd
- Oregon Institute for Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, Oregon, 97239, United States.
| |
Collapse
|
41
|
Tiwari V, Wilson DM. DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. Am J Hum Genet 2019; 105:237-257. [PMID: 31374202 PMCID: PMC6693886 DOI: 10.1016/j.ajhg.2019.06.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic information is constantly being attacked by intrinsic and extrinsic damaging agents, such as reactive oxygen species, atmospheric radiation, environmental chemicals, and chemotherapeutics. If DNA modifications persist, they can adversely affect the polymerization of DNA or RNA, leading to replication fork collapse or transcription arrest, or can serve as mutagenic templates during nucleic acid synthesis reactions. To combat the deleterious consequences of DNA damage, organisms have developed complex repair networks that remove chemical modifications or aberrant base arrangements and restore the genome to its original state. Not surprisingly, inherited or sporadic defects in DNA repair mechanisms can give rise to cellular outcomes that underlie disease and aging, such as transformation, apoptosis, and senescence. In the review here, we discuss several genetic disorders linked to DNA repair defects, attempting to draw correlations between the nature of the accumulating DNA damage and the pathological endpoints, namely cancer, neurological disease, and premature aging.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
42
|
Caramori G, Ruggeri P, Mumby S, Ieni A, Lo Bello F, Chimankar V, Donovan C, Andò F, Nucera F, Coppolino I, Tuccari G, Hansbro PM, Adcock IM. Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Targets 2019; 23:539-553. [DOI: 10.1080/14728222.2019.1615884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaetano Caramori
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Federica Lo Bello
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Filippo Andò
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Nucera
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
- Faculty of Science, Ultimo, and Centenary Institute, Centre for Inflammation, University of Technology Sydney, Sydney, Australia
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
43
|
Wang J, Zhao Y, Xu H, Ma J, Liang F, Zou Q, Lin F. Silencing NID2 by DNA Hypermethylation Promotes Lung Cancer. Pathol Oncol Res 2019; 26:801-811. [PMID: 30826972 DOI: 10.1007/s12253-019-00609-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
To characterize the DNA methylation as well as exploring the relationship between NID2 methylation and the lung cancer development. Collecting chip data of 9 lung cancer samples and 11 adjacent normal samples from the Gene Expression Omnibus database. Tissues and cells NID2 gene methylation level was measured by methylation-specific PCR. NID2 mRNA level and protein level were validated by Real-Time PCR and Western blot separately. Functional study of lung cancer cells was performed with Cell Counting Kit-8 assay. Colony formation assay, transwell assay, wound healing assay and low cytometry were performed. Finally, NID2 tumorigenesis in vivo was tested in nude mice xenograft models. Microarray analysis outcome present NID2 hypermethylation status in lung cancer tissues. High methylation and low mRNA expression levels of NID2 were detected. After NID2 demethylation or overexpression in cancer cells, cell viability, proliferation, migration as well as invasion ability decreased. Nevertheless, a significant enhancement in apoptosis rate were observed. Overexpressing NID2 or demethylation in lung cancer cells inhibited the tumorigenesis of lung cancer in nude mice. The mRNA and protein level of NID2 in tumors obtained from nude mice xenograft were unanimous with the in vitro assays' outcome, which significantly decreased after overexpressing NID2 or demethylation. NID2 methylation reduces its expression level and promotes the development of lung cancer.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yan Zhao
- Medical Examination Center, The Second Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Hongyan Xu
- Department of Oncology, Jilin Second People's Hospital, Jilin, 132011, Jilin, China
| | - Jun Ma
- Department of Radiotherapy, The Affiliated Hospital of Beihua University, Jilin, 132011, Jilin, China
| | - Feihai Liang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qingxu Zou
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, No. 126 freedom Avenue, Changchun, Jilin, 130031, China
| | - Fengwu Lin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, No. 126 freedom Avenue, Changchun, Jilin, 130031, China.
| |
Collapse
|
44
|
DNA Repair Protein OGG1 in Pulmonary Infection and Other Inflammatory Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7121726 DOI: 10.1007/978-981-13-8413-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the last decades, extensive research has uncovered functional roles and underlying mechanisms of DNA repair enzyme 8-oxoguanine DNA glycosylase (OGG1) in the pathogenesis of inflammatory response in infection and other diseases in the lung. OGG1 excises 8-oxo-7,8-dihydroguanine (8-oxo-dG) lesion on DNA that is often induced by generation of reactive oxygen species (ROS) and has been linked to mutations, cancer development, and tissue damage. Most, if not all, environmental toxic agents and mammalian cellular metabolites elicit the generation of ROS, either directly, indirectly, or both, which is among the first cellular responses. ROS in combination with other oxidative molecules/moieties are recognized as a major factor for killing invading pathogens but meanwhile can cause tissue damage. ROS potentially modify proteins, lipids, and DNA due to the strong molecular reactivity. While oxidative stress causes increased levels of all types of oxidatively modified DNA bases, accumulation of 8-oxo-dG in the DNA has been singled out to be a main culprit linking to various inflammatory disease processes. Oxidatively damaged DNA bases such as 8-oxo-dG are primarily repaired by the base excision repair (BER) mechanism, in which OGG1, as the lesion recognition enzyme, plays a fundamental role in fixing this DNA damage. In this chapter, we summarize the roles and potential mechanistic analyses of OGG1 in lung infection and other inflammatory diseases.
Collapse
|