1
|
Jahangiri S, Abdan Z, Houshmand M, Souroush A, Aznab M. Association between single nucleotide polymorphisms of DNA repair genes (BRCA1, BRCA2, and PALB2) and breast cancer incidence in a subset of Iranian population. Hered Cancer Clin Pract 2025; 23:12. [PMID: 40158114 PMCID: PMC11954309 DOI: 10.1186/s13053-025-00311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy among Iranian females, accounting for 24.4% of all malignancies. Germ line mutations in DNA repair system-related genes are associated with an increased risk of BC. This study aims to evaluate the frequencies of single nucleotide polymorphisms (SNPs) in the BRCA1, BRCA2, and PALB2 genes in patients with BC from a subset of the Iranian population in the western part of Iran. METHODS Blood samples were collected from 335 patients with BC and 354 healthy matched volunteers. Genomic DNA was extracted using the salting-out method and, after quality control, was genotyped using the multiplex TaqMan allelic discrimination assay for three SNPs: rs80359550 (6174 delT) in the BRCA2 gene, rs180177102 in the PALB2 gene, and rs386833395 (185delAG) in the BRCA1 gene. Statistical analysis was performed to examine allele frequency, odds ratio, and relative risk (genetic association) in a retrospective case-control study. RESULTS The data showed no association between rs386833395 and BC risk in the studied population (odds ratio = 1), whereas rs80359550 and rs180177102 polymorphisms were strongly associated with BC risk in patients (odds ratio = 0.01 for both, with p-values of 0.011 and 0.021, respectively). CONCLUSIONS Our findings suggest no significant association between the rs386833395 polymorphism and BC risk in the Iranian Kurdish population, while rs80359550 and rs180177102 polymorphisms were strongly associated with BC. However, the study has several limitations, including its retrospective design, a relatively small sample size, and the potential lack of generalizability to other ethnic groups within Iran. Future studies involving larger cohorts and more diverse populations are needed to confirm these results.
Collapse
Grants
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
Collapse
Affiliation(s)
- Sepideh Jahangiri
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abdan
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetics and Biotechnology, Tehran, Iran
| | - Ali Souroush
- Department of Medical Physics, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozaffar Aznab
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Oncology- Hematology, Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Feng Y, Wu Z, Liu H, Xu R. Combining photodynamic therapy and ATM inhibition using modified bovine serum albumin: A co-delivery nano platform for eliciting pyroptosis and apoptosis to fuel TNBC therapy. Int J Biol Macromol 2025; 307:142140. [PMID: 40112963 DOI: 10.1016/j.ijbiomac.2025.142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Triple-negative breast cancer (TNBC) presents a formidable challenge due to its poorest prognosis and limited array of treatment options available. Photodynamic therapy (PDT) has emerged as a potent therapeutic modality to generate intratumoral toxic reactive oxygen species (ROS) in combating refractory triple-negative breast cancer (TNBC). However, its therapeutic efficacy is compromised due to insufficient tumor accumulation and therapeutic resistance. Herein, an "all-in-one" tumor-therapeutic nanomedicine named HA@IR780@KU55933@BSA (HIKB) which integrated photosensitizer IR780 with ATM kinase inhibitor KU55933 was designed to facilitate drug delivery and target specific pathways involved in tumor PDT treatment resistance. Co-delivery of IR780 and KU55933 exacerbated intracellular ROS production, mitochondrial dysfunction and DNA damage to form a potent anti-TNBC therapeutic cyclical feedback loop and then induced pyroptosis and apoptosis of TNBC cells by activating the Caspase3/GSDME signaling pathway and regulating apoptosis-related protein expression, respectively. In vivo evaluations in the TNBC orthotopic xenograft mouse model demonstrated that the designed HIKB NPs could accumulate in tumor tissues and exert synergistic therapeutic effects. Altogether, this study described a self-assembling strategy for constructing an all-in-one nanomedicine that effectively integrates multiple therapeutic modalities to provide a comprehensive and systemic approach to tumor suppression.
Collapse
Affiliation(s)
- Yuao Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zeliang Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
3
|
Wu P, Wen Z. ATM is associated with the prognosis of colorectal cancer: a systematic review. Front Oncol 2025; 15:1470939. [PMID: 40144209 PMCID: PMC11936800 DOI: 10.3389/fonc.2025.1470939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
Objective Chemosensitivity and radiosensitivity are associated with the prognosis of colorectal cancer, and the expression of the ataxia-telangiectasia mutated (ATM) protein plays an essential role in these processes. The present study examined the relationship between ATM expression and the survival outcomes of colorectal cancer patients and explored the underlying mechanism and promising therapeutic strategies. Method A search including medical subject headings (MeSH), free terms, and combined words was conducted using Pubmed, EMBASE, and Cochrane. Studies had to meet the inclusion criteria as well as include processes such as data extraction and quality evaluation. The survival outcomes were assessed using hazard ratio (HR) and 95% confidence interval (CI). Heterogeneity, and publication bias were analyzed, and a P value <0.05 was considered statistically significant. Results Nine studies with 2883 patients were included in the meta-analysis. Low ATM expression level was related to poor overall survival (HR=0.542, 95% CI=0.447-0.637; P=0.000). Disease-free, progression-free, and recurrence-free survival rates were lower in patients with low ATM expression than in those with high ATM expression. There was no significant difference between Stage I-II and Stage III-IV colorectal cancer patients [risk ratio (RR)=1.173, 95% CI=0.970-1.417, P=0.690]. Conclusions Low ATM expression level may be a marker of poor survival in colorectal cancer and contributes to resistance to therapy. Targeting related factors in these pathways to sensitize tumors to treatment is a potential therapeutic strategy, and monitoring ATM status could be a valuable guide independent of the immunotherapy or chemotherapy strategy used.
Collapse
Affiliation(s)
- Pei Wu
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Wen
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Muhammad FA, Adhab AH, Mahdi MS, Jain V, Ganesan S, Bhanot D, Naidu KS, Kaur S, Mansoor AS, Radi UK, Abd NS, Kariem M. Unveiling Novel Targets in Lung Tumors for Enhanced Radiotherapy Efficacy: A Comprehensive Review. J Biochem Mol Toxicol 2025; 39:e70180. [PMID: 39987513 DOI: 10.1002/jbt.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Radiotherapy is a cornerstone of lung cancer management, though its efficacy is frequently undermined by intrinsic and acquired radioresistance. This review examines the complexity of lung tumors, highlighting their potential as a reservoir of novel targets for radiosensitization. Ionizing radiation (IR) primarily exerts its effects through oxidative damage and DNA double-strand breaks (DSBs). Lung cancer cells, however, develop mutations that enhance DNA damage response (DDR) and suppress cell death pathways. Additionally, interactions between tumor cells and tumor microenvironment (TME) components-including immune cells, stromal cells, and molecular mediators such as cytokines, chemokines, and growth factors-contribute to resistance against IR. Understanding these intricate relationships reveals potential targets to improve radiotherapy outcomes. Promising targets include DDR pathways, immunosuppressive cells and molecules, hypoxia, proangiogenic mediators, and other key signaling pathways. This review discusses emerging strategies, such as combining radiotherapy with immunomodulators, hypoxia and proangiogenic inhibitors, DDR-targeting agents, and other innovative approaches. By offering a comprehensive analysis of the lung TME, this review underscores opportunities to enhance radiotherapy effectiveness through targeted radiosensitization strategies.
Collapse
Affiliation(s)
| | | | | | - Vicky Jain
- Department of Chemistry, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Nasiriyah, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Li Y, Liu Y, Ma J, Yang Y, Yue Q, Zhu G, Guo W, Gao T, Shi Q, Li C. PARP4 deficiency enhances sensitivity to ATM inhibitor by impairing DNA damage repair in melanoma. Cell Death Discov 2025; 11:35. [PMID: 39885134 PMCID: PMC11782537 DOI: 10.1038/s41420-025-02296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Abstract
Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family. The low expression of PARP4 is significantly associated with defective DSB repair markers and poor prognosis in melanoma. Further research revealed that PARP4 plays a role in DSB repair by regulating the non-homologous end joining (NHEJ) pathway through its involvement in Ku80 mono-ADP-ribosylation. Moreover, from a synthetic lethality perspective, PARP4 expression is associated with ATM inhibitor sensitivity. Overall, our study provides new and valuable insights into the function of PARP4 and melanoma pathogenesis and suggests that ATM inhibitor may be a promising therapeutic approach for treating melanoma with low PARP4 expression.
Collapse
Affiliation(s)
- Yuehua Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiao Yue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Ramos RH, Bardelotte YA, de Oliveira Lage Ferreira C, Simao A. Identifying key genes in cancer networks using persistent homology. Sci Rep 2025; 15:2751. [PMID: 39838168 PMCID: PMC11751331 DOI: 10.1038/s41598-025-87265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
Identifying driver genes is crucial for understanding oncogenesis and developing targeted cancer therapies. Driver discovery methods using protein or pathway networks rely on traditional network science measures, focusing on nodes, edges, or community metrics. These methods can overlook the high-dimensional interactions that cancer genes have within cancer networks. This study presents a novel method using Persistent Homology to analyze the role of driver genes in higher-order structures within Cancer Consensus Networks derived from main cellular pathways. We integrate mutation data from six cancer types and three biological functions: DNA Repair, Chromatin Organization, and Programmed Cell Death. We systematically evaluated the impact of gene removal on topological voids ([Formula: see text] structures) within the Cancer Consensus Networks. Our results reveal that only known driver genes and cancer-associated genes influence these structures, while passenger genes do not. Although centrality measures alone proved insufficient to fully characterize impact genes, combining higher-order topological analysis with traditional network metrics can improve the precision of distinguishing between drivers and passengers. This work shows that cancer genes play an important role in higher-order structures, going beyond pairwise measures, and provides an approach to distinguish drivers and cancer-associated genes from passenger genes.
Collapse
Affiliation(s)
- Rodrigo Henrique Ramos
- University of São Paulo, ICMC, São Carlos, 13566-590, Brazil.
- Federal Institute of São Paulo, São Carlos, 13565-820, Brazil.
| | | | | | - Adenilso Simao
- University of São Paulo, ICMC, São Carlos, 13566-590, Brazil
| |
Collapse
|
7
|
Deng M, Tang F, Chang X, Zhang Y, Liu P, Ji X, Zhang Y, Yang R, Jiang J, He J, Miao J. A targetable OSGIN1 - AMPK - SLC2A3 axis controls the vulnerability of ovarian cancer to ferroptosis. NPJ Precis Oncol 2025; 9:15. [PMID: 39809873 PMCID: PMC11733211 DOI: 10.1038/s41698-024-00791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Despite advances in various chemotherapy regimens, current therapeutic options are limited for ovarian cancer patients. Oxidative stress-induced growth inhibitor 1 (OSGIN1), which is a tumor suppressor gene known to regulate the cellular stress response and apoptosis, is associated with ovarian cancer development. However, the underlying mechanisms involved in ferroptosis regulation have not been elucidated. Thus, this study aimed to investigate the effect and underlying regulatory mechanism of the OSGIN1 gene on ovarian cancer cells. Our results demonstrated that loss of the OSGIN1 gene promoted ovarian cancer growth and conferred resistance to drug-induced ferroptosis. Mechanistically, the loss of OSGIN1 activates AMPK signaling through ATM, leading to the upregulation of SLC2A3, which protects cells from ferroptosis and renders them insensitive to ferroptosis inducers. Notably, an SLC2A3-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on ovarian cancer patient-derived xenograft tumors. Overall, anti-SLC2A3 therapy is a promising method to improve ovarian cancer treatment by targeting ferroptosis.
Collapse
Affiliation(s)
- Mengqi Deng
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Fan Tang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Xiangyu Chang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Yanqin Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Penglin Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Xuechao Ji
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Yubo Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, 266011, Shandong, China
| | - Ruiye Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Junyi Jiang
- State Key Laboratry of Medical Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, 100006, Beijing, China
| | - Junqi He
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, 100006, Beijing, China
| | - Jinwei Miao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China.
| |
Collapse
|
8
|
Liu X, Wang S, Lv H, Chen E, Yan L, Yu J. Advances in the relationship of immune checkpoint inhibitors and DNA damage repair. Curr Res Transl Med 2025; 73:103494. [PMID: 39824061 DOI: 10.1016/j.retram.2025.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Cancer immunotherapy, alongside surgery, radiation therapy, and chemotherapy, has emerged as a key treatment modality. Immune checkpoint inhibitors (ICIs) represent a promising immunotherapy that plays a critical role in the management of various solid tumors. However, the limited efficacy of ICI monotherapy and the development of primary or secondary resistance to combination therapy remain a challenge. Consequently, identifying molecular markers for predicting ICI efficacy has become an area of active clinical research. Notably, the correlation between DNA damage repair (DDR) mechanisms and the effectiveness of ICI treatment has been established. This review outlines the two primary pathways of DDR, namely, the homologous recombination repair pathway and the mismatch repair pathway. The relationship between these key genes and ICIs has been discussed and the potential of these genes as molecular markers for predicting ICI efficacy summarized.
Collapse
Affiliation(s)
- Xiaolin Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Li Yan
- School of Humanities, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
9
|
Li F, Yu Y, Jiang M, Zhang H. Targets for improving prostate tumor response to radiotherapy. Eur J Pharmacol 2025; 986:177149. [PMID: 39577551 DOI: 10.1016/j.ejphar.2024.177149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Prostate cancer is a prevalent malignancy that is frequently managed with radiotherapy. However, resistance to radiotherapy remains a significant challenge in controlling this disease. Early radiotherapy is employed for locally confined prostate cancer (PCa), while recurrent disease post-surgery and metastatic castration-resistant prostate cancer (mCRPC) are treated with late-stage radiotherapy, including radium-223. Combination therapies to integrate radiotherapy and chemotherapy have demonstrated enhanced treatment efficacy. Nonetheless, both modalities can induce severe local and systemic toxicities. Consequently, selectively sensitizing prostate tumors to radiotherapy could improve therapeutic outcomes while minimizing systemic side effects. The mechanisms underlying radioresistance in prostate cancer are multifaceted, including DNA damage repair (DDR) pathways, hypoxia, angiogenesis, androgen receptor (AR) signaling, and immune evasion. The advent of 177Lu-PSMA-617, which was approved in 2022, has shown promise in targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer. Experimental and clinical studies have yielded promising results in suppressing prostate tumors by targeting these pathways. This paper reviews potential targets for sensitizing prostate tumors to radiotherapy. We discuss cellular and molecular mechanisms contributing to therapy resistance and examine findings from experimental and clinical trials on promising targets and drugs that can be used in combination with radiotherapy.
Collapse
Affiliation(s)
- Fengguang Li
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China
| | - Yizhi Yu
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China
| | - Maozhu Jiang
- Department of Radiotherapy, Yantaishan Hospital, Shandong, 264000, China
| | - Haiying Zhang
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China.
| |
Collapse
|
10
|
An Y, Gao D, He Y, Ge N, Guo J, Sun S, Wang C, Yang F. Guarding against digestive-system cancers: Unveiling the role of Chk2 as a potential therapeutic target. Genes Dis 2025; 12:101191. [PMID: 39524544 PMCID: PMC11550749 DOI: 10.1016/j.gendis.2023.101191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 11/16/2024] Open
Abstract
Digestive-system cancers represent major threats to human health; however, the mechanisms underlying tumorigenesis and radiochemotherapy resistance have remained elusive. Therefore, an urgent need exists for identifying key drivers of digestive system tumorigenesis and novel targeted therapeutics. The checkpoint kinase 2 (Chk2) regulates cell-cycle progression, and Chk2 dysregulation or Chk2 mutations can lead to the development of various cancers, which makes Chk2 an important research topic. This review summarizes the roles of Chk2 in DNA-damage responses, cell-cycle regulation, autophagy, and homeostasis maintenance. We describe relationships between tumorigenesis and cell-cycle dysregulation induced by Chk2 mutations. In addition, we summarize evidence indicating that Chk2 can serve as a novel therapeutic target, based on its contributions to radiochemotherapy-resistance reversion and progress made in developing antitumor agents against Chk2. The prevailing evidence supports the conclusion that further research on Chk2 will provide a deeper understanding of digestive-system tumorigenesis and should suggest novel therapeutic targets.
Collapse
Affiliation(s)
- Yucheng An
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Duolun Gao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yanjie He
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY 10016, USA
| | - Nan Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Caixia Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
11
|
Xie Y, Liu Y, Lin M, Li Z, Shen Z, Yin S, Zheng Y, Zou Y, Zhang Y, Zhan Y, Fang Y, Ding Y. Targeting ATM enhances radiation sensitivity of colorectal cancer by potentiating radiation-induced cell death and antitumor immunity. J Adv Res 2024:S2090-1232(24)00601-5. [PMID: 39708961 DOI: 10.1016/j.jare.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION The efficacy of radiotherapy in colorectal cancer (CRC) is often limited by radiation resistance. Ataxia telangiectasia mutated (ATM) is well known for its role in repairing double-strand DNA breaks within the DNA damage response (DDR) pathway. However, whether ATM mediates other mechanisms contributing to radiation resistance remains insufficiently investigated. OBJECTIVES This study investigates how targeting ATM enhances CRC radiation sensitivity and evaluates combination strategies to improve radiotherapy outcomes. METHODS Clinical specimens were analyzed to correlate ATM activation with radiotherapy response. Functional assays, including EdU, cell viability, clonogenic survival, and apoptosis assays, were used to assess the impact of ATM inhibition on radiation sensitivity. Mechanistic insights were gained through RNA-seq, RT-qPCR, western blotting, ELISA, immunofluorescence, flow cytometry, ChIP-qPCR, and co-immunoprecipitation. In vivo efficacy was evaluated using subcutaneous tumor models in nude, BALB/c, and C57BL/6J mice. RESULTS High ATM phosphorylation levels correlated with poor radiotherapy response in CRC patients. ATM inhibition enhanced radiation sensitivity in both in vitro and in vivo models. Mechanistically, ATM inhibition increased radiation-induced ROS accumulation and mitochondrial damage, leading to the release of mitochondrial DNA (mtDNA) into the cytosol and activation of the STING-type I interferon pathway. This enhanced CD8+ T cell infiltration and boosted antitumor immunity. Additionally, ATM inhibition partially alleviated the radiation-induced upregulation of PD-L1, likely through the ATM/NEMO/NF-κB pathway. Notably, triple therapy combining radiotherapy, an ATM inhibitor, and anti-PD-L1 achieved superior tumor control and remission in mouse models, including large, treatment-resistant tumors. CONCLUSION Targeting ATM enhances radiation-induced tumor cell death and boosts antitumor immune responses, offering a promising strategy to overcome CRC radiation resistance. The synergy of radiotherapy, ATM inhibitior, and immune checkpoint blockade highlights a novel therapeutic approach for CRC management.
Collapse
Affiliation(s)
- Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Yang Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Mingdao Lin
- Department of Anorectal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Zhenkang Li
- Department of Surgery, Zhujiang Hospital, Southern Medical University Guangzhou 510280, Guangdong, China
| | - Zhiyong Shen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shengqi Yin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yilin Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yishu Zou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yaowei Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yizhi Zhan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
12
|
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102344. [PMID: 39494147 PMCID: PMC11531618 DOI: 10.1016/j.omtn.2024.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Jiahao Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| |
Collapse
|
13
|
Mi L, Zhang H. Myriad factors and pathways influencing tumor radiotherapy resistance. Open Life Sci 2024; 19:20220992. [PMID: 39655194 PMCID: PMC11627069 DOI: 10.1515/biol-2022-0992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Radiotherapy is a cornerstone in the treatment of various tumors, yet radioresistance often leads to treatment failure and tumor recurrence. Several factors contribute to this resistance, including hypoxia, DNA repair mechanisms, and cancer stem cells. This review explores the diverse elements that drive tumor radiotherapy resistance. Historically, resistance has been attributed to cellular repair and tumor repopulation, but recent research has expanded this understanding. The tumor microenvironment - characterized by hypoxia, immune evasion, and stromal interactions - further complicates treatment. Additionally, molecular mechanisms such as aberrant signaling pathways, epigenetic modifications, and non-B-DNA structures play significant roles in mediating resistance. This review synthesizes current knowledge, highlighting the interplay of these factors and their clinical implications. Understanding these mechanisms is crucial for developing strategies to overcome resistance and improve therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Lanjuan Mi
- School of Life and Health Sciences, Huzhou College, Hu Zhou, China
| | - Hongquan Zhang
- The First Affiliated Hospital of Huzhou University, Hu Zhou, China
| |
Collapse
|
14
|
Du S, Liang Q, Shi J. Progress of ATM inhibitors: Opportunities and challenges. Eur J Med Chem 2024; 277:116781. [PMID: 39173286 DOI: 10.1016/j.ejmech.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Ataxia-telangiectasia mutated (ATM) was first discovered in patients with AT (ataxia telangiectasia), which is characteristic with cerebellar degeneration, immunodeficiency, being susceptible to malignant tumors and sensitive to radiation. ATM kinase could detect DNA double-strand breaks and play a vital role in the DNA damage response. Inhibiting the function of ATM could sensitize tumor cells to both ionizing radiation (IR) and chemotherapy, as well as improve the chemoresistance and radioresistance observed in some patients. As such, ATM is a novel and important target for the cancer therapy. We reviewed ATM inhibitors reported in the last two decades, focusing on their development process, structure-activity relationships, inhibitory efficacy, pharmacokinetics and pharmacodynamics characteristics in the preclinical and clinical studies. We summarized the clinical value of ATM inhibitors in tumors and some neurodegenerative diseases, as well as the main challenges to the development of the drugs, providing directions and references for the future development of ATM inhibitors.
Collapse
Affiliation(s)
- Shan Du
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Liang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
15
|
Yang WC, Wei MF, Lee YH, Huang CS, Kuo SH. Radiosensitizing effects of CDK4/6 inhibitors in hormone receptor-positive and HER2-negative breast cancer mediated downregulation of DNA repair mechanism and NF-κB-signaling pathway. Transl Oncol 2024; 49:102092. [PMID: 39153367 PMCID: PMC11381799 DOI: 10.1016/j.tranon.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
CDK4/6 inhibitors combined with endocrine therapy prolonged survival in hormone receptor (HR)-positive and HER2-negative advanced breast cancer. We investigated whether CDK4/6 inhibitors enhance radiosensitivity and their underlying mechanisms of this subtype of breast cancer. In vitro and in vivo experiments were conducted using two HR-positive and HER2-negative breast cancer cell lines (MCF-7 and T-47D), CDK4/6 inhibitors (ribociclib and palbociclib) and radiotherapy (RT) to assess the biological functions and mechanisms. The radiation-enhancing effect was assessed using clonogenic assays; γH2AX and 53BP1 levels were assessed by immunofluorescence to evaluate DNA damage. The levels of phospho (p)-ERK, c-Myc, and DNA-double strand break (DSB)-related molecules, p-DNA-PKcs, Rad51, and p-ATM, were assessed by western blotting. We used an NF-κB p65 transcription factor assay kit to evaluate NF-κB activity. We evaluated the antitumor effect of the combination of RT and ribociclib through the MCF-7 orthotopic xenograft model. The synergistic effects of combining RT with ribociclib and palbociclib pretreatment were demonstrated by clonogenic assay. CDK4/6 inhibitors synergistically increased the numbers of RT-induced γH2AX and 53BP1, downregulated the expression of p-DNA-PKcs, Rad51 and p-ATM activated by RT, and reduced RT-triggering p-ERK expression, NF-κB activation, and its down-streaming gene, c-Myc. Combined ribociclib and RT reduced the growth of MCF-7 cell xenograft tumors, and downregulated the immunohistochemical expression of p-ERK, p-NF-κB p65, and c-Myc compared to that in the control group. Combining CDK4/6 inhibitors enhanced radiosensitivity of HR-positive and HER2-negative breast cancer cells at least by reducing DNA-DSB repair and weakening the activation of ERK and NF-κB signaling by RT.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Radiation Oncology, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Feng Wei
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan; Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
16
|
Bai B, Ma Y, Liu D, Zhang Y, Zhang W, Shi R, Zhou Q. DNA damage caused by chemotherapy has duality, and traditional Chinese medicine may be a better choice to reduce its toxicity. Front Pharmacol 2024; 15:1483160. [PMID: 39502534 PMCID: PMC11534686 DOI: 10.3389/fphar.2024.1483160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background DNA damage induced by chemotherapy has duality. It affects the efficacy of chemotherapy and constrains its application. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in reducing side-effects induced by chemotherapy due to its natural, non-toxic and many sourced from food. Recent advancements have demonstrated survival rates are improved attributable to effective chemotherapy. DNA damage is the principal mechanism underlying chemotherapy. However, not all instances of DNA damage are beneficial. Chemotherapy induces DNA damage in normal cells, leading to side effects. It affects the efficacy of chemotherapy and constrains its application. Objectives This review aims to summarize the dual nature of DNA damage induced by chemotherapy and explore how TCM can mitigate chemotherapy-induced side effects. Results The review summarized the latest research progress in DNA damage caused by chemotherapy and the effect of alleviating side effects by TCM. It focused on advantages and disadvantages of chemotherapy, the mechanism of drugs and providing insights for rational and effective clinical treatment and serving as a basis for experiment. In this review, we described the mechanisms of DNA damage, associated chemotherapeutics, and their toxicity. Furthermore, we explored Chinese herb that can alleviate chemotherapy-induced side-effects. Conclusion We highlight key mechanisms of DNA damage caused by chemotherapeutics and discuss specific TCM herbs that have shown potential in reducing these side effects. It can provide reference for clinical and basic research.
Collapse
Affiliation(s)
- Bufan Bai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingrui Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deng Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Zhang
- Breast Surgery Department, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Dongfang Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| |
Collapse
|
17
|
Liang R, Wang W, Gao W, Li S, Lu P, Chen J, Ding X, Ma P, Yuan H, Lun Y, Guo J, Wang Z, Mei H, Lu L. Calcitriol alleviates noise-induced hearing loss by regulating the ATF3/DUSP1 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116906. [PMID: 39182283 DOI: 10.1016/j.ecoenv.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Calcitriol (Cal) is the most active metabolite of vitamin D and has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the role of Cal in noise-induced hearing loss (NIHL) to further elucidate the mechanism of noise-induced oxidative stress in the mouse cochlea. METHODS C57BL/6 J mice were given six intraperitoneal injections of Cal (500 ng/kg/d). After 14 days of noise exposure, auditory brainstem response (ABR) thresholds, and the cochlear outer hair cell loss rate were analysed to evaluate auditory function. Real-time fluorescence quantitative PCR, immunofluorescence and western blotting were performed in vitro after the treatment of cochlear explants with 100 µM tert-butyl hydroperoxide (TBHP) for 2.5 h and HEI-OC1 cells with 250 µM TBHP for 1.5 h. RESULTS In vivo experiments confirmed that Cal pretreatment mitigated NIHL and outer hair cell death. The in vitro results demonstrated that Cal significantly reduced TBHP-induced cochlear auditory nerve fibre degradation and spiral ganglion neuron damage. Moreover, treatment with Cal inhibited the expression of oxidative stress-related factors (3-NT and 4-HNE) and DNA damage-related factors (γ-H2A.X) and attenuated TBHP-induced apoptosis in cochlear explants and HEI-OC1 cells. A total of 1479 upregulated genes and 1443 downregulated genes were screened in cochlear tissue 1 h after noise exposure. The level of transcription factor 3 (ATF3) was significantly elevated in HEI-OC1 cells after TBHP stimulation. Gene Transcription Regulation Database (GTRD)and Cistrome database analyses revealed that the downstream target gene of ATF3 is dual specificity phosphatase 1 (DUSP1). Cistrome DB Toolkit database results showed that the transcription factor of DUSP1 was ATF3. In addition, the ChIP-PCR results indicated that ATF3 might be a direct transcription factor of DUSP1. CONCLUSION The results of our study suggest that Cal attenuates NIHL and inhibits noise-induced apoptosis by regulating the ATF3/DUSP1 signalling pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongkai Mei
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
18
|
Gao Z, Luan X, Wang X, Han T, Li X, Li Z, Li P, Zhou Z. DNA damage response-related ncRNAs as regulators of therapy resistance in cancer. Front Pharmacol 2024; 15:1390300. [PMID: 39253383 PMCID: PMC11381396 DOI: 10.3389/fphar.2024.1390300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.
Collapse
Affiliation(s)
- Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xuezhe Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Tianyue Han
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoyuan Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zeyang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Ye BJ, Li DF, Li XY, Hao JL, Liu DJ, Yu H, Zhang CD. Methylation synthetic lethality: Exploiting selective drug targets for cancer therapy. Cancer Lett 2024; 597:217010. [PMID: 38849016 DOI: 10.1016/j.canlet.2024.217010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.
Collapse
Affiliation(s)
- Bing-Jie Ye
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Fei Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Hang Yu
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
20
|
Liu Y, Song X, Xiang L, Tan W, Zou M, Guo H. Rapid Remission With Upadacitinib in a Child With Refractory Crohn's Disease and ATM Mutation: A Case Report. CURRENT THERAPEUTIC RESEARCH 2024; 101:100756. [PMID: 39257480 PMCID: PMC11385748 DOI: 10.1016/j.curtheres.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/20/2024] [Indexed: 09/12/2024]
Abstract
Managing pediatric Crohn's disease (PCD) presents challenges due to severe complications and higher biologic therapy needs. Transitioning from anti-tumor necrosis factor agents to off-label therapies adds complexity. Although upadacitinib has demonstrated efficacy and tolerability in adult inflammatory bowel disease and pediatric atopic dermatitis, there are limited data for its application in PCD. This case report delineates successful remission with upadacitinib in a child with CD refractory to infliximab, ustekinumab, adalimumab, thalidomide, and prednisone. Notably, the patient carried an ataxia telangiectasia mutated (ATM) gene mutation. These findings provide valuable evidence for PCD management and highlight the potential benefits of upadacitinib in this population.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - XiaoMei Song
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - LingYa Xiang
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Wei Tan
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Zou
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
22
|
Li C, Wang B, Tu J, Liu C, Wang Y, Chen J, Huang Y, Liu B, Yuan X. ATM inhibition enhance immunotherapy by activating STING signaling and augmenting MHC Class I. Cell Death Dis 2024; 15:519. [PMID: 39033176 PMCID: PMC11271473 DOI: 10.1038/s41419-024-06911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Accumulating evidence supports the concept that DNA damage response targeted therapies can improve antitumor immune response by increasing the immunogenicity of tumor cells and improving the tumor immune microenvironment. Ataxia telangiectasia mutated (ATM) is a core component of the DNA repair system. Although the ATM gene has a significant mutation rate in many human cancers, including colorectal, prostate, lung, and breast, it remains understudied compared with other DDR-involved molecules such as PARP and ATR. Here, we found that either gene knockout or drug intervention, ATM inhibition activated the cGAS/STING pathway and augmented MHC class I in CRC cells, and these effects could be amplified by radiation. Furthermore, we found that MHC class I upregulation induced by ATM inhibition is dependent on the activation of the NFκB/IRF1/NLRC5 pathway and independent of STING. Animal experiments have shown increasing infiltration and cytotoxic function of T cells and better survival in ATM-deficient tumors. This work indicated that ATM nonsense mutation predicted the clinical benefits of radiotherapy combined with immune checkpoint blockade for patients with CRC. It also provides a molecular mechanism rationale for ATM-targeted agents for patients with CRC.
Collapse
Affiliation(s)
- Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyu Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Rathi S, Oh JH, Zhang W, Mladek AC, Garcia DA, Xue Z, Burgenske DM, Zhang W, Le J, Zhong W, Sarkaria JN, Elmquist WF. Preclinical Systemic Pharmacokinetics, Dose Proportionality, and Central Nervous System Distribution of the ATM Inhibitor WSD0628, a Novel Radiosensitizer for the Treatment of Brain Tumors. J Pharmacol Exp Ther 2024; 390:260-275. [PMID: 38858089 PMCID: PMC11264258 DOI: 10.1124/jpet.123.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Radiation therapy, a standard treatment option for many cancer patients, induces DNA double-strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier. The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the central nervous system (CNS) distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., unbound tissue partition coefficient) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-glycoprotein and breast cancer resistant protein. WSD0628 is distributed uniformly among different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the pharmacodynamics-pharmacokinetics efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. SIGNIFICANCE STATEMENT: This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.
Collapse
Affiliation(s)
- Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Darwin A Garcia
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Zhiyi Xue
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Danielle M Burgenske
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Wei Zhong
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Biopharm, Shanghai, China (W.Z.)
| |
Collapse
|
24
|
Maeda J, Chailapakul P, Kato TA. ATM and ATR gene editing mediated by CRISPR/Cas9 in Chinese Hamster cells. Mutat Res 2024; 829:111871. [PMID: 39024734 DOI: 10.1016/j.mrfmmm.2024.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Chinese hamster-derived cell lines including Chinese hamster lung fibroblasts (V79) have been used as model somatic cell lines in radiation biology and toxicology research for decades and have been instrumental in advancing our understanding of DNA damage response (DDR) mechanisms. Whereas many mutant lines deficient in DDR genes have been generated more than over decades, several key DDR genes such as ATM and ATR have not been established in the Chinese hamster system. Here, we transfected CRISPR/Cas9 vectors targeting Chinese hamster ATM or ATR into V79 cells and investigated whether the isolated clones had the characteristics reported in human and mouse studies. We obtained two clones of ATM knockout cells containing an insertion or deletions in the targeted locus. The ATM knockouts with no detectable ATM protein expression exhibited increased sensitivity to radiation and DNA double strand break inducing agents, cell cycle checkpoint defects and defective chromatid break repair. These are all characteristics of defective ATM function. Among the obtained ATR cells, which contained mutations in both ATR alleles while maintaining normal levels of ATR protein expression, one clone exhibited hypersensitivity to UV and replication stress agents. In the present study, we successfully established CRISPR-Cas9 derived ATM knockout cells. We couldn't knock out the ATR gene but obtained ATR mutant cells. Our results showed that Chinese hamster origin ATM knockout cells and ATR mutant cells could be useful tools for further research to reveal oncogenic functions and effects of developing anti-cancer therapeutics.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Piyawan Chailapakul
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
25
|
Xue Y, Ying Z, Wang F, Yin M, Pei Y, Liu J, Liu Q. The Effects and Mechanism of ATM Kinase Inhibitors in Toxoplasma gondii. Int J Mol Sci 2024; 25:6947. [PMID: 39000057 PMCID: PMC11241798 DOI: 10.3390/ijms25136947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Toxoplasma gondii, an important opportunistic pathogen, underscores the necessity of developing novel therapeutic drugs and identifying new drug targets. Our findings indicate that the half-maximal inhibitory concentrations (IC50) of KU60019 and CP466722 (abbreviated as KU and CP) against T. gondii are 0.522 μM and 0.702 μM, respectively, with selection indices (SI) of 68 and 10. Treatment with KU and CP affects the in vitro growth of T. gondii, inducing aberrant division in the daughter parasites. Transmission electron microscopy reveals that KU and CP prompt the anomalous division of T. gondii, accompanied by cellular enlargement, nuclear shrinkage, and an increased dense granule density, suggesting potential damage to parasite vesicle transport. Subsequent investigations unveil their ability to modulate the expression of certain secreted proteins and FAS II (type II fatty acid synthesis) in T. gondii, as well as including the dot-like aggregation of the autophagy-related protein ATG8 (autophagy-related protein 8), thereby expediting programmed death. Leveraging DARTS (drug affinity responsive target stability) in conjunction with 4D-Label-free quantitative proteomics technology, we identified seven target proteins binding to KU, implicated in pivotal biological processes such as the fatty acid metabolism, mitochondrial ATP transmission, microtubule formation, and Golgi proteins transport in T. gondii. Molecular docking predicts their good binding affinity. Furthermore, KU has a slight protective effect on mice infected with T. gondii. Elucidating the function of those target proteins and their mechanism of action with ATM kinase inhibitors may potentially enhance the treatment paradigm for toxoplasmosis.
Collapse
Affiliation(s)
- Yangfei Xue
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.X.); (Z.Y.); (F.W.); (M.Y.); (Y.P.)
| | - Zhu Ying
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.X.); (Z.Y.); (F.W.); (M.Y.); (Y.P.)
| | - Fei Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.X.); (Z.Y.); (F.W.); (M.Y.); (Y.P.)
| | - Meng Yin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.X.); (Z.Y.); (F.W.); (M.Y.); (Y.P.)
| | - Yanqun Pei
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.X.); (Z.Y.); (F.W.); (M.Y.); (Y.P.)
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.X.); (Z.Y.); (F.W.); (M.Y.); (Y.P.)
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.X.); (Z.Y.); (F.W.); (M.Y.); (Y.P.)
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Zhang R, Hu L, Cheng Y, Chang L, Dong L, Han L, Yu W, Zhang R, Liu P, Wei X, Yu J. Targeted sequencing of DNA/RNA combined with radiomics predicts lymph node metastasis of papillary thyroid carcinoma. Cancer Imaging 2024; 24:75. [PMID: 38886866 PMCID: PMC11181663 DOI: 10.1186/s40644-024-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE The aim of our study is to find a better way to identify a group of papillary thyroid carcinoma (PTC) with more aggressive behaviors and to provide a prediction model for lymph node metastasis to assist in clinic practice. METHODS Targeted sequencing of DNA/RNA was used to detect genetic alterations. Gene expression level was measured by quantitative real-time PCR, western blotting or immunohistochemistry. CCK8, transwell assay and flow cytometry were used to investigate the effects of concomitant gene alterations in PTC. LASSO-logistics regression algorithm was used to construct a nomogram model integrating radiomic features, mutated genes and clinical characteristics. RESULTS 172 high-risk variants and 7 fusion types were detected. The mutation frequencies in BRAF, TERT, RET, ATM and GGT1 were significantly higher in cancer tissues than benign nodules. Gene fusions were detected in 16 samples (2 at the DNA level and 14 at the RNA level). ATM mutation (ATMMUT) was frequently accompanied by BRAFMUT, TERTMUT or gene fusions. ATMMUT alone or ATM co-mutations were significantly positively correlated with lymph node metastasis. Accordingly, ATM knock-down PTC cells bearing BRAFV600E, KRASG12R or CCDC6-RET had higher proliferative ability and more aggressive potency than cells without ATM knock-down in vitro. Furthermore, combining gene alterations and clinical features significantly improved the predictive efficacy for lymph node metastasis of radiomic features, from 71.5 to 87.0%. CONCLUSIONS Targeted sequencing of comprehensive genetic alterations in PTC has high prognostic value. These alterations, in combination with clinical and radiomic features, may aid in predicting invasive PTC with higher accuracy.
Collapse
Affiliation(s)
- Runjiao Zhang
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Linfei Hu
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Cheng
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Luchen Chang
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Diagnostic and Therapeutic Ultrasonography, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Yu
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Wei
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Department of Diagnostic and Therapeutic Ultrasonography, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
27
|
Stevenson LK, Page AJ, Dowson M, ElBadry SK, Barnieh FM, Falconer RA, El-Khamisy SF. The DNA repair kinase ATM regulates CD13 expression and cell migration. Front Cell Dev Biol 2024; 12:1359105. [PMID: 38933336 PMCID: PMC11199385 DOI: 10.3389/fcell.2024.1359105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Classically, ATM is known for its role in sensing double-strand DNA breaks, and subsequently signaling for their repair. Non-canonical roles of ATM include transcriptional silencing, ferroptosis, autophagy and angiogenesis. Angiogenesis mediated by ATM signaling has been shown to be VEGF-independent via p38 signaling. Independently, p38 signaling has been shown to upregulate metalloproteinase expression, including MMP-2 and MMP-9, though it is unclear if this is linked to ATM. Here, we demonstrate ATM regulates aminopeptidase-N (CD13/APN/ANPEP) at the protein level. Positive correlation was seen between ATM activity and CD13 protein expression using both "wildtype" (WT) and knockout (KO) ataxia telangiectasia (AT) cells through western blotting; with the same effect shown when treating neuroblastoma cancer cell line SH-SY5Y, as well as AT-WT cells, with ATM inhibitor (ATMi; KU55933). However, qPCR along with publically available RNAseq data from Hu et al. (J. Clin. Invest., 2021, 131, e139333), demonstrated no change in mRNA levels of CD13, suggesting that ATM regulates CD13 levels via controlling protein degradation. This is further supported by the observation that incubation with proteasome inhibitors led to restoration of CD13 protein levels in cells treated with ATMi. Migration assays showed ATM and CD13 inhibition impairs migration, with no additional effect observed when combined. This suggests an epistatic effect, and that both proteins may be acting in the same signaling pathway that influences cell migration. This work indicates a novel functional interaction between ATM and CD13, suggesting ATM may negatively regulate the degradation of CD13, and subsequently cell migration.
Collapse
Affiliation(s)
- Louise K. Stevenson
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Amy J. Page
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Dowson
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
| | - Sameh K. ElBadry
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
| | - Francis M. Barnieh
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Robert A. Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Sherif F. El-Khamisy
- School of Biosciences, Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, United Kingdom
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
28
|
Zhu Q, Chen J, Liu H, Zhao J, Xu C, Sun G, Zeng H. The efficacy and safety of PARP inhibitors in mCRPC with HRR mutation in second-line treatment: a systematic review and bayesian network meta-analysis. BMC Cancer 2024; 24:706. [PMID: 38851712 PMCID: PMC11162002 DOI: 10.1186/s12885-024-12388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Poly (ADP- ribose) polymerase inhibitors (PARPi) has been increasingly adopted for metastatic castration-resistance prostate cancer (mCRPC) patients with homologous recombination repair deficiency (HRD). However, it is unclear which PARPi is optimal in mCRPC patients with HRD in 2nd -line setting. METHOD We conducted a systematic review of trials regarding PARPi- based therapies on mCRPC in 2nd -line setting and performed a Bayesian network meta-analysis (NMA). Radiographic progression-free survival (rPFS) was assessed as primary outcome. PSA response and adverse events (AEs) were evaluated as secondary outcomes. Subgroup analyses were performed according to specific genetic mutation. RESULTS Four RCTs comprised of 1024 patients (763 harbored homologous recombination repair (HRR) mutations) were identified for quantitative analysis. Regarding rPFS, olaparib monotherapy, rucaparib and cediranib plus olaparib showed significant improvement compared with ARAT. Olaparib plus cediranib had the highest surface under cumulative ranking curve (SUCRA) scores (87.5%) for rPFS, followed by rucaparib, olaparib and olaparib plus abiraterone acetate prednisone. For patients with BRCA 1/2 mutations, olaparib associated with the highest probability (98.1%) of improved rPFS. For patients with BRCA-2 mutations, olaparib and olaparib plus cediranib had similar efficacy. However, neither olaparib nor rucaparib showed significant superior effectiveness to androgen receptor-axis-targeted therapy (ARAT) in patients with ATM mutations. For safety, olaparib showed significantly lower ≥ 3 AE rate compared with cediranib plus olaparib (RR: 0.72, 95% CI: 0.51, 0.97), while olaparib plus cediranib was associated with the highest risk of all-grade AE. CONCLUSION PARPi-based therapy showed considerable efficacy for mCRPC patients with HRD in 2nd -line setting. However, patients should be treated accordingly based on their genetic background as well as the efficacy and safety of the selected regimen. TRIAL REGISTRATION CRD42023454079.
Collapse
Affiliation(s)
- Qiyu Zhu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Chenhao Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
29
|
Pang SG, Zhang X, Li ZX, He LF, Chen F, Liu ML, Huang YZ, Mo JM, Luo KL, Xiao JJ, Zhu F. TOPK Inhibition Enhances the Sensitivity of Colorectal Cancer Cells to Radiotherapy by Reducing the DNA Damage Response. Curr Med Sci 2024; 44:545-553. [PMID: 38900386 DOI: 10.1007/s11596-024-2884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer. However, the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer (CRC) cells is unclear. This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells. METHODS The expression of TOPK was detected in CRC tissues by immunohistochemistry, and the effect of TOPK knockdown was detected in CRC cells by Western blotting. CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells. Furthermore, proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy. DNA damage was detected by the comet assay. Changes in the DNA damage response signaling pathway were analyzed by Western blotting, and apoptosis was detected by flow cytometry. RESULTS The expression of TOPK was significantly greater in CRC tissues at grades 2-4 than in those at grade 1. After irradiation, CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins, including phospho-cyclin-dependent kinase 1 (p-CDK1), phospho-ataxia telangiectasia-mutated (p-ATM), poly ADP-ribose polymerase (PARP), and meiotic recombination 11 homolog 1 (MRE11). CONCLUSIONS TOPK was overexpressed in patients with moderately to poorly differentiated CRC. Moreover, TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response.
Collapse
Affiliation(s)
- Shi-Gui Pang
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xin Zhang
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Zhao-Xin Li
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Li-Fei He
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Feng Chen
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ming-Long Liu
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ying-Ze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Jian-Mei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Kong-Lan Luo
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Juan-Juan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
- Translational Medical Center, Huaihe Hospital, Henan University, Kaifeng, 475000, China.
| | - Feng Zhu
- Translational Medical Center, Huaihe Hospital, Henan University, Kaifeng, 475000, China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
30
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
31
|
Liu TT, Wang Q, Zhou Y, Ye B, Liu T, Yan L, Fan J, Xu J, Zhou Y, Xia Z, Deng X. Discovery of a Meisoindigo-Derived PROTAC as the ATM Degrader: Revolutionizing Colorectal Cancer Therapy via Synthetic Lethality with ATR Inhibitors. J Med Chem 2024; 67:7620-7634. [PMID: 38634707 DOI: 10.1021/acs.jmedchem.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Meisoindigo (Mei) has long been recognized in chronic myeloid leukemia (CML) treatment. To elucidate its molecular target and mechanisms, we embarked on designing and synthesizing a series of Mei-derived PROTACs. Through this endeavor, VHL-type PROTAC 9b was identified to be highly cytotoxic against SW620, SW480, and K562 cells. Employing DiaPASEF-based quantitative proteomic analysis, in combination with extensive validation assays, we unveiled that 9b potently and selectively degraded ATM across SW620 and SW480 cells in a ubiquitin-proteasome-dependent manner. 9b-induced selective ATM degradation prompted DNA damage response cascades, thereby leading to the cell cycle arrest and cell apoptosis. This pioneering discovery renders the advent of ATM degradation for anti-cancer therapy. Notably, 9b-induced ATM degradation synergistically enhanced the efficacy of ATR inhibitor AZD6738 both in vitro and in vivo. This work establishes the synthetic lethality-inducing properties of ATR inhibitors in the ATM-deficient context, thereby providing new avenues to innovative therapies for colorectal cancer.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Qing Wang
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Yuxing Zhou
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Baixin Ye
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311106, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Linyang Yan
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Jiahao Xu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Zanxian Xia
- School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
32
|
Slootbeek PHJ, Tolmeijer SH, Mehra N, Schalken JA. Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter? Crit Rev Clin Lab Sci 2024; 61:178-204. [PMID: 37882463 DOI: 10.1080/10408363.2023.2266482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly BRCA1 or BRCA2, PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Sofie H Tolmeijer
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Jack A Schalken
- Department of Experimental Urology, Research Institute of Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Zhao SJ, Prior D, Heske CM, Vasquez JC. Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy. Cancers (Basel) 2024; 16:1648. [PMID: 38730598 PMCID: PMC11083679 DOI: 10.3390/cancers16091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR.
Collapse
Affiliation(s)
- Sophia J. Zhao
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Daniel Prior
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Juan C. Vasquez
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| |
Collapse
|
34
|
Sunila BG, Dhanushkumar T, Dasegowda KR, Vasudevan K, Rambabu M. Unraveling the molecular landscape of Ataxia Telangiectasia: Insights into Neuroinflammation, immune dysfunction, and potential therapeutic target. Neurosci Lett 2024; 828:137764. [PMID: 38582325 DOI: 10.1016/j.neulet.2024.137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Ataxia Telangiectasia (AT) is a genetic disorder characterized by compromised DNA repair, cerebellar degeneration, and immune dysfunction. Understanding the molecular mechanisms driving AT pathology is crucial for developing targeted therapies. METHODS In this study, we conducted a comprehensive analysis to elucidate the molecular mechanisms underlying AT pathology. Using publicly available RNA-seq datasets comparing control and AT samples, we employed in silico transcriptomics to identify potential genes and pathways. We performed differential gene expression analysis with DESeq2 to reveal dysregulated genes associated with AT. Additionally, we constructed a Protein-Protein Interaction (PPI) network to explore the interactions between proteins implicated in AT. RESULTS The network analysis identified hub genes, including TYROBP and PCP2, crucial in immune regulation and cerebellar function, respectively. Furthermore, pathway enrichment analysis unveiled dysregulated pathways linked to AT pathology, providing insights into disease progression. CONCLUSION Our integrated approach offers a holistic understanding of the complex molecular landscape of AT and identifies potential targets for therapeutic intervention. By combining transcriptomic analysis with network-based methods, we provide valuable insights into the underlying mechanisms of AT pathogenesis.
Collapse
Affiliation(s)
- B G Sunila
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - K R Dasegowda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Majji Rambabu
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| |
Collapse
|
35
|
Liu L, Hu X, Feng J, Lei A, Huang S, Liu X, Liu H, Luo L, Yao W. Suppression of DNMT1 combined with ATM or ATR inhibitor as a therapeutic combination of acute myeloid leukemia. Anticancer Drugs 2024; 35:251-262. [PMID: 38164802 PMCID: PMC10833198 DOI: 10.1097/cad.0000000000001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
The potential treatment option of targeting DNA methyltransferase 1 (DNMT1) has been explored, but further investigation is required to assess the efficacy of combination therapy in acute myeloid leukemia (AML). In this study, bioinformatics and online databases were utilized to select the combined therapeutic targets. The potential kinases associated with DNMT1-related genes in AML were analyzed using the Cancer Genome Atlas (TCGA) database and X2K Appyter (Expression2Kinases) database. In-vitro evaluations were conducted to assess the synergistic effects between DNMT1 and ATR/ATM in five AML cell lines (MOLM-16, NB-4, HEL 92.1.7, HEL, EOL-1). In our study, ATR and ATM are primarily the kinases associated with DNMT1-related genes in AML. We observed a significant upregulation of DNMT1, ATR, and ATM expression in AML tissues and cell lines. The five AML cell lines demonstrated sensitivity to monotherapy with GSK-368, AZD-1390, or AZD-6738 (EC50 value ranges from 5.461 to 7.349 nM, 5.821 to 10.120 nM, and 7.618 to 10.100 nM, respectively). A considerable synergistic effect was observed in AML cell lines when combining GSK-368 and AZD-1390, GSK-368 and AZD-6738, or AZD-1390 and AZD-6738, resulting in induced cell apoptosis and inhibited cell growth. DNMT1, ATM, and ATR possess potential as therapeutic targets for AML. Both individual targeting and combination targeting of these molecules have been confirmed as promising therapeutic approaches for AML.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Xiaoyan Hu
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Jing Feng
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Anhui Lei
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Shiying Huang
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Xian Liu
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Hui Liu
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Lan Luo
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Wenyan Yao
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| |
Collapse
|
36
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
37
|
Lu M, Billerbeck S. Improving homology-directed repair by small molecule agents for genetic engineering in unconventional yeast?-Learning from the engineering of mammalian systems. Microb Biotechnol 2024; 17:e14398. [PMID: 38376092 PMCID: PMC10878012 DOI: 10.1111/1751-7915.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
The ability to precisely edit genomes by deleting or adding genetic information enables the study of biological functions and the building of efficient cell factories. In many unconventional yeasts, such as those promising new hosts for cell factory design but also human pathogenic yeasts and food spoilers, this progress has been limited by the fact that most yeasts favour non-homologous end joining (NHEJ) over homologous recombination (HR) as a DNA repair mechanism, impairing genetic access to these hosts. In mammalian cells, small molecules that either inhibit proteins involved in NHEJ, enhance protein function in HR, or arrest the cell cycle in HR-dominant phases are regarded as promising agents for the simple and transient increase of HR-mediated genome editing without the need for a priori host engineering. Only a few of these chemicals have been applied to the engineering of yeast, although the targeted proteins are mostly conserved, making chemical agents a yet-underexplored area for enhancing yeast engineering. Here, we consolidate knowledge of the available small molecules that have been used to improve HR efficiency in mammalian cells and the few ones that have been used in yeast. We include available high-throughput-compatible NHEJ/HR quantification assays that could be used to screen for and isolate yeast-specific inhibitors.
Collapse
Affiliation(s)
- Min Lu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
38
|
Chen Y, Zhou Y, Feng X, Wu Z, Yang Y, Rao X, Zhou R, Meng R, Dong X, Xu S, Zhang S, Wu G, Jie X. Targeting FBXO22 enhances radiosensitivity in non-small cell lung cancer by inhibiting the FOXM1/Rad51 axis. Cell Death Dis 2024; 15:104. [PMID: 38296976 PMCID: PMC10830569 DOI: 10.1038/s41419-024-06484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Radioresistance is a major constraint on the efficacy of lung cancer radiotherapy, but its mechanism has not been fully elucidated. Here, we found that FBXO22 was aberrantly highly expressed in lung cancer and that FBXO22 knockdown increased the radiosensitivity of lung cancer cells. Mechanistically, FBXO22 promoted Rad51 gene transcription by increasing the level of FOXM1 at the Rad51 promoter, thereby inducing the formation of lung cancer radioresistance. Furthermore, we found that deguelin, a potential inhibitor of FBXO22, enhanced radiosensitivity in an FBXO22/Rad51-dependent manner and was safely tolerated in vivo. Collectively, our results illustrate that FBXO22 induces lung cancer radioresistance by activating the FOXM1/Rad51 axis and provide preclinical evidence for the clinical translation of this critical target.
Collapse
Affiliation(s)
- Yunshang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yun Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilong Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yongqiang Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| |
Collapse
|
39
|
Didamson OC, Chandran R, Abrahamse H. Aluminium phthalocyanine-mediated photodynamic therapy induces ATM-related DNA damage response and apoptosis in human oesophageal cancer cells. Front Oncol 2024; 14:1338802. [PMID: 38347844 PMCID: PMC10859414 DOI: 10.3389/fonc.2024.1338802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Photodynamic therapy (PDT) is a light-based technique used in the treatment of malignant and non-malignant tissue. Aluminium-phthalocyanine chloride tetra sulfonate (AlPcS4Cl)-mediated PDT has been well investigated on several cancer types, including oesophageal cancer. However, the effects of (AlPcS4Cl)-mediated PDT on DNA damage response and the mechanism of cell death in oesophageal cancer needs further investigation. Methods Here, we examined the in vitro effects of AlPcS4Cl-mediated PDT on cell cycle, DNA damage response, oxidative stress, and intrinsic apoptotic cell death pathway in HKESC-1 oesophageal cancer cells. The HKESC-1 cells were exposed to PDT using a semiconductor laser diode (673.2 nm, 5 J/cm2 fluency). Cell viability and cytotoxicity were determined by the ATP cell viability assay and the lactate dehydrogenase (LDH) release assay, respectively. Cell cycle and DNA damage response (DDR) analyses were conducted using the Muse™ cell cycle kit and the Muse® multi-color DNA damage kit, respectively. The mode of cell death was identified using the Annexin V-FITC/PI detection assay and Muse® Autophagy LC3 antibody-based kit. The intrinsic apoptotic pathway was investigated by measuring the cellular reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm) function, cytochrome c levels and the activity of caspase 3/7 enzymes. Results The results show that AlPcS4Cl-based PDT reduced cell viability, induced cytotoxicity, cell cycle arrest at the G0/G1 phase, and DNA double-strand break (DSB) through the upregulation of the ataxia telangiectasia mutated (ATM), a DNA damage sensor. In addition, the findings showed that AlPcS4Cl-based PDT induced cell death via apoptosis, which is observed through increased ROS production, reduced ΔΨm, increased cytochrome c release, and activation of caspase 3/7 enzyme. Finally, no autophagy was observed in the AlPcS4Cl-mediated PDT-treated cells. Conclusion Our findings showed that apoptotic cell death is the main cell death mechanism triggered by AlPcS4Cl-mediated PDT in oesophageal cancer cells.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
40
|
Yu Y, Jia H, Zhang T, Zhang W. Advances in DNA damage response inhibitors in colorectal cancer therapy. Acta Biochim Biophys Sin (Shanghai) 2024; 56:15-22. [PMID: 38115743 PMCID: PMC10875349 DOI: 10.3724/abbs.2023278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/23/2023] [Indexed: 12/21/2023] Open
Abstract
One potential cause of cancer is genomic instability that arises in normal cells due to years of DNA damage in the body. The clinical application of radiotherapy and cytotoxic drugs to treat cancer is based on the principle of damaging the DNA of cancer cells. However, the benefits of these treatments also have negative effects on normal tissue. While there have been notable advancements in molecular-driven therapy and immunotherapy for colorectal cancer (CRC), a considerable portion of patients with advanced CRC do not experience any benefits from these treatments, leading to a poor prognosis. In recent years, targeted therapy aimed at suppressing the DNA damage response (DDR) in cancer cells has emerged as a potential treatment option for CRC patients, offering them more choices for treatment. Currently, the integration of DDR and clinical intervention remains in the exploratory phase. This review primarily elucidates the fundamental principles of DDR inhibitors, provides an overview of their current clinical application status in CRC, and discusses the advancements as well as limitations observed in relevant studies.
Collapse
Affiliation(s)
- Yue Yu
- />Department of Colorectal Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433China
| | - Hang Jia
- />Department of Colorectal Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433China
| | - Tianshuai Zhang
- />Department of Colorectal Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433China
| | - Wei Zhang
- />Department of Colorectal Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
41
|
Zhou X, Liu X, Wan X, Xu M, Wang R, Yang D, Peng M, Jin T, Tang R, Liu M, Hou Y. Oxidized ATM governs stemness of breast cancer stem cell through regulating ubiquitylation and acetylation switch. Biochem Biophys Res Commun 2024; 691:149243. [PMID: 38016338 DOI: 10.1016/j.bbrc.2023.149243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Cancer stem cells (CSCs), as parts of tumor initiation cells, play a crucial role to tumorigenesis, development and recurrence. However, the complicated mechanisms of CSCs to adapt to tumor microenvironment and its stemness maintenance remains unclear. Here, we show that oxidized ATM, a hypoxia-activated cytoplasm ATM, acts a novel function to maintain CSC stemness in triple-negative breast cancer cells (BCSCs) via regulating histone H4 acetylation. Mechanistically, oxidized ATM phosphorylates TRIM21 (a E3 ubiquitin ligase) serine 80 and serine 469. Serine 80 phosphorylation of TRIM21 is essential for the ubiquitination activity of TRIM21. TRIM21 binds with SIRT1 (one of deacetylase), resulting in ubiquitylation-mediated degradation of SIRT1. The reduced SIRT1 leads to increase of histone H4 acetylation, thus facilitating CSC-related gene expression. Clinical data verify that high level of ATM in breast tumors is positively correlated with malignant grade, and is closely related with low SIRT1, high p-TRIM21, and high CD44 expression. In conclusion, our study provides a novel mechanism by which oxidized ATM governing BCSCs stemness and reveals an important link among oxidized ATM, histone acetylation, and BCSCs maintenance.
Collapse
Affiliation(s)
- Xinyue Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqi Liu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Xu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dan Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Jin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
42
|
|
43
|
Zhang Y, Li H, Wei Y, Li L. Alantolactone Induced Apoptosis and DNA Damage of Cervical Cancer through ATM/CHK2 Signaling Pathway. Biol Pharm Bull 2024; 47:1255-1264. [PMID: 38972750 DOI: 10.1248/bpb.b23-00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Traditional Chinese Medicine, known for its minimal side effects and significant clinical efficacy, has attracted considerable interest for its potential in cancer therapy. In particular, Inula helenium L. has demonstrated effectiveness in inhibiting a variety of cancers. This study focuses on alantolactone (ALT), a prominent compound from Inula helenium L., recognized for its anti-cancer capabilities across multiple cancer types. The primary objective of this study is to examine the influence of ALT on the proliferation, apoptosis, cell cycle, and tumor growth of cervical cancer (CC) cells, along with its associated signaling pathways. To determine protein expression alterations, Western blot analysis was conducted. Furthermore, an in vivo model was created by subcutaneously injecting HeLa cells into nude mice to assess the impact of ALT on cervical cancer. Our research thoroughly investigates the anti-tumor potential of ALT in the context of CC. ALT was found to inhibit cell proliferation and induce apoptosis in SiHa and HeLa cell lines, particularly targeting ataxia-telangiectasia mutated (ATM) proteins associated with DNA damage. The suppression of DNA damage and apoptosis induction when ATM was inhibited underscores the crucial role of the ATM/cell cycle checkpoint kinase 2 (CHK2) axis in ALT's anti-tumor effects. In vivo studies with a xenograft mouse model further validated ALT's effectiveness in reducing CC tumor growth and promoting apoptosis. This study offers new insights into how ALT combats CC, highlighting its promise as an effective anti-cervical cancer agent and providing hope for improved treatment outcomes for CC patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine
| | - Heyue Li
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine
| | - Yunfang Wei
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine
| | - Linxia Li
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
44
|
Julson JR, Quinn CH, Butey S, Erwin MH, Marayati R, Nazam N, Stewart JE, Beierle EA. PIM Kinase Inhibition Attenuates the Malignant Progression of Metastatic Hepatoblastoma. Int J Mol Sci 2023; 25:427. [PMID: 38203596 PMCID: PMC10778668 DOI: 10.3390/ijms25010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatoblastoma is the most common primary pediatric liver tumor. Children with pulmonary metastases at diagnosis experience survival rates as low as 25%. We have shown PIM kinases play a role in hepatoblastoma tumorigenesis. In this study, we assessed the role of PIM kinases in metastatic hepatoblastoma. We employed the metastatic hepatoblastoma cell line, HLM_2. PIM kinase inhibition was attained using PIM3 siRNA and the pan-PIM inhibitor, AZD1208. Effects of PIM inhibition on proliferation were evaluated via growth curve. Flow cytometry determined changes in cell cycle. AlamarBlue assay assessed effects of PIM kinase inhibition and cisplatin treatment on viability. The lethal dose 50% (LD50) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy. PIM kinase inhibition resulted in decreased HLM_2 proliferation, likely through cell cycle arrest mediated by p21. Combination therapy with AZD1208 and cisplatin resulted in synergy, potentially through downregulation of the ataxia-telangiectasia mutated (ATM) kinase DNA damage response pathway. When assessing the combined effects of pharmacologic PIM kinase inhibition with cisplatin on HLM_2 cells, we found the agents to be synergistic, potentially through inhibition of the ATM pathway. These findings support further exploration of PIM kinase inhibition as a therapeutic strategy for metastatic hepatoblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder Building, Suite 300, Birmingham, AL 35233, USA; (J.R.J.)
| |
Collapse
|
45
|
Wang H, Zhang G, Dong L, Chen L, Liang L, Ge L, Gai D, Shen X. Identification and study of cuproptosis-related genes in prognostic model of multiple myeloma. Hematology 2023; 28:2249217. [PMID: 37610069 DOI: 10.1080/16078454.2023.2249217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a highly heterogeneous disease. Cuproptosis is a novel mode of death that is closely associated with several diseases, such as hepatocellular carcinoma. However, its role in MM is unknown. METHODS MM transcriptomic and clinical data were obtained from UCSC Xena and gene expression omnibus (GEO) databases. Following MM samples were divided into different subtypes based on the cuproptosis genes, the differentially expressed genes (DEGs) among different subtypes, namely, candidate cuproptosis related genes were analyzed by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression to construct a cuproptosis-related risk model. After the independent prognostic analysis was performed, a nomogram was constructed. Finally, Functional enrichment analysis and immune infiltration analysis were performed in the high- and low-risk groups, potential therapeutic agents were then predicted. RESULTS The 784 MM samples in UCSC Xena cohorts were divided into three different subtypes, and 4 out of 346 candidate cuproptosis related genes, namely CDKN2A, BCL3, KCNA3 and TTC14 were used to construct a risk model. Risk score was considered a reliable independent prognostic factor for MM patients. It was investigated that the pathway of cell cycle was significantly enriched in the high-risk group. In addition, immune score, ESTIMATE score and cytolytic activity were significantly different between different risk groups, as well as 13 immune cells such as memory B cells. Nine drugs were predicted in our study. CONCLUSION A cuproptosis-related prognostic model was constructed, which may have a potential guiding role in the treatment of MM.
Collapse
Affiliation(s)
- Haili Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Guoxiang Zhang
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Lu Dong
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Lu Chen
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Li Liang
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Li Ge
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Dongzheng Gai
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Xuliang Shen
- Shanxi Medical University, Taiyuan, People's Republic of China
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| |
Collapse
|
46
|
Carrasco R, Ingelmo-Torres M, Oriola J, Roldán FL, Rodríguez-Carunchio L, Herranz S, Mellado B, Alcaraz A, Izquierdo L, Mengual L. Assessment of aggressive bladder cancer mutations in plasma cell-free DNA. Front Oncol 2023; 13:1270962. [PMID: 38098507 PMCID: PMC10720633 DOI: 10.3389/fonc.2023.1270962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Background and aims The spatial and temporal genetic heterogeneity of bladder cancer (BC) makes challenging to find specific drivers of metastatic disease, thus preventing to determine those BC patients at high risk of tumor progression. Our aim was to identify DNA mutations providing aggressive behavior to bladder tumors and analyze them in patients' cell-free DNA (cfDNA) during their follow-up after radical cystectomy (RC) in order to monitor tumor evolution. Methods Six BC patients who underwent RC and presented disease progression during their follow-up were included. Next-generation sequencing was used to determine somatic mutations in several primary tumor and metastatic specimens from each patient. Shared DNA mutations between primary bladder tumor and metastatic sites were identified in cfDNA samples through droplet digital PCR. Results Besides BC genetic heterogeneity, specific mutations in at least one of these genes -TERT, ATM, RB1, and FGFR3- were found in primary tumors and their metastases in all patients. These mutations were also identified in the patients' cfDNA at different follow-up time points. Additionally, the dynamic changes of these mutations in cfDNA allowed us to determine tumor evolution in response to treatment. Conclusion The analysis of BC mutations associated with poor prognosis in plasma cfDNA could be a valuable tool to monitor tumor evolution, thus improving the clinical management of BC patients.
Collapse
Affiliation(s)
- Raquel Carrasco
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mercedes Ingelmo-Torres
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Josep Oriola
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Fiorella L. Roldán
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | | | - Sandra Herranz
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Begoña Mellado
- Servei d’Oncologia Mèdica, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antonio Alcaraz
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Laura Izquierdo
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Lourdes Mengual
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
47
|
Pekeč T, Venkatachalapathy S, Shim AR, Paysan D, Grzmil M, Schibli R, Béhé M, Shivashankar GV. Detecting radio- and chemoresistant cells in 3D cancer co-cultures using chromatin biomarkers. Sci Rep 2023; 13:20662. [PMID: 38001169 PMCID: PMC10673941 DOI: 10.1038/s41598-023-47287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
The heterogenous treatment response of tumor cells limits the effectiveness of cancer therapy. While this heterogeneity has been linked to cell-to-cell variability within the complex tumor microenvironment, a quantitative biomarker that identifies and characterizes treatment-resistant cell populations is still missing. Herein, we use chromatin organization as a cost-efficient readout of the cells' states to identify subpopulations that exhibit distinct responses to radiotherapy. To this end, we developed a 3D co-culture model of cancer spheroids and patient-derived fibroblasts treated with radiotherapy. Using the model we identified treatment-resistant cells that bypassed DNA damage checkpoints and exhibited an aggressive growth phenotype. Importantly, these cells featured more condensed chromatin which primed them for treatment evasion, as inhibiting chromatin condensation and DNA damage repair mechanisms improved the efficacy of not only radio- but also chemotherapy. Collectively, our work shows the potential of using chromatin organization to cost-effectively study the heterogeneous treatment susceptibility of cells and guide therapeutic design.
Collapse
Affiliation(s)
- Tina Pekeč
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Anne R Shim
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniel Paysan
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - G V Shivashankar
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
48
|
Guo D, Jurek R, Beaumont KA, Sharp DS, Tan SY, Mariana A, Failes TW, Grootveld AK, Bhattacharyya ND, Phan TG, Arndt GM, Jain R, Weninger W, Tikoo S. Invasion-Block and S-MARVEL: A high-content screening and image analysis platform identifies ATM kinase as a modulator of melanoma invasion and metastasis. Proc Natl Acad Sci U S A 2023; 120:e2303978120. [PMID: 37963252 PMCID: PMC10666109 DOI: 10.1073/pnas.2303978120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/13/2023] [Indexed: 11/16/2023] Open
Abstract
Robust high-throughput assays are crucial for the effective functioning of a drug discovery pipeline. Herein, we report the development of Invasion-Block, an automated high-content screening platform for measuring invadopodia-mediated matrix degradation as a readout for the invasive capacity of cancer cells. Combined with Smoothen-Mask and Reveal, a custom-designed, automated image analysis pipeline, this platform allowed us to evaluate melanoma cell invasion capacity posttreatment with two libraries of compounds comprising 3840 U.S. Food and Drug Administration (FDA)-approved drugs with well-characterized safety and bioavailability profiles in humans as well as a kinase inhibitor library comprising 210 biologically active compounds. We found that Abl/Src, PKC, PI3K, and Ataxia-telangiectasia mutated (ATM) kinase inhibitors significantly reduced melanoma cell invadopodia formation and cell invasion. Abrogation of ATM expression in melanoma cells via CRISPR-mediated gene knockout reduced 3D invasion in vitro as well as spontaneous lymph node metastasis in vivo. Together, this study established a rapid screening assay coupled with a customized image-analysis pipeline for the identification of antimetastatic drugs. Our study implicates that ATM may serve as a potent therapeutic target for the treatment of melanoma cell spread in patients.
Collapse
Affiliation(s)
- Dajiang Guo
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
| | - Russell Jurek
- Australia Telescope National Facility, The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Astronomy and Space Science, Australia Telescope National Facility, MarsfieldNSW2122, Australia
| | - Kimberley A. Beaumont
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
| | - Danae S. Sharp
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
| | - Sioh-Yang Tan
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
| | - Anna Mariana
- The Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
| | - Timothy W. Failes
- The Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
| | - Abigail K. Grootveld
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW2010, Australia
- St Vincent’s Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW2010, Australia
| | - Nayan D. Bhattacharyya
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW2010, Australia
- St Vincent’s Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW2010, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW2010, Australia
- St Vincent’s Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW2010, Australia
| | - Greg M. Arndt
- The Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
| | - Rohit Jain
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| | - Shweta Tikoo
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| |
Collapse
|
49
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
50
|
Xun J, Ohtsuka H, Hirose K, Douchi D, Nakayama S, Ishida M, Miura T, Ariake K, Mizuma M, Nakagawa K, Morikawa T, Furukawa T, Unno M. Reduced expression of phosphorylated ataxia-telangiectasia mutated gene is related to poor prognosis and gemcitabine chemoresistance in pancreatic cancer. BMC Cancer 2023; 23:835. [PMID: 37674118 PMCID: PMC10481509 DOI: 10.1186/s12885-023-11294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Loss of expression of the gene ataxia-telangiectasia mutated (ATM), occurring in patients with multiple primary malignancies, including pancreatic cancer, is associated with poor prognosis. In this study, we investigated the detailed molecular mechanism through which ATM expression affects the prognosis of patients with pancreatic cancer. METHODS The levels of expression of ATM and phosphorylated ATM in patients with pancreatic cancer who had undergone surgical resection were analyzed using immunohistochemistry staining. RNA sequencing was performed on ATM-knockdown pancreatic-cancer cells to elucidate the mechanism underlying the invlovement of ATM in pancreatic cancer. RESULTS Immunohistochemical analysis showed that 15.3% and 27.8% of clinical samples had low levels of ATM and phosphorylated ATM, respectively. Low expression of phosphorylated ATM substantially reduced overall and disease-free survival in patients with pancreatic cancer. In the pancreatic cancer cell lines with ATM low expression, resistance to gemcitabine was demonstrated. The RNA sequence demonstrated that ATM knockdown induced the expression of MET and NTN1. In ATM knockdown cells, it was also revealed that the protein expression levels of HIF-1α and antiapoptotic BCL-2/BAD were upregulated. CONCLUSIONS These findings demonstrate that loss of ATM expression increases tumor development, suppresses apoptosis, and reduces gemcitabine sensitivity. Additionally, loss of phosphorylated ATM is associated with a poor prognosis in patients with pancreatic cancer. Thus, phosphorylated ATM could be a possible target for pancreatic cancer treatment as well as a molecular marker to track patient prognosis.
Collapse
Affiliation(s)
- Jingyu Xun
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan.
| | - Katsuya Hirose
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Douchi
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Shun Nakayama
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Takayuki Miura
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| |
Collapse
|