1
|
Xu Y, Pei Y, Liu Z, Tan P, Liu R, Chu L, Zhang Y, Wang W, Wang H. Discovery of novel DPP4 inhibitory peptides from egg yolk by machine learning and molecular docking: In vitro and in vivo validation. Food Chem 2025; 476:143412. [PMID: 39961267 DOI: 10.1016/j.foodchem.2025.143412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Abstract
DPP4 inhibitors could treat T2DM. Low-cost and accessible egg yolk protein (EYP) has the potential to produce highly bioactive peptides. Therefore, this study was to explore the novel DPP4 inhibitory peptide in EYP. The optimal protease (alcalase and pepsin) was screened using virtual enzymatic digestion. 61 potential peptides were filtered by ultrafiltration, LC-MS/MS, activity prediction and physicochemical property calculations. Then peptides RYHFPEGL, EYF, KFL, YKF and AAQEKIRYW were obtained by machine learning, BIOPEP database and molecular docking. AAQEKIRYW had outstanding hypoglycemia efficacy by in vitro cellular assay and mice plasma assay, with IC50 36.65 μM. Molecular docking and MD revealed that AAQEKIRYW-DPP4 complex was stably bound to S1 and S2' pockets of protein through hydrophilic (hydrogen bonding and electrostatic interactions) and hydrophobic interactions. It will provide a new insight for high-value utilization of EYP and a reference for the efficient screening and mechanism resolution of highly active peptides.
Collapse
Affiliation(s)
- Yujie Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Yiqiao Pei
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Zhifu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Peng Tan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Lulu Chu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Wenjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
2
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2025; 25:250-265. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Gaggini M, Sabatino L, Suman AF, Chatzianagnostou K, Vassalle C. Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology. Cells 2025; 14:387. [PMID: 40072115 PMCID: PMC11898734 DOI: 10.3390/cells14050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
In recent years, new drugs for the treatment of type 2 diabetes (T2D) have been proposed, including glucagon-like peptide 1 (GLP-1) agonists or sodium-glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors. Over time, some of these agents (in particular, GLP-1 agonists and SGLT2 inhibitors), which were initially developed for their glucose-lowering actions, have demonstrated significant beneficial pleiotropic effects, thus expanding their potential therapeutic applications. This review aims to discuss the mechanisms, pleiotropic effects, and therapeutic potential of GLP-1, DPP-4, and SGLT2, with a particular focus on their cardiorenal benefits beyond glycemic control.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Adrian Florentin Suman
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | | | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
4
|
Chen X, Xue B, Wahab S, Sultan A, Khalid M, Yang S. Structure-based molecular docking and molecular dynamics simulations study for the identification of dipeptidyl peptidase 4 inhibitors in type 2 diabetes. J Biomol Struct Dyn 2025; 43:1445-1458. [PMID: 38100564 DOI: 10.1080/07391102.2023.2291831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Inhibition of dipeptidyl peptidase-4 (DPP4) activity has emerged as a promising therapeutic approach for the treatment of type 2 diabetes mellitus (T2DM). Bioinformatics-driven approaches have emerged as crucial tools in drug discovery. Molecular docking and molecular dynamics (MD) simulations are effective tools in drug discovery, as they reduce the time and cost associated with experimental screening. In this study, we employed structure-assisted in-silico methods, including molecular docking and MD simulations, to identify SRT2183, a small molecule that may potentially inhibit the activity of DPP4 enzyme. The interaction between the small molecule "SRT2183" and DPP4 exhibited a binding affinity of -9.9 Kcal/Mol, leading to the formation of hydrogen bonds with the amino acid residues MET348, SER376, and THR351 of DPP4. The MD simulations over a period of 100 ns indicated stable protein-ligand interactions, with no significant conformational rearrangements observed within the simulated timeframe. In conclusion, our results suggest that the small molecule SRT2183 may have the potential to inhibit the DPP4 enzyme and pave the way for the therapeutics of T2DM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xi Chen
- School of Management, Guangzhou College of Technology and Business, Guangzhou, China
| | - Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Armiya Sultan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Song Yang
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
5
|
Yang G, Su R, Bu J, Li Y, Lin X, Jin J, Zhang Y, Zhuang P, Guo H, Yin Q. Emerging role of adaptive immunity in diabetes-induced cognitive impairment: from the periphery to the brain. Metab Brain Dis 2025; 40:102. [PMID: 39821703 DOI: 10.1007/s11011-025-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Abstract
Diabetic cognitive impairment (DCI) is a central nervous system complication induced by peripheral metabolic dysfunction of diabetes mellitus. Cumulative studies have shown that neuro-immune crosstalk is involved in the pathological progression of DCI. However, current studies mostly focus on the interaction between innate immunity cells and neurons, while ignoring the role of adaptive immunity cells in DCI. Notably, recent studies have revealed adaptive immune cells are involved in cognitive development and the progression of neurodegenerative diseases. Equally important, accumulated past studies have also shown that diabetic patients experience imbalanced peripheral adaptive immune homeostasis and disrupted transmission of adaptive immune cells to the central system. Therefore, this review first updated the cognitive mechanism of adaptive immune regulation, and then summarized the contribution of adaptive immunity to DCI from the aspects of peripheral adaptive immune homeostasis, transmission pathways, and brain tissue infiltration. Furthermore, we also summarized the potential of anti-diabetic drugs to regulate adaptive immunity, and looked forward to the potential value of regulatory adaptive immunity in the prevention and treatment of DCI, to provide a new strategy for the prevention and treatment of DCI.
Collapse
Affiliation(s)
- Genhui Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Runtao Su
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Bu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xueling Lin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiahui Jin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanjun Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Pengwei Zhuang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Hong Guo
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qingsheng Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Tiwari RK, Ahmad A, Chadha M, Saha K, Verma H, Borgohain K, Shukla R. Modern-Day Therapeutics and Ongoing Clinical Trials against Type 2 Diabetes Mellitus: A Narrative Review. Curr Diabetes Rev 2025; 21:59-74. [PMID: 38766831 DOI: 10.2174/0115733998294919240506044544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Diabetes Mellitus (DM) is a global health concern that affects millions of people globally. The present review aims to narrate the clinical guidelines and therapeutic interventions for Type 2 Diabetes Mellitus (T2DM) patients. Furthermore, the present work summarizes the ongoing phase 1/2/3 and clinical trials against T2DM. METHODS A meticulous and comprehensive literature review was performed using various databases, such as PubMed, MEDLINE, Clinical trials database (https://clinicaltrials.gov/), and Google Scholar, to include various clinical trials and therapeutic interventions against T2DM. RESULTS Based on our findings, we concluded that most T2DM-associated clinical trials are interventional. Anti-diabetic therapeutics, including insulin, metformin, Dipeptidyl Peptidase-4 (DPP-4) inhibitors, Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs), and Sodium- Glucose cotransporter-2 (SGLT-2) inhibitors are frontline therapeutics being clinically investigated. Currently, the therapeutics in phase IV clinical trials are mostly SGLT-2 inhibitors, implicating their critical contribution to the clinical management of T2DM. CONCLUSION Despite the success of T2DM treatments, a surge in innovative treatment options to reduce diabetic consequences and improve glycemic control is currently ongoing. More emphasis needs to be on exploring novel targeted drug candidates that can offer more sustained glycemic control.
Collapse
Affiliation(s)
- Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Afza Ahmad
- Department of Public Health, Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Muskan Chadha
- Department of Nutrition & Dietetics, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Kingshuk Saha
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Harshitha Verma
- Department of Science in Biochemistry, Manasagangothri, University of Mysuru, Mysuru, 570006, Karnataka, India
| | - Kalpojit Borgohain
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| |
Collapse
|
7
|
Mangoura SA, Ahmed MA, Hamad N, Zaka AZ, Khalaf KA. Hepatoprotective effects of vildagliptin mitigates lung biochemical and histopathological changes in experimental hepatopulmonary syndrome model in rat. Int Immunopharmacol 2024; 143:113254. [PMID: 39353392 DOI: 10.1016/j.intimp.2024.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Hepatopulmonary syndrome (HPS) is a liver disease-induced pulmonary complication manifested with arterial hypoxemia. Hepatic cholestasis, encountered in several clinical situations, leads to biliary cirrhosis and HPS, both of which are best reproduced by rat common bile duct ligation (CBDL). Experience from liver transplantation suggests hepatoprotective-based therapy would be most effective in HPS treatment Dipeptidyl peptidase-4 (DPP-4) enzyme is involved in different pathogenic mechanisms of liver diseases. Vildagliptin (Vild) is a DPP-4 inhibitor which possesses favorable anti-inflammatory, anti-oxidant and anti-fibrotic effects. The present work explored hepatoprotective mechanisms of Vild and their participation in its prophylactic effectiveness in HPS induced by CBDL in rats. Male Wistar rats weighing 220-280 g were allocated into 4 groups: normal control, sham, CBDL and CBDL + Vild groups. i.p. saline was administered to the first 3 groups and i.p. Vild (10 mg/kg/day) was given to the fourth group for 6 weeks starting 2 week before CBDL. CBDL produced liver fibrosis, arterial hypoxemia and decreased survivability of rats. It altered liver functions and induced oxidative stress, pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)], vasodilatory molecules [endothelin-1 (ET-1), and inducible and endothelial nitric oxide synthases] and angiogenesis-associated protein [vascular endothelial growth factor-A (VEGF-A)] in liver and lung. Vild ameliorated liver fibrosis, and improved hypoxemia and survivability of CBDL rats and reversed these biochemical alterations. Prophylactic Vild administration attenuated CBDL-induced HPS in rats via direct hepatoprotective effects in the form of anti-oxidant, anti-inflammatory, anti-angiogenic and anti-fibrotic effects beside inhibition of pathological intrahepatic vasodilatation.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nashwa Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt.
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Khaled A Khalaf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| |
Collapse
|
8
|
Cruz-Chamorro I, Álvarez-López AI, Santos-Sánchez G, Álvarez-Sánchez N, Pedroche J, Millán-Linares MDC, Lardone PJ, Carrillo-Vico A. A Lupin ( Lupinus angustifolius) Protein Hydrolysate Decreases the Severity of Experimental Autoimmune Encephalomyelitis: A Preliminary Study. Int J Mol Sci 2024; 26:32. [PMID: 39795896 PMCID: PMC11720533 DOI: 10.3390/ijms26010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease, with inflammation and oxidative stress in the central nervous system being the main triggers. There are many drugs that reduce the clinical signs of MS, but none of them cure the disease. Food proteins have been shown to contain encrypted peptides that can be released after hydrolysis and exert numerous biological activities. Recently, we have demonstrated the anti-inflammatory and antioxidant activities of a lupin protein hydrolysate (LPH) both in vitro and in vivo. Therefore, the aim of this study was to evaluate whether LPH is capable of reducing the clinical signs of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE was induced in female C57BL/6N mice and they were treated intragastrically with LPH (100 mg/kg) or vehicle (control group) from day 0 (prophylactic approach) or from the onset of the disease (day 12 post-induction; therapeutic approach) and the clinical score of each mouse was recorded daily. Prophylactic treatment with LPH reduced the clinical score of the mice compared to the control group, as well as the maximum and cumulative scores, without changing the day of onset of the symptoms while the therapeutic intervention did not significantly improve the severity of the disease. For the first time, we demonstrated that prophylactic administration of LPH reduces the severity of MS, suggesting a potential nutraceutical or new functional foods in neuroinflammation. However, further studies are needed to confirm this nutritional effect in a clinical context.
Collapse
Affiliation(s)
- Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.I.Á.-L.); (G.S.-S.); (P.J.L.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain;
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.I.Á.-L.); (G.S.-S.); (P.J.L.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain;
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.I.Á.-L.); (G.S.-S.); (P.J.L.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain;
| | - Nuria Álvarez-Sánchez
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain;
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain; (J.P.); (M.d.C.M.-L.)
| | | | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.I.Á.-L.); (G.S.-S.); (P.J.L.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.I.Á.-L.); (G.S.-S.); (P.J.L.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain;
| |
Collapse
|
9
|
Oh Y, Cho Y. Dipeptidyl peptidase 4 as an injury-responsive protein in the mouse sciatic nerve. Mol Cells 2024; 47:100159. [PMID: 39577744 DOI: 10.1016/j.mocell.2024.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) is a membrane-bound protease known for its roles in immunity and metabolism; however, its function in the nervous system remains largely unexplored. We found that DPP4 is predominantly expressed in the Schwann cells of the sciatic nerve, and its systemic depletion in postnatal mice resulted in a decline in motor function. Importantly, the inhibition of its proteolytic activity did not affect axon regeneration, indicating that DPP4's protease activity may not be directly involved in axon regeneration. Instead, we observed a reduction in DPP4 protein levels in the sciatic nerve after injury and increased in serum postinjury, suggesting that DPP4 may be shed into circulation, potentially mediating systemic responses following injury. These findings highlight DPP4's importance in sensory function and its potential role in systemic responses after peripheral nerve injury.
Collapse
Affiliation(s)
- Yeonsoo Oh
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Yongcheol Cho
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
10
|
Dahan M, Zohar J, Todder D, Mathé AA, Cohen H. Exploring the Anxiolytic Potential of NPY by a Dipeptidyl Peptidase-IV Inhibitor in an Animal Model of PTSD. Int J Neuropsychopharmacol 2024; 27:pyae062. [PMID: 39626016 DOI: 10.1093/ijnp/pyae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The regulatory neuropeptide Y (NPY) is implicated in anxiety and post-traumatic stress disorder (PTSD)-related behaviors. NPY exerts its effects through 5 receptor subtypes, with Y1 and Y2 receptors being predominantly expressed in the rat brain. Activation of Y1 by full-length NPY1-36 induces anxiolytic effects, whereas Y2 binds truncated peptides, eliciting region-specific anxiogenic responses. Dipeptidyl peptidase-IV (DPP-IV) cleaves NPY, thereby modulating its functionality. Sitagliptin, a DPP-IV inhibitor (DPP-IV-I), inhibits the degradation of various vasoactive peptides, including cerebral NPY. As such, the therapeutic potential of DPP-IV-I following a traumatic event remains inconclusive. We assessed the effects of a highly selective DPP-IV-I, administered either shortly after the stressor or intermittently over 3 days, on behavioral outcomes using the predator scent stress (PSS) model of PTSD. METHODS Rats exposed to PSS or sham-PSS received a single dose of sitagliptin (10 or 30 mg/kg) or saline 1 hour post-exposure, or repeated doses over 3 days (20 mg/kg). Behavioral outcomes were evaluated using the elevated plus maze and acoustic startle response at 7 days post-exposure. Additionally, rats exposed to PSS or sham-PSS were treated with sitagliptin (30 mg/kg) or saline, and their brains were prepared for immunofluorescence and enzyme-linked immunosorbent assay (ELISA). RESULTS Sitagliptin did not attenuate anxiety-related behaviors or PTSD-related behavior prevalence compared to saline. Notably, the 30 mg/kg dose increased NPY levels in several brain regions without affecting NPY-Y1 levels. CONCLUSIONS The findings suggest that sitagliptin-induced upregulation of NPY levels shortly after PSS is insufficient to prevent the development of post-traumatic responses. The effectiveness of NPY signaling may be influenced by factors beyond peptide concentration alone, potentially limiting its therapeutic efficacy. Activation of NPY-Y1 receptors, rather than merely increasing NPY levels, appears to be crucial for modulating anti-anxiety and post-traumatic responses.
Collapse
Affiliation(s)
- Matan Dahan
- Anxiety and Stress Research Unit, Ministry of Health, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Doron Todder
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Anxiety and Stress Research Unit, Ministry of Health, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Aleksander A Mathé
- Karolinska Institute Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Hagit Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Anxiety and Stress Research Unit, Ministry of Health, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
11
|
Mourelatou NG, Kounatidis D, Jude EB, Rebelos E. Vitamin D Supplementation as a Therapeutic Strategy in Autoimmune Diabetes: Insights and Implications for LADA Management. Nutrients 2024; 16:4072. [PMID: 39683465 DOI: 10.3390/nu16234072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Latent autoimmune diabetes of adults (LADA) is the most prevalent form of autoimmune diabetes (AI-D) in adulthood; however, its accurate diagnosis and optimal treatment remain challenging. Vitamin D deficiency (VDD) is commonly observed in LADA patients, while increased vitamin D exposure through supplementation and dietary intake is associated with a reduced incidence of LADA. Although limited, case reports, case-control studies, and randomized clinical trials have examined the effects of vitamin D supplementation-alone or combined with dipeptidyl peptidase-4 inhibitors (DPP4-is)-on glucose regulation, residual β-cell function, and glutamic acid decarboxylase antibody (GADA65) levels. Findings, while preliminary, indicate that vitamin D supplementation may enhance glycemic control, preserve β-cell function, and reduce autoimmune activity. Given its accessibility, affordability, and relative safety, vitamin D supplementation presents an attractive adjunct treatment option for LADA patients. This narrative review discusses current evidence on the potential therapeutic benefits of vitamin D supplementation in patients with AI-D, including LADA, who are also vitamin D deficient. Beginning with an exploration of the epidemiological patterns, clinical presentation, and diagnostic framework essential for understanding and identifying LADA, this review then examines the proposed mechanisms through which vitamin D may influence autoimmune modulation of pancreatic β-cells, integrating recent data pertinent to LADA pathology. By distilling and consolidating existing research, we aim to provide a platform for advancing targeted investigations within this distinct patient population.
Collapse
Affiliation(s)
- Niki G Mourelatou
- Second Department of Internal Medicine, NIMTS Hospital, 11521 Athens, Greece
| | - Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic and Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Edward B Jude
- Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne OL6 9RW, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M15 6BX, UK
| | - Eleni Rebelos
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
12
|
Niazmand A, Nedaeinia R, Vatandoost N, Jafarpour S, Safabakhsh S, Kolahdouz M, Ferns GA, Salehi R. The impacts of dipeptidyl- peptidase 4 (DPP-4) inhibitors on common female malignancies: A systematic review. Gene 2024; 927:148659. [PMID: 38866262 DOI: 10.1016/j.gene.2024.148659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The inhibition of dipeptidyl- peptidase 4 (DPP-4) is an essential therapy for controlling hyperglycemia in patients with type 2 diabetes (T2DM). However, the role of DPP-4 in cancer is not yet clear, with some studies suggesting that it may either promote or suppress tumors. This makes it crucial to have personalized treatment for diabetic women with cancer to effectively manage their diabetes whilst and preventing cancer mortality. To address this issue, we conducted an integrative in-silico analysis and systematic review of the literature to comprehensively examine the relationship between DPP-4 expression and the effects of its inhibitors on prevalent female malignancies. We specifically chose studies that examined the effects of DPP-4 expression and DPP-4 inhibition (DPP-4i) on prevalent cancers in women, such as breast cancer (BC), ovarian cancer (OV), cervical cancer (CC), and endometrial cancer (EC). These studies comprised those conducted both in vivo and in vitro. The review of the literature indicated that DPP-4i may worsen aggressive traits such as metastasis, Epithelial-to-mesenchymal transition (EMT), and chemotherapy resistance in BC cells. However, cohort studies on diabetic and BC patients did not confirm these findings. In vitro studies indicate that on OV, DPP-4 upregulation has been shown to prevent metastasis, while CCappears to be influenced by DPP-4 expression in terms of cell migration. sitagliptin, a pharmaceutical inhibitor of DPP-4, had a significant impact on reducing adhesion in CC cells in vitro. Overexpression of DPP-4 increased cell migration and proliferation in CC and EC cells, and hence the application of sitagliptin is expected to prevent this effect. On the other hand, the result of in-silico data confirmed that a significant correlation exists between DPP-4 expression and immune cell infiltration in breast, ovarian, cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) as well as downregulated in these cancers compared to their normal tissue samples. Furthermore, a significant (p < 0.05) effect on OS of BC and CESC patients has been reported due to the elevation of DPP-4 methylation on a specific CPG Island. These findings could aid in creating specialized treatments for diabetic women with specific malignancies, but caution should be exercised when considering the patient's medical history and cancer type.
Collapse
Affiliation(s)
- Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Jafarpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, USA
| | - Mahsa Kolahdouz
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Baziar L, Emami L, Rezaei Z, Solhjoo A, Sakhteman A, Khabnadideh S. Design, synthesis, biological evaluation and computational studies of 4-Aminopiperidine-3, 4-dihyroquinazoline-2-uracil derivatives as promising antidiabetic agents. Sci Rep 2024; 14:26538. [PMID: 39489787 PMCID: PMC11532418 DOI: 10.1038/s41598-024-77481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
A novel series of 4-aminopiperidin-3,4-dihyroquinazoline-2-uracil derivatives (9a-9 L) were logically designed and synthesized as potent DPP4 inhibitors as antidiabetic agents. Chemical structure of all new compounds were confirmed by different spectroscopic methods. The designed compounds were evaluated using a MAK 203 kit as DPP4 inhibitors in comparison with Sitagliptin. The biological evaluation revealed that compound 9i bearing chloro substitution on phenyl moiety of 6-bromo quinazoline ring had promising inhibitory activity with IC50 = 9.25 ± 0.57 µM. The toxicity test of all compounds confirmed safety profile of them. Kinetic studies showed that compound 9i exhibited a competitive-type inhibition with a Ki value of 12.01 µM. Computational approach supported the rationality of our design strategy, as 9i represented appropriate binding interactions with the active sites of DPP4 target. MD simulation outputs validated the stability of ligand 9i at DPP4 active site. Also, Density functional theory (DFT) including HOMO-LUMO energies, ESP map, thermochemical parameters, and theoretical IR spectrum was employed to study the reactivity descriptors of 9i and 9a as the most and least potent compounds respectively. Based on the DFT study, compound 9i was softer and, as a result, more reactive than 9a. Taken together, our results showed the potential of 4-aminopiperidin-3,4-dihyroquinazoline-2-uracil derivatives as promising candidates for developing some novel DPP4 inhibitors for managing of type 2 diabetes.
Collapse
Affiliation(s)
- Ladan Baziar
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Solhjoo
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Acar C, Yüksel HÇ, Şahin G, Açar FP, Karaca B. Exploring the Frequency and Risk Factors of Hyperprogressive Disease in Patients with Advanced Melanoma Treated with Immune Checkpoint Inhibitors. Curr Oncol 2024; 31:6343-6355. [PMID: 39451776 PMCID: PMC11505979 DOI: 10.3390/curroncol31100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Hyperprogressive disease (HPD) is described as the unexpected rapid growth of a tumour accompanied by a decline in performance status. While immune checkpoint inhibitors (ICIs) have improved outcomes in advanced melanoma, HPD remains a significant challenge in a subset of patients. Although HPD has been extensively studied in various solid tumours, research specifically focusing on advanced melanoma remains limited. We analysed 158 advanced melanoma patients, with 66.5% (n = 105) receiving anti-PD-1 and 33.5% (n = 53) receiving nivolumab plus ipilimumab. The median overall survival was 4.9 months for patients with HPD compared to 8.9 months for those with progressive disease without HPD (p = 0.014). Factors associated with HPD included liver metastasis (p = 0.002), three or more metastatic sites (p < 0.001), elevated lactate dehydrogenase levels (p = 0.004), and Eastern cooperative oncology group performance status ≥2 (p = 0.023). Multivariate analysis identified the Royal Marsden Hospital score (HR 3.675, 95% CI: 1.166-11.580, p = 0.026) as an independent risk factor for HPD, with the MDA-ICI score also trending towards significance (HR 4.466, 95% CI: 0.947-21.061, p = 0.059). This study provides valuable insights into the frequency and factors associated with HPD in advanced melanoma patients treated with ICIs, highlighting the relevance of clinical markers and scoring systems in predicting HPD risk.
Collapse
Affiliation(s)
- Caner Acar
- Division of Medical Oncology, Departmant of Internal Medicine, Ege University Medical Faculty, 35100 Izmir, Turkey; (H.Ç.Y.); (G.Ş.); (F.P.A.); (B.K.)
| | | | | | | | | |
Collapse
|
15
|
Chiu HY, Lin YJ, Huang YH. Dipeptidyl Peptidase-4 Inhibitors and the Risk of Chronic Inflammatory Skin Diseases in Type 2 Diabetes Mellitus in Taiwan: A Nationwide Population-Based Cohort Study. J Invest Dermatol 2024; 144:2321-2324.e5. [PMID: 38537930 DOI: 10.1016/j.jid.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/25/2024] [Accepted: 03/05/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Hsien-Yi Chiu
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan; Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan; Department of Dermatology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu Jr Lin
- Research Services Center for Health Information, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Huei Huang
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Mangoura SA, Ahmed MA, Zaka AZ. New Insights into the Pleiotropic Actions of Dipeptidyl Peptidase-4 Inhibitors Beyond Glycaemic Control. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:19-29. [PMID: 39526061 PMCID: PMC11548370 DOI: 10.17925/ee.2024.20.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a multifunctional serine ectopeptidase that cleaves and modifies a plethora of substrates, including regulatory peptides, cytokines and chemokines. DPP-4 is implicated in the regulation of immune response, viral entry, cellular adhesion, metastasis and chemotaxis. Regarding its numerous substrates and extensive expression inside the body, multitasking DPP-4 has been assumed to participate in different pathophysiological mechanisms. DPP-4 inhibitors or gliptins are increasingly used for the treatment of type 2 diabetes mellitus. Several reports from experimental and clinical studies have clarified that DPP-4 inhibitors exert many beneficial pleiotropic effects beyond glycaemic control, which are mediated by anti-inflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic actions. The present review will highlight the most recent findings in the literature about these pleiotropic effects and the potential mechanisms underlying these benefits, with a specific focus on the potential effectiveness of DPP-4 inhibitors in coronavirus disease-19 and diabetic kidney disease.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Mohammadi S, Al-Harrasi A. Macrophage modulation with dipeptidyl peptidase-4 inhibitors: A new frontier for treating diabetic cardiomyopathy? World J Diabetes 2024; 15:1847-1852. [PMID: 39280186 PMCID: PMC11372644 DOI: 10.4239/wjd.v15.i9.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 08/27/2024] Open
Abstract
This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy (DCM) treatment by dipeptidyl peptidase-4 (DPP-4) inhibitors. Zhang et al studied teneligliptin, a DPP-4 inhibitor used for diabetes management, and its potential cardioprotective effects in a diabetic mouse model. They suggested teneligliptin administration may reverse established markers of DCM, including cardiac hypertrophy and compromised function. It also inhibited the NLRP3 inflammasome and reduced inflammatory cytokine production in diabetic mice. Macrophages play crucial roles in DCM pathogenesis. Chronic hyperglycemia disturbs the balance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, favoring a pro-inflammatory state contributing to heart damage. Here, we highlight the potential of DPP-4 inhibitors to modulate macrophage function and promote an anti-inflammatory environment. These compounds may achieve this by elevating glucagon-like peptide-1 levels and potentially inhibiting the NLRP3 inflammasome. Further studies on teneligliptin in combination with other therapies targeting different aspects of DCM could be suggested for developing more effective treatment strategies to improve cardiovascular health in diabetic patients.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
18
|
Tuersun A, Hou G, Cheng G. Pancreatitis and Pancreatic Cancer Risk Among Patients With Type 2 Diabetes Receiving Dipeptidyl Peptidase 4 Inhibitors: An Updated Meta-Analysis of Randomized Controlled Trials. Clin Ther 2024; 46:650-656. [PMID: 39084911 DOI: 10.1016/j.clinthera.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE This meta-analysis sought to assess the relationship between dipeptidyl peptidase-4 inhibitors (DPP-4) and the risk of pancreatitis and pancreatic cancer by synthesizing data from randomized, controlled trials, in light of the conflicting findings from observational studies and previous meta-analyses. METHODS Cochrane, Embase, ClinicalTrials.gov, and PubMed databases that compared the use of DPP-4 inhibitors and that reported pancreatitis and pancreatic cancer events in patients with diabetes mellitus Type 2 (T2DM) were searched using specific terms. Studies were included if they satisfied the following inclusion criteria: They were randomized trials comparing DPP-4 inhibitors use in patients with T2DM; The study's duration was longer than 24 weeks; And they reported pancreatitis and pancreatic cancer events. Stata 15 MP was used to analyze the data, and odds ratios (OR) with 95% confidence intervals (CI) were used to represent the results. FINDINGS A total of 81,737 participants with T2DM were included in the analysis. The results showed that during a mean follow-up period of 24 to 520 weeks, The use of DPP-4 inhibitors was not associated with an increased risk of pancreatitis (Peto-OR 0.97; 95% CI: 0.74, 1.27) or pancreatic cancer (Peto-OR = 0.88; 95% CI: 0.59, 1.30). IMPLICATIONS Current evidence fails to validate a significant correlation between DPP-4 therapy and pancreatitis or pancreatic cancer. However, subgroup analyses showed that sitagliptin was associated with a significant reduction in pancreatitis risk compared to the control group; furthermore, when comparing different types of control medications, a significant decrease in pancreatic cancer risk was observed among DPP-4 users compared to GLP-1 users.
Collapse
Affiliation(s)
- Adili Tuersun
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Guanxin Hou
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Gang Cheng
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
19
|
Duc Nguyen H, Ardeshir A, Fonseca VA, Kim WK. Cluster of differentiation molecules in the metabolic syndrome. Clin Chim Acta 2024; 561:119819. [PMID: 38901629 DOI: 10.1016/j.cca.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) represents a significant public health concern due to its association with an increased risk of cardiovascular disease, type 2 diabetes, and other serious health conditions. Despite extensive research, the underlying molecular mechanisms contributing to MetS pathogenesis remain elusive. This review aims to provide a comprehensive overview of the molecular mechanisms linking MetS and cluster of differentiation (CD) markers, which play critical roles in immune regulation and cellular signaling. Through an extensive literature review with a systematic approach, we examine the involvement of various CD markers in MetS development and progression, including their roles in adipose tissue inflammation, insulin resistance, dyslipidemia, and hypertension. Additionally, we discuss potential therapeutic strategies targeting CD markers for the management of MetS. By synthesizing current evidence, this review contributes to a deeper understanding of the complex interplay between immune dysregulation and metabolic dysfunction in MetS, paving the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Amir Ardeshir
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department Endocrinology Metabolism & Diabetes, Tulane University School of Medicine, New Orleans, LA, USA
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
20
|
Wang F, Zhang X, Zhang J, Xu Q, Yu X, Xu A, Yi C, Bian X, Shao S. Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies. Med Res Rev 2024; 44:1501-1544. [PMID: 38279968 DOI: 10.1002/med.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
Collapse
Affiliation(s)
- Fen Wang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jing Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Anhui Xu
- Division of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Xuna Bian
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
21
|
Tudurachi BS, Anghel L, Tudurachi A, Sascău RA, Zanfirescu RL, Stătescu C. Unraveling the Cardiac Matrix: From Diabetes to Heart Failure, Exploring Pathways and Potential Medications. Biomedicines 2024; 12:1314. [PMID: 38927520 PMCID: PMC11201699 DOI: 10.3390/biomedicines12061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Myocardial infarction (MI) often leads to heart failure (HF) through acute or chronic maladaptive remodeling processes. This establishes coronary artery disease (CAD) and HF as significant contributors to cardiovascular illness and death. Therefore, treatment strategies for patients with CAD primarily focus on preventing MI and lessening the impact of HF after an MI event. Myocardial fibrosis, characterized by abnormal extracellular matrix (ECM) deposition, is central to cardiac remodeling. Understanding these processes is key to identifying new treatment targets. Recent studies highlight SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RAs) as favorable options in managing type 2 diabetes due to their low hypoglycemic risk and cardiovascular benefits. This review explores inflammation's role in cardiac fibrosis and evaluates emerging anti-diabetic medications' effectiveness, such as SGLT2i, GLP1-RAs, and dipeptidyl peptidase-4 inhibitors (DPP4i), in preventing fibrosis in patients with diabetes post-acute MI. Recent studies were analyzed to identify effective medications in reducing fibrosis risk in these patients. By addressing these areas, we can advance our understanding of the potential benefits of anti-diabetic medications in reducing cardiac fibrosis post-MI and improve patient outcomes in individuals with diabetes at risk of HF.
Collapse
Affiliation(s)
- Bogdan-Sorin Tudurachi
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Andreea Tudurachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Radu Andy Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Răzvan-Liviu Zanfirescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
- Physiology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| |
Collapse
|
22
|
Dey PK, Dutta R, Ray M, Jakkula P, Banerjee S, Qureshi IA, Gayen S, Amin SA. Fragment-based QSAR study to explore the structural requirements of DPP-4 inhibitors: a stepping stone towards better type 2 diabetes mellitus management. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:483-504. [PMID: 38904353 DOI: 10.1080/1062936x.2024.2366886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors belong to a prominent group of pharmaceutical agents that are used in the governance of type 2 diabetes mellitus (T2DM). They exert their antidiabetic effects by inhibiting the incretin hormones like glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide which, play a pivotal role in the regulation of blood glucose homoeostasis in our body. DPP-4 inhibitors have emerged as an important class of oral antidiabetic drugs for the treatment of T2DM. Surprisingly, only a few 2D-QSAR studies have been reported on DPP-4 inhibitors. Here, fragment-based QSAR (Laplacian-modified Bayesian modelling and Recursive partitioning (RP) approaches have been utilized on a dataset of 108 DPP-4 inhibitors to achieve a deeper understanding of the association among their molecular structures. The Bayesian analysis demonstrated satisfactory ROC values for the training as well as the test sets. Meanwhile, the RP analysis resulted in decision tree 3 with 2 leaves (Tree 3: 2 leaves). This present study is an effort to get an insight into the pivotal fragments modulating DPP-4 inhibition.
Collapse
Affiliation(s)
- P K Dey
- Department of Pharmaceutical Technology, JIS University, Kolkata, West Bengal, India
| | - R Dutta
- Department of Pharmaceutical Technology, JIS University, Kolkata, West Bengal, India
| | - M Ray
- Department of Pharmaceutical Technology, JIS University, Kolkata, West Bengal, India
| | - P Jakkula
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - S Banerjee
- Department of Pharmaceutical Technology, JIS University, Kolkata, West Bengal, India
| | - I A Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - S Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S A Amin
- Department of Pharmaceutical Technology, JIS University, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Eltahir HM, Elbadawy HM, Almikhlafi MA, Alalawi AM, Aldhafiri AJ, Alahmadi YM, Al thagfan SS, Albadrani M, M Eweda S, Abouzied MM. Sitagliptin ameliorates L-arginine-induced acute pancreatitis via modulating inflammatory cytokines expression and combating oxidative stress. Front Pharmacol 2024; 15:1389670. [PMID: 38910880 PMCID: PMC11190672 DOI: 10.3389/fphar.2024.1389670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 06/25/2024] Open
Abstract
Background Acute pancreatitis (AP) is an inflammatory condition that resolves spontaneously, but occasionally, develops into systemic inflammation, organ failure and mortality. Oxidative stress and activation of inflammatory pathways represent major players in AP pathogenesis. Current management of AP relies on attenuating injuries to the pancreas and putting the inflammatory process under control. In this study, we investigated the role of sitagliptin in modulating L-arginine-induced AP in rats. Methods Swiss rats were subdivided into a healthy control group, AP group (a single dose of L-arginine 250 mg/100 g, intraperitoneal), and sitagliptin + L-arginine-treated group (10 mg sitagliptin/kg body weight/day, orally). Sitagliptin treatment started 1 hour after L-arginine injection and continued for 3days. Biochemical and histopathological investigations were performed on serum and tissue samples collected from test animals. Results L-arginine increased pancreatic meyloperoxidase and serum amylase- and lipase activities and serum levels of TNF-α, LT-α, IFN-γ, IL-1α/β, IL-6, IL-10, IL-12, and IL-15. AP animals showed elevated MDA and NO and decreased GSH and serum calcium levels. Histopathological changes were observed by H&E staining. Sitagliptin treatment significantly ameliorated these biochemical and histological changes diminishing the signs of AP. Conclusion Sitagliptin treatment was effective in ameliorating L-arginine-induced AP which can be regarded to its anti-inflammatory and antioxidant effect.
Collapse
Affiliation(s)
- Heba M. Eltahir
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Hossein M. Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ali M. Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ahmed J. Aldhafiri
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Sultan S. Al thagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Saber M Eweda
- 5Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mekky M. Abouzied
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Medina, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
24
|
Yoosuf BT, Favas Kt M, Dutta P, Bansal D. Comprehensive safety profile of dipeptidyl peptidase-4 inhibitors: a post-marketing study based on FAERS database using signal detection algorithms. Expert Opin Drug Saf 2024:1-13. [PMID: 38626310 DOI: 10.1080/14740338.2024.2343015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/26/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors) have acquired a foothold in managing type 2 diabetes mellitus, but few concerns have arisen regarding their overall safety profile. The aim of this study is to assess the potential risk of DPP-4 inhibitors by analyzing data from the FDA Adverse Event Reporting System (FAERS) database. RESEARCH DESIGN AND METHODS This is a retrospective study which explored the FAERS database till March 2023 for the collection of safety reports. The disproportionality analysis was performed using signal detection algorithms (SDAs) incorporating frequentist-based data mining approach such as relative reporting ratio (RRR), reporting odds ratio (ROR) and proportional reporting ratio (PRR) with 95% confidence interval (CI). RESULTS A total of 14,573 adverse event reports were reported in the FAERS public dashboard associated with all the included DPP-4 inhibitors. The computed PRR, ROR, and RRR indicated positive signals for DPP-4 inhibitors with cardiac failure, pancreatitis, pemphigoid, hypoglycemia, acute kidney injury and lactic acidosis. Saxagliptin showed a higher signal score for cardiac failure, while sitagliptin was more associated with pancreatitis. Moreover, alogliptin exhibited an elevated signal score associated with pancreatic carcinoma. CONCLUSION Several significant disproportionality signals were observed with DPP-4 inhibitors. However, clinicians have to consider the comorbidities and concomitant drugs while prescribing these drugs.
Collapse
Affiliation(s)
- Beema T Yoosuf
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Muhammed Favas Kt
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dipika Bansal
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| |
Collapse
|
25
|
Bhat AS, Chakkittukandiyil A, Muthu SK, Kotha S, Muruganandham S, Rajagopal K, Jayaram S, Kothandan R, Selvaraj D. Network-based drug repositioning of linagliptin as a potential agent for uterine fibroids targeting transforming growth factor-beta mediated fibrosis. Biochem Biophys Res Commun 2024; 703:149611. [PMID: 38354463 DOI: 10.1016/j.bbrc.2024.149611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Uterine fibroid is the most common non-cancerous tumor with no satisfactory options for long-term pharmacological treatment. Fibroblast activation protein-α (FAP) is one of the critical enzymes that enhances the fibrosis in uterine fibroids. Through STITCH database mining, we found that dipeptidyl peptidase-4 inhibitors (DPP4i) have the potential to inhibit the activity of FAP. Both DPP4 and FAP belong to the dipeptidyl peptidase family and share a similar catalytic domain. Hence, ligands which have a binding affinity with DPP4 could also bind with FAP. Among the DPP4i, linagliptin exhibited the highest binding affinity (Dock score = -8.562 kcal/mol) with FAP. Our study uncovered that the differences in the S2 extensive-subsite residues between DPP4 and FAP could serve as a basis for designing selective inhibitors specifically targeting FAP. Furthermore, in a dynamic environment, linagliptin was able to destabilize the dimerization interface of FAP, resulting in potential inhibition of its biological activity. True to the in-silico results, linagliptin reduced the fibrotic process in estrogen and progesterone-induced fibrosis in rat uterus. Furthermore, linagliptin reduced the gene expression of transforming growth factor-β (TGF-β), a critical factor in collagen secretion and fibrotic process. Masson trichrome staining confirmed that the anti-fibrotic effects of linagliptin were due to its ability to reduce collagen deposition in rat uterus. Altogether, our research proposes that linagliptin has the potential to be repurposed for the treatment of uterine fibroids.
Collapse
Affiliation(s)
- Anusha Shreenidhi Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Santhosh Kumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India
| | - Satvik Kotha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sudharsan Muruganandham
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saravanan Jayaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
26
|
Wang F, Zhao D, Xu WY, Liu Y, Sun H, Lu S, Ji Y, Jiang J, Chen Y, He Q, Gong C, Liu R, Su Z, Dong Y, Yan Z, Liu L. Blood leukocytes as a non-invasive diagnostic tool for thyroid nodules: a prospective cohort study. BMC Med 2024; 22:147. [PMID: 38561764 PMCID: PMC10986011 DOI: 10.1186/s12916-024-03368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.
Collapse
Affiliation(s)
- Feihang Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Danyang Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Huiyi Sun
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shanshan Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | | | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China.
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
27
|
Laeeq T, Ahmed M, Sattar H, Zeeshan MH, Ali MB. Role of SGLT2 Inhibitors, DPP-4 Inhibitors, and Metformin in Pancreatic Cancer Prevention. Cancers (Basel) 2024; 16:1325. [PMID: 38611003 PMCID: PMC11011099 DOI: 10.3390/cancers16071325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic carcinoma is a highly aggressive tumor that usually presents when it has already metastasized. Therapeutic options for cure remain scarce and rely on combination chemotherapy with limited sustainability. Diabetes is considered an important risk factor for the development of pancreatic cancer due to the production of proinflammatory cytokines, which result in increased cell proliferation. More than half of patients diagnosed with pancreatic cancer eventually develop diabetes due to the destruction of insulin-producing cells. The interlinkage of both diseases might identify a possible preventative strategy for reducing the incidence of pancreatic carcinoma. This study reviewed the recent literature on the association between pancreatic cancer risk and SGLT2 inhibitors, GLP-1 RA, DPP-4 inhibitors, and biguanides. There are mixed data regarding the relationship between GLP-1 RA and DPP-4 inhibitors and pancreatic cancer, with some trials suggesting that they might increase the risk. In contrast, studies have mostly revealed that SGLT2 inhibitors have an antiproliferative effect on various tumors, such as liver, pancreatic, prostate, bowel, lung, and breast carcinoma, which might be due to their mechanism of blockage of reabsorption of glucose by cells, lowering the amount of available glucose for the growth of tumor cells. Metformin, the first-line agent for diabetes, has also been shown to be associated with decreasing pancreatic cancer risk and improving prognosis in those who already have the disease. Dedicated trials are needed to further delineate the association of antidiabetic drugs with the risk of pancreatic cancer in the general population, as previous studies have mostly focused on diabetic patients.
Collapse
Affiliation(s)
- Tooba Laeeq
- Internal Medicine, University of Nevada, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
| | - Maheen Ahmed
- Internal Medicine, Dow University of Health Sciences, Mission Rd., New Labour Colony, Karachi 74200, Pakistan; (M.A.); (M.H.Z.)
| | - Hina Sattar
- Internal Medicine, Dow University of Health Sciences, Mission Rd., New Labour Colony, Karachi 74200, Pakistan; (M.A.); (M.H.Z.)
| | - Muhammad Hamayl Zeeshan
- Internal Medicine, Dow University of Health Sciences, Mission Rd., New Labour Colony, Karachi 74200, Pakistan; (M.A.); (M.H.Z.)
| | - Meher Binte Ali
- Internal Medicine, University of Maryland Medical Center, 827 Linden Ave., Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Ng II, Zhang J, Tian T, Peng Q, Huang Z, Xiao K, Yao X, Ng L, Zeng J, Tang H. Network-based screening identifies sitagliptin as an antitumor drug targeting dendritic cells. J Immunother Cancer 2024; 12:e008254. [PMID: 38458637 PMCID: PMC10921530 DOI: 10.1136/jitc-2023-008254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Dendritic cell (DC)-mediated antigen presentation is essential for the priming and activation of tumor-specific T cells. However, few drugs that specifically manipulate DC functions are available. The identification of drugs targeting DC holds great promise for cancer immunotherapy. METHODS We observed that type 1 conventional DCs (cDC1s) initiated a distinct transcriptional program during antigen presentation. We used a network-based approach to screen for cDC1-targeting therapeutics. The antitumor potency and underlying mechanisms of the candidate drug were investigated in vitro and in vivo. RESULTS Sitagliptin, an oral gliptin widely used for type 2 diabetes, was identified as a drug that targets DCs. In mouse models, sitagliptin inhibited tumor growth by enhancing cDC1-mediated antigen presentation, leading to better T-cell activation. Mechanistically, inhibition of dipeptidyl peptidase 4 (DPP4) by sitagliptin prevented the truncation and degradation of chemokines/cytokines that are important for DC activation. Sitagliptin enhanced cancer immunotherapy by facilitating the priming of antigen-specific T cells by DCs. In humans, the use of sitagliptin correlated with a lower risk of tumor recurrence in patients with colorectal cancer undergoing curative surgery. CONCLUSIONS Our findings indicate that sitagliptin-mediated DPP4 inhibition promotes antitumor immune response by augmenting cDC1 functions. These data suggest that sitagliptin can be repurposed as an antitumor drug targeting DC, which provides a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Ian-Ian Ng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiaqi Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Tingzhong Tian
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Qi Peng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zheng Huang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kaimin Xiao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiyue Yao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Haidong Tang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Buczyńska A, Kościuszko M, Krętowski AJ, Popławska-Kita A. Exploring the clinical utility of DPP-IV and SGLT2 inhibitors in papillary thyroid cancer: a literature review. Front Pharmacol 2024; 15:1323083. [PMID: 38292938 PMCID: PMC10824900 DOI: 10.3389/fphar.2024.1323083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
In the realm of clinical management, Papillary Thyroid Cancer (PTC) stands out as a prevalent thyroid malignancy, characterized by significant metabolic challenges, particularly in the context of carbohydrate metabolism. Recent studies have unveiled promising applications of Dipeptidyl Peptidase-IV (DPP-IV) and Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors, which are conventionally employed in the treatment of type 2 diabetes mellitus (T2DM), as potential adjuncts in anticancer therapy. DPP-IV and SGLT2 inhibitors can be imply to counteract the Warburg effect in cancer, with a specific focus on PTC, owing to their potential metabolic advantages and their influence on the tumor microenvironment, achieved by imposing restrictions on glucose accessibility. Consequently, a comprehensive review has been undertaken, involving meticulous examination of the existing body of evidence pertaining to the utilization of DPP-IV and SGLT2 inhibitors in the context of PTC. The mechanisms of action inherent to these inhibitors have been thoroughly explored, drawing upon insights derived from preclinical investigations. Furthermore, this review initiates discussions concerning the implications for future research directions and the formulation of innovative therapeutic strategies for PTC. As the intricate interplay between carbohydrate metabolism, the Warburg effect, and cancer progression garners increasing attention, attaining a comprehensive understanding of the roles played by DPP-IV and SGLT2 inhibitors in PTC management may serve as the cornerstone for novel approaches aimed at enhancing patient care and broadening the spectrum of available therapeutic modalities.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
30
|
Ogunro OB, Olasehinde OR. Neuroinflammatory Response and Redox-regulation Activity of Hyperoside in Manganese-induced Neurotoxicity Model of Wistar Rats. Curr Aging Sci 2024; 17:220-236. [PMID: 38500281 DOI: 10.2174/0118746098277166231204103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 03/20/2024]
Abstract
BACKGROUND Excessive manganese exposure can lead to neurotoxicity with detrimental effects on the brain. Neuroinflammatory responses and redox regulation play pivotal roles in this process. Exploring the impact of hyperoside in a Wistar rat model offers insights into potential neuroprotective strategies against manganese-induced neurotoxicity. OBJECTIVE The study investigated the neuroprotective efficacy of hyperoside isolated from the ethanol leaf extract of Gongronema latifolium (HELEGL), in the brain tissue of Wistar rats following 15 consecutive days of exposure to 30 mg/L of MnCl2. METHODS Control animals in Group 1 had access to regular drinking water, while animals in groups 2-4 were exposed to MnCl2 in their drinking water. Groups 3 and 4 also received additional HELEGL at doses of 100 mg/kg and 200 mg/kg of body weight, respectively. In Group 5, HELEGL at a dose of 100 mg/kg of body weight was administered alone. Treatment with HELEGL commenced on day 8 via oral administration. RESULTS HELEGL effectively mitigated MnCl2-induced memory impairment, organ-body weight discrepancies, and fluid intake deficits. Exposure to MnCl2 increased the activities or levels of various markers such as acyl peptide hydrolase, tumour necrosis factor-α, dipeptidyl peptidase IV, nitric oxide, IL-1β, prolyl oligopeptidase, caspase-3, myeloperoxidase, H2O2, and malondialdehyde, while it decreased the activities or levels of others, including AChE, BChE, DOPA, serotonin, epinephrine, norepinephrine, GST, GPx, CAT, SOD, GSH, and T-SH (p < 0.05). In contrast, HELEGL effectively counteracted the adverse effects of MnCl2 by alleviating oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, cognitive deficits, and bolstering the antioxidant status. Moreover, HELEGL restored the normal histoarchitecture of the brain, which had been distorted by MnCl2. CONCLUSION In summary, HELEGL reversed the causative factors of neurodegenerative diseases induced by MnCl2 exposure, suggesting its potential for further exploration as a prospective therapeutic agent in the management of Alzheimer's disease and related forms of dementia.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Department of Biological Sciences, Reproductive & Endocrinology, Toxicology, and Bioinformatics Research Laboratory, KolaDaisi University, Ibadan, Nigeria
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Oluwaseun Ruth Olasehinde
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
- Department of Medical Biochemistry, College of Medicine and Health Science, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
31
|
Kandekar S, Punatar S, Khattry N, Gokarn A, Jindal N, Mirgh S, Chichra A, Tembhare P, Rane P, Gawde J, Mathew L, Patil A, Chiplunkar S, Kode J. Low levels of CD26 on certain cellular subtypes of donor harvest is associated with better clinical outcomes post allogeneic stem cell transplantation through regulation of NF-κB pathway and pro-inflammatory cytokines. Int Immunopharmacol 2023; 125:111054. [PMID: 37890379 DOI: 10.1016/j.intimp.2023.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND We had previously reported significant association of immunoectoenzyme CD26 expression on donor harvest with acute Graft-versus-Host-Disease (aGVHD) in allogeneic stem cell transplantation (ASCT) patients. The current study was aimed at analysing CD26 signaling pathway molecules and understanding their impact on immune reconstitution and clinical outcomes post-ASCT. SUBJECTS AND METHODOLOGY The study cohort included 26 transplant donors/patients who underwent reduced intensity (n = 21), myeloablative (n = 4) and non-myeloablative (n = 1) ASCT for hematological malignancies. Donors were matched related donors (n = 19) and haploidentical donors (n = 7). Surface expression of CD26, CD73 and ADA, and various immune cell subtypes were assessed by multicolour-flow cytometry. Soluble CD26 (sCD26) and cytokine levels were measured in plasma samples by ELISA and Multiplex Luminex assay, respectively. Immune cells from healthy individuals were stimulated with phytohemagglutinin (PHA) in the presence or absence of CD26 inhibitor. Effect of CD26 inhibition on NF-κB localization in PHA stimulated cells was analysed by immunofluorescence and confocal microscopy. Pro-inflammatory cytokines from the culture supernatants were detected with Cytometric bead array flow cytometry. Association of all measured markers with clinical outcomes was evaluated using appropriate statistical tests. RESULTS CD26 surface expression on PBSC donor harvest cells showed increased risk of chronic GVHD (cGVHD, p = 0.055). Amongst the various immune cell subtypes, decreased B cells in harvest showed significant association with aGVHD (p = 0.022) whereas increased myeloid dendritic cells and CD3+T cells at Day100 in peripheral blood of transplant recipients correlated with cGVHD (p = 0.046) and aGVHD (p = 0.035), respectively. Further, high sCD26 in transplant recipients at Day100 exhibited association with reduced event-free survival (EFS) (p = 0.011). Higher CD26 expression on more & less mature NK cells, naïve & post-switched memory B cells and Treg cells in the donor harvest (p < 0.05) led to lower EFS in transplant recipients. Mechanistically, CD26 inhibitor caused dose-dependent reduction in CD26 enzyme activity and in pro-inflammatory cytokine production in post mitogen-stimulated T cell cultures. CONCLUSION Our study has implicated that lower CD26 expression on immune cell subtypes of the donor stem cell harvest is associated with reduced risk of GVHD and better survival. The underlying mechanism was found to be through NF-κB pathway and pro-inflammatory cytokines. Based on these observations, chemically designed or natural resources-based CD26 inhibitors can be explored further in clinical trials for improving ASCT outcomes.
Collapse
Affiliation(s)
- Shruti Kandekar
- Kode Lab, Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sachin Punatar
- Stem Cell Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Navin Khattry
- Stem Cell Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Anant Gokarn
- Stem Cell Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nishant Jindal
- Stem Cell Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sumeet Mirgh
- Stem Cell Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Akanksha Chichra
- Stem Cell Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Prashant Tembhare
- Hematopathology Lab, Clinical Research Centre, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pallavi Rane
- Clinical Research Secretariat, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Jitendra Gawde
- Clinical Research Secretariat, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Libin Mathew
- Stem Cell Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Anand Patil
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Shubhada Chiplunkar
- Chiplunkar Lab, Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Jyoti Kode
- Kode Lab, Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
32
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
33
|
Sallam AM, Abou-Souliman I, Reyer H, Wimmers K, Rabee AE. New insights into the genetic predisposition of brucellosis and its effect on the gut and vaginal microbiota in goats. Sci Rep 2023; 13:20086. [PMID: 37973848 PMCID: PMC10654701 DOI: 10.1038/s41598-023-46997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Goats contribute significantly to the global food security and industry. They constitute a main supplier of meat and milk for large proportions of people in Egypt and worldwide. Brucellosis is a zoonotic infectious disease that causes a significant economic loss in animal production. A case-control genome-wide association analysis (GWAS) was conducted using the infectious status of the animal as a phenotype. The does that showed abortion during the last third period of pregnancy and which were positive to both rose bengal plate and serum tube agglutination tests, were considered as cases. Otherwise, they were considered as controls. All animals were genotyped using the Illumina 65KSNP BeadChip. Additionally, the diversity and composition of vaginal and fecal microbiota in cases and controls were investigated using PCR-amplicone sequencing of the V4 region of 16S rDNA. After applying quality control criteria, 35,818 markers and 66 does were available for the GWAS test. The GWAS revealed a significantly associated SNP (P = 5.01 × 10-7) located on Caprine chromosome 15 at 29 megabases. Four other markers surpassed the proposed threshold (P = 2.5 × 10-5). Additionally, fourteen genomic regions accounted for more than 0.1% of the variance explained by all genome windows. Corresponding markers were located within or in close vicinity to several candidate genes, such as ARRB1, RELT, ATG16L2, IGSF21, UBR4, ULK1, DCN, MAPB1, NAIP, CD26, IFIH1, NDFIP2, DOK4, MAF, IL2RB, USP18, ARID5A, ZAP70, CNTN5, PIK3AP1, DNTT, BLNK, and NHLRC3. These genes play important roles in the regulation of immune responses to the infections through several biological pathways. Similar vaginal bacterial community was observed in both cases and controls while the fecal bacterial composition and diversity differed between the groups (P < 0.05). Faeces from the control does showed a higher relative abundance of the phylum Bacteroidota compared to cases (P < 0.05), while the latter showed more Firmicutes, Spirochaetota, Planctomycetota, and Proteobacteria. On the genus level, the control does exhibited higher abundances of Rikenellaceae RC9 gut group and Christensenellaceae R-7 group (P < 0.05), while the infected does revealed higher Bacteroides, Alistipes, and Prevotellaceae UCG-003 (P < 0.05). This information increases our understanding of the genetics of the susceptibility to Brucella in goats and may be useful in breeding programs and selection schemes that aim at controlling the disease in livestock.
Collapse
Affiliation(s)
- Ahmed M Sallam
- Animal and Poultry Breeding Department, Desert Research Center, Cairo, Egypt.
| | | | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
34
|
Lagunas-Rangel FA, Liao S, Williams MJ, Trukhan V, Fredriksson R, Schiöth HB. Drosophila as a Rapid Screening Model to Evaluate the Hypoglycemic Effects of Dipeptidyl Peptidase 4 (DPP4) Inhibitors: High Evolutionary Conservation of DPP4. Biomedicines 2023; 11:3032. [PMID: 38002032 PMCID: PMC10669173 DOI: 10.3390/biomedicines11113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, have been an integral part of the treatment of type 2 diabetes mellitus (T2DM) for several years. Despite their remarkable efficacy in lowering glucose levels and their compatibility with other hypoglycemic drugs, recent studies have revealed adverse effects, prompting the search for improved drugs within this category, which has required the use of animal models to verify the hypoglycemic effects of these compounds. Currently, in many countries the use of mammals is being significantly restricted, as well as cost prohibitive, and alternative in vivo approaches have been encouraged. In this sense, Drosophila has emerged as a promising alternative for several compelling reasons: it is cost-effective, offers high experimental throughput, is genetically manipulable, and allows the assessment of multigenerational effects, among other advantages. In this study, we present evidence that diprotin A, a DPP4 inhibitor, effectively reduces glucose levels in Drosophila hemolymph. This discovery underscores the potential of Drosophila as an initial screening tool for novel compounds directed against DPP4 enzymatic activity.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | - Sifang Liao
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | | | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| |
Collapse
|
35
|
Pradhan R, Yu OHY, Platt RW, Azoulay L. Dipeptidyl peptidase-4 inhibitors and the risk of skin cancer among patients with type 2 diabetes: a UK population-based cohort study. BMJ Open Diabetes Res Care 2023; 11:e003550. [PMID: 37949470 PMCID: PMC10649616 DOI: 10.1136/bmjdrc-2023-003550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION The dipeptidyl peptidase-4 (DPP-4) enzyme significantly influences carcinogenic pathways in the skin. The objective of this study was to determine whether DPP-4 inhibitors are associated with the incidence of melanoma and nonmelanoma skin cancer, compared with sulfonylureas. RESEARCH DESIGN AND METHODS Using the United Kingdom Clinical Practice Research Datalink, we assembled two new-user active comparator cohorts for each skin cancer outcome from 2007 to 2019. For melanoma, the cohort included 96 739 DPP-4 inhibitor users and 209 341 sulfonylurea users, and 96 411 DPP-4 inhibitor users and 208 626 sulfonylurea users for non-melanoma skin cancer. Propensity score fine stratification weighted Cox proportional hazards models were used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs of melanoma and non-melanoma skin cancer, separately. RESULTS Overall, DPP-4 inhibitors were associated with a 23% decreased risk of melanoma compared with sulfonylureas (49.7 vs 65.3 per 100 000 person-years, respectively; HR 0.77, 95% CI 0.61 to 0.96). The HR progressively reduced with increasing cumulative duration of use (0-2 years HR 1.14, 95% CI 0.84 to 1.54; 2.1-5 years HR 0.44, 95% CI 0.29 to 0.66; >5 years HR 0.33, 95% CI 0.14 to 0.74). In contrast, these drugs were not associated with the incidence of non-melanoma skin cancer, compared with sulfonylureas (448.1 vs 426.1 per 100 000 person-years, respectively; HR 1.06, 95% CI 0.98 to 1.15). CONCLUSIONS In this large, population-based cohort study, DPP-4 inhibitors were associated with a reduced risk of melanoma but not non-melanoma skin cancer, compared with sulfonylureas.
Collapse
Affiliation(s)
- Richeek Pradhan
- Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Oriana H Y Yu
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
- Division of Endocrinology, Jewish General Hospital, Montreal, Québec, Canada
| | - Robert W Platt
- Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Laurent Azoulay
- Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| |
Collapse
|
36
|
Zuo B, Li T, Liu X, Wang S, Cheng J, Liu X, Cui W, Shi H, Ling C. Dipeptidyl peptidase 4 inhibitor reduces tumor-associated macrophages and enhances anti-PD-L1-mediated tumor suppression in non-small cell lung cancer. Clin Transl Oncol 2023; 25:3188-3202. [PMID: 37115489 PMCID: PMC10514125 DOI: 10.1007/s12094-023-03187-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE The efficacy of immune checkpoint inhibitors such as programmed cell death ligand 1 (PD-L1) antibodies in non-small cell lung cancer (NSCLC) is limited, and combined use with other therapies is recommended. Dipeptidyl peptidase 4 (DPP4) inhibitors, a class of small molecule inhibitors, are highly effective for treating type 2 diabetes. Emerging evidence implicates DPP4 inhibitors as immunomodulators that modify aspects of innate and adaptive immunity. We evaluated the combination of a DPP4 inhibitor (anagliptin) and PD-L1 blockade in an NSCLC mouse model. METHODS The effect of the combination of anti-PD-L1 and anagliptin was evaluated in subcutaneous mouse models of NSCLC. Tumor-infiltrating immune cells were analyzed by flow cytometry. Bone marrow-derived monocytes of C57BL/6 mice were isolated in vitro to examine the underlying mechanism of anagliptin on the differentiation and polarization of macrophage. RESULTS Anagliptin dramatically improved the efficacy of PD-L1 antibody monotherapy by inhibiting macrophage formation and M2 polarization in the tumor microenvironment. Mechanistically, anagliptin suppressed the production of reactive oxygen species in bone marrow monocytes by inhibiting NOX1 and NOX2 expression induced by macrophage colony-stimulating factor, reduced late ERK signaling pathway activation, and inhibited monocyte-macrophage differentiation. However, the inhibitory effect was reactivated by lipopolysaccharide and interferon-gamma interacting with corresponding receptors during M1 macrophage polarization, but not M2. CONCLUSIONS Anagliptin can enhance PD-L1 blockade efficacy in NSCLC by inhibiting macrophage differentiation and M2 macrophage polarization, and combination therapy may be a promising strategy for treating PD-L1 blockade therapy-resistant patients with NSCLC.
Collapse
Affiliation(s)
- Bei Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Tao Li
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Xiaoyun Liu
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shuling Wang
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Jianxiang Cheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiangqun Liu
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Wenjie Cui
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Chunhua Ling
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China.
| |
Collapse
|
37
|
Tian Y, Kong L, Li Y, Liao Z, Cai X, Deng S, Yang X, Zhang B, Wang Y, Zhang Z, Wu B, Wen L, Huang F, Hu Y, Wan C, Liao Y, Sun Y, Yang K. Dipeptidyl peptidase 4 inhibition sensitizes radiotherapy by promoting T cell infiltration. Oncoimmunology 2023; 12:2268257. [PMID: 37849962 PMCID: PMC10578189 DOI: 10.1080/2162402x.2023.2268257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Radiotherapy could regulate systemic antitumor immunity, while the immune state in the tumor microenvironment (TME) also affects the efficacy of radiotherapy. We have found that higher CD8+ T cell infiltration is associated with longer overall survival of lung adenocarcinoma and melanoma patients receiving radiotherapy. 8-Gray radiation increased the transcriptional levels of chemokines in tumor cells in vitro. However, it was not sufficient to induce significant lymphocyte infiltration in vivo. Dipeptidyl peptidase 4 (DPP4) has been reported to inactivate chemokines via post-translational truncation. Single-cell sequencing revealed that dendritic cells (DCs) had a higher DPP4 expression among other cells in the TME and upregulated DPP4 expression after radiation. Combining a DPP4 inhibitor with radiotherapy could promote chemokines expression and T cell infiltration in the TME, enhancing the antitumor effect of radiotherapy. Moreover, this therapy further enhanced the therapeutic efficacy of anti-PD-1. In this study, we demonstrated the underlying mechanism of why radiotherapy failed to induce sufficient T cell infiltration and proposed an effective strategy to promote T cell infiltration and sensitize radiotherapy. These findings demonstrate the translational value of DPP4 inhibition as a complementary approach to enhance the efficacy of radiotherapy and the combination of radiotherapy with immunotherapy.
Collapse
Affiliation(s)
- Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Lingyi Kong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Xing Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yifei Liao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Ibrahim AE, Maged K, Elhenawee M, El-Hay SS. Integrating micellar HPLC and green analytical chemistry tools in greenness assessment of five commonly Co-formulated antidiabetic drugs. SUSTAINABLE CHEMISTRY AND PHARMACY 2023; 35:101199. [DOI: 10.1016/j.scp.2023.101199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Xie D, Wang Q, Huang W, Zhao L. Dipeptidyl-peptidase-4 inhibitors have anti-inflammatory effects in patients with type 2 diabetes. Eur J Clin Pharmacol 2023; 79:1291-1301. [PMID: 37493797 DOI: 10.1007/s00228-023-03541-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
AIMS Systematic low-grade inflammation is considered to be an important factor leading to the development of T2DM and the progression of its complications. Dipeptidyl-peptidase-4 (DPP-4) inhibitors show potential anti-inflammatory effects in patients with T2DM. This meta-analysis aimed to evaluate the anti-inflammatory effects of DPP-4 inhibitors in patients with T2DM. METHODS A comprehensive search was performed in PubMed, Web of Science, Embase, and Cochrane Central Register of Controlled Trials to identify randomized controlled trials that assess the anti-inflammatory effects of DPP-4 inhibitors. Quantitative data analysis was conducted by a random-effects model. Sensitivity analyses were conducted to determine the robustness of the pooled results. RESULTS Twenty-two studies with 1595 patients with T2DM were included. Pooled results showed that DPP-4 inhibitor therapy was significantly associated with the reduction of C-reactive protein (CRP) (SMD, - 0.56, p < 0.01), TNF-α (SMD, - 1.69, p < 0.01), IL-6 (SMD, - 0.67, p < 0.01), and IL-1β (WMD, - 8.21 pg/ml, p < 0.01). Leave-one-out meta-analysis showed no significant change in the pooled results of CRP and TNF-α. CONCLUSION This meta-analysis demonstrated that DPP-4 inhibitors can significantly attenuate low-grade inflammatory state in patients with T2DM. In addition to improving glycemic control, DDP-4 inhibitors might offer extra therapeutic value by controlling inflammation.
Collapse
Affiliation(s)
- Dengpiao Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qiqi Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Wei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| | - Liangbin Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| |
Collapse
|
40
|
Hsu YHA, Yang TT, Huang SM, Lan CCE. The effect of dipeptidyl peptidase-4 inhibitor on incidence and clinical course in bullous pemphigoid patients in a tertiary medical center. Kaohsiung J Med Sci 2023; 39:1038-1044. [PMID: 37530673 DOI: 10.1002/kjm2.12731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
Several studies have reported an association between dipeptidyl peptidase 4 inhibitor (DPP4i), a commonly prescribed second-line oral antihyperglycemic drug, and bullous pemphigoid (BP). However, the benefits of DPP4i withdrawal in patients with BP remain controversial. This study primarily aimed to evaluate the clinical severity of DPP4i-associated BP by comparing it to those without Type 2 diabetes mellitus (DM). The secondary objective was to determine whether cessation of DPP4i is necessary for all patients with BP. This retrospective case-control study included 83 patients. The participants were divided into three groups according to their diabetic status and the status of discontinuance or continuance of DPP4i. The 12-month follow-up of the monthly dosage of systemic steroids per body weight (kg) and the percentage of systemic steroid off-therapy in these participants were recorded since the diagnosis of BP. Compared to patients with BP without DM, the 1st, 3rd, and 12th systemic prednisolone doses were significantly lower in the DPP4i group (p = 0.01684, 0.02559, and 0.009336, respectively). The 12th systemic prednisolone dose was significantly lower in patients who discontinued DPP4i (p = 0.0338). Nevertheless, several spontaneous remissions with systemic steroid off-therapy were also noted in the DPP4i-continuance group within 12 months of follow-up. This article supports the favorable impact of DPP4i withdrawal in patients with BP and shows that DPP4i may incite or aggravate BP, resulting in a milder disease course.
Collapse
Affiliation(s)
| | - Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Dermatology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
| | - Shu-Mei Huang
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Che Eric Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Gonzatti MB, Júnior JEM, Rocha AJ, de Oliveira JS, Evangelista AJDJ, Fonseca FMP, Ceccatto VM, de Oliveira AC, da Cruz Freire JE. Mechanism of molecular interaction of sitagliptin with human DPP 4 enzyme - New Insights. Adv Med Sci 2023; 68:402-408. [PMID: 37837799 DOI: 10.1016/j.advms.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE Dipeptidyl peptidase 4 (DPP4) inactivates a range of bioactive peptides. The cleavage of insulinotropic peptides and glucagon-like peptide 1 (GLP1) by DPP4 directly influences glucose homeostasis. This study aimed to describe the mode of interaction between sitagliptin (an antidiabetic drug) and human DPP4 using in silico approaches. MATERIALS AND METHODS Docking studies were conducted using AutoDock Vina, 2D and 3D schematic drawings were obtained using PoseView and PLIP servers, and the DPP4-sitagliptin complex was visualized with Pymol software. RESULTS The best affinity energy to form the DPP4-sitagliptin complex was E-value = - 8.1 kcal mol-1, as indicated by docking simulations. This result suggests a strong interaction. According to our observations, hydrophobic interactions involving the amino acids residues Tyr663 and Val712, hydrogen bonds (Glu203, Glu204, Tyr663, and Tyr667), π-Stacking interactions (Phe355 and Tyr667), and halogenic bonds (Arg123, Glu204, and Arg356) were prevalent in the DPP4-sitagliptin complex. Root Mean Square Deviation prediction also demonstrated that the global structure of the human DPP4 did not have a significant change in its topology, even after the formation of the DPP4-sitagliptin complex. CONCLUSION The stable interaction between the sitagliptin ligand and the DPP4 enzyme was demonstrated through molecular docking simulations. The findings presented in this work enhance the understanding of the physicochemical properties of the sitagliptin interaction site, supporting the design of more efficient gliptin-like iDPP4 inhibitors.
Collapse
Affiliation(s)
| | | | - Antônio José Rocha
- Department of Genetics, Evolution, Immunology, and Microbiology, State University of Campinas, Campinas, SP, Brazil
| | | | | | - Fátima Morgana Pio Fonseca
- Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
42
|
Roham PH, Kamath JJ, Sharma S. Dissecting the Interrelationship between COVID-19 and Diabetes Mellitus. Adv Biol (Weinh) 2023; 7:e2300107. [PMID: 37246237 DOI: 10.1002/adbi.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/20/2023] [Indexed: 05/30/2023]
Abstract
COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to enormous morbidity and mortality worldwide. After gaining entry into the human host, the virus initially infects the upper and lower respiratory tract, subsequently invading multiple organs, including the pancreas. While on one hand, diabetes mellitus (DM) is a significant risk factor for severe COVID-19 infection and associated death, recent reports have shown the onset of DM in COVID-19-recovered patients. SARS-CoV-2 infiltrates the pancreatic islets and activates stress response and inflammatory signaling pathways, impairs glucose metabolism, and consequently leads to their death. Indeed, the pancreatic autopsy samples of COVID-19 patients reveal the presence of SARS-CoV-2 particles in β-cells. The current review describes how the virus enters the host cells and activates an immunological response. Further, it takes a closer look into the interrelationship between COVID-19 and DM with the aim to provide mechanistic insights into the process by which SARS-CoV-2 infects the pancreas and mediates dysfunction and death of endocrine islets. The effects of known anti-diabetic interventions for COVID-19 management are also discussed. The application of mesenchymal stem cells (MSCs) as a future therapy for pancreatic β-cells damage to reverse COVID-19-induced DM is also emphasized.
Collapse
Affiliation(s)
- Pratiksha H Roham
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Jayesh J Kamath
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| |
Collapse
|
43
|
Hadjkacem F, Frikha H, Boujelben K, Chaari C, Mnif E, Masmoudi A, Boudawara T, Turki H, Abid M. Bullous Pemphigoid Associated With Dipeptidyl Peptidase-4 Inhibitors: A Case Report and Review of Current Evidence. Hosp Pharm 2023; 58:357-362. [PMID: 37360199 PMCID: PMC10288458 DOI: 10.1177/00185787231151861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4i), or gliptins, are a widely used glucose-lowering agents. A growing amount of evidence pointed to a possible role of DPP-4i in the induction of bullous pemphigoid (BP), which is an auto-immune skin blistering disease that mainly affects the elderly. In this article we discuss a case of DPP-4i associated BP and we provide an updated review of the current knowledge regarding this emerging entity. Use of DPP-4i, particularly vildagliptin, was found to significantly increase the risk of BP. BP180 would be in the center of the aberrant immune response. DPP-4i induced BP is thought to be associated with male gender, mucosal involvement, and milder inflammatory phenotype especially in Asian population. Generally, patients may not remit fully after DPP-4i withdrawal only and require either topical or systemic glucocorticoid courses.
Collapse
|
44
|
Tagliamonte S, Barone Lumaga R, De Filippis F, Valentino V, Ferracane R, Guerville M, Gandolfi I, Barbara G, Ercolini D, Vitaglione P. Milk protein digestion and the gut microbiome influence gastrointestinal discomfort after cow milk consumption in healthy subjects. Food Res Int 2023; 170:112953. [PMID: 37316045 DOI: 10.1016/j.foodres.2023.112953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Many healthy people suffer from milk-related gastrointestinal discomfort (GID) despite not being lactose intolerant; the mechanisms underpinning such condition are unknown. This study aimed to explore milk protein digestion and related physiological responses (primary outcome), gut microbiome and gut permeability in 19 lactose-tolerant healthy nonhabitual milk consumers [NHMCs] reporting GID after consuming cow milk compared to 20 habitual milk consumers [HMCs] without GID. NHMCs and HMCs participated in a milk-load (250 mL) test, underwent blood sample collection at 6 time points over 6 h after milk consumption and collected urine samples and GID self-reports over 24 h. We measured the concentrations of 31 milk-derived bioactive peptides (BAPs), 20 amino acids, 4 hormones, 5 endocannabinoid system mediators, glucose and the dipeptidyl peptidase-IV (DPPIV) activity in blood and indoxyl sulfate in urine samples. Subjects also participated in a gut permeability test and delivered feces sample for gut microbiome analysis. Results showed that, compared to HMCs, milk consumption in NHMCs, along with GID, elicited a slower and lower increase in circulating BAPs, lower responses of ghrelin, insulin, and anandamide, a higher glucose response and serum DPPIV activity. The gut permeability of the two groups was similar, while the habitual diet, which was lower in dairy products and higher in the dietary-fibre-to-protein ratio in NHMCs, possibly shaped the gut microbiome; NHMCs exhibited lower abundance of Bifidobacteria, higher abundance of Prevotella and lower abundance of protease-coding genes, which may have reduced protein digestion, as evidenced by lower urinary excretion of indoxyl sulfate. In conclusion, the findings showed that a less efficient digestion of milk proteins, supported by a lower proteolytic capability of the gut microbiome, may explain GID in healthy people after milk consumption.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Roberta Barone Lumaga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Mathilde Guerville
- Nutrition Department, Lactalis Research & Development, 35240 Retiers, France
| | - Ivana Gandolfi
- Nutrition Department, Lactalis Research & Development, 43038 Sala Baganza, Italy
| | - Giovanni Barbara
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy.
| |
Collapse
|
45
|
Castro MC, Villagarcía HG, Schinella G, Massa ML, Francini F. Mechanism of preventive effects of exendin-4 and des-fluoro-sitagliptin in a murine model of fructose-induced prediabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159363. [PMID: 37429413 DOI: 10.1016/j.bbalip.2023.159363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Protective effects of exendin-4 (glucagon-like peptide-1 -GLP-1- receptor agonist) and des-fluoro-sitagliptin (dipeptidyl peptidase-4 inhibitor) on fructose-induced hepatic disturbances were evaluated in prediabetic rats. Complementary, a possible direct effect of exendin-4 in human hepatoblastoma-derived cell line HepG2 incubated with fructose in presence/absence of exendin-9-39 (GLP-1 receptor antagonist) was investigated. In vivo, after 21 days of fructose rich diet, we determined: glycemia, insulinemia, and triglyceridemia; hepatic fructokinase, AMP-deaminase, and G-6-P dehydrogenase (G-6-P DH) activities; carbohydrate-responsive element-binding protein (ChREBP) expression; triglyceride content and lipogenic gene expression (glycerol-3-phosphate acyltransferase -GPAT-, fatty acid synthase -FAS-, sterol regulatory element-binding protein-1c -SREBP-1c); oxidative stress and inflammatory markers expression. In HepG2 cells we measured fructokinase activity and triglyceride content. Hypertriglyceridemia, hyperinsulinemia, enhanced liver fructokinase, AMP-deaminase, and G-6-P DH activities, increased ChREBP and lipogenic genes expression, enhanced triglyceride level, oxidative stress and inflammatory markers recorded in fructose fed animals, were prevented by co-administration of either exendin-4 or des-fluoro-sitagliptin. Exendin-4 prevented fructose-induced increase in fructokinase activity and triglyceride contain in HepG2 cells. These effects were blunted co-incubating with exendin-9-39. The results demonstrated for the first time that exendin-4/des-fluro-sitagliptin prevented fructose-induced endocrine-metabolic oxidative stress and inflammatory changes probably acting on the purine degradation pathway. Exendin 9-39 blunted in vitro protective exendin-4 effects, thereby suggesting a direct effect of this compound on hepatocytes through GLP-1 receptor. Direct effect on fructokinase and AMP-deaminase activities, with a key role in the pathogenesis of liver dysfunction induced by fructose, suggests purine degradation pathway constitute a potential therapeutic objective for GLP-1 receptor agonists.
Collapse
Affiliation(s)
- María Cecilia Castro
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Hernán Gonzalo Villagarcía
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Guillermo Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina; Instituto de Ciencias de la Salud, UNAJ-CICPBA, Street Avenue Calchaqui 6200, Florencio Varela 1888, Argentina.
| | - María Laura Massa
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Flavio Francini
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| |
Collapse
|
46
|
Chen YH, Zhang X, Chou CH, Hsueh MF, Attarian D, Li YJ, Kraus VB. Association of Dipeptidylpeptidase 4 (CD26) With Chondrocyte Senescence and Radiographic Progression in Knee Osteoarthritis. Arthritis Rheumatol 2023; 75:1120-1131. [PMID: 36704903 PMCID: PMC10313751 DOI: 10.1002/art.42455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To evaluate the association of dipeptidylpeptidase 4 (DPP-4; also known as CD26) with cellular senescence of human cartilage and progression of knee osteoarthritis (OA). METHODS Articular cartilage sections and chondrocytes were acquired from 35 individuals undergoing total knee replacement for OA to evaluate the following: 1) the association between OA severity and established senescence markers (senescence-associated β-galactosidase activity and p16), which was quantified using immunohistochemistry and flow cytometry (n = 19 samples); 2) the coexpression of DPP-4 with established senescence markers, which was assessed using flow cytometry; and 3) expression levels of anabolic and catabolic genes, senescence-related genes, and senescence-associated secretory phenotypes in DPP-4+ and DPP-4- cells, which were isolated using fluorescence-activated cell sorting or magnetic-activated cell sorting (n = 16 samples). The concentration of soluble DPP-4 was measured in samples of synovial fluid and samples of plasma from the Prediction of Osteoarthritis Progression cohort and then evaluated for association with the severity of radiographic knee OA at baseline (n = 65 samples) and the progression of structural radiographic OA (n = 57 samples) over a 3-year period. RESULTS DPP-4 expression was associated with higher senescence-associated β-galactosidase activity, p16 expression, senescence-related gene and catabolic gene (ADAMTS5, MMP13, IL6, and IL8) expression, higher senescence-associated secretory phenotype secretion, and lower anabolic gene (COL2A1 and ACAN) expression in primary chondrocytes. Synovial fluid DPP-4 concentration was associated with radiographic OA progression (odds ratio 105.32; P = 0.015), proteases (synovial fluid matrix metalloproteinase 1 and matrix metalloproteinase 3), aggrecan degradation (synovial fluid sulfated glycosaminoglycan), indicators of activated macrophages (synovial fluid CD14 and CD163), and inflammation (synovial fluid interleukin-6). CONCLUSION Our study identifies DPP-4 as a key surface marker in senescent chondrocytes and a predictor of radiographic OA progression.
Collapse
Affiliation(s)
- Yu-Hsiu Chen
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine Tri-Service General Hospital, National Defense Medical Center, Taiwan
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Ching-Heng Chou
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David Attarian
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yi-Ju Li
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
47
|
Cruz-Chamorro I, Santos-Sánchez G, Bollati C, Bartolomei M, Capriotti AL, Cerrato A, Laganà A, Pedroche J, Millán F, Del Carmen Millán-Linares M, Arnoldi A, Carrillo-Vico A, Lammi C. Chemical and biological characterization of the DPP-IV inhibitory activity exerted by lupin (Lupinus angustifolius) peptides: From the bench to the bedside investigation. Food Chem 2023; 426:136458. [PMID: 37329795 DOI: 10.1016/j.foodchem.2023.136458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.
Collapse
Affiliation(s)
- Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Antonio Carrillo-Vico
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
48
|
Gui Y, Palanza Z, Fu H, Zhou D. Acute kidney injury in diabetes mellitus: Epidemiology, diagnostic, and therapeutic concepts. FASEB J 2023; 37:e22884. [PMID: 36943403 PMCID: PMC10602403 DOI: 10.1096/fj.202201340rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) and diabetes mellitus (DM) are public health problems that cause a high socioeconomic burden worldwide. In recent years, the landscape of AKI etiology has shifted: Emerging evidence has demonstrated that DM is an independent risk factor for the onset of AKI, while an alternative perspective considers AKI as a bona fide complication of DM. Therefore, it is necessary to systematically characterize the features of AKI in DM. In this review, we summarized the epidemiology of AKI in DM. While focusing on circulation- and tissue-specific microenvironment changes after DM, we described the active cellular and molecular mechanisms of increased kidney susceptibility to AKI under DM stress. We also reviewed the current diagnostic and therapeutic strategies for AKI in DM recommended in the clinic. Updated recognition of the epidemiology, pathophysiology, diagnosis, and medications of AKI in DM is believed to reveal a path to mitigate the frequency of AKI and DM comorbidity that will ultimately improve the quality of life in DM patients.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
49
|
Amin SN, Sakr HI, El Gazzar WB, Shaltout SA, Ghaith HS, Elberry DA. Combined saline and vildagliptin induced M2 macrophage polarization in hepatic injury induced by acute kidney injury. PeerJ 2023; 11:e14724. [PMID: 36815993 PMCID: PMC9933746 DOI: 10.7717/peerj.14724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Acute kidney injury (AKI) is a prevalent medical condition accompanied by mutual affection of other organs, including the liver resulting in complicated multiorgan malfunction. Macrophages play a vital role during tissue injury and healing; they are categorized into "classically activated macrophages" (M1) and "alternatively activated macrophages" (M2). The present study investigated and compared the conventional fluid therapy vs Dipeptidyl peptidase 4 inhibitor (DPP-4i) vildagliptin on the liver injury induced by AKI and evaluated the possible molecular mechanisms. Thirty rats comprised five groups (n = 6 rats/group): control, AKI, AKI+saline (received 1.5 mL of normal saline subcutaneous injection), AKI+vildagliptin (treated with oral vildagliptin 10 mg/kg), AKI+saline+vildagliptin. AKI was induced by intramuscular (i.m) injection of 50% glycerol (5 ml/kg). At the end of the work, we collected serum and liver samples for measurements of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrotic factor-α (TNF-α), and interleukin-10 (IL-10). Liver samples were processed for assessment of inducible nitric oxide synthase (iNOS) as a marker for M1, arginase 1 (Arg-1) as an M2 marker, c-fos, c-Jun, mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and high-mobility-group-box1 (HMGB1) protein. The difference was insignificant regarding the relative expression of AP-1, c-Jun, c-fos, MAPK, and HMGB between the AKI+saline group and the AKI+Vildagliptin group. The difference between the same two groups concerning the hepatic content of the M1 marker (iNOS) and the M2 marker Arg-1 was insignificant. However, combined therapy produced more pronounced changes in these markers, as the difference in their relative expression between the AKI+saline+Vildagliptin group and both the AKI+saline group and the AKI+Vildagliptin group was significant. Accordingly, we suggest that the combined saline and vildagliptin hepatoprotective effect involves the downregulation of the MAPK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Shaimaa N. Amin
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt,Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Walaa B. El Gazzar
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sherif A. Shaltout
- Department of Pharmacology, Public health, and Clinical Skills, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Dalia A. Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
50
|
Nassar M, Abosheaishaa H, Singh AK, Misra A, Bloomgarden Z. Noninsulin-based antihyperglycemic medications in patients with diabetes and COVID-19: A systematic review and meta-analysis. J Diabetes 2023; 15:86-96. [PMID: 36690377 PMCID: PMC9934962 DOI: 10.1111/1753-0407.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Patients with diabetes are more likely to suffer COVID-19 complications. Using noninsulin antihyperglycemic medications (AGMs) during COVID-19 infection has proved challenging. In this study, we evaluate different noninsulin AGMs in patients with COVID-19. METHODS We searched Medline, Embase, Web of Science, and Cochrane on 24 January 2022. We used the following keywords (COVID-19) AND (diabetes mellitus) AND (antihyperglycemic agent). The inclusion criteria were studies reporting one or more of the outcomes. We excluded non-English articles, case reports, and literature reviews. Study outcomes were mortality, hospitalization, and intensive care unit (ICU) admission. RESULTS The use of metformin rather than other glucose-lowering medications was associated with statistically significant lower mortality (risk ratio [RR]: 0.60, 95% confidence interval [CI]: 0.47, 0.77, p < .001). Dipeptidyl peptidase-4 inhibitor (DPP-4i) use was associated with statistically significantly higher hospitalization risk (RR: 1.44, 95% CI: 1.23, 1.68, p < .001) and higher risk of ICU admissions and/or mechanical ventilation vs nonusers (RR: 1.24, 95% CI: 1.04, 1.48, p < .02). There was a statistically significant decrease in hospitalization for SGLT-2i users vs nonusers (RR: 0.89, 95% CI: 0.84-0.95, p < .001). Glucagon-like peptide-1 receptor agonist (GLP-1RA) use was associated with a statistically significant decrease in mortality (RR: 0.56, 95% CI: 0.42, 073, p < 0.001), ICU admission, and/or mechanical ventilation (RR: 0.79, 95% CI: 0.69-0.89, p < .001), and hospitalization (RR: 0.73, 95% CI: 0.54, 0.98, p = .04). CONCLUSIONS AGM use was not associated with increased mortality. However, metformin and GLP-1RA use reduced mortality risk statistically significantly. DPP-4i use was associated with a statistically significant increase in the risk of hospitalization and admission to the ICU.
Collapse
Affiliation(s)
- Mahmoud Nassar
- Department of MedicineIcahn School of Medicine at Mount Sinai/NYC Health+Hospitals/QueensNew York CityNew YorkUSA
| | - Hazem Abosheaishaa
- Department of MedicineIcahn School of Medicine at Mount Sinai/NYC Health+Hospitals/QueensNew York CityNew YorkUSA
| | - Awadhesh Kumar Singh
- Department of Diabetes & EndocrinologyGD Hospital & Diabetes InstituteKolkataIndia
| | - Anoop Misra
- Chairman, Fortis‐C‐DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, Diabetes Foundation (India), and National Diabetes Obesity and Cholesterol Foundation (NDOC)New DelhiIndia
| | - Zachary Bloomgarden
- Department of Medicine, Division of Endocrinology, Diabetes and Bone DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|