1
|
Li X, Gong J, Ni X, Yin J, Zhang Y, Lv Z. Potential biological roles of exosomal non-coding RNAs in breast cancer. FASEB J 2025; 39:e70456. [PMID: 40079186 PMCID: PMC11904755 DOI: 10.1096/fj.202500022r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Breast cancer (BC) is one of the most common malignant tumors among women, accounting for 24.5% of all cancer cases and leading to 15.5% of cancer-related mortality. The treatment of BC patients remains a significant challenge due to the disease's high invasiveness, elevated metastatic potential, substantial drug resistance, and high recurrence rate. Exosomes, which are lipid-bilayer extracellular vesicles ranging in size from 30 to 150 nm, mediate intercellular communication between tumor cells and surrounding cells in the tumor microenvironment by transferring various bioactive substances, such as proteins, lipids, and nucleic acids. Recently, growing evidence has demonstrated that non-coding RNAs (ncRNAs) are enriched in exosomes and play a critical role in regulating cell proliferation, metastasis, drug resistance, and angiogenesis in BC. Consequently, exosomal ncRNAs have emerged as a promising therapeutic target for BC treatment, given their involvement in multiple processes of cancer progression. This review provides a comprehensive and in-depth analysis of emerging exosomal ncRNAs in BC, highlighting their potential biological mechanisms and advanced applications in BC treatment.
Collapse
Affiliation(s)
- Xiang Li
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Junyi Gong
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Xiang Ni
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Junli Yin
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Zhang
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Lv
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Chi H, Shi L, Gan S, Fan G, Dong Y. Innovative Applications of Nanopore Technology in Tumor Screening: An Exosome-Centric Approach. BIOSENSORS 2025; 15:199. [PMID: 40277513 DOI: 10.3390/bios15040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Its complex pathogenesis and metastasis pose significant challenges for early diagnosis, underscoring the urgent need for innovative and non-invasive tumor screening methods. Exosomes, small extracellular vesicles that reflect the physiological and pathological states of their parent cells, are uniquely suited for cancer liquid biopsy due to their molecular cargo, including RNA, DNA, and proteins. However, traditional methods for exosome isolation and detection are often limited by inadequate sensitivity, specificity, and efficiency. Nanopore technology, characterized by high sensitivity and single-molecule resolution, offers powerful tools for exosome analysis. This review highlights its diverse applications in tumor screening, such as magnetic nanopores for high-throughput sorting, electrochemical sensing for real-time detection, nanomaterial-based assemblies for efficient capture, and plasmon resonance for ultrasensitive analysis. These advancements have enabled precise exosome detection and demonstrated promising potential in the early diagnosis of breast, pancreatic, and prostate cancers, while also supporting personalized treatment strategies. Additionally, this review summarizes commercialized products for exosome-based cancer diagnostics and examines the technical and translational challenges in clinical applications. Finally, it discusses the future prospects of nanopore technology in advancing liquid biopsy toward clinical implementation. The continued progress of nanopore technology not only accelerates exosome-based precision medicine but also represents a significant step forward in next-generation liquid biopsy and tumor screening.
Collapse
Affiliation(s)
- Heng Chi
- BGI Research, Shenzhen 518083, China
| | | | | | | | - Yuliang Dong
- BGI Research, Shenzhen 518083, China
- BGI Research, Hangzhou 310030, China
| |
Collapse
|
3
|
He SQ, Huang B, Xu F, Yang JJ, Li C, Liu FR, Yuan LQ, Lin X, Liu J. Functions and application of circRNAs in vascular aging and aging-related vascular diseases. J Nanobiotechnology 2025; 23:216. [PMID: 40098005 PMCID: PMC11917153 DOI: 10.1186/s12951-025-03199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Circular RNAs (circRNAs), constituting a novel class of endogenous non-coding RNAs generated through the reverse splicing of mRNA precursors, possess the capacity to regulate gene transcription and translation. Recently, the pivotal role of circRNAs in controlling vascular aging, as well as the pathogenesis and progression of aging-related vascular diseases, has garnered substantial attention. Vascular aging plays a crucial role in the increased morbidity and mortality of the elderly. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are crucial components of the intima and media layers of the vascular wall, respectively, and are closely involved in the mechanisms underlying vascular aging and aging-related vascular diseases. The review aims to provide a comprehensive exploration of the connection between circRNAs and vascular aging, as well as aging-related vascular diseases. Besides, circRNAs, as potential diagnostic markers or therapeutic targets for vascular aging and aging-related vascular diseases, will be discussed thoroughly, along with the challenges and limitations of their clinical application. Investigating the role and molecular mechanisms of circRNAs in vascular aging and aging-related vascular diseases will provide a novel insight into early diagnosis and therapy, and even effective prognosis assessment of these conditions.
Collapse
Affiliation(s)
- Sha-Qi He
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bei Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jun-Jie Yang
- Department of Radiology, the Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, China
| | - Cong Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng-Rong Liu
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Quality Control Center in Hunan Province, Changsha, 410011, China.
| |
Collapse
|
4
|
Huang H, Jiang NN, Lu GW, Xu F, Sun LL, Zhu J, Dong Z, Zhang ZJ, Liu S. CircMETTL9 targets CCAR2 to induce neuronal oxidative stress and apoptosis via mitochondria-mediated pathways following traumatic brain injury. Free Radic Biol Med 2025; 228:44-61. [PMID: 39709098 DOI: 10.1016/j.freeradbiomed.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Traumatic brain injury (TBI) remains a principal factor in neurological disorders, often resulting in significant morbidity due to secondary neuroinflammatory and oxidative stress responses. While circular RNAs are recognized for their high expression levels in the nervous system and play crucial roles in various neurological processes, their specific contributions to the pathophysiology of TBI remain underexplored. In this study, the possible molecular mechanisms through which circMETTL9 modulated oxidative stress and neurological outcomes following TBI were investigated. In vitro model of oxidative stress utilizing SH-SY5Y cells revealed that circMETTL9 knockdown significantly attenuated H₂O₂-induced reactive oxygen species (ROS) production, reduced apoptosis, and preserved mitochondrial function. Additionally, CCAR2 has been identified as a circMETTL9-binding protein by mass spectrometry and RNA immunoprecipitation, with circMETTL9 positively regulating CCAR2 expression. Meanwhile, on the basis of silencing CCAR2, it was verified that the regulation of oxidative stress in SH-SY5Y cells by circMETTL9 was mediated by CCAR2. In vivo experiments using a TBI rat model further confirmed that CCAR2 knockdown alleviated central nervous system (CNS) injury, reduced oxidative stress and apoptosis, and protected mitochondrial integrity following TBI. These findings suggest a novel mechanism by which circMETTL9 targets CCAR2 via mitochondria-mediated Bax/Bcl-2/caspase-3 signaling to regulate apoptosis. CircMETTL9 may provide a viable therapeutic target for mitigating neurological dysfunction following TBI, offering new insights into potential interventions aimed at reducing secondary brain injury.
Collapse
Affiliation(s)
- Hao Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; School of Nursing and Rehabilitation, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Nan-Nan Jiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; School of Nursing and Rehabilitation, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Gui-Wei Lu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; School of Nursing and Rehabilitation, Nantong University, Nantong, 226001, Jiangsu Province, China; Department of Rehabilitation Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Feng Xu
- The Second People's Hospital of Nantong, Nantong, 226002, Jiangsu Province, China
| | - Lu-Lu Sun
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jing Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zhao Dong
- Nanjing Vocational Health College, Nanjing, 210038, Jiangsu Province, China.
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
5
|
Zhu Y, Zhang L, Wang Z, Li T, Chen Y, Lu L, Liu H, Kong D, Peng Y, Chen X, Hu C, Chen H, Guo A. Circular RNA ZNF277 Sponges miR-378d to Inhibit the Intracellular Survival of Mycobacterium tuberculosis by Upregulating Rab10. Cells 2025; 14:262. [PMID: 39996735 PMCID: PMC11853707 DOI: 10.3390/cells14040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs formed by back-splicing, lacking a 5' cap and poly-A tail. They could act as important regulatory factors in the host's anti-tuberculosis immune process, but only a few have been identified, and their molecular mechanisms remain largely unclear. Here, we identified a novel circRNA, circ-ZNF277, which responds to Mycobacterium tuberculosis (Mtb) infection in THP-1 cells. Circ-ZNF277 binds microRNA-378d (miR-378d) in vivo. The expression level of circ-ZNF277 affects the clearance of the intracellular Mtb in THP-1 cells. Mechanistically, more circ-ZNF277 molecules could absorb more miR-378d, thereby competitively activating the NF-κB signaling pathway, promoting the release of pro-inflammatory cytokines including interleukins IL-1β and IL-6, and tumor necrosis factor-α (TNF-α), and inhibiting the survival of intracellular Mtb. Expressing miR-378d or si-Rab10 targeting the transcription of Rab10 could antagonize the effects of overexpression of circ-ZNF277, resulting in the reduced intracellular survival of Mtb. In summary, circ-ZNF277 inhibits the intracellular survival of Mtb via the miR-378d/Rab10 axis. This finding represents a novel mechanism of circular RNA in regulating host immune responses during Mtb infection.
Collapse
Affiliation(s)
- Yifan Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijian Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Lu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Delai Kong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchong Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Yin X, Li H, Zhou Y. Circular RNAs in Viral Infection and Antiviral Treatment. Cells 2024; 13:2033. [PMID: 39682781 PMCID: PMC11640649 DOI: 10.3390/cells13232033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs that lack the 5'-cap structure and the 3' poly(A) tail. Their distinguishing feature is that the 3' and 5' ends are covalently linked to form a closed circular structure. CircRNAs have a longer half-life and stronger ribonuclease resistance compared with linear RNA. Viral infections lead to the production of circRNA molecules through the transcription and splicing mechanisms of host cells. circRNAs are produced from the transcription and splicing of the viral genome or from the splicing reactions of the host cell gene. They participate in regulating the replication of many viruses, including coronaviruses, human herpesviruses, human immunodeficiency virus, and cytomegalovirus. CircRNAs regulate the infection process by modulating circRNA expression in host cells and affect cellular biological processes. Some circRNAs have been proposed as diagnostic markers for viral infections. In this review, we discussed the properties of virus-derived circRNAs, the biological functions of diverse viruses-derived and host circRNAs during viral infections, and the critical role of circRNAs in the host's antiviral immune defense. Extensive research on the applications of circRNAs can help us better understand gene regulatory networks and disease mechanisms.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming 650118, China; (X.Y.); (H.L.)
| |
Collapse
|
7
|
Zhang J, Liu J, Qiao L, Zhang Q, Hu J, Zhang CY. Recent Advance in Single-Molecule Fluorescent Biosensors for Tumor Biomarker Detection. BIOSENSORS 2024; 14:540. [PMID: 39589999 PMCID: PMC11591580 DOI: 10.3390/bios14110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The construction of biosensors for specific, sensitive, and rapid detection of tumor biomarkers significantly contributes to biomedical research and early cancer diagnosis. However, conventional assays often involve large sample consumption and poor sensitivity, limiting their further application in real samples. In recent years, single-molecule biosensing has emerged as a robust tool for detecting and characterizing biomarkers due to its unique advantages including simplicity, low sample consumption, ultra-high sensitivity, and rapid assay time. This review summarizes the recent advances in the construction of single-molecule biosensors for the measurement of various tumor biomarkers, including DNAs, DNA modifications, RNAs, and enzymes. We give a comprehensive review about the working principles and practical applications of these single-molecule biosensors. Additionally, we discuss the challenges and limitations of current single-molecule biosensors, and highlight the future directions.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Jiawen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lixue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Chun-yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| |
Collapse
|
8
|
Chen YX, Zhao AR, Wei TW, Wang H, Wang LS. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J Cardiovasc Transl Res 2024; 17:1097-1105. [PMID: 38647881 DOI: 10.1007/s12265-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.
Collapse
Affiliation(s)
- Yi-Xi Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - An-Ran Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Chen R, Wang X, Li N, Golubnitschaja O, Zhan X. Body fluid multiomics in 3PM-guided ischemic stroke management: health risk assessment, targeted protection against health-to-disease transition, and cost-effective personalized approach are envisaged. EPMA J 2024; 15:415-452. [PMID: 39239108 PMCID: PMC11371995 DOI: 10.1007/s13167-024-00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Because of its rapid progression and frequently poor prognosis, stroke is the third major cause of death in Europe and the first one in China. Many independent studies demonstrated sufficient space for prevention interventions in the primary care of ischemic stroke defined as the most cost-effective protection of vulnerable subpopulations against health-to-disease transition. Although several studies identified molecular patterns specific for IS in body fluids, none of these approaches has yet been incorporated into IS treatment guidelines. The advantages and disadvantages of individual body fluids are thoroughly analyzed throughout the paper. For example, multiomics based on a minimally invasive approach utilizing blood and its components is recommended for real-time monitoring, due to the particularly high level of dynamics of the blood as a body system. On the other hand, tear fluid as a more stable system is recommended for a non-invasive and patient-friendly holistic approach appropriate for health risk assessment and innovative screening programs in cost-effective IS management. This article details aspects essential to promote the practical implementation of highlighted achievements in 3PM-guided IS management. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00376-2.
Collapse
Affiliation(s)
- Ruofei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Xiaoyan Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, 53127 Germany
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 P. R. China
| |
Collapse
|
10
|
Liu W, Sun Y, Huo Y, Zhang L, Zhang N, Yang M. Circular RNAs in lung cancer: implications for preventing therapeutic resistance. EBioMedicine 2024; 107:105309. [PMID: 39191172 PMCID: PMC11445705 DOI: 10.1016/j.ebiom.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
LC is one of the most common malignant tumours that often presents with no distinct symptoms in the early stages, leading to late diagnoses when patients are at an advanced stage and no longer suitable for surgical treatment. Although adjuvant treatments are available, patients frequently develop tolerance to these treatments over time, resulting in poor prognoses for patients with advanced LC. Recently, circular RNAs (circRNAs), a type of non-coding RNA, have gained significant attention in LC research. Owing to their unique circular structure, circRNAs are highly stable within cells. This review systematically summarises the expression, characteristics, biological functions, and molecular regulatory mechanisms of circRNAs involved in therapy resistance as well as the potential applications in early diagnosis and gene targeting therapy in LC.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China
| | - Yawen Sun
- Department of Scientific Research and Education, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Jin H, Liu J, Wang D. Antioxidant Potential of Exosomes in Animal Nutrition. Antioxidants (Basel) 2024; 13:964. [PMID: 39199210 PMCID: PMC11351667 DOI: 10.3390/antiox13080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the advantages of exosomes as novel antioxidants in animal nutrition and their potential for regulating oxidative stress. Although traditional nutritional approaches promote oxidative stress defense systems in mammalian animals, several issues remain to be solved, such as low bioavailability, targeted tissue efficiency, and high-dose by-effect. As an important candidate offering regulation opportunities concerned with cellular communication, disease prevention, and physiology regulation in multiple biological systems, the potential of exosomes in mediating redox status in biological systems has not been well described. A previously reported relationship between redox system regulation and circulating exosomes suggested exosomes as a fundamental candidate for both a regulator and biomarker for a redox system. Herein, we review the effects of oxidative stress on exosomes in animals and the potential application of exosomes as antioxidants in animal nutrition. Then, we highlight the advantages of exosomes as redox regulators due to their higher bioavailability and physiological heterogeneity-targeted properties, providing a theoretical foundation and feed industry application. Therefore, exosomes have shown great potential as novel antioxidants in the field of animal nutrition. They can overcome the limitations of traditional antioxidants in terms of dosage and side effects, which will provide unprecedented opportunities in nutritional management and disease prevention, and may become a major breakthrough in the field of animal nutrition.
Collapse
Affiliation(s)
| | | | - Diming Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.L.)
| |
Collapse
|
12
|
Jin J, Du M, Ding D, Xuan R. CircRNA circ_0013339 Regulates the Progression of Colorectal Cancer Through miR-136-5p/SOX9 Axis. Biochem Genet 2024; 62:2362-2380. [PMID: 37925667 DOI: 10.1007/s10528-023-10540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common gastrointestinal malignancy. Dysregulation of circular RNAs (circRNAs) is associated with the progression of CRC. However, the role of circ_0013339 (hsa_circ_0013339) in CRC is still not clear. METHODS The levels of circ_0013339, miR-136-5p, and SRY-box transcription factor 9 (SOX9) in CRC were gauged by quantitative real-time polymerase chain reaction (qRT-PCR). Colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to detect cell proliferation. Cell counting kit-8 (CCK8) assay was used to measure cell viability. Western blot assay was performed to examine protein expression. The relationship between miR-136-5p and circ_0013339 or SOX9 was tested by dual-luciferase reporter assay. The effect of sh-circ_0013339 on tumor growth in vivo was examined by xenograft experiments. RESULTS Circ_0013339 expression was elevated in CRC tissues and cells, and circ_0013339 knockdown diminished the growth of CRC cells. MiR-136-5p was regulated by circ_0013339. MiR-136-5p deficiency ameliorated the effects of circ_0013339 silencing on CRC cell malignant behaviors. Circ_0013339 modulated SOX9 expression through miR-136-5p. SOX9 addition reversed the effects of miR-136-5p overexpression on CRC cell behaviors. Moreover, silencing of circ_0013339 suppressed the growth of xenograft tumors in vivo. CONCLUSION Circ_0013339 regulates the progression of CRC through miR-136-5p-dependent regulation of SOX9, uncovering a novel regulatory mechanism of circ_0013339 in CRC.
Collapse
Affiliation(s)
- Juan Jin
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230000, Anhui, China
| | - Min Du
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China.
| | - Ding Ding
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Ran Xuan
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| |
Collapse
|
13
|
Wang H, Liu Q, Liu Y, Dong W, Wan J, Jiao X, Wu Y, Li T, Miao H. Role of the circRNA_34414/miR-6960a-5p/SIRT3 axis in postoperative delirium via CA1 Vglut1+ neurons in older mice. CNS Neurosci Ther 2024; 30:e14902. [PMID: 39138637 PMCID: PMC11322041 DOI: 10.1111/cns.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
AIMS Postoperative delirium (POD) is a common neurological complication in elderly patients after anesthesia/surgery. The main purpose of this study is to explore the effect of circRNA-targeted miRNA regulating SIRT3 on mitochondrial function through ceRNA mechanism under the surgical model of tibial fracture and to further explore the potential mechanism of postoperative delirium mediated by circRNA, so as to provide new ideas for clinical diagnosis and prevention of POD. METHODS The surgical model of tibial fracture under sevoflurane anesthesia caused acute delirium-like behavior in elderly mice. We observed that the decrease of SIRT3 and mitochondrial dysfunction was related to POD, and miRNA and circRNA (circRNA_34414) related to SIRT3 were further studied. Through luciferase and RAP, we observed that circRNA_34414, as a miRNA sponge, was involved in the regulation of SIRT3 expression. RESULTS Postoperative delirium in elderly mice showed decreased expression of hippocampal circRNA_34414, increased expression of miR-6960-5p, decreased expression of SIRT3, and impaired mitochondrial membrane potential. Overexpression of circRNA_34414, or knockdown of miR-6960-5p, or overexpression of SIRT3 in hippocampal CA1 glutamatergic neurons significantly upregulated hippocampal SIRT3 expression, increased mitochondrial membrane potential levels, and significantly ameliorated postoperative delirium in aged mice; CircRNA_34414 ameliorates postoperative delirium in mice, possibly by targeting miR-6960-5p to upregulate SIRT3. CONCLUSIONS CircRNA_34414 is involved in the improvement of postoperative delirium induced by anesthesia/surgery by upregulating SIRT3 via sponging miR-6960-5p.
Collapse
Affiliation(s)
- Hai‐Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Department of AnesthesiologyQidong People's Hospital/Qidong Liver Cancer Institute/Affiliated Qidong Hospital of Nantong UniversityNantongChina
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yan‐Ping Liu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Xin‐Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yu‐Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Tian‐Zuo Li
- Department of Anesthesiology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Hui‐Hui Miao
- Department of Anesthesiology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
14
|
Wang Y, Tian X, Wang Z, Liu D, Zhao X, Sun X, Tu Z, Li Z, Zhao Y, Zheng S, Yao J. A novel peptide encoded by circ-SLC9A6 promotes lipid dyshomeostasis through the regulation of H4K16ac-mediated CD36 transcription in NAFLD. Clin Transl Med 2024; 14:e1801. [PMID: 39107881 PMCID: PMC11303264 DOI: 10.1002/ctm2.1801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND As the leading cause of end-stage liver disease, nonalcoholic fatty liver disease (NAFLD) is mainly induced by lipid dyshomeostasis. The translation of endogenous circular RNAs (circRNAs) is closely related to the progression of various diseases, but the involvement of circRNAs in NAFLD has not been determined. METHODS Combined high-throughput circRNA profiles were used to identify circRNAs with translational potential. The underlying molecular mechanisms were investigated by RNA sequencing, pull-down/MS and site-specific mutagenesis. RESULTS In this study, we focused on circ-SLC9A6, an abnormally highly expressed circRNA in human and mouse liver tissue during NAFLD development that exacerbates metabolic dyshomeostasis in hepatocytes by encoding a novel peptide called SLC9A6-126aa in vivo and in vitro. YTHDF2-mediated degradation of m6A-modified circ-SLC9A6 was found to be essential for the regulation of SLC9A6-126aa expression. We further found that the phosphorylation of SLC9A6-126aa by AKT was crucial for its cytoplasmic localization and the maintenance of physiological homeostasis, whereas high-fat stress induced substantial translocation of unphosphorylated SLC9A6-126aa to the nucleus, resulting in a vicious cycle of lipid metabolic dysfunction. Nuclear SLC9A6-126aa promotes transcriptional activation of the target gene CD36 and enhances its occupancy of the CD36 promoter locus by regulating MOF-mediated histone H4K16 acetylation. Hepatic CD36 depletion significantly ameliorated hyperactivated MAPK signalling and lipid disturbance in SLC9A6-126aa transgenic mice. Clinically, increasing levels of SLC9A6-126aa were observed during NAFLD progression and were found to be positively correlated with the CD36 and MAPK cascades. CONCLUSION This study revealed the role of circ-SLC9A6-derived SLC9A6-126aa in the epigenetic modification-mediated regulation of lipid metabolism. Our findings may provide promising therapeutic targets for NAFLD and new insights into the pathological mechanisms of metabolic diseases. HIGHLIGHTS Under normal circumstances, driven by m6A modification, YTHDF2 directly recognizes and degrades circ-SLC9A6, thereby inhibiting the translation of SLC9A6-126aa. Additionally, AKT1 phosphorylates and inhibits the nuclear translocation of SLC9A6-126aa. In NAFLD, lipid overload leads to YTHDF2 and AKT1 deficiency, ultimately increasing the expression and nuclear import of SLC9A6-126aa. Nuclear SLC9A6-126aa binds directly to the CD36 promoter and initiates CD36 transcription, which induces lipid dyshomeostasis.
Collapse
Affiliation(s)
- Yue Wang
- Department of PharmacologyDalian Medical UniversityDalianChina
| | - Xinyao Tian
- Department of SurgeryDivision of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of SurgeryDivision of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhecheng Wang
- Department of PharmacologyDalian Medical UniversityDalianChina
| | - Deshun Liu
- Department of General SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuzi Zhao
- Department of General SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xin Sun
- Department of PharmacologyDalian Medical UniversityDalianChina
| | - Zuoyu Tu
- Department of PharmacologyDalian Medical UniversityDalianChina
| | - Zekuan Li
- Department of SurgeryDivision of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yan Zhao
- Department of PharmacologyDalian Medical UniversityDalianChina
| | - Shusen Zheng
- Department of SurgeryDivision of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryDepartment of Liver TransplantationShulan (Hangzhou) HospitalHangzhouChina
| | - Jihong Yao
- Department of PharmacologyDalian Medical UniversityDalianChina
| |
Collapse
|
15
|
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou JJ, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes (Basel) 2024; 15:958. [PMID: 39062737 PMCID: PMC11276256 DOI: 10.3390/genes15070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.
Collapse
Affiliation(s)
- Dongqin Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Misbah Naz
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Libo Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Jing-Jiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ding Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| |
Collapse
|
16
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
17
|
Wei R, Yang T, Li W, Wang X. CircBAZ1B stimulates myocardial ischemia/reperfusion injury (MI/RI) by modulating miR-1252-5p/ATF3-mediated ferroptosis. Arch Med Sci 2024; 20:1968-1984. [PMID: 39967947 PMCID: PMC11831346 DOI: 10.5114/aoms/185257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 02/20/2025] Open
Abstract
Introduction Circular RNAs (circRNAs) have been implicated in myocardial ischemia (MI)/reperfusion injury (RI), yet their essential roles in MI/RI-induced ferroptosis have not been fully elucidated. Here, we focused on the biological function and regulatory mechanism of circBAZ1B, a circRNA derived from the bromodomain adjacent to the zinc finger domain 1B (BAZ1B) gene, in MI/RI progression. Material and methods We used a rat model for MI/RI, assessing myocardial infarct size via electrocardiogram (ECG) and histological staining (hematoxylin and eosin [H&E] and 2,3,5-triphenyltetrazolium chloride [TTC]). Rat cardiomyoblasts (H9c2) were used for in vitro hypoxia-reoxygenation (H/R) cell model construction. Cell viability, apoptosis, lipid reactive oxygen species (ROS) levels and iron content were determined via Cell Counting Kit-8 (CCK-8) and flow cytometric assays. Gene and ferroptosis-related protein expression levels were verified by qRT-PCR and Western blotting. RNA pull-down, RNA immunoprecipitation (RIP), and a dual-luciferase reporter system were utilized for verification of the molecular interactions. Results The results showed that MI/RI was accompanied by ferroptosis. We also found that activating transcription factor 3 (ATF3) knockdown promoted myocardial cell viability and inhibited ferroptosis. Notably, activation of ATF3 transcription was demonstrated to upregulate the expression of its downstream target ACSL4. Functional analysis indicated that circBAZ1B promoted ATF3 expression via miR-1252-5p. In vivo experimental data further revealed that circBAZ1B suppressed cardiomyocyte activity and promoted ferroptosis, thereby facilitating MI/RI progression. Conclusions The circBAZ1B/miR-1252-5p/ATF3 axis is crucial in MI/RI pathogenesis through ferroptosis regulation, offering a potential therapeutic target. Inhibiting this pathway may alleviate MI/RI effects, suggesting the need for further clinical studies.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Cardiovascular Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Tianxiao Yang
- Department of Cardiovascular Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Weihong Li
- Department of Cardiovascular Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiqian Wang
- Department of Cardiovascular Medicine, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
18
|
Liu Y, Li J, Xiong Y, Tan C, Li C, Cao Y, Xie W, Deng Z. Long-term exposure to PM 2.5 leads to mitochondrial damage and differential expression of associated circRNA in rat hepatocytes. Sci Rep 2024; 14:11870. [PMID: 38789588 PMCID: PMC11126672 DOI: 10.1038/s41598-024-62748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Fine particulate matter (PM2.5) is one of the four major causes of mortality globally. The objective of this study was to investigate the mechanism underlying liver injury following exposure to PM2.5 and the involvement of circRNA in its regulation. A PM2.5 respiratory tract exposure model was established in SPF SD male rats with a dose of 20 mg/kg, and liver tissue of rats in control group and PM2.5-exposed groups rats were detected. The results of ICP-MS showed that Mn, Cu and Ni were enriched in the liver. HE staining showed significant pathological changes in liver tissues of PM2.5-exposed group, transmission electron microscopy showed significant changes in mitochondrial structure of liver cells, and further mitochondrial function detection showed that the PM2.5 exposure resulted in an increase in cell reactive oxygen species content and a decrease in mitochondrial transmembrane potential, while the expression of SOD1 and HO-1 antioxidant oxidase genes was upregulated. Through high-throughput sequencing of circRNAs, we observed a significant down-regulation of 10 and an up-regulation of 17 circRNAs in the PM2.5-exposed groups. The functional enrichment and pathway analyses indicated that the differentially expressed circRNAs by PM2.5 exposure were primarily associated with processes related to protein ubiquitination, zinc ion binding, peroxisome function, and mitochondrial regulation. These findings suggest that the mechanism underlying liver injury induced by PM2.5-exposure may be associated with mitochondrial impairment resulting from the presence of heavy metal constituents. Therefore, this study provides a novel theoretical foundation for investigating the molecular mechanisms underlying liver injury induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Jing Li
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Yican Xiong
- Department of Ophthalmology and Stomatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Chaochao Tan
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Cunyan Li
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Youde Cao
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Wanying Xie
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Zhonghua Deng
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China.
| |
Collapse
|
19
|
He M, Pan Y, You C, Gao H. CircRNAs in cancer therapy tolerance. Clin Chim Acta 2024; 558:119684. [PMID: 38649011 DOI: 10.1016/j.cca.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The rapidly expanding field of circular RNA (circ-RNA) research has opened new avenues in cancer diagnostics and treatment, highlighting the role of serum circRNAs as potential biomarkers for assessing tumor therapy resistance. This review comprehensively compiles existing knowledge regarding the biogenesis, function, and clinical relevance of circRNAs, emphasizing their stability, abundance, and cell type-specific expression profiles, which make them ideal candidates for noninvasive early biomarkers in cancer treatment. We explored the roles of circRNAs in oncogenesis and tumor progression and their complex interactions with patient responses to various cancer treatments, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Through the analysis of data from recent studies and clinical trials, we underscore the prognostic significance of serum circRNAs in predicting therapeutic outcomes, their involvement in resistance mechanisms, and their capacity to inform personalized treatment approaches. Additionally, this review addresses the obstacles inherent in circRNA research, including the need for standardized protocols for circRNA extraction and quantification and the elucidation of the clinical significance of circRNAs. Furthermore, our investigation extends to future prospects, including embedding circRNA profiling into regular clinical workflows and pioneering circRNA-based therapeutic approaches. We underscore the transformative potential of serum circRNAs in enhancing cancer diagnosis, improving the accuracy of therapy tolerance predictions, and ultimately fostering the advent of precision oncology.
Collapse
Affiliation(s)
- Miao He
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Yunyan Pan
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China
| | - Chongge You
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| | - Hongwei Gao
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| |
Collapse
|
20
|
Zhang L, Liu H, Xiong W, He H, Fu T, Long X, Li X, Liang J, Ding H, Xu Y, Liu Y, Dai X. CircFOXO3 mediates hypoxia-induced autophagy of endometrial stromal cells in endometriosis. FASEB J 2024; 38:e23515. [PMID: 38470367 DOI: 10.1096/fj.202301654rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Endometriosis is a benign gynecological disease that shares some common features of malignancy. Autophagy plays vital roles in endometriosis and influences endometrial cell metastasis, and hypoxia was identified as the initiator of this pathological process through hypoxia inducible factor 1 alpha (HIF-1α). A newly discovered circular RNA FOXO3 (circFOXO3) is critical in cell autophagy, migration, and invasion of various diseases and is reported to be related to hypoxia, although its role in endometriosis remains to be elucidated up to now. In this study, a lower circFOXO3 expression in ectopic endometrium was investigated. Furthermore, we verified that circFOXO3 could regulate autophagy by downregulating the level of p53 protein to mediate the migration and invasion of human endometrial stromal cells (T HESCs). Additionally, the effects of HIF-1α on circFOXO3 and autophagy were examined in T HESCs. Notably, overexpression of HIF-1α could induce autophagy and inhibit circFOXO3 expression, whereas overexpressing of circFOXO3 under hypoxia significantly inhibited hypoxia-induced autophagy. Mechanistically, the direct combination between HIF-1α and HIF-1α-binding site on adenosine deaminase 1 acting on RNA (ADAR1) promoter increased the level of ADAR1 protein, which bind directly with circFOXO3 pre-mRNA to block the cyclization of circFOXO3. All these results support that hypoxia-mediated ADAR1 elevation inhibited the expression of circFOXO3, and then autophagy was induced upon loss of circFOXO3 via inhibition of p53 degradation, participating in the development of endometriosis.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haitang He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Fu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Long
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Ding
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Xu
- Department of Reproductive Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
21
|
Pei L, Song X, Liang X, Li M, Zhang A, Tan X. Circular RNA Dipeptidyl Peptidase 4 (circDPP4) Stimulates the Expression of Glutamate Dehydrogenase 1 to Contribute to the Malignant Phenotypes of Prostate Cancer by Sponging miR-497-5p. Mol Biotechnol 2024; 66:241-253. [PMID: 37079266 DOI: 10.1007/s12033-023-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Circular RNA dipeptidyl peptidase 4 (circDPP4) has been confirmed as a novel oncogene in prostate cancer (PCa). In this study, we aimed to explore the underlying mechanism of circDPP4 in PCa progression. Levels of circDPP4, microRNA (miR)-497-5p, glutamate dehydrogenase 1 (GLUD1), proliferating cell nuclear antigen (PCNA), BCL2 associated X, apoptosis regulator (Bax), E-cadherin and Ki67 were gauged by a quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, or immunohistochemical method. We assessed the roles of variables in PCa cell phenotypes by measuring cell growth, apoptosis, motility and invasiveness. We performed RNA immunoprecipitation (RIP) and dual-luciferase reporter assays to confirm the interactions of circDPP4/miR-497-5p and miR-497-5p/GLUD1. A xenograft model was established to gauge the effect of circDPP4 in the tumorigenicity of PCa cells. PCa tumor tissues and cell lines revealed higher levels of circDPP4 and GLUD1 and a lower expression of miR-497-5p than controls. CircDPP4 silencing hindered the growth, motility and invasiveness of PCa cells. Conversely, silencing circDPP4 enhanced PCa cell apoptosis. Mechanistic analysis showed that circDPP4 functioned as a miR-497-5p sponge to reduce the suppressive action of miR-497-5p on GLUD1, which was validated as a direct miR-497-5p target. Furthermore, circDPP4 knockdown weakened the tumorigenicity of PCa cells. CircDPP4 facilitated PCa process by mediating the miR-497-5p/GLUD1 axis, providing a possible therapy target for PCa.
Collapse
Affiliation(s)
- Long Pei
- Department of Urology, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050000, China
| | - Xiaosen Song
- Department of Urology, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050000, China
| | - Xiangdong Liang
- Department of Urology, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050000, China
| | - Ming Li
- Department of Urology, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050000, China
| | - Aili Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050000, China
| | - Xiaoliang Tan
- Department of Urology, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050000, China.
| |
Collapse
|
22
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
23
|
Zeng Q, Liu CH, Ampuero J, Wu D, Jiang W, Zhou L, Li H, Bai L, Romero-Gómez M, Tang H. Circular RNAs in non-alcoholic fatty liver disease: Functions and clinical significance. RNA Biol 2024; 21:1-15. [PMID: 38113132 PMCID: PMC10761141 DOI: 10.1080/15476286.2023.2290769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 12/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which affects approximately 25% of the global population, is an urgent health issue leading to various metabolic comorbidities. Circular RNAs (circRNAs), covalently closed RNA molecules, are characterized by ubiquity, diversity, stability, and conservatism. Indeed, they participate in various biological processes via distinct mechanisms that could modify the natural history of NAFLD. In this review, we briefly introduce the biogenesis, characteristics, and biological functions of circRNAs. Furthermore, we summarize circRNAs expression profiles in NAFLD by intersecting seven sequencing data sets and describe the cellular roles of circRNAs and their potential advantages as biomarkers of NAFLD. In addition, we emphatically discuss the exosomal non-coding RNA sorting mechanisms and possible functions in recipient cells. Finally, we extensively discuss the potential application of targeting disease-related circRNAs and competing endogenous RNA networks through gain-of-function and loss-of-function approaches in targeted therapy of NAFLD.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Javier Ampuero
- Digestive Diseases Unit, Virgen del Rocío University Hospital. SeLiver group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US). University of Seville, Seville, Spain
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Virgen del Rocío University Hospital. SeLiver group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US). University of Seville, Seville, Spain
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
25
|
Wang R, Zhong J, Pan X, Su Z, Xu Y, Zhang M, Chen X, Chen N, Yu T, Zhou Q. A novel intronic circular RNA circFGFR1 int2 up-regulates FGFR1 by recruiting transcriptional activators P65/FUS and suppressing miR-4687-5p to promote prostate cancer progression. J Transl Med 2023; 21:840. [PMID: 37993879 PMCID: PMC10664560 DOI: 10.1186/s12967-023-04718-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a core component of the FGFs/FGFR pathway that activates multiple signalling pathways, including ERK1/2, PI3K/AKT, PLCγ, and NF-κB. Aberrant expression of FGFR1 due to gene amplification, chromosome rearrangement, point mutation, and epigenetic deregulations, have been reported in various cancers. FGFR1 overexpression has also been reported in prostate cancer (PCa), but the underlining mechanisms are not clear. Here we report a novel circular RNA, circFGFR1int2, derived from intron 2 of FGFR1 gene, which is overexpressed in PCa and associated with tumor progression. Importantly, we show that circFGFR1int2 facilitates FGFR1 transcription by recruiting transcription activators P65/FUS and by interacting with FGFR1 promoter. Moreover, we show that circFGFR1int2 suppresses post-transcriptional inhibitory effects of miR-4687-5p on FGFR1 mRNA. These mechanisms synergistically promote PCa cell growth, migration, and invasion. Overexpression of circFGFR1int2 is significantly correlated with higher tumor grade, Gleason score, and PSA level, and is a significant unfavorable prognosticator for CRPC-free survival (CFS) (RR = 3.277, 95% confidence interval: 1.192-9.009; P = 0.021). These findings unravelled novel mechanisms controlling FGFR1 gene expression by intronic circRNA and its potential clinicopathological utility as a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Ruyue Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinjing Zhong
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuyi Pan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhengzheng Su
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunyi Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Xue J, Qin S, Ren N, Guo B, Shi X, Jia E. Extracellular vesicle biomarkers in circulation for the diagnosis of gastric cancer: A systematic review and meta‑analysis. Oncol Lett 2023; 26:423. [PMID: 37664665 PMCID: PMC10472029 DOI: 10.3892/ol.2023.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/14/2023] [Indexed: 09/05/2023] Open
Abstract
The prognosis of a gastric cancer (GC) diagnosis is poor due to the current lack of effective early diagnostic methods. Extracellular vesicle (EV) biomarkers have previously demonstrated strong diagnostic efficiency for certain types of cancer, including pancreatic and lung cancer. The present review aimed to summarize the diagnostic value of circulating EV biomarkers for early stage GC. The PubMed, Medline and Web of Science databases were searched from May 1983 to September 18, 2022. All studies that reported the diagnostic performance of EV biomarkers for GC were included for analysis. Overall, 27 studies were selected containing 2,831 patients with GC and 2,117 controls. A total of 58 EV RNAs were reported in 26 studies, including 39 microRNAs (miRNAs), 10 long non-coding RNAs (lncRNAs), five circular RNAs, three PIWI-interacting RNAs and one mRNA, in addition to one protein in the remaining study. Meta-analysis of the aforementioned studies demonstrated that the pooled sensitivity, specificity and AUC value of the total RNAs were 84, 67% and 0.822, respectively. The diagnostic values of miRNAs were consistent with the total RNA, as the pooled sensitivity, specificity and AUC value were 84, 67% and 0.808, respectively. The pooled sensitivity, specificity and AUC values of lncRNAs were 89, 69% and 0.872, respectively, markedly higher compared with that of miRNAs. A total of five studies reported the diagnostic performance of EV RNA panels for early stage GC and reported powerful diagnostic values with a pooled sensitivity, specificity and AUC value of 80, 77% and 0.879, respectively. Circulating EV RNAs could have the potential to be used in the future as effective, noninvasive biomarkers for early GC diagnosis. Further research in this field is necessary to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Shaoyou Qin
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Na Ren
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, P.R. China
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| |
Collapse
|
27
|
Zhang W, Zhou B, Yang X, Zhao J, Hu J, Ding Y, Zhan S, Yang Y, Chen J, Zhang F, Zhao B, Deng F, Lin Z, Sun Q, Zhang F, Yao Z, Liu W, Li C, Liu KX. Exosomal circEZH2_005, an intestinal injury biomarker, alleviates intestinal ischemia/reperfusion injury by mediating Gprc5a signaling. Nat Commun 2023; 14:5437. [PMID: 37673874 PMCID: PMC10482849 DOI: 10.1038/s41467-023-41147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a severe clinical condition without optimal diagnostic markers nor clear molecular etiological insights. Plasma exosomal circular RNAs (circRNAs) are valuable biomarkers and therapeutic targets for various diseases, but their role in intestinal I/R injury remains unknown. Here we screen the expression profile of circRNAs in intestinal tissue exosomes collected from intestinal I/R mice and identify circEZH2_005 as a significantly downregulated exosomal circRNA. In parallel, circEZH2_005 is also reduced in the plasma of clinical cardiac surgery patients who developed postoperative intestinal I/R injury. Exosomal circEZH2_005 displays a significant diagnostic value for intestinal injury induced by I/R. Mechanistically, circEZH2_005 is highly expressed in intestinal crypt cells. CircEZH2_005 upregulation promotes the proliferation of Lgr5+ stem cells by direct interaction with hnRNPA1, and enhanced Gprc5a stability, thereby alleviating I/R-induced intestinal mucosal damage. Hence, exosomal circEZH2_005 may serve as a biomarker for intestinal I/R injury and targeting the circEZH2_005/hnRNPA1/Gprc5a axis may be a potential therapeutic strategy for intestinal I/R injury.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Bowei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jingjuan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yuqi Ding
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shuteng Zhan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yifeng Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jun Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fu Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Bingcheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zebin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qishun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fangling Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhiwen Yao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Weifeng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Liu C, Li Y. Hsa_circ_0000078 Regulates miR-205-5p/EREG Pathway to Inhibit Cervical Cancer Progression. Mol Biotechnol 2023; 65:1453-1464. [PMID: 36645579 DOI: 10.1007/s12033-023-00658-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
It is well established that circular RNAs (circRNAs) play a role in tumor initiation and tumorigenesis. The goal of this study was to reveal the detailed functions and regulatory mechanisms of circ_0000078 in cervical cancer (CC). Circ_0000078, miR-205-5p, and epiregulin (EREG) mRNA expression levels were examined using RT-qPCR. Western blotting was performed to quantify EREG protein. Cell proliferation, apoptosis, migration, and invasion were examined by performing CCK-8, caspase 3 activity, wound healing, and transwell assays, respectively. The effect of circ_0000078 on tumor growth in vivo was confirmed in a xenograft model. The putative relationship between miR-205-5p and circ_0000078 or EREG, as predicted by bioinformatics analysis, was evaluated by dual-luciferase and RNA immunoprecipitation assays. Aberrant downregulation of circ_0000078 and EREG as well as upregulation of miR-205-5p were observed in cervical tumor samples and cancer cells. Ectopic expression of circ _0000078 not only restrained cancer cell growth, survival, migration, and invasiveness, but also decelerated tumor formation and development in a mouse model. miR-205-5p, acts as a target of circ_0000078 and directly binds to EREG to repress its expression. Overexpression of miR-205-5p reversed the inhibitory effects of circ_0000078 upregulation on cancer cell behavior and also partially abolished the anti-cancer effects of EREG upregulation in vitro. Circ_0000078 inhibits the growth of cancer by interfering with the miR-205-5p/EREG network, acting as a tumor suppressor in CC. These results provide a better understanding of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Can Liu
- Department of Oncology, Wuhan Fourth Hospital, Wuhan, 430033, Hubei, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Wuhan Fourth Hospital, No. 473, Hanzheng Street, Qiaokou District, Wuhan, 430033, Hubei, China.
| |
Collapse
|
29
|
Zhou J, Zhao Y, An P, Zhao H, Li X, Xiong Y. Hsa_circ_0002348 regulates trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia. J Transl Med 2023; 21:509. [PMID: 37507742 PMCID: PMC10375637 DOI: 10.1186/s12967-023-04240-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/31/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Preeclampsia is a common pregnancy complication characterized by high blood pressure and damage to organs. Abnormal placenta and vascular function can lead to preeclampsia. Accumulating evidence has suggested a potential link between circular RNAs (circRNAs) and preeclampsia. As a placenta and endothelial-expressed circRNA, hsa_circ_0002348, may be promising to be the novel molecular target for preeclampsia. However, the function and mechanism of hsa_circ_0002348 in preeclampsia has not been elucidated. MATERIALS AND METHODS An overlap analysis of two circRNA profiles from placenta and endothelial cells was used to identify a functionally unknown circRNA, hsa_circ_0002348. Quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) were used to detect its expression in the trophoblast cells and placental tissues. The mouse model of lipopolysaccharide (LPS)-induced preeclampsia was established to determine the in vivo role of hsa_circ_0002348. RNA immunoprecipitation (RIP), Luciferase reporter assay, qRT-PCR, western blot, gain- and loss-of-function and rescue experiments were conducted to uncover the role of hsa_circ_0002348 and its interaction with miR-126-3p and BAK1 in regulating trophoblast proliferation and apoptosis. Fluorescence in situ hybridization (FISH) and Immunohistochemistry (IHC) were performed to examine the expression of miR-126-3p and BAK1 in mice and human placentas, respectively. RESULTS Hsa_circ_0002348 was significantly increased in the preeclampsia placentas, and positively correlated with the severity of preeclampsia patients' clinical manifestations. Its overexpression exacerbated preeclampsia-like features in the mouse model of LPS-induced preeclampsia. Functionally, hsa_circ_0002348 was found to inhibit trophoblast proliferation and promote trophoblast apoptosis. Mechanistically, hsa_circ_0002348, as an endogenous miR-126-3p sponge, upregulated the expression of BAK1. Additionally, both hsa_circ_0002348 knockdown and miR-126-3p overexpression enhanced the mammalian target of rapamycin (mTOR) and ERK1/2 signaling pathway. CONCLUSIONS Hsa_circ_0002348 might be a novel regulator of trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia, which may serve as a potential target for detecting and treating preeclampsia.
Collapse
Affiliation(s)
- Jizi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ying Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ping An
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yu Xiong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
30
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
32
|
Qiu H, Ni C, Jia C, Rong X, Chu M, Wu R, Han B. CircRNA7632 down-regulation alleviates endothelial cell dysfunction in Kawasaki disease via regulating IL-33 expression. Cell Stress Chaperones 2023; 28:363-374. [PMID: 37166618 PMCID: PMC10352195 DOI: 10.1007/s12192-023-01333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Kawasaki disease (KD) is a form of idiopathic vasculitis frequently accompanied by coronary artery lesions, which involves endothelial dysfunction. Recent studies have demonstrated that circular RNAs (circRNAs) are implicated in many cardiovascular diseases. However, few studies have examined the role of circRNAs on endothelial dysfunction in KD. In this study, we investigated the role of circ7632 on endothelial-mesenchymal transition (EndoMT) in KD and then explored the underlying mechanism. Children diagnosed with KD and age-matched healthy controls (HC) were included. Sera samples were collected. Primary human umbilical vein endothelial cells (HUVECs) were obtained and incubated with 15% HC and KD serum for 48 h. The mRNA and protein expression of mesenchymal markers vimentin and α-smooth muscle actin (α-SMA) and endothelial marker zonula occludens-1 (ZO-1) in HUVECs transfected with plasmid-circ7632 and si-circ7632 were detected by RT-qPCR and Western blot analysis. CCK8, scratch test, and migration test were performed to examine the effect of circ7632 on the cell proliferation and migration. The circ7632 level was higher in HUVECs treated by KD serum than in HUVECs treated with HC serum. Overexpression of circ7632 significantly increased vimentin and α-SMA expression, decreased ZO-1 expression, and also decreased cell proliferation. Down-regulation of circ7632 expression got the opposite results. RNA-seq analysis, and confirmatory experiment displayed that down-regulation of circ7632 decreased IL-33 expression, and IL-33 silencing mitigated KD serum-mediated EndoMT. Our study revealed that circ7632 level was elevated in KD serum-treated HUVECs. Circ7632 down-regulation could alleviate EndoMT likely through decreasing IL-33 expression. The circ7632 may become a potential therapeutic target for KD.
Collapse
Affiliation(s)
- Huixian Qiu
- Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chao Ni
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chang Jia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xing Rong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Maoping Chu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Rongzhou Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Han
- Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
33
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
34
|
Luo M, Zheng Y, Tang S, Gu L, Zhu Y, Ying R, Liu Y, Ma J, Guo R, Gao P, Zhang C. Radical oxygen species: an important breakthrough point for botanical drugs to regulate oxidative stress and treat the disorder of glycolipid metabolism. Front Pharmacol 2023; 14:1166178. [PMID: 37251336 PMCID: PMC10213330 DOI: 10.3389/fphar.2023.1166178] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background: The incidence of glycolipid metabolic diseases is extremely high worldwide, which greatly hinders people's life expectancy and patients' quality of life. Oxidative stress (OS) aggravates the development of diseases in glycolipid metabolism. Radical oxygen species (ROS) is a key factor in the signal transduction of OS, which can regulate cell apoptosis and contribute to inflammation. Currently, chemotherapies are the main method to treat disorders of glycolipid metabolism, but this can lead to drug resistance and damage to normal organs. Botanical drugs are an important source of new drugs. They are widely found in nature with availability, high practicality, and low cost. There is increasing evidence that herbal medicine has definite therapeutic effects on glycolipid metabolic diseases. Objective: This study aims to provide a valuable method for the treatment of glycolipid metabolic diseases with botanical drugs from the perspective of ROS regulation by botanical drugs and to further promote the development of effective drugs for the clinical treatment of glycolipid metabolic diseases. Methods: Using herb*, plant medicine, Chinese herbal medicine, phytochemicals, natural medicine, phytomedicine, plant extract, botanical drug, ROS, oxygen free radicals, oxygen radical, oxidizing agent, glucose and lipid metabolism, saccharometabolism, glycometabolism, lipid metabolism, blood glucose, lipoprotein, triglyceride, fatty liver, atherosclerosis, obesity, diabetes, dysglycemia, NAFLD, and DM as keywords or subject terms, relevant literature was retrieved from Web of Science and PubMed databases from 2013 to 2022 and was summarized. Results: Botanical drugs can regulate ROS by regulating mitochondrial function, endoplasmic reticulum, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), erythroid 2-related factor 2 (Nrf-2), nuclear factor κB (NF-κB), and other signaling pathways to improve OS and treat glucolipid metabolic diseases. Conclusion: The regulation of ROS by botanical drugs is multi-mechanism and multifaceted. Both cell studies and animal experiments have demonstrated the effectiveness of botanical drugs in the treatment of glycolipid metabolic diseases by regulating ROS. However, studies on safety need to be further improved, and more studies are needed to support the clinical application of botanical drugs.
Collapse
Affiliation(s)
- Maocai Luo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Zheng
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linsen Gu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianli Ma
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixin Guo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Li Z, Lu J. CircRNAs in osteoarthritis: research status and prospect. Front Genet 2023; 14:1173812. [PMID: 37229197 PMCID: PMC10203419 DOI: 10.3389/fgene.2023.1173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease globally, and its progression is irreversible. The mechanism of osteoarthritis is not fully understood. Research on the molecular biological mechanism of OA is deepening, among which epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical target and biomarker. Many studies have found that circRNAs play an essential role in the progression of OA, including extracellular matrix metabolism, autophagy, apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress, cartilage development, and chondrogenic differentiation. Differential expression of circRNAs was also observed in the synovium and subchondral bone in the OA joint. In terms of mechanism, existing studies have mainly found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few studies have found that circRNA can serve as a scaffold for protein reactions. In terms of clinical transformation, circRNAs are considered promising biomarkers, but no large cohort has tested their diagnostic value. Meanwhile, some studies have used circRNAs loaded in extracellular vesicles for OA precision medicine. However, there are still many problems to be solved in the research, such as the role of circRNA in different OA stages or OA subtypes, the construction of animal models of circRNA knockout, and more research on the mechanism of circRNA. In general, circRNAs have a regulatory role in OA and have particular clinical potential, but further studies are needed in the future.
Collapse
Affiliation(s)
- Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Liu L, Liu Y, Zhao Y. Circular RNA circ_0008896 contributes to oxidized low-density lipoprotein-induced aortic endothelial cell injury via targeting miR-188-3p/NOD2 axis. Cell Stress Chaperones 2023; 28:275-287. [PMID: 36940068 PMCID: PMC10167080 DOI: 10.1007/s12192-023-01336-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023] Open
Abstract
We aimed to investigate the role and mechanism of circ_0008896 in Atherosclerosis (AS) by using oxidized low-density lipoprotein (ox-LDL)-induced human aortic endothelial cell (HAECs). Levels of genes and proteins were measured by quantitative real-time PCR and Western blot. Functional experiments, including enzyme-linked immunosorbent assay analysis, cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, tube formation assays and the detection of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) generation, were performed to investigate the role of circ_0008896 on ox-LDL-induced HAEC damage. Circ_0008896 was increased in AS patients and ox-LDL-stimulated HAECs. Functionally, circ_0008896 knockdown reversed ox-LDL-induced inflammatory response, oxidative stress, apoptosis as well as arrest of proliferation and angiogenesis in HAECs in vitro. Mechanistically, circ_0008896 functioned as a sponge for miR-188-3p to relieve the repression of miR-188-3p on its target NOD2. A series of rescue experiments showed that miR-188-3p inhibition attenuated the protective effects of circ_0008896 knockdown on ox-LDL-stimulated HAECs, and NOD2 overexpression abolished the beneficial action of miR-188-3p in the suppression of inflammatory response and oxidative stress, and the promotion of cell growth and angiogenesis in HAECs under ox-LDL treatment. Circ_0008896 silencing attenuates ox-LDL-induced inflammatory response, oxidative stress, and growth arrest in HAECs in vitro, adding further understanding for the pathogenesis of AS.
Collapse
Affiliation(s)
- Liping Liu
- Heart Function Examination Room, the Second Hospital of Dalian Medical University, Dalian, China
| | - Yan Liu
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Yueyan Zhao
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, China.
- , Dalian City, China.
| |
Collapse
|
37
|
Chen H, Tu J, He L, Gao N, Yang W. Mmu_circ_0000037 inhibits the progression of acute pancreatitis by miR-92a-3p/Pias1 axis. Immun Inflamm Dis 2023; 11:e819. [PMID: 37102653 PMCID: PMC10091370 DOI: 10.1002/iid3.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disease with high mortality. Previous study has suggested that circular RNAs are dysregulated and involved in the regulation of inflammatory responses in AP. This study aimed to investigate the function and regulatory mechanism underlying mmu_circ_0000037 in caerulein-induced AP cellular model. METHODS Caerulein-treated MPC-83 cells were used as an in vitro cellular model for AP. The expression levels of mmu_circ_0000037, microRNA (miR)-92a-3p, and protein inhibitor of activated STAT1 (Pias1) were detected by quantitative real-time polymerase chain reaction. Cell viability, amylase activity, apoptosis, and inflammatory response were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Amylase Assay Kit, flow cytometry, and enzyme-linked immunosorbent assays. The protein level was quantified by western blot analysis. The target interaction between miR-92a-3p and mmu_circ_0000037 or Pias1 were predicted by StarbaseV3.0 and validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS Mmu_circ_0000037 and Pias1 levels were decreased, whereas miR-92a-3p expression was elevated in caerulein-induced MPC-83 cells. Overexpression of mmu_circ_0000037 protected MPC-83 cells from caerulein-induced the decrease of cell viability, as well as the promotion of amylase activity, apoptosis and inflammation. MiR-92a-3p was targeted by mmu_circ_0000037, and miR-92a-3p overexpression rescued the effect of mmu_circ_0000037 on caerulein-induced MPC-83 cell injury. Pias1 was confirmed as a target of miR-92a-3p and mmu_circ_0000037 regulated the expression of Pias1 by sponging miR-92a-3p. CONCLUSION Mmu_circ_0000037 relieves caerulein-induced inflammatory injury in MPC-83 cells by targeting miR-92a-3p/Pias1 axis, providing a theoretical basis for the treatment of AP.
Collapse
Affiliation(s)
- Hua Chen
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Jun Tu
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Lei He
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Ning Gao
- Department of General Internal Medicine, Ping An Health InternetShanghai BranchShanghaiChina
| | - Weiqiang Yang
- Department of General SurgeryJiading District Central HospitalShanghaiChina
| |
Collapse
|
38
|
Liu X, Guo Q, Gao G, Cao Z, Guan Z, Jia B, Wang W, Zhang K, Zhang W, Wang S, Li W, Hao Q, Zhang Y, Li M, Zhang W, Gu J. Exosome-transmitted circCABIN1 promotes temozolomide resistance in glioblastoma via sustaining ErbB downstream signaling. J Nanobiotechnology 2023; 21:45. [PMID: 36755314 PMCID: PMC9906870 DOI: 10.1186/s12951-023-01801-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Although temozolomide (TMZ) provides significant clinical benefit for glioblastoma (GBM), responses are limited by the emergence of acquired resistance. Here, we demonstrate that exosomal circCABIN1 secreted from TMZ-resistant cells was packaged into exosomes and then disseminated TMZ resistance of receipt cells. CircCABIN1 could be cyclized by eukaryotic translation initiation factor 4A3 (EIF4A3) and is highly expressed in GBM tissues and glioma stem cells (GSCs). CircCABIN1 is required for the self-renewal maintenance of GSCs to initiate acquired resistance. Mechanistically, circCABIN1 regulated the expression of olfactomedin-like 3 (OLFML3) by sponging miR-637. Moreover, upregulation of OLFML3 activating the ErbB signaling pathway and ultimately contributing to stemness reprogramming and TMZ resistance. Treatment of GBM orthotopic mice xenografts with engineered exosomes targeting circCABIN1 and OLFML3 provided prominent targetability and had significantly improved antitumor activity of TMZ. In summary, our work proposed a novel mechanism for drug resistance transmission in GBM and provided evidence that engineered exosomes are a promising clinical tool for cancer prevention and therapy.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
- Department of Hematology, Xijing Hospital, Xi’an, China
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Xi’an, China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Xi’an, China
| | - Zhengcong Cao
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Zhihao Guan
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Xi’an, China
| | - Weizhong Wang
- Department of Neurosurgery, Xijing Hospital, Xi’an, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
39
|
Identification of a Novel Angiogenesis Signalling circSCRG1/miR-1268b/NR4A1 Pathway in Atherosclerosis and the Regulatory Effects of TMP-PF In Vitro. Molecules 2023; 28:molecules28031271. [PMID: 36770940 PMCID: PMC9919304 DOI: 10.3390/molecules28031271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Angiogenesis contributes to plaque instability in atherosclerosis and further increases cardio-cerebrovascular risk. Circular RNAs (circRNAs) are promising biomarkers and potential therapeutic targets for atherosclerosis. Previous studies have demonstrated that tetramethylpyrazine (TMP) and paeoniflorin (PF) combination treatment (TMP-PF) inhibited oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis in vitro. However, whether circRNAs regulate angiogenesis in atherosclerosis and whether TMP-PF can regulate angiogenesis-related target circRNAs in atherosclerosis are unknown. In this study, human RNA sequencing (RNA-seq) data were analysed to identify differentially expressed (DE) circRNAs in atherosclerosis and to obtain angiogenesis-associated circRNA-microRNA (miRNA)-messenger RNA (mRNA) networks. Target circRNA-related mechanisms in angiogenesis in atherosclerosis and the regulatory effects of TMP-PF on target circRNA signalling were studied in ox-LDL-induced human umbilical vein endothelial cells (HUVECs) by cell proliferation, migration, tube formation, and luciferase reporter assays, real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. A novel circRNA (circular stimulator of chondrogenesis 1, circSCRG1) was initially identified associated with angiogenesis in atherosclerosis, and circSCRG1 silencing up-regulated miR-1268b expression, increased nuclear receptor subfamily 4 group A member 1 (NR4A1) expression and then promoted ox-LDL-induced angiogenesis. TMP-PF (1 μmol/L TMP combined with 10 μmol/L PF) up-regulated circSCRG1 expression, mediated miR-1268b to suppress NR4A1 expression and then inhibited ox-LDL-induced angiogenesis. However, circSCRG1 silencing abolished the inhibitory effects of TMP-PF on ox-LDL-induced angiogenesis, which were rescued by the miR-1268b inhibitor. In conclusion, circSCRG1 might serve as a new target regulating angiogenesis in atherosclerosis via the circSCRG1/miR-1268b/NR4A1 axis and TMP-PF could regulate the circSCRG1/miR-1268b/NR4A1 axis to inhibit angiogenesis in atherosclerosis in vitro, indicating a novel angiogenesis signalling circSCRG1/miR-1268b/NR4A1 pathway in atherosclerosis and the regulatory effects of TMP-PF, which might provide a new pharmaceutical strategy to combat atherosclerotic plaque instability.
Collapse
|
40
|
Oxidative Stress Modulation by ncRNAs and Their Emerging Role as Therapeutic Targets in Atherosclerosis and Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12020262. [PMID: 36829822 PMCID: PMC9952114 DOI: 10.3390/antiox12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are pathologies related to ectopic fat accumulation, both of which are continuously increasing in prevalence. These threats are prompting researchers to develop effective therapies for their clinical management. One of the common pathophysiological alterations that underlies both diseases is oxidative stress (OxS), which appears as a result of lipid deposition in affected tissues. However, the molecular mechanisms that lead to OxS generation are different in each disease. Non-coding RNAs (ncRNAs) are RNA transcripts that do not encode proteins and function by regulating gene expression. In recent years, the involvement of ncRNAs in OxS modulation has become more recognized. This review summarizes the most recent advances regarding ncRNA-mediated regulation of OxS in atherosclerosis and NAFLD. In both diseases, ncRNAs can exert pro-oxidant or antioxidant functions by regulating gene targets and even other ncRNAs, positioning them as potential therapeutic targets. Interestingly, both diseases have common altered ncRNAs, suggesting that the same molecule can be targeted simultaneously when both diseases coexist. Finally, since some ncRNAs have already been used as therapeutic agents, their roles as potential drugs for the clinical management of atherosclerosis and NAFLD are analyzed.
Collapse
|
41
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Lun Y, Hu J, Zuming Y. Circular RNAs expression profiles and bioinformatics analysis in bronchopulmonary dysplasia. J Clin Lab Anal 2022; 37:e24805. [PMID: 36514862 PMCID: PMC9833990 DOI: 10.1002/jcla.24805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) has long been considered the most challenging chronic lung disease for neonatologists and researchers due to its complex pathological mechanisms and difficulty in prediction. Growing evidence indicates that BPD is associated with the dysregulation of circular RNAs (circRNAs). Therefore, we aimed to explore the expression profiles of circRNAs and investigate the underlying molecular network associated with BPD. METHODS Peripheral blood was collected from very-low-birth-weight (VLBW) infants at 5-8 days of life to extract PBMCs. Microarray analysis and qRT-PCR tests were performed to determine the differentially expressed circRNAs (DEcircRNAs) between BPD and non-BPD VLBW infants. Simultaneous analysis of GSE32472 was conducted to obtain differentially expressed mRNAs (DEmRNA) from BPD infants. The miRNAs were predicted by DEcircRNAs and DEmRNAs of upregulated, respectively, and then screened for overlapping ones. GO and KEGG analysis was performed following construction of the competing endogenous RNA regulatory network (ceRNA) for further investigation. RESULTS A total of 65 circRNAs (52 upregulated and 13 downregulated) were identified as DEcircRNAs between the two groups (FC >2.0 and p.adj <0.05). As a result, the ceRNA network was constructed based on three upregulated DEcircRNAs validated by qRT-PCR (hsa_circ_0007054, hsa_circ_0057950, and hsa_circ_0120151). Bioinformatics analysis indicated these DEcircRNAs participated in response to stimulus, IL-1 receptor activation, neutrophil activation, and metabolic pathways. CONCLUSIONS In VLBW infants with a high risk for developing BPD, the circRNA expression profiles in PBMCs were significantly altered in the early post-birth period, suggesting immune dysregulation caused by infection and inflammatory response already existed.
Collapse
Affiliation(s)
- Yu Lun
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| | - Junlong Hu
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| | - Yang Zuming
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| |
Collapse
|
43
|
Gao Y, Mi N, Zhang Y, Li X, Guan W, Bai C. Uterine macrophages as treatment targets for therapy of premature rupture of membranes by modified ADSC-EVs through a circRNA/miRNA/NF-κB pathway. J Nanobiotechnology 2022; 20:487. [PMCID: PMC9675163 DOI: 10.1186/s12951-022-01696-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Circular RNA (circRNA) is a type of stable non-coding RNA that modifies macrophage inflammation by sponging micro RNAs (miRNAs), binding to RNA-binding proteins, and undergoing translation into peptides. Activated M1 phenotype macrophages secrete matrix metalloproteinases to participate in softening of the cervix uteri to promote vaginal delivery. Methods In this study, the premature rupture of membranes (PROM) mouse model was used to analyze the role of macrophages in this process. Profiling of circRNAs was performed using a competing endogenous RNA microarray, and their functions were elucidated in vitro. Meanwhile, adipose tissue-derived stem cell-secreted extracellular vesicles (EVs) were applied as a vehicle to transport small interfering RNAs (siRNAs) targeting the circRNAs to demonstrate their biological function in vivo. Results The miRNA miR-1931 is dependent on the nuclear factor kappa-B (NF-κB) pathway but negatively regulates its activation by targeting the NF-κB signaling transducer TRAF6 to prevent polarization of M1 macrophages and inhibit matrix metalloproteinase (MMP) secretion. The host gene of circRNA B4GALNT1, also an NF-κB pathway-dependent gene, circularizes to form circRNA_0002047, which sponges miR-1931 to maintain NF-κB pathway activation and MMP secretion in vitro. In the PROM model, EVs loaded with siRNAs targeting circRNAs demonstrated that the circRNAs reduced miR-1931 expression to maintain NF-κB pathway activation and MMP secretion for accelerating PROM in vivo. Conclusions Our data provide insights into understanding PROM pathogenesis and improving PROM treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01696-z.
Collapse
Affiliation(s)
- Yuhua Gao
- grid.449428.70000 0004 1797 7280Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong 272067 People’s Republic of China ,grid.410727.70000 0001 0526 1937Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Ningning Mi
- grid.449428.70000 0004 1797 7280Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong 272067 People’s Republic of China ,grid.443483.c0000 0000 9152 7385College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666, Wusu Road, Li’an, Zhejiang, China
| | - Ying Zhang
- grid.449428.70000 0004 1797 7280Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong 272067 People’s Republic of China
| | - Xiangchen Li
- grid.443483.c0000 0000 9152 7385College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666, Wusu Road, Li’an, Zhejiang, China
| | - Weijun Guan
- grid.410727.70000 0001 0526 1937Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Chunyu Bai
- grid.449428.70000 0004 1797 7280Institute of Precision Medicine, Jining Medical University, No.133 Hehua Road, Jining, Shandong 272067 People’s Republic of China ,grid.410727.70000 0001 0526 1937Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| |
Collapse
|
44
|
Zan C, Li J, Lin F, Wang Z. Potential value of differentially expressed circular RNAs derived from circulating exosomes in the pathogenesis of rat spinal cord injury. Front Neurosci 2022; 16:1003628. [PMID: 36440268 PMCID: PMC9691962 DOI: 10.3389/fnins.2022.1003628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) remains one kind of devastating neurological damage, and specific molecular mechanisms involved need to be understood deeply. Currently, circular RNAs (circRNAs), as a newly discovered type of non-coding RNAs (ncRNAs), have been under active investigation. Through functional interactions with disease-associated microRNAs (miRNAs), exosome-derived circRNAs have been extensively implicated in various organ pathogenesis. Nevertheless, the functional involvement of circulating circRNAs in SCI onset, progression as well as repair remains poorly explored until now. Of note, there still lacks clinical and experimental evidence in this regard. To obtain some relevant knowledge in this field, this study was originally designed to have a general overview of differentially expressed circRNAs derived from circulating exosomes in SCI rats in comparison with the control rats. It turned out that 709 types of downregulated circRNAs and 346 kinds of upregulated circRNAs were preliminarily screened out. Functional enrichment analyses including kyoto encyclopedia of genes and genomes (KEGG) pathway and gene ontology (GO) were performed to evaluate the possible biological functions of upregulated as well as downregulated circRNAs involved in SCI. Furthermore, five types of upregulated circulating circRNAs including chr4:208359914–208362182+, chr15:20088296–20092102+, chr1:175098934– 175134845–, chr1:175099657– 175128203–, and chr1:175104454– 175134845–, and plus five kinds of downregulated circulating circRNAs including chr11:74154652– 74159524–, chr12:45412398– 45412635–, chr7:137630261– 137648924–, chr6:6280974–6281188+, and chr4:225251864–225254087+, were verified through reverse transcription-polymerase chain reaction (RT-PCR). At last, taking these differentially expressed circRNAs in the center, the circRNA-miRNA-mRNA gene interaction network was constructed to predict the possible functionalities of circRNAs in SCI through anticipating specific interactive miRNAs, giving new insights into how circRNAs contribute to this pathological process. Taken together, these findings suggest the possible involvement and functional significance of circRNAs in SCI.
Collapse
Affiliation(s)
- Chunfang Zan
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
- *Correspondence: Chunfang Zan, ,
| | - Jianan Li
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Fengsong Lin
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Zengliang Wang
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
- Zengliang Wang,
| |
Collapse
|
45
|
Zhou Y, Wang Y, Vong CT, Zhu Y, Xu B, Ruan CC, Wang Y, Cheang WS. Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:12064. [PMID: 36292919 PMCID: PMC9602750 DOI: 10.3390/ijms232012064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries and human umbilical cord vein endothelial cells (HUVECs) were treated with risk factors (high glucose or tunicamycin) with and without JAT ex vivo and in vitro. Furthermore, aortas were obtained from mice with chronic treatment: (1) control; (2) diet-induced obese (DIO) mice fed a high-fat diet (45% kcal% fat) for 15 weeks; and (3) DIO mice orally administered JAT at 50 mg/kg/day for the last 5 weeks. High glucose or endoplasmic reticulum (ER) stress inducer tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations (EDRs) in mouse aortas, induced oxidative stress in carotid arteries and HUVECs, downregulated phosphorylations of Akt at Ser473 and eNOS at Ser1177 and enhanced ER stress in mouse aortas and HUVECs, and these impairments were reversed by cotreatment with JAT. JAT increased NO release in high-glucose-treated mouse aortas and HUVECs. In addition, chronic JAT treatment restored endothelial function with EDRs comparable to the control, increased Akt/eNOS phosphorylation, and attenuated ER stress and oxidative stress in aortas from DIO mice. Blood pressure, glucose sensitivity, fatty liver and its morphological change, as well as plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and plasma lipid profile, were also normalized by JAT treatment. Collectively, our data may be the first to reveal the vasoprotective effect of JAT that ameliorates endothelial dysfunction in diabetes and obesity through enhancement of the Akt/eNOS pathway and NO bioavailability, as well as suppression of ER stress and oxidative stress.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yuehan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200437, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
46
|
Li J, Min Y, Zhao Q. Circ_0000064 knockdown attenuates high glucose-induced proliferation, inflammation and extracellular matrix deposition of mesangial cells through miR-424-5p-mediated WNT2B inhibition in cell models of diabetic nephropathy. Clin Exp Nephrol 2022; 26:943-954. [PMID: 35678923 DOI: 10.1007/s10157-022-02241-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is widely shown to be associated with the development of diabetic nephropathy (DN). Our study aimed to further explore the role of circ_0000064 and provide a new mechanism for its action in DN. METHODS Cell models of DN in vitro were constructed by treating human renal mesangial cells (HRMCs) with high glucose (HG). The expression of circ_0000064, microRNA-424-5p (miR-424-5p) and Wnt family member 2B (WNT2B) mRNA was detected by quantitative real-time PCR (qPCR). Cell proliferation was assessed by CCK-8 assay and EdU assay. Cell cycle was characterized by DNA content using flow cytometry. The releases of pro-inflammatory factors were checked using commercial ELISA kits. The expression of cell cycle- and fibrosis-associated proteins was detected by western blot. The interplays between miR-424-5p and circ_0000064 or WNT2B were verified by dual-luciferase reporter assay and RIP assay. RESULTS Circ_0000064 and WNT2B were upregulated, while miR-424-5p was downregulated in HG-treated HRMCs. Circ_0000064 knockdown largely attenuated HG-induced proliferation, inflammatory responses and extracellular matrix (ECM) accumulation in HRMCs, and miR-424-5p deficiency reversed the role of circ_0000064 knockdown. MiR-424-5p was a target of circ_0000064, and miR-424-5p directly bound to WNT2B. MiR-424-5p restoration alleviated HG-induced proliferation, inflammatory responses and ECM accumulation in HRMCs, and WNT2B overexpression partially abolished the effects of miR-424-5p. CONCLUSION Circ_0000064 knockdown ameliorated HG-induced HRMC dysfunctions through miR-424-5p enrichment-mediated WNT2B inhibition, hinting that circ_0000064 contributed to DN development.
Collapse
Affiliation(s)
- Jianfei Li
- Department of Nephrology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yan Min
- Department of Nephrology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Qin Zhao
- Department of Geriatrics, Liuzhou People's Hospital, Wenchang No. 8 Road, Liuzhou, 545006, Guangxi, China.
| |
Collapse
|
47
|
Expression Profiles and Functional Analysis of Plasma Exosomal Circular RNAs in Acute Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3458227. [PMID: 36221294 PMCID: PMC9547997 DOI: 10.1155/2022/3458227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Acute myocardial infarction (AMI) is a common cardiovascular disease with high rates of morbidity and mortality globally. The dysregulation of circular RNAs (circRNAs) has been shown to be closely related to various pathological aspects of AMI. However, the function of exosomal circRNAs in AMI has yet to be investigated. The purpose of this study was to investigate the expression profiles of plasma exosomal circRNAs in AMI and explore their potential functionality. The expression profiles of plasma exosomal circRNAs in patients with AMI, stable coronary heart atherosclerotic disease (CAD), and healthy controls were obtained from a GEO expression dataset (GSE159657). We also analyzed bioinformatics functionality, potential pathways, and interaction networks related to the microRNAs associated with the differentially expressed circRNAs. A total of 253 exosomal circRNAs (184 up- and 69 down-regulated) and 182 exosomal circRNAs (94 up- and 88 down-regulated) were identified as being differentially expressed between the control group and the AMI and CAD patients, respectively. Compared with the CAD group, 231 different exosomal circRNAs (177 up- and 54 down-regulated) were identified in the AMI group. Functional analysis suggested that the parental genes of exosomal has_circ_0061776 were significantly enriched in the biological process of lysine degradation. Pathway interaction network analysis further indicated that exosomal has_circ_0061776 was associated with has-miR-133a, has-miR-214, has-miR-423, and has-miR-217 and may play a role in the pathogenesis of AMI through the MAPK signaling pathway. This study identified the differential expression and functionality of exosomal circRNAs in AMI and provided further understanding of the potential pathogenesis of an exosomal circRNA-related competing endogenous RNA (ceRNA) network in AMI.
Collapse
|
48
|
Ran Y, Chen R, Huang D, Qin Y, Liu Z, He J, Mei Y, Zhou Y, Yin N, Qi H. The landscape of circular RNA in preterm birth. Front Immunol 2022; 13:879487. [PMID: 36072601 PMCID: PMC9441874 DOI: 10.3389/fimmu.2022.879487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Preterm birth (PTB) is a multifactorial syndrome that seriously threatens the health of pregnant women and babies worldwide. Recently, circular RNAs (circRNAs) have been understood as important regulators of various physiological and pathological processes. However, the expression pattern and potential roles of circRNAs in PTB are largely unclear. Methods In this study, we extracted and analyzed the circRNA expression profiles in maternal and fetal samples of preterm and term pregnancies, including maternal plasma, maternal monocytes, myometrium, chorion, placenta, and cord blood. We identified the circRNAs which is associated with PTB in different tissues and explored their relationships from the perspective of the overall maternal-fetal system. Furthermore, co-expression analysis of circRNAs and mRNAs, target microRNAs (miRNAs), and RNA-binding proteins (RBPs), provided new clues about possible mechanisms of circRNA function in PTB. In the end, we investigated the potential special biofunctions of circRNAs in different tissues and their common features and communication in PTB. Results Significant differences in circRNA types and expression levels between preterm and term groups have been proved, as well as between tissues. Nevertheless, there were still some PTB-related differentially expressed circRNAs (DECs) shared by these tissues. The functional enrichment analysis showed that the DECs putatively have important tissue-specific biofunctions through their target miRNA and co-expressed mRNAs, which contribute to the signature pathologic changes of each tissue within the maternal-fetal system in PTB (e.g., the contraction of the myometrium). Moreover, DECs in different tissues might have some common biological activities, which are mainly the activation of immune-inflammatory processes (e.g., interleukin1/6/8/17, chemokine, TLRs, and complement). Conclusions In summary, our data provide a preliminary blueprint for the expression and possible roles of circRNAs in PTB, which lays the foundation for future research on the mechanisms of circRNAs in PTB.
Collapse
Affiliation(s)
- Yuxin Ran
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongni Huang
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Qin
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie He
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youwen Mei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqian Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nanlin Yin
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Nanlin Yin, ; Hongbo Qi,
| | - Hongbo Qi
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Nanlin Yin, ; Hongbo Qi,
| |
Collapse
|
49
|
Xiao K, Li S, Ding J, Wang Z, Wang D, Cao X, Zhang Y, Dong Z. Expression and clinical value of circRNAs in serum extracellular vesicles for gastric cancer. Front Oncol 2022; 12:962831. [PMID: 36059681 PMCID: PMC9428625 DOI: 10.3389/fonc.2022.962831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Objective At present, there are still no effective diagnosis methods for gastric cancer (GC). Increasing evidences indicate that Extracellular Vesicle circular RNAs (EV circRNAs) play a crucial role in several diseases. However, their correlations with GC are not clarified. This study aims to investigate the expression profile of serum EV circRNAs in GC and evaluate its potential clinical value. Methods High-throughput RNA sequencing (RNA-seq) was used to assess circRNA expression profiles between 4 patients with GC and 4 healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were employed to determine the biological functions of differentially expressed (DE) circRNAs. A circRNA-miRNA-mRNA network was constructed using bioinformatics tools. Reverse transcription-quantitative polymerase chain reaction (RT-q)PCR was used to validate the dysregulated circRNAs. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of circRNAs for GC. Results A total of 4692 circRNAs were detected in the serum EVs of healthy controls and patients with GC, most of which were novel (98%) and intergenic (52%). 7 circRNAs were upregulated and 4 circRNAs were downregulated (|log2Fold Change| > 2, P < 0.05). GO and KEGG pathway enrichment analyses revealed that DE circRNAs were primarily involved in glutathione metabolism, protein folding, and drug metabolism-cytochrome P450. Of these, 3 circRNAs (Chr10q11, Chr1p11, and Chr7q11) were identified to be significantly overexpressed in patients with GC compared with healthy controls using RT-qPCR. The combination of 3 EV circRNAs and carcinoembryonic antigen (CEA) produced an area under the curve (AUC) of 0.866 (95%CI: 0.803-0.915) with a sensitivity and specificity of 80.4% and 81.8%, respectively. Additionally, the expression levels of 3 EV circRNAs were significantly correlated with tumor size, lymph node metastasis, and TNM stage. The circRNA-miRNA-mRNA network showed that the 3 identified circRNAs were predicted to interact with 13 miRNAs and 91 mRNAs. Conclusion Our results illustrate that the panel of EV circRNAs in serum are aberrantly expressed and may act as the suitable biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Shirong Li
- Department of Laboratory Medicine, Weifang People’s Hospital, Weifang, China
| | - Juan Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Ding Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangting Cao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Zhaogang Dong, ; Yi Zhang,
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Zhaogang Dong, ; Yi Zhang,
| |
Collapse
|
50
|
Qiu JN, Shan K, Xiang J, Gu JY, Zhou RM, Zhang XL, Zhang CR, Xu JJ. Comprehensive Analysis of circRNA-Associated-ceRNA Networks in Human Corneal Endothelial Dysfunction. Cornea 2022; 41:1545-1552. [PMID: 35965398 DOI: 10.1097/ico.0000000000003065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs that regulate gene expression through the competitive endogenous RNA (ceRNA) mechanism. CircRNA-associated-ceRNA networks are closely related to oxidative stress-related diseases. Oxidative stress-induced dysfunction of the corneal endothelium (CE) is a major pathological feature in many corneal diseases. This study was aimed to analyze circRNA-associated-ceRNA networks in oxidative stress-induced CE dysfunction. METHODS A CE dysfunction model was established using human corneal endothelial cells (HCECs) treated with H2O2 at a concentration of 250 μM for 4 hours at 37°C. High-throughput sequencing was conducted to determine the expression profiles of circRNA, miRNA, and mRNA. Bioinformatic analyses, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes analysis, were conducted to identify the potential biological modules and pathologic pathways of dysregulated circRNAs. CircRNA-associated-ceRNA networks were established based on the data of sequencing and bioinformatic analyses. RESULTS We obtained 108 differentially expressed circRNAs, including 77 upregulated and 31 downregulated circRNAs. GO analysis suggested that dysregulated circRNAs were mainly targeted to protein quality control for misfolded or incompletely synthesized proteins (biologic process), nuclear chromatin (cellular component), and ubiquitin protein ligase binding (molecular function). GO terms related to CE functions responding to oxidative stress were also identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that dysregulated circRNAs were mostly enriched in the adherens junction pathway. Network analysis identified several potential therapeutic targets for CE dysfunction. CONCLUSIONS CircRNAs are significantly dysregulated in HCECs under oxidative stress. The circRNA-associated-ceRNA networks are closely related to HCEC functions. Targeting these networks might provide novel therapies for CE dysfunction.
Collapse
Affiliation(s)
- Ji-Ni Qiu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kun Shan
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jun Xiang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jia-Yu Gu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and
| | - Rong-Mei Zhou
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xue-Ling Zhang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chao-Ran Zhang
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jian-Jiang Xu
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|