1
|
Liang J, Hu J, Hong X, Zhou M, Xia G, Hu L, Luo S, Quan K, Yan J, Wang S, Fan S. Amentoflavone maintaining extracellular matrix homeostasis and inhibiting subchondral bone loss in osteoarthritis by inhibiting ERK, JNK and NF-κB signaling pathways. J Orthop Surg Res 2024; 19:662. [PMID: 39407273 PMCID: PMC11481797 DOI: 10.1186/s13018-024-05075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Amentoflavone (AF), a plant biflavone isolated from Selaginella sinensis ethanol extract, is characterized by anti-inflammatory and anti-oxidant properties. According to previous studies, inflammation and oxidative stress are closely related to the pathophysiology of osteoarthritis (OA). However, the effects and mechanisms of AF on OA have not been elucidated.To investigate the inhibitory effects and its molecular mechanism of AF on extracellular matrix (ECM) degradation stimulated by IL-1β as well as subchondral bone loss induced by RANKL in mice chondrocytes. Quantitative PCR was used to detect the mRNA expression of genes related to inflammation, ECM, and osteoclast differentiation. Protein expression level of iNOS, COX-2, MMP13, ADAMTS5, COL2A1, SOX9, NFATc1, c-fos, JNK, ERK, P65, IκBα was measured by western blotting. The levels of TNF-α and IL-6 in the supernatants were measured by ELISA. The amount of ECM in chondrocytes was measured using toluidine blue staining. The levels of Aggrecan and Col2a1 in chondrocytes were measured using immunofluorescence. Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and immunofluorescence were used to detect the effect of AF on osteoclast differentiation and bone resorption. The effect of AF on destabilization of the medial meniscus (DMM)-induced OA mice can be detected in hematoxylin-eosin (H&E) staining, Safranin O green staining and immunohistochemistry.AF might drastically attenuated IL-1β-stimulated inflammation and reduction of ECM formation by blocking ERK and NF-κB signaling pathways in chondrocytes. Meanwhile, AF suppressed the formation of osteoclasts and the resorption of bone function induced by RANKL. In vivo, AF played a protective role by stabilizing cartilage ECM and inhibiting subchondral bone loss in destabilization of the medial meniscus (DMM)-induced OA mice, further proving its protective effect in the development of OA. Our study show that AF alleviated OA by suppressing ERK, JNK and NF-κB signaling pathways in OA models in vitro and DMM-induced OA mice, suggesting that AF might be a potential therapeutic agent in the treatment of OA.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Jiawei Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Ming Zhou
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Guoming Xia
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Liangshen Hu
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Song Luo
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Kun Quan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Jianbin Yan
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.
| | - Shaoyong Fan
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China.
| |
Collapse
|
2
|
Raeisi H, Azimirad M, Asadi-Sanam S, Asadzadeh Aghdaei H, Yadegar A, Zali MR. The anti-inflammatory and anti-apoptotic effects of Achillea millefolium L. extracts on Clostridioides difficile ribotype 001 in human intestinal epithelial cells. BMC Complement Med Ther 2024; 24:37. [PMID: 38218845 PMCID: PMC10790267 DOI: 10.1186/s12906-024-04335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is one of the most common health care-acquired infections. The dramatic increase in antimicrobial resistance of C. difficile isolates has led to growing demand to seek new alternative medicines against CDI. Achillea millefolium L. extracts exhibit strong biological activity to be considered as potential therapeutic agents. In this work, the inhibitory effects of A. millefolium, its decoction (DEC) and ethanol (ETOH) extracts, were investigated on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S) induced inflammation and apoptosis. METHODS Phytochemical analysis of extracts was performed by HPLC and GC analysis. The antimicrobial properties of extracts were evaluated against C. difficile RT001. Cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of extracts and Tox-S were examined by MTT assay and microscopy, respectively. Anti-inflammatory and anti-apoptotic effects of extracts were assessed in Tox-S stimulated Caco-2 cells by RT-qPCR. RESULTS Analysis of the phytochemical profile of extracts revealed that the main component identified in both extracts was chlorogenic acid. Both extracts displayed significant antimicrobial activity against C. difficile RT001. Moreover, both extracts at concentration 50 µg/mL had no significant effect on cell viability compared to untreated cells. Pre-treatment of cells with extracts (50 µg/mL) significantly reduced the percentage of Vero cells rounding induced by Tox-S. Also, both pre-treatment and co-treatment of Tox-S stimulated Caco-2 cells with extracts significantly downregulated the gene expression level of IL-8, IL-1β, TNF-α, TGF-β, iNOS, Bax, caspase-9 and caspase-3 and upregulated the expression level of Bcl-2. CONCLUSION The results of the present study for the first time demonstrate the antimicrobial activity and protective effects of A. millefolium extracts on inflammatory response and apoptosis induced by Tox-S from C. difficile RT001 clinical strain in vitro. Further research is needed to evaluate the potential application of A. millefolium extracts as supplementary medicine for CDI prevention and treatment in clinical setting.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Asadi-Sanam
- Medicinal Plants Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education & Extension Organization (AREEO), Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Saeedan AS, Abdel-Rahman RF, Soliman GA, Ogaly HA, Abdel-Kader MS. Amentoflavone attenuates oxidative stress and neuroinflammation induced by cerebral ischemia/reperfusion in rats by targeting HMGB1-mediated TLR4/NF-κB signaling pathway. Saudi Pharm J 2023; 31:101798. [PMID: 37811125 PMCID: PMC10551888 DOI: 10.1016/j.jsps.2023.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Surveys indicated that stroke classified among the leading cause of death as well as combined death and disability worldwide resulting in a great loss for the global economy. The present study aims to evaluate the neuroprotective potential of the biflavonoid amentoflavone (AMNT) in alleviating cerebral ischemia/reperfusion (IR) injury in rats, and to elucidate the possible underlying mechanism of an experimental condition with similar circumstances to stroke. Cerebral ischemia was achieved through left common carotid artery occlusion for 60 min, followed by blood flow restoration. Sham-operated control rats subjected to the same surgical process except for brain IR. Rats were orally administered AMNT/ or vehicle for three days' prior surgical operation, and for another three days after left brain IR. Rats of all groups were assessed for neurological deficits 24 h following brain IR. Each group was divided into two subgroups one for the rotarod testing and biochemical assessment while the other subgroup to perform the activity cage testing, histopathological study, immunohistochemistry, and gene expression analysis. AMNT enhanced brain levels of GSH and CAT activities, suppressed neuroinflammation via reducing the inflammatory cytokines in the serum, and enhanced brain contents of TBK1 and IFNβ. AMNT downregulated TLR4-/NF-κB signaling pathway as a result of the HMGB1 suppression. Moreover, AMNT blocked apoptotic cell death by suppressing the NF-κB signaling pathway and reducing the activation of caspase-3. These findings revealed that AMNT attenuates I/R-induced cerebral injury possibly by regulating the HMGB1-mediated TLR4/NF-kB pathway. Thus, AMNT could provide potential preventive and therapeutic option for cerebral stroke.
Collapse
Affiliation(s)
- Abdulaziz S. Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| |
Collapse
|
4
|
Tuli HS, Joshi H, Vashishth K, Ramniwas S, Varol M, Kumar M, Rani I, Rani V, Sak K. Chemopreventive mechanisms of amentoflavone: recent trends and advancements. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:865-876. [PMID: 36773053 DOI: 10.1007/s00210-023-02416-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
In parallel to the continuous rise of new cancer cases all over the world, the interest of scientific community in natural anticancer agents has steadily been increased. In the past decades, numerous phytochemicals have been shown to possess a strong anticancer potential in preclinical conditions. One of such interesting compounds, derived from different plants such as ginkgo, hinoki, and St. John`s wort, is amentoflavone. In this review article, a wide range of anticancer properties of this natural biflavone are described, revealing its ability to suppress the malignant growth and lead tumor cells to apoptotic death, besides impeding also angiogenic and metastatic processes. Therefore, amentoflavone can be considered a potential lead compound for the development of novel anticancer drug candidates, definitely deserving further in vivo studies and also initiation of clinical trials. It is expected that this plant biflavone might be important, either alone or in combination with the current standard chemotherapeutics, in providing some alleviation for the continuous rise of global cancer burden.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Mullana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Chandigarh, 160012, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, 140413, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala, 134007, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | | |
Collapse
|
5
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
6
|
Naidu SAG, Tripathi YB, Shree P, Clemens RA, Naidu AS. Phytonutrient Inhibitors of SARS-CoV-2/NSP5-Encoded Main Protease (M pro) Autocleavage Enzyme Critical for COVID-19 Pathogenesis. J Diet Suppl 2023; 20:284-311. [PMID: 34821532 DOI: 10.1080/19390211.2021.2006388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The genomic reshuffling, mutagenicity, and high transmission rate of the SARS-CoV-2 pathogen highlights an urgent need for effective antiviral interventions for COVID-19 control. Targeting the highly conserved viral genes and/or gene-encoded viral proteins such as main proteinase (Mpro), RNA-dependent RNA polymerase (RdRp) and helicases are plausible antiviral approaches to prevent replication and propagation of the SARS-CoV-2 infection. Coronaviruses (CoVs) are prone to extensive mutagenesis; however, any genetic alteration to its highly conserved Mpro enzyme is often detrimental to the viral pathogen. Therefore, inhibitors that target the Mpro enzyme could reduce the risk of mutation-mediated drug resistance and provide effective antiviral protection. Several existing antiviral drugs and dietary bioactives are currently repurposed to treat COVID-19. Dietary bioactives from three ayurvedic medicinal herbs, 18 β-glycyrrhetinic acid (ΔG = 8.86 kcal/mol), Solanocapsine (ΔG = 8.59 kcal/mol), and Vasicoline (ΔG = 7.34 kcal/mol), showed high-affinity binding to Mpro enzyme than the native N3 inhibitor (ΔG = 5.41 kcal/mol). Flavonoids strongly inhibited SARS-CoV-2 Mpro with comparable or higher potency than the antiviral drug, remdesivir. Several tannin hydrolysates avidly bound to the receptor-binding domain and catalytic dyad (His41 and Cys145) of SARS-CoV-2 Mpro through H-bonding forces. Quercetin binding to Mpro altered the thermostability of the viral protein through redox-based mechanism and inhibited the viral enzymatic activity. Interaction of quercetin-derivatives with the Mpro seem to be influenced by the 7-OH group and the acetoxylation of sugar moiety on the ligand molecule. Based on pharmacokinetic and ADMET profiles, several phytonutrients could serve as a promising redox nutraceutical for COVID-19 management.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Yamini B Tripathi
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priya Shree
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, California, USA
| | | |
Collapse
|
7
|
Alherz FA, El-Masry TA, Negm WA, El-Kadem AH. Potential cardioprotective effects of Amentoflavone in doxorubicin-induced cardiotoxicity in mice. Biomed Pharmacother 2022; 154:113643. [PMID: 36942597 DOI: 10.1016/j.biopha.2022.113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin (DOX) is an available chemotherapeutic drug for treating various tumors. However, its effectiveness is limited by cardiotoxicity. Amentoflavone (AMF), a natural biflavonoid separated from Cycas thouarsii ethyl acetate fraction, displays promising anticancer, anti-inflammatory, and antioxidant effects. Thus, our research aims to explore whether AMF could boost cardioprotective effects against DOX cardiotoxicity and reveal the potential underlying mechanisms of cardioprotection. Mice were classified into four groups; Normal control, Untreated DOX group, and DOX groups treated with AMF (40 and 80 mg/kg, respectively) intraperitoneal injection daily for four days before doxorubicin administration and for additional three days following DOX administration to assess cardiotoxicity. Echocardiography showed that AMF 80 treated group was protected from DOX cardiotoxicity. Additionally, it alleviated histopathological structural alterations and effectively restored heart weight and body weight ratio. These effects were confirmed biochemically by a substantially reduced serum creatine kinase-MB (CK-MB) and aspartate aminotransferase (AST) levels. AMF effectively restored nuclear respiratory factor-1(NRF-1), mitochondrial transcription factor A (TFAM), and normalized heat shock protein - 27(HSP-27) expression levels compared to the DOX group. Moreover, AMF mitigated oxidative stress conditions and significantly suppressed NADPH oxidase (NOX) expression levels. It also showed significant anti-inflammatory effects via suppressing interleukin-6 (IL-6) expression and decreasing nuclear factor Kabba B (NF-κb) immune-staining. In addition, AMF markedly reduced FAS ligand (FASL) expression and p53 immune staining in cardiac tissue. This study is the first for the in vivo potential beneficial effects of AMF against acute DOX cardiotoxicity, possibly via exerting antioxidant, anti-inflammatory, and anti-apoptotic effects and restoring mitochondrial function.
Collapse
Affiliation(s)
- Fatemah A Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Aya H El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
8
|
Xiong X, Tang N, Lai X, Zhang J, Wen W, Li X, Li A, Wu Y, Liu Z. Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid. Front Pharmacol 2022; 12:768708. [PMID: 35002708 PMCID: PMC8727548 DOI: 10.3389/fphar.2021.768708] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Amentoflavone is an active phenolic compound isolated from Selaginella tamariscina over 40 years. Amentoflavone has been extensively recorded as a molecule which displays multifunctional biological activities. Especially, amentoflavone involves in anti-cancer activity by mediating various signaling pathways such as extracellular signal-regulated kinase (ERK), nuclear factor kappa-B (NF-κB) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and emerges anti-SARS-CoV-2 effect via binding towards the main protease (Mpro/3CLpro), spike protein receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Therefore, amentoflavone is considered to be a promising therapeutic agent for clinical research. Considering the multifunction of amentoflavone, the current review comprehensively discuss the chemistry, the progress in its diverse biological activities, including anti-inflammatory, anti-oxidation, anti-microorganism, metabolism regulation, neuroprotection, radioprotection, musculoskeletal protection and antidepressant, specially the fascinating role against various types of cancers. In addition, the bioavailability and drug delivery of amentoflavone, the molecular mechanisms underlying the activities of amentoflavone, the molecular docking simulation of amentoflavone through in silico approach and anti-SARS-CoV-2 effect of amentoflavone are discussed.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xudong Lai
- Department of Infectious Disease, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Weilun Wen
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Verification of the Potential Targets of the Herbal Prescription Sochehwan for Drug Repurposing Processes as Deduced by Network Pharmacology. Processes (Basel) 2021. [DOI: 10.3390/pr9112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Network pharmacology (NP) is a useful, emerging means of understanding the complex pharmacological mechanisms of traditional herbal medicines. Sochehwan (SCH) is a candidate herbal prescription for drug repurposing as it has been suggested to have beneficial effects on metabolic syndrome. In this study, NP was adopted to complement the shortcomings of literature-based drug repurposing strategies in traditional herbal medicine. We conducted in vitro studies to confirm the effects of SCH on potential pharmacological targets identified by NP analysis. Herbal compounds and molecular targets of SCH were explored and screened from a traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and an oriental medicine advanced searching integrated system (OASIS). Forty-seven key targets selected from a protein-protein interaction (PPI) network were analyzed with gene ontology (GO) term enrichment and KEGG pathway enrichment analysis to identify relevant categories. The tumor necrosis factor (TNF) and mitogen-activated protein kinase (MAPK) signaling pathways were presented as significant signaling pathways with lowest p-values by NP analysis, which were downregulated by SCH treatment. The signal transducer and activator of transcription 3 (STAT3) was identified as a core key target by NP analysis, and its phosphorylation ratio was confirmed to be significantly suppressed by SCH. In conclusion, the NP-based approach used for target prediction and experimental data obtained from Raw 264.7 cells strongly suggested that SCH can attenuate inflammatory status by modulating the phosphorylation status of STAT3.
Collapse
|
10
|
Kwofie SK, Broni E, Yunus FU, Nsoh J, Adoboe D, Miller WA, Wilson MD. Molecular Docking Simulation Studies Identifies Potential Natural Product Derived-Antiwolbachial Compounds as Filaricides against Onchocerciasis. Biomedicines 2021; 9:biomedicines9111682. [PMID: 34829911 PMCID: PMC8615632 DOI: 10.3390/biomedicines9111682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Onchocerciasis is the leading cause of blindness and severe skin lesions which remain a major public health problem, especially in tropical areas. The widespread use of antibiotics and the long duration required for effective treatment continues to add to the increasing global menace of multi-resistant pathogens. Onchocerca volvulus harbors the endosymbiont bacteria Wolbachia, essential for the normal development of embryos, larvae and long-term survival of the adult worm, O. volvulus. We report here results of using structure-based drug design (SBDD) approach aimed at identifying potential novel Wolbachia inhibitors from natural products against the Wolbachia surface protein (WSP). The protein sequence of the WSP with UniProtKB identifier Q0RAI4 was used to model the three-dimensional (3D) structure via homology modelling techniques using three different structure-building algorithms implemented in Modeller, I-TASSER and Robetta. Out of the 15 generated models of WSP, one was selected as the most reasonable quality model which had 82, 15.5, 1.9 and 0.5% of the amino acid residues in the most favored regions, additionally allowed regions, generously allowed regions and disallowed regions, respectively, based on the Ramachandran plot. High throughput virtual screening was performed via Autodock Vina with a library comprising 42,883 natural products from African and Chinese databases, including 23 identified anti-Onchocerca inhibitors. The top six compounds comprising ZINC000095913861, ZINC000095486235, ZINC000035941652, NANPDB4566, acetylaleuritolic acid and rhemannic acid had binding energies of −12.7, −11.1, −11.0, −11, −10.3 and −9.5 kcal/mol, respectively. Molecular dynamics simulations including molecular mechanics Poisson-Boltzmann (MMPBSA) calculations reinforced the stability of the ligand-WSP complexes and plausible binding mechanisms. The residues Arg45, Tyr135, Tyr148 and Phe195 were predicted as potential novel critical residues required for ligand binding in pocket 1. Acetylaleuritolic acid and rhemannic acid (lantedene A) have previously been shown to possess anti-onchocercal activity. This warrants the need to evaluate the anti-WSP activity of the identified molecules. The study suggests the exploitation of compounds which target both pockets 1 and 2, by investigating their potential for effective depletion of Wolbachia. These compounds were predicted to possess reasonably good pharmacological profiles with insignificant toxicity and as drug-like. The compounds were computed to possess biological activity including antibacterial, antiparasitic, anthelmintic and anti-rickettsials. The six natural products are potential novel antiwolbachial agents with insignificant toxicities which can be explored further as filaricides for onchocerciasis.
Collapse
Affiliation(s)
- Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: ; Tel.: +233-203-797922
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana;
| | - Faruk U. Yunus
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - John Nsoh
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - Dela Adoboe
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana;
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
11
|
Varshney M, Kumar B, Rana VS, Sethiya NK. An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer's and Parkinson's diseases: a critical analysis on mechanistic insight. Crit Rev Food Sci Nutr 2021; 63:2749-2772. [PMID: 34590507 DOI: 10.1080/10408398.2021.1980761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|
12
|
Dejani NN, Elshabrawy HA, Bezerra Filho CDSM, de Sousa DP. Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives. Biomolecules 2021; 11:biom11081254. [PMID: 34439920 PMCID: PMC8394099 DOI: 10.3390/biom11081254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for COVID-19. Studies have shown that natural phenolic compounds have several pharmacological properties, including anticoronavirus and immunomodulatory activities. Therefore, this review discusses the dual action of these natural products from the perspective of applicability at COVID-19.
Collapse
Affiliation(s)
- Naiara Naiana Dejani
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Carlos da Silva Maia Bezerra Filho
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7347
| |
Collapse
|
13
|
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microbes broadly constitute several organisms like viruses, protozoa, bacteria, and fungi present in our biosphere. Fast-paced environmental changes have influenced contact of human populations with newly identified microbes resulting in diseases that can spread quickly. These microbes can cause infections like HIV, SARS-CoV2, malaria, nosocomial Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), or Candida infection for which there are no available vaccines/drugs or are less efficient to prevent or treat these infections. In the pursuit to find potential safe agents for therapy of microbial infections, natural biflavonoids like amentoflavone, tetrahydroamentoflavone, ginkgetin, bilobetin, morelloflavone, agathisflavone, hinokiflavone, Garcinia biflavones 1 (GB1), Garcinia biflavones 2 (GB2), robustaflavone, strychnobiflavone, ochnaflavone, dulcisbiflavonoid C, tetramethoxy-6,6″-bigenkwanin and other derivatives isolated from several species of plants can provide effective starting points and become a source of future drugs. These biflavonoids show activity against influenza, severe acute respiratory syndrome (SARS), dengue, HIV-AIDS, coxsackieviral, hepatitis, HSV, Epstein-Barr virus (EBV), protozoal (Leishmaniasis, Malaria) infections, bacterial and fungal infections. Some of the biflavonoids can provide antiviral and protozoal activity by inhibition of neuraminidase, chymotrypsin-like protease, DV-NS5 RNA dependant RNA polymerase, reverse transcriptase (RT), fatty acid synthase, DNA polymerase, UL54 gene expression, Epstein-Barr virus early antigen activation, recombinant cysteine protease type 2.8 (r-CPB2.8), Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase or cause depolarization of parasitic mitochondrial membranes. They may also provide anti-inflammatory therapeutic activity against the infection-induced cytokine storm. Considering the varied bioactivity of these biflavonoids against these organisms, their structure-activity relationships are derived and wherever possible compared with monoflavones. Overall, this review aims to highlight these natural biflavonoids and briefly discuss their sources, reported mechanism of action, pharmacological uses, and comment on resistance mechanism, flavopiridol repurposing and the bioavailability aspects to provide a starting point for anti-microbial research in this area.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Vinícius R Campos
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Campus do Valonguinho, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:203. [PMID: 33494524 PMCID: PMC7911284 DOI: 10.3390/plants10020203] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023]
Abstract
Usually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial. This review explores in particular the antifungal potential of the three Bryophyta divisions-mosses (Musci), hornworts (Anthocerotae) and liverworts (Hepaticae)-to be used as a sources of interesting bioactive constituents for both pharmaceutical and agricultural areas, providing an updated overview of the latest relevant insights.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona (VR), Italy;
| | - Francesco Guarino
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma (PR), Italy;
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte P. Bucci 6b, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci 12 C, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco delle Scienze 11/A, 43124 Parma (PR), Italy
| |
Collapse
|
15
|
Wang X, Feng A, Yuan P, Fu Y, Bai Z, Zhou N, Zheng X. The total flavonoids from Selaginella tamariscina (beauv.) Spring improve glucose and lipid metabolism in db/db mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1286-1292. [PMID: 33149860 PMCID: PMC7585538 DOI: 10.22038/ijbms.2020.40532.9594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives This study aimed to investigate the glucose and lipid metabolism improving effect of the total flavonoids from Selaginella tamariscina (Beauv.) Spring (TFST) on db/db mice, and to study its mechanism of action. Materials and Methods The db/db mice were divided into 5 groups: the normal group (NC), the diabetic group (DM), the gliclazide group (GZ), the DM+TFST (110 mg/kg), and the DM+TFST (220 mg/kg). The body weight, blood glucose, INS, GC, TC, TG, LDL, and HDL were detected. HE staining was used to observe the liver and pancreas. Urine was tested by UPLC-QTOF-MS to study the metabolic differences of each group, coupled with SIMCA-P13.0 for PCA and OPLS-DA analysis, to identify potential biomarkers, find the metabolic pathway. Western blot was used to examine liver tissue of mice for studying effect of TFST on the PPAR-γ/PI3K/GLU4 pathway. Results TFST can reduce the weight and levels of TC, TG, and LDL-C, increase the level of GC in blood, and reduce the fat accumulation and inflammation in the liver, and repair the islet cell. 13 biomarkers were identified, they are mainly involved in amino acid metabolism, and purine and pyrimidine metabolism. The results of Western blot show TFST can improve the utilization rate of GLU4 by regulating PPAR-γ and PI3K expression in the liver of db/db mice. Conclusion TFST can improve glucose and lipid metabolism of DM, which relates to regulation of the PPAR-γ/PI3K/GLU4 signaling pathway, and affect the amino acid metabolism, purine, and pyrimidine metabolism.
Collapse
Affiliation(s)
- Xiaolan Wang
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Aozi Feng
- First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Peipei Yuan
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Fu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhiyao Bai
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Zhou
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| |
Collapse
|
16
|
Amentoflavone ameliorates cold stress-induced inflammation in lung by suppression of C3/BCR/NF-κB pathways. BMC Immunol 2019; 20:49. [PMID: 31888465 PMCID: PMC6937961 DOI: 10.1186/s12865-019-0331-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Cold stress, which may lead to local and systemic injury, is reported to be related to the immune system, especially the complement system. At present, the lack of effective treatment is a critical issue. Amentoflavone (AF), which can inhibit cold stress-induced inflammation in lung by multiple mechanisms, is the main therapeutic ingredient in plants of the genus Selaginella. Results In the current study, we found that cold could induce lung inflammation related to the complement system and its downstream pathways. AF treatment significantly inhibited lung inflammation from cold exposure. We presented evidence that AF can bind to complement component 3 (C3) to regulate inflammation-related pathways involving Lck/Yes novel tyrosine kinase (Lyn), protein kinase B (Akt), nuclear factor-κB (NF-κB) and immune factors. Moreover, 30 mg/kg of AF caused significantly greater improvement than 15 mg/kg in reducing the level of C3 in lung tissue. Conclusions AF can protect lung tissue from cold exposure. The protective effect may be achieved by inhibition of C3 and negative regulation of the B cell receptor (BCR)/NF-κB signaling pathways and high mobility group box 1 (HMGB1), which ultimately ameliorates the inflammatory response.
Collapse
|
17
|
Kuo YH, Yeh YT, Pan SY, Hsieh SC. Identification and Structural Elucidation of Anti-Inflammatory Compounds from Chinese Olive ( Canarium Album L.) Fruit Extracts. Foods 2019; 8:foods8100441. [PMID: 31561441 PMCID: PMC6836117 DOI: 10.3390/foods8100441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 01/20/2023] Open
Abstract
Chinese olive (Canarium album L.), a rich source of polyphenols, can be used as a functional food ingredient. We previously showed that the ethyl acetate fraction of this extract (CO-EtOAc) is an effective anti-inflammatory agent. Therefore, here, we aimed to screen the bioactive fractions extracted from CO-EtOAc using different isolation techniques, and purify the bioactive compounds based on their cytotoxic and anti-inflammatory abilities. CO-EtOAc was fractionated using silica gel and Sephadex column chromatography, and the active compounds were isolated and purified by high-performance liquid chromatography (HPLC). The structures of the resulting compounds were identified using proton nuclear magnetic resonance (NMR) spectra. Activity-directed fractionation and purification were used to identify the following active compounds with anti-inflammatory effects using lipopolysaccharide (LPS)-stimulated mouse macrophages: sitoindoside I, amentoflavone, tetrahydroamentoflavone and protocatechuic acid. For the first time, sitoindoside I and tetrahydroamentoflavone were isolated from Chinese olive, and the anti-inflammatory compounds of CO-EtOAc were identified, suggesting its potential for used as a health food ingredient.
Collapse
Affiliation(s)
- Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Te Yeh
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine and Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA.
- Institute of Food Science and Technology, National Taiwan University; Taipei 106, Taiwan.
| | - Sih-Ying Pan
- Institute of Food Science and Technology, National Taiwan University; Taipei 106, Taiwan.
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University; Taipei 106, Taiwan.
| |
Collapse
|
18
|
Djova SV, Nyegue MA, Messi AN, Afagnigni AD, Etoa FX. Phytochemical Study of Aqueous Extract of Ochna schweinfurthiana F. Hoffm Powder Bark and Evaluation of Their Anti-Inflammatory, Cytotoxic, and Genotoxic Properties. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8908343. [PMID: 30906417 PMCID: PMC6398047 DOI: 10.1155/2019/8908343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/04/2019] [Indexed: 11/18/2022]
Abstract
Ochna schweinfurthiana has been used in traditional medicine to treat pain, inflammation, and arthritis. It is a rich source of complex dimers of flavonoids with potential use as templates for the development of therapeutic drugs. Hence, the aim of this study was to study the phytochemical content and evaluate the in vitro cytotoxic, genotoxic, and anti-inflammatory activities of the aqueous extract of Ochna schweinfurthiana bark (OSE). Phytochemical study was carried out according to LC-MS procedures, while isolation was carried out using thin layer and column chromatographies. Cytotoxicity was investigated by the mitochondrial viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) method while genotoxicity potential of the extract was ascertained using the Salmonella typhimurium test strains TA98 and TA100. The anti-inflammatory effect of OSE was evaluated by the in vitro inhibition of 15-lipooxygenase enzyme and bovine serum albumin denaturation (BSA) assays. The investigation of compounds extracted from OSE led to the identification and isolation of six known compounds, namely, hemerocallone (9), 6,7-dimethoxy-3'-4'-dimethoxyisoflavone (10), lithospermoside (13), amentoflavone (14), agathisflavone (15), and β-D-fructofuranosyl-α-D-glucopyranoside (17). In the anti-inflammatory assay, aqueous extracts of the bark showed selective inhibition of 15-lipooxygenase with IC50 value of 32.2 ± 0.36 μg/mL and the result of the bovine serum albumin denaturation assay with IC50 value of 130± 5.78 μg/mL showed moderate activity. The toxicity assay indicated that OSE are noncytotoxic on Vero cell line with LC50 value of 50 mg/mL and nongenotoxic toward Salmonella typhimurium tester strain TA98 and TA100. Result from this study supports the traditional use of the selected medicinal plants in Cameroon for the treatment of inflammatory conditions. Noncytotoxicity and nongenotoxicity of OSE suggest that this plant is safe for use.
Collapse
Affiliation(s)
- Steve V. Djova
- Department of Biochemistry, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | | | - Angelique N. Messi
- Department of Organic Chemistry, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Alian D. Afagnigni
- Department of Biochemistry, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - François-X. Etoa
- Department of Microbiology, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| |
Collapse
|
19
|
HO-1 Induction by Selaginella tamariscina Extract Inhibits Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7816923. [PMID: 30581485 PMCID: PMC6276425 DOI: 10.1155/2018/7816923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
Selaginella Herba is the dried, aerial part of Selaginella tamariscina (P.Beauv.) Spring and has been used to treat amenorrhea, abdominal pain, headaches, and hematuria in Korea. However, scientific evidence regarding the anti-inflammatory activity and action mechanism of Selaginella tamariscina is lacking. Thus, the present study was performed to investigate the anti-inflammatory and antioxidant activities of Selaginella tamariscina ethanol extract (STE) against lipopolysaccharide (LPS)-induced inflammatory responses and identify the molecular mechanism responsible. STE was prepared by heating in 70% ethanol and its quality was confirmed by HPLC. STE dose-dependently inhibited the productions of inflammatory mediators (NO and PGE2) and proinflammatory cytokines (IL-1β and IL-6) in LPS-stimulated RAW 264.7 cells. STE markedly suppressed the phosphorylations of MAPKs, IκB-α, and NF-κB and the nuclear translocation of NF-κB induced by LPS stimulation. In addition, STE exhibited good free radical scavenging activity and prevented ROS generation by LPS. STE also upregulated the expression of Nrf2 and HO-1 and promoted the nuclear translocation of Nrf2. Taken together, STE was found to have anti-inflammatory and antioxidant effects on RAW 264.7 macrophages and the mechanism appeared to involve the MAPK, NF-κB, and Nrf2/HO-1 signaling pathways. These results suggest that STE might be useful for preventing or treating inflammatory diseases and provide scientific evidence that supports the developments of herbal prescriptions or novel natural products.
Collapse
|
20
|
Shim SY, Lee SG, Lee M. Biflavonoids Isolated from Selaginella tamariscina and Their Anti-Inflammatory Activities via ERK 1/2 Signaling. Molecules 2018; 23:molecules23040926. [PMID: 29673161 PMCID: PMC6017943 DOI: 10.3390/molecules23040926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 11/16/2022] Open
Abstract
Selaginella tamariscina (S. tamariscina) (Beauv.) Spring (Selaginellaceae) has been used in oriental medicine for the treatment of dysmenorrhea, chronic hepatitis, hyperglycemia, amenorrhea, hematuria, prolapse of the anus and metrorrhagia. In the present study, we isolated two strong anti-inflammatory compounds, the biflavonoids hinokiflavone (H) and 7′-O-methyl hinokiflavone (mH), from S. tamariscina and examined their anti-inflammatory activities in lipopolysaccharide (LPS)-mediated murine macrophages (RAW 264.7) and colon epithelial cells (HT-29). H and mH suppressed the production of the inflammatory mediators nitric oxide (NO), interleukin (IL)-6, IL-8, and tumor-necrosis factor (TNF)-α, which are most highly activated in inflammatory bowel disease (IBD). In addition, Western blot analysis revealed that H and mH suppressed the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and the activation of nuclear factor-κB (NF-κB) and extracellular regulated kinases (ERK) 1/2. These results suggest that H and mH are compounds having potent anti-inflammatory effects that could be used to treat such diseases as IBD.
Collapse
Affiliation(s)
- Sun-Yup Shim
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
- Research Institute of Life and Pharmaceutical Sciences, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| | - Seul-Gi Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| | - Mina Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| |
Collapse
|
21
|
Ayoub IM, Korinek M, Hwang TL, Chen BH, Chang FR, El-Shazly M, Singab ANB. Probing the Antiallergic and Anti-inflammatory Activity of Biflavonoids and Dihydroflavonols from Dietes bicolor. JOURNAL OF NATURAL PRODUCTS 2018; 81:243-253. [PMID: 29381070 DOI: 10.1021/acs.jnatprod.7b00476] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dietes bicolor (Iridaceae) is an ornamental plant used by African local healers to treat diarrhea and dysentery. A new dihydroflavonol, (2R,3R)-3,5,7-trihydroxy-8-methoxyflavanone (1); two known dihydroflavonols, trans-3-hydroxy-5-methoxy-6,7-methylenedioxyflavanone (2) and trans-3-hydroxy-5,7-dimethoxyflavanone (3); the known isoflavone orobol 7,3'-di-O-methyl ether (4); the known biflavones lanaroflavone (5), robustaflavone (6), and amentoflavone (7); and β-sitosterol (8) were isolated from the CH2Cl2 fraction of D. bicolor leaves. The extract showed potent activity in antiallergic and anti-inflammatory assays. The structures of the isolates were identified by spectroscopic and spectrometric methods. Compounds 6 and 7 (400 μM) exhibited antiallergic activity by inhibiting antigen-induced β-hexosaminidase release at 45.7% and 46.3%, respectively. Moreover, 6 and 7 exerted anti-inflammatory activity as demonstrated by the inhibition of superoxide anion generation with an IC50 value of 1.0 μM as well as the inhibition of elastase release with IC50 values of 0.45 and 0.75 μM, respectively. The anti-inflammatory activity was further explained by the virtual docking of the isolated compounds to the binding sites in the human neutrophil elastase (HNE) crystal structure using Discovery Studio 2.5. It was concluded that the biflavonoids bind directly to HNE and inhibit its enzymatic activity based on the CDOCKER algorithm. The data provided evidence for the potential use of D. bicolor against certain diseases related to allergy and inflammation.
Collapse
Affiliation(s)
- Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University , African Union Organization Street, Cairo 11566, Egypt
| | | | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan 33302, Taiwan
| | - Bing-Hung Chen
- Department of Medical Research, Kaohsiung Medical University Hospital , Kaohsiung 80708, Taiwan
- The Institute of Biomedical Sciences, National Sun Yat-sen University , Kaohsiung 804, Taiwan
| | | | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University , African Union Organization Street, Cairo 11566, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo 11432, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University , African Union Organization Street, Cairo 11566, Egypt
| |
Collapse
|
22
|
Baskaran XR, Geo Vigila AV, Zhang SZ, Feng SX, Liao WB. A review of the use of pteridophytes for treating human ailments. J Zhejiang Univ Sci B 2018; 19:85-119. [PMID: 29405039 PMCID: PMC5833325 DOI: 10.1631/jzus.b1600344] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 03/05/2017] [Indexed: 01/29/2023]
Abstract
The aim of this review was to explore the pharmacological activity of early tracheophytes (pteridophytes) as an alternative medicine for treating human ailments. As the first vascular plants, pteridophytes (aka, ferns and fern allies) are an ancient lineage, and human beings have been exploring and using taxa from this lineage for over 2000 years because of their beneficial properties. We have documented the medicinal uses of pteridophytes belonging to thirty different families. The lycophyte Selaginella sp. was shown in earlier studies to have multiple pharmacological activity, such as antioxidant, anti-inflammatory, anti-cancer, antidiabetic, antiviral, antimicrobial, and anti-Alzheimer properties. Among all the pteridophytes examined, taxa from the Pteridaceae, Polypodiaceae, and Adiantaceae exhibited significant medicinal activity. Based on our review, many pteridophytes have properties that could be used in alternative medicine for treatment of various human illnesses. Biotechnological tools can be used to preserve and even improve their bioactive molecules for the preparation of medicines against illness. Even though several studies have reported medicinal uses of ferns, the possible bioactive compounds of several pteridophytes have not been identified. Furthermore, their optimal dosage level and treatment strategies still need to be determined. Finally, the future direction of pteridophyte research is discussed.
Collapse
Affiliation(s)
- Xavier-ravi Baskaran
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden /Chinese Academy of Sciences, Shenzhen 518004, China
| | | | - Shou-zhou Zhang
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden /Chinese Academy of Sciences, Shenzhen 518004, China
| | - Shi-xiu Feng
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden /Chinese Academy of Sciences, Shenzhen 518004, China
| | - Wen-bo Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Qin L, Zhao Y, Zhang B, Li Y. Amentoflavone improves cardiovascular dysfunction and metabolic abnormalities in high fructose and fat diet-fed rats. Food Funct 2018; 9:243-252. [PMID: 29168869 DOI: 10.1039/c7fo01095h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MS) is a leading cause of mortality and morbidity in Western countries.
Collapse
Affiliation(s)
- Li Qin
- Cardiovascular Medicine Ward 2
- Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital)
- Zhengzhou 450000
- China
| | - Ying Zhao
- Cardiovascular Medicine Ward 5
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Bin Zhang
- The clinical Laboratory
- The First Affiliated Hospital of Xinxiang Medical University
- Weihui 453100
- China
| | - Yan Li
- Cardiovascular Medicine Ward 2
- Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital)
- Zhengzhou 450000
- China
| |
Collapse
|
24
|
Qian Y, Jiang S, Zhu Z, Wang Q, Su S, Tao J, Duan JA. Simultaneous quantification and semi-quantification of amentoflavone and its metabolites in human intestinal bacteria by liquid chromatography Orbitrap high-resolution mass spectrometry. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/05/2017] [Accepted: 04/15/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yiyun Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Qi Wang
- Jiangsu Shenlong Pharmaceutical Co. Ltd; Yancheng China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Jinhua Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
- School of Pharmacy; Nantong University; Nantong Jiangsu Province China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| |
Collapse
|
25
|
Srividhya M, Hridya H, Shanthi V, Ramanathan K. Bioactive Amento flavone isolated from Cassia fistula L. leaves exhibits therapeutic efficacy. 3 Biotech 2017; 7:33. [PMID: 28401469 PMCID: PMC5388655 DOI: 10.1007/s13205-017-0599-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/02/2017] [Indexed: 11/28/2022] Open
Abstract
Novel natural compounds endowed with sound bioactivities are currently the utmost need as leads toward drug discovery. For the first time, here, we report the presence of Amentoflavone (biflavonoid) in the leaves of Cassia fistula L. Structural characterization was carried out using ultraviolet–visible spectrophotometer, Fourier transform infrared, nuclear magnetic resonance, and thin-layer chromatography. The isolated compound was further evaluated for its bioactivity. The compound demonstrated moderate cytotoxicity in liver carcinoma (HepG2) cells, and the comparative analysis for the standard and normal compound has also been validated. Antioxidant potential was assessed by DPPH assay. Furthermore, efficacy of the compound in the aforesaid assays asserts its bioactivity and subsequently its importance as a potent therapeutic. Our study strongly suggests that Amentoflavone present in the leaf extracts of C. fistula L. definitely holds promise in the pharmaceutical industry.
Collapse
Affiliation(s)
- M Srividhya
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamilnadu, 632014, India
- Karpaga Vinayaga College of Engineering and Technology, Chinnakolambakkam, Kanchipuram Dt, Madhurantagam, India
| | - H Hridya
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamilnadu, 632014, India
| | - V Shanthi
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamilnadu, 632014, India
| | - K Ramanathan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
26
|
Dat LD, Zhao BT, Hung ND, Lee JH, Min BS, Woo MH. Lignan derivatives from Selaginella tamariscina and their nitric oxide inhibitory effects in LPS-stimulated RAW 264.7 cells. Bioorg Med Chem Lett 2016; 27:524-529. [PMID: 28038832 DOI: 10.1016/j.bmcl.2016.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
Abstract
The chemical characterization of Selaginella tamariscina leaves resulted in the isolation of five lignanoside derivatives (1-4 and 6) and one neolignan (5). These compounds include three new lignanosides, tamariscinosides D-F (1-3), and one liriodendrin (4) that were isolated for the first time from this plant, together with two known compounds, (2R,3S)-dihydro-2-(3,5-dimethoxy-4-hydroxyphenyl)-7-methoxy-5-acetyl-benzofuran (5) and moellenoside B (6). The chemical structures of these isolated compounds were determined using 1D and 2D NMR, MS, and CD spectroscopic data, and the results were compared to data previously reported in the literatures. These compounds were also evaluated in terms of their inhibition of NO production in lipopolysaccharide (LPS)-stimulated activity in the macrophage cell line RAW 264.7. Among them, compounds 1, 2, 5, and 6 exhibited a significant inhibition with IC50 values ranging from 32.3 to 55.8μM.
Collapse
Affiliation(s)
- Le Duc Dat
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea
| | - Bing Tian Zhao
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea
| | - Nguyen Duc Hung
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea; Phutho College of Pharmacy, Viettri City, Phutho Province 290000, Viet Nam
| | - Jeong Hyung Lee
- College of Natural Science, Kangwon National University, Kangwon 200-701, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea
| | - Mi Hee Woo
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea.
| |
Collapse
|
27
|
Chen G, Han Y, He W, Liang F. Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation. Int J Mol Med 2016; 38:1759-1767. [PMID: 27748827 PMCID: PMC5117752 DOI: 10.3892/ijmm.2016.2772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/22/2016] [Indexed: 12/15/2022] Open
Abstract
In the present study, we evaluated the protective effects of amentoflavone (AMF) against high-fat (HF) diet-induced metabolic dysfunction and focused on the influence of AMF on adipogenic differentiation during 3T3-L1 adipocyte differentiation. For this purpose, male Wistar rats were fed a HF diet or a HF diet with AMF (10 or 50 mg/kg). We found that AMF protected against HF diet-induced metabolic dysfunction in a dose-dependent manner, as evidenced by a decrease in the fasting blood glucose levels, fasting insulin levels and the homeostatic model assessment-insulin resistance index (HOMA-IR), as well as by a decrease in the glucose level, as shown by the intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Moreover, the results revealed that AMF significantly inhibited the increase in body weight, the weight of perirenal adipose tissues and the serum triglyceride (TG) content of the rats fed the HF diet in a dose-dependent manner. AMF also inhibited the accumulation of oil droplets in differentiated 3T3-L1 adipocytes in a concentration-dependent manner. The incubation of the cells with AMF for 0–8, 0–2, 2–4, or 4–8 days markedly inhibited adipogenesis. During the early phase of the adipocyte differentiation of 3T3-L1 cells, AMF decreased CCAAT/enhancer-binding protein (C/EBP) β expression in a concentration-dependent manner, leading to the inhibition of mitotic clonal expansion (MCE). Moreover, our results demonstrated that AMF significantly increased reactive oxygen species (ROS) generation in the cells and the antioxidant, N-acetylcysteine (NAC), markedly attenuated the inhibitory effects of AMF on adipogenesis. AMF also inhibited the expression of peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα and the expression of downstream targets in a concentration-dependent manner. The overexpression of PPARγ and C/EBPα (by transfection with respective overexpression plasmids) attentuated the inhibitory effects of AMF on the formation of oil droplets. The inhibitory effects of AMF on adipocyte differentiation may contribute to its protective effects against HF diet-induced metabolic dysfunction. Overall, the data in our study provide novel insight into the mechanisms responsible for the protective effects of AMF against HF diet-induced metabolic dysfunction and those for its inhibitory effect on adipocyte differentiation.
Collapse
Affiliation(s)
- Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yangdong Han
- Department of Endocrinology, Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Wang He
- Department of Endocrinology, Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Feng Liang
- Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| |
Collapse
|
28
|
Cellular Metabolomics Revealed the Cytoprotection of Amentoflavone, a Natural Compound, in Lipopolysaccharide-Induced Injury of Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2016; 17:ijms17091514. [PMID: 27618027 PMCID: PMC5037791 DOI: 10.3390/ijms17091514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
Amentoflavone is one of the important bioactive flavonoids in the ethylacetate extract of “Cebaiye”, which is a blood cooling and hematostatic herb in traditional Chinese medicine. The previous work in our group has demonstrated that the ethylacetate extract of Cebaiye has a notable antagonistic effect on the injury induced by lipopolysaccharide (LPS) to human umbilical vein endothelial cells (HUVECs). The present investigation was designed to assess the effects and possible mechanism of cytoprotection of amentoflavone via metabolomics. Ultra-performance liquid chromatography/quadrupole time of flight-mass spectrometry (UPLC/QTOF-MS) coupled with multivariate data analysis was used to characterize the variations in the metabolites of HUVECs in response to exposure to LPS and amentoflavone treatment. Seven putative metabolites (glycine, argininosuccinic acid, putrescine, ornithine, spermidine, 5-oxoproline and dihydrouracil) were discovered in cells incubated with LPS and/or amentoflavone. Functional pathway analysis uncovered that the changes of these metabolites related to various significant metabolic pathways (glutathione metabolism, arginine and proline metabolism, β-alanine metabolism and glycine, serine and threonine metabolism), which may explain the potential cytoprotection function of amentoflavone. These findings also demonstrate that cellular metabolomics through UPLC/QTOF-MS is a powerful tool for detecting variations in a range of intracellular compounds upon toxin and/or drug exposure.
Collapse
|
29
|
An J, Li Z, Dong Y, Ren J, Huo J. Amentoflavone protects against psoriasis-like skin lesion through suppression of NF-κB-mediated inflammation and keratinocyte proliferation. Mol Cell Biochem 2016; 413:87-95. [DOI: 10.1007/s11010-015-2641-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022]
|
30
|
Zhang Z, Sun T, Niu JG, He ZQ, Liu Y, Wang F. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen Res 2015; 10:1125-33. [PMID: 26330838 PMCID: PMC4541246 DOI: 10.4103/1673-5374.160109] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2015] [Indexed: 12/01/2022] Open
Abstract
Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nuclear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentoflavone protected hippocampal neurons in epilepsy mice via anti-inflammation, antioxidation, and antiapoptosis, and then effectively prevented the occurrence of seizures.
Collapse
Affiliation(s)
- Zhen Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China ; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China ; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhen-Quan He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yang Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China ; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
31
|
Rizk YS, Fischer A, Cunha MDC, Rodrigues PO, Marques MCS, Matos MDFC, Kadri MCT, Carollo CA, Arruda CCPD. In vitro activity of the hydroethanolic extract and biflavonoids isolated from Selaginella sellowii on Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 2015; 109:1050-6. [PMID: 25591109 PMCID: PMC4325620 DOI: 10.1590/0074-0276140312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/27/2014] [Indexed: 11/22/2022] Open
Abstract
This study is the first phytochemical investigation of Selaginella sellowii
and demonstrates the antileishmanial activity of the hydroethanolic extract
from this plant (SSHE), as well as of the biflavonoids amentoflavone and
robustaflavone, isolated from this species. The effects of these substances were
evaluated on intracellular amastigotes of Leishmania (Leishmania)
amazonensis, an aetiological agent of American cutaneous leishmaniasis.
SSHE was highly active against intracellular amastigotes [the half maximum inhibitory
concentration (IC50) = 20.2 µg/mL]. Fractionation of the extract led to the isolation
of the two bioflavonoids with the highest activity: amentoflavone, which was about
200 times more active (IC50 = 0.1 μg/mL) and less cytotoxic than SSHE (IC50 = 2.2 and
3 μg/mL, respectively on NIH/3T3 and J774.A1 cells), with a high selectivity index
(SI) (22 and 30), robustaflavone, which was also active against L.
amazonensis (IC50 = 2.8 µg/mL), but more cytotoxic, with IC50 = 25.5
µg/mL (SI = 9.1) on NIH/3T3 cells and IC50 = 3.1 µg/mL (SI = 1.1) on J774.A1 cells.
The production of nitric oxide (NO) was lower in cells treated with amentoflavone
(suggesting that NO does not contribute to the leishmanicidal mechanism in this
case), while NO release was higher after treatment with robustaflavone. S.
sellowii may be a potential source of biflavonoids that could provide
promising compounds for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Yasmin Silva Rizk
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Alice Fischer
- Laboratório de Farmacognosia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Marillin de Castro Cunha
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Patrik Oening Rodrigues
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Maria Carolina Silva Marques
- Laboratório de Microbiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Maria de Fátima Cepa Matos
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Mônica Cristina Toffoli Kadri
- Laboratório de Biofisiofarmacologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Carlos Alexandre Carollo
- Laboratório de Farmacognosia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Carla Cardozo Pinto de Arruda
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| |
Collapse
|
32
|
Chaudhary AK, Hwang IY, Jo YJ, Choi SH, Lee EY. Enzymatic synthesis of amentoflavone glycoside using recombinant oleandomycin glycosyltransferase. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Liao S, Ren Q, Yang C, Zhang T, Li J, Wang X, Qu X, Zhang X, Zhou Z, Zhang Z, Wang S. Liquid chromatography-tandem mass spectrometry determination and pharmacokinetic analysis of amentoflavone and its conjugated metabolites in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1957-1966. [PMID: 25415840 DOI: 10.1021/jf5019615] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Amentoflavone (AMF) is a biflavone found in many herbal dietary supplements. To investigate the pharmacokinetic profile of AMF in rats, a sensitive, simple, and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and used to monitor AMF and its conjugated metabolites in plasma. AMF was administered to rats by oral gavage (po), or by intravenous (iv) or intraperitoneal (ip) injection. Plasma samples (with apiolin as an internal standard) were liquid/liquid extracted after hydrolysis with β-glucuronidase/sulfatase in vitro. Following chromatographic separation on a C18 column with a methanol:water:formic acid (70:30:0.1, v/v/v) mobile phase, AMF and internal standard were determined by electrospray ionization in negative ion mode and their precursor-product ion pairs (m/z 537.1 → 374.9 and m/z 269.2 → 224.9, respectively) were used for measurement. This bioanalytical method was fully validated and showed good linearity (r(2) > 0.99), wide dynamic range (0.93-930 nmol/L), and favorable accuracy and precision. After iv or ip AMF (10 mg/kg) injection, 73.2% ± 6.29% and 70.2% ± 5.18% of the total AMF detected in plasma was present as conjugated metabolites. Furthermore, AMF and AMF conjugates showed similar time courses with no significant differences in the time to reach the maximum plasma concentration (tmax) and terminal half-life (t1/2) (p > 0.05). Following po AMF administration (300 mg/kg), 90.7% ± 8.3% of the total AMF was circulating as conjugated metabolites. When compared with iv administration (with dose correction), the bioavailability of po AMF was very low (0.04% ± 0.01% for free AMF; 0.16% ± 0.04% for conjugated AMF). Collectively, these data provided a preliminary pharmacokinetic profile for AMF that should inform further evaluations of its biological efficacy and preclinical development.
Collapse
Affiliation(s)
- Sha Liao
- Beijing Institute of Pharmacology and Toxicology , 27 Taiping Road, Haidian District, Beijing, 100850 P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V, Fernie AR, Mueller-Roeber B. Natural products from resurrection plants: Potential for medical applications. Biotechnol Adv 2014; 32:1091-101. [DOI: 10.1016/j.biotechadv.2014.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/25/2023]
|
35
|
Hammer KDP, Birt DF. Evidence for contributions of interactions of constituents to the anti-inflammatory activity of Hypericum perforatum. Crit Rev Food Sci Nutr 2014; 54:781-9. [PMID: 24345048 DOI: 10.1080/10408398.2011.607519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hypericum perforatum (Hp) extracts contain many different classes of constituents including flavonoids and biflavonoids, phloroglucinols, naphthodianthrones, caffeic acid derivatives, and unknown and/or unidentified compounds. Many constituents may be responsible for the anti-inflammatory activity of Hp including quercetin and derivatives, hyperforin, pseudohypericin, and amentoflavone. In line with antidepressant data, it appears that the interactions of constituents may be important for the anti-inflammatory activity of Hp. Interactions of constituents, tested in bioavailability models, may explain why synergistic mechanisms have been found to be important for antidepressant and antiproliferative bioactivities. This review highlights the relationship among individual constituents and the anti-inflammatory activity of Hp extracts and proposes that interactions of constituents may be important for the anti-inflammatory activity of botanical extracts, although the exact mechanisms of the interactions are still unclear.
Collapse
Affiliation(s)
- Kimberly D P Hammer
- a Center for Research on Botanical Dietary Supplements , Iowa State University , Ames , Iowa , USA
| | | |
Collapse
|
36
|
Amentoflavone inhibits angiogenesis of endothelial cells and stimulates apoptosis in hypertrophic scar fibroblasts. Burns 2014; 40:922-9. [DOI: 10.1016/j.burns.2013.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 01/19/2023]
|
37
|
Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC–MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:1-10. [DOI: 10.1016/j.jchromb.2014.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 11/19/2022]
|
38
|
Synthesis and Characterization of Novel Unnatural di(8-Daidzeinyl)Methane. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-0870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Yoon SW, Jeong JS, Kim JH, Aggarwal BB. Cancer Prevention and Therapy: Integrating Traditional Korean Medicine Into Modern Cancer Care. Integr Cancer Ther 2013; 13:310-31. [PMID: 24282099 DOI: 10.1177/1534735413510023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In spite of billions of dollars spent on cancer research each year, overall cancer incidence and cancer survival has not changed significantly in the last half century. Instead, the recent projection from the World Health Organization suggests that global cancer incidence and death is expected to double within the next decade. This requires an "out of the box" thinking approach. While traditional medicine used for thousands of years is safe and affordable, its efficacy and mechanism of action are not fully reported. Demonstrating that traditional medicine is efficacious and how it works can provide a "bed to bench" and "bench to bed" back approach toward prevention and treatment of cancer. This current review is an attempt to describe the contributions of traditional Korean medicine (TKM) to modern medicine and, in particular, cancer treatment. TKM suggests that cancer is an outcome of an imbalance of body, mind, and spirit; thus, it requires a multimodal treatment approach that involves lifestyle modification, herbal prescription, acupuncture, moxibustion, traditional exercise, and meditation to restore the balance. Old wisdoms in combination with modern science can find a new way to deal with the "emperor of all maladies."
Collapse
Affiliation(s)
- Seong Woo Yoon
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Jong Soo Jeong
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Ji Hye Kim
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Bharat B Aggarwal
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Amentoflavone inhibits iNOS, COX-2 expression and modulates cytokine profile, NF-κB signal transduction pathways in rats with ulcerative colitis. Int Immunopharmacol 2013; 17:907-16. [PMID: 24126114 DOI: 10.1016/j.intimp.2013.09.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis is a chronic inflammatory disorder characterized by oxidative stress, leucocyte infiltration and upregulation of pro-inflammatory cytokines. The aim of the present study was to examine the effect of amentoflavone on a murine model of ulcerative colitis (UC). UC was induced by intracolonic injection of 3% acetic acid in male Wistar rats. amentoflavone (10 mg/kg·b.wt) or reference drug sulfasalazine (100 mg/kg·b.wt) was administrated intra-peritoneally for 5 consecutive days before induction of colitis with acetic acid. Administration of amentoflavone was found to reduce the extent of inflammatory colonic injury. This was manifested by a decrease in the score of mucosal injury, by lowered colonic wet weight as well as vascular permeability and diminished lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity reflecting reduced leukocyte infiltration. Furthermore, the mucosal content of lipid peroxidation (LPO), glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO) activity confirms that amentoflavone could significantly inhibit colitis. The treatment also reduced significantly the colonic tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6 levels as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) compared to colitis control group. The histopathological studies also confirm the foregoing findings. amentoflavone was also able to inhibit the activation and translocation of transcription factors, nuclear factor (NF)-κB subunits (p65/p50). These results suggest that amentoflavone exhibits protective effect in acetic acid-induced ulcerative colitis which might be due to its modulation of oxidant/anti-oxidant balance, down-regulation of productions and expressions of pro-inflammatory cytokines, inflammatory mediators and inhibition of NF-κB signal transduction pathways.
Collapse
|
41
|
Extracellular signal-regulated kinase is a direct target of the anti-inflammatory compound amentoflavone derived from Torreya nucifera. Mediators Inflamm 2013; 2013:761506. [PMID: 23970815 PMCID: PMC3736407 DOI: 10.1155/2013/761506] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/24/2013] [Indexed: 01/02/2023] Open
Abstract
Amentoflavone is a biflavonoid compound with antioxidant, anticancer, antibacterial, antiviral, anti-inflammatory, and UV-blocking activities that can be isolated from Torreya nucifera, Biophytum sensitivum, and Selaginella tamariscina. In this study, the molecular mechanism underlying amentoflavone's anti-inflammatory activity was investigated. Amentoflavone dose dependently suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW264.7 cells stimulated with the TLR4 ligand lipopolysaccharide (LPS; derived from Gram-negative bacteria). Amentoflavone suppressed the nuclear translocation of c-Fos, a subunit of activator protein (AP)-1, at 60 min after LPS stimulation and inhibited the activity of purified and immunoprecipitated extracellular signal-regulated kinase (ERK), which mediates c-Fos translocation. In agreement with these results, amentoflavone also suppressed the formation of a molecular complex including ERK and c-Fos. Therefore, our data strongly suggest that amentoflavone's immunopharmacological activities are due to its direct effect on ERK.
Collapse
|
42
|
Abstract
Research on medicinal plants began to focus on discovery of natural products as potential active principles against various diseases. Medicinal plants are very interesting, have the ability to produce remarkable chemical structures with diverse biological activities. Biophytum sensitivum is used as traditional medicine to cure variety of diseases. During the last few decades, extensive research has been carried out to elucidate the chemistry, biological activities, and medicinal applications of B. sensitivum. Phytochemical analysis have shown that the plant parts are rich in various beneficial compounds which include amentoflavone, cupressuflavone, and isoorientin. Extracts and its bioactive compounds have been known to possess antibacterial, anti-inflammatory, antioxidant, antitumor, radioprotective, chemoprotective, antimetastatic, antiangiogenesis, wound-healing, immunomodulation, anti-diabetic, and cardioprotective activity. The present review has been carried out to shed light on the diverse role of this plant in the management of various ailments facing us.
Collapse
Affiliation(s)
- K M Sakthivel
- Department of Biotechnology, Karunya University, Coimbatore, India
| | | |
Collapse
|
43
|
Lee EJ, Shin SY, Kim JK, Woo ER, Kim YM. Anti-inflammatory Effects of Amentoflavone on Modulation of Signal Pathways in LPS-stimulated RAW264.7 Cells. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.9.2878] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Ha LM, Thao DT, Huong HT, Minh CV, Dat NT. Toxicity and anticancer effects of an extract fromSelaginella tamariscinaon a mice model. Nat Prod Res 2012; 26:1130-4. [DOI: 10.1080/14786419.2011.560847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Amentoflavone inhibits UVB-induced matrix metalloproteinase-1 expression through the modulation of AP-1 components in normal human fibroblasts. Appl Biochem Biotechnol 2011; 166:1137-47. [PMID: 22205321 DOI: 10.1007/s12010-011-9500-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/11/2011] [Indexed: 10/14/2022]
Abstract
Amentoflavone is a well-known biflavonoid that has diverse biological effects. Previously, we reported that amentoflavone suppressed UVB-induced matrix metalloproteinase-1 (MMP-1) expression in normal human fibroblasts (NHF). We investigated the effects of amentoflavone on UVB-induced MMP-1 expression in order to elucidate its mode of action. NHF were treated with amentoflavone for indicated times and doses with UVB irradiation. The expressions of MMP-1 gene and protein were determined by RT-PCR and ELISA, respectively. MAP kinase phosphorylation and the expression of c-Fos protein were determined by Western blot. The treatment of amentoflavone completely blocked the upregulation of MMP-1 which is induced by UVB irradiation in HaCaT-NHF co-culture in a dose-dependent manner as well as in NHF monoculture. Also, amentoflavone inhibited UVB-induced activation of extracellular signal-regulated kinase (ERK) without changing total ERK protein level, and did not affect p38 or JNK activation. Finally, AP-1 transcription factor components, phospho-c-Jun and c-Fos protein expressions were decreased by amentoflavone treatment. The major finding of this study shows that amentoflavone inhibits intracellular cell signaling ERK pathway leading to the prevention of MMP-1 expression in human skin fibroblasts. Therefore, these results strongly suggest that amentoflavone should be investigated as a potential agent for the prevention and the treatment of skin photoaging.
Collapse
|
46
|
Protective effects of amentoflavone on Lamin A-dependent UVB-induced nuclear aberration in normal human fibroblasts. Bioorg Med Chem Lett 2011; 21:6482-4. [DOI: 10.1016/j.bmcl.2011.08.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 01/04/2023]
|
47
|
Sagrera G, Bertucci A, Vazquez A, Seoane G. Synthesis and antifungal activities of natural and synthetic biflavonoids. Bioorg Med Chem 2011; 19:3060-73. [DOI: 10.1016/j.bmc.2011.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/02/2011] [Accepted: 04/06/2011] [Indexed: 11/28/2022]
|
48
|
Guruvayoorappan C, Kuttan G. Inhibition of tumor specific angiogenesis by amentoflavone. BIOCHEMISTRY (MOSCOW) 2011; 73:209-18. [DOI: 10.1134/s0006297908020132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Michler H, Laakmann G, Wagner H. Development of an LC-MS method for simultaneous quantitation of amentoflavone and biapigenin, the minor and major biflavones from Hypericum perforatum L., in human plasma and its application to real blood. PHYTOCHEMICAL ANALYSIS : PCA 2011; 22:42-50. [PMID: 20821812 DOI: 10.1002/pca.1249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Biflavones of Hypericum perforatum L. are bioactive compounds used in the treatment of inflammation and depression. Determination of amentoflavone and biapigenin from blood is challenging owing to their similar structures and low concentrations. OBJECTIVE To develop a rapid, sensitive and accurate method based on liquid-phase extraction followed by high-performance liquid chromatography and electrospray ionisation mass spectrometry (HPLC-ESI-MS) for quantification of biflavones in human plasma. METHODOLOGY After extraction from blood, the analytes were subjected to HPLC with an XTerra® MS C(18) column and a binary mobile phase consisting of 2% formic acid in water and acetonitrile under isocratic elution conditions, with ESI-MS detection in the negative ion mode and multiple reaction monitoring (MRM). RESULTS Both calibration curves showed good linearity within the concentration range 1-500 ng/mL. Limits of detection (S/N = 3) were 0.1 ng for pure substances and the limits of quantitation (S/N = 5) were 1.0 ng/mL from analyte-spiked serum. The grand mean recovery was 90% from several subsamples of each biflavone. The imprecision (RSD) of peak areas was between 5% (intraday) and 10% (interday) for high concentrations (250 ng/mL) and between 10% (intraday) and 15% (interday) for low concentrations (1 ng/mL). Inaccuracy of the mean was less than 20% at the lower limit of quantitation. CONCLUSION The developed and validated method for determination of biflavones from human plasma was effectively applied to pharmacokinetic studies of 13 probands and preliminary results indicate biphasic concentration-time curves.
Collapse
Affiliation(s)
- Hans Michler
- Psychiatric Hospital, and Centre of Pharma Research, Institute of Pharmaceutical Biology, Munich, Germany.
| | | | | |
Collapse
|
50
|
Erdogan-Orhan I, Altun ML, Sever-Yilmaz B, Saltan G. Anti-acetylcholinesterase and antioxidant assets of the major components (salicin, amentoflavone, and chlorogenic acid) and the extracts of Viburnum opulus and Viburnum lantana and their total phenol and flavonoid contents. J Med Food 2010; 14:434-40. [PMID: 21186982 DOI: 10.1089/jmf.2010.0053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Some Viburnum species are used for preparation of the traditional drink called gilaburu in Anatolia. In the current study, our goal was to evaluate acetylcholinesterase (AChE) inhibitory and antioxidant activities of the ethyl acetate, methanol, and water extracts prepared from the branches, leaves, and fruits of Viburnum opulus and Viburnum lantana along with salicin, amentoflavone, and chlorogenic acid, three major compounds abundantly found in these species. AChE enzyme inhibition was tested in vitro using an enzyme-linked immunosorbent assay microplate reader at 50, 100, and 200 μL/mL concentrations. Antioxidant activity was examined by ferrous ion chelating capacity, ferric reducing antioxidant power, and β-carotene bleaching assay at 500, 1,000, and 2,000 μg/mL. Total phenol and flavonoid contents of the extracts were also established by Folin-Ciocalteau and AlCl(3) reagents, respectively. Our data revealed that the leaf methanol extract of V. opulus displayed a significantly high inhibitory effect against AChE (57.63 ± 1.23%, 87.41 ± 0.99%, and 93.19 ± 0.87% at 50, 100, and 200 μg/mL, respectively). The extracts of V. lantana exerted higher antioxidant activity.
Collapse
Affiliation(s)
- Ilkay Erdogan-Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | | | | | | |
Collapse
|