1
|
Porfyris O, Detopoulou P, Adamantidi T, Tsoupras A, Papageorgiou D, Ioannidis A, Rojas Gil AP. Phytochemicals as Chemo-Preventive and Therapeutic Agents Against Bladder Cancer: A Comprehensive Review. Diseases 2025; 13:103. [PMID: 40277814 PMCID: PMC12026019 DOI: 10.3390/diseases13040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Bladder cancer has a high incidence worldwide and is characterized by a high recurrence rate, metastatic potential, and a significant socioeconomic burden. Conventional treatment modalities usually exhibit serious adverse complications, which also negatively affect patients' quality of life. In the context of exploring new treatment approaches with fewer side effects, the utilization of natural compounds as alternative and/or complementary therapeutic options seems appealing. In the present study, the potential use and effects of various bioactive phytochemicals, including curcumin, resveratrol, epigallocatechin, genistein, and several others, in bladder cancer treatment are thoroughly reviewed. A special focus is given to their potential to beneficially modulate important molecular signaling pathways and mechanisms affecting cell survival, proliferation, migration, and apoptosis, which play a crucial role in the pathogenesis of bladder cancer, such as the PI3K/AKT/mTOR, Ras/Raf/MEK/MAPK, Wnt/β-Catenin, Notch, Hedgehog, Hippo, JAK2/STAT3, and PAF/PAF-receptor pathways. Nevertheless, most studies have been conducted in cell cultures and animal models. Due to differences in genetics and metabolism, more clinical trials are needed to ensure the bio-efficacy of these phytochemicals in humans.
Collapse
Affiliation(s)
- Orestis Porfyris
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Paraskevi Detopoulou
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece;
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Dimitris Papageorgiou
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese Panarcadian Hospital of Tripoli, Red Cross Terminal (Administrative Services) 2nd Floor, 22100 Tripoli, Greece;
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| |
Collapse
|
2
|
Baldelli S, Lombardo M, D’Amato A, Karav S, Tripodi G, Aiello G. Glucosinolates in Human Health: Metabolic Pathways, Bioavailability, and Potential in Chronic Disease Prevention. Foods 2025; 14:912. [PMID: 40231924 PMCID: PMC11940962 DOI: 10.3390/foods14060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025] Open
Abstract
Glucosinolates (GSLs) are sulfur-containing compounds predominantly found in cruciferous vegetables such as broccoli, kale, and Brussels sprouts, and are recognized for their health-promoting properties. Upon consumption, GSLs undergo hydrolysis by the enzyme myrosinase, resulting in bioactive compounds like isothiocyanates and specific indole glucosinolate degradation products, such as indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM), which contribute to a range of health benefits, including anti-cancer, anti-inflammatory, and cardioprotective effects. This review explores the structure, metabolism, and bioavailability of GSLs. Recent evidence supports the protective role of GSLs in chronic diseases, with mechanisms including the modulation of oxidative stress, inflammation, and detoxification pathways. Furthermore, the innovative strategies to enhance GSL bioactivity, such as biofortification, genetic introgression, and optimized food processing methods, have been examined. These approaches seek to increase GSL content in edible plants, thereby maximizing their health benefits. This comprehensive review provides insights into dietary recommendations, the impact of food preparation, and recent advances in GSL bioavailability enhancement, highlighting the significant potential of these bioactive compounds in promoting human health and preventing chronic diseases.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye;
| | - Gianluca Tripodi
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| |
Collapse
|
3
|
Mthembu SX, Mazibuko-Mbeje SE, Silvestri S, Orlando P, Nkambule BB, Muller CJ, Tiano L, Dludla PV. Supplementation with aspalathin and sulforaphane protects cultured cardiac cells against dyslipidemia-associated oxidative damage. Metabol Open 2025; 25:100346. [PMID: 39882383 PMCID: PMC11774938 DOI: 10.1016/j.metop.2025.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.25 mM) to induce lipidemic-related complications. The results showed that both aspalathin and sulforaphane enhanced cellular metabolic activity and improved mitochondrial respiration correlating with improved mRNA expression of genes involved in mitochondrial function, including uncoupling protein 2, peroxisome proliferator-activated receptor, gamma coactivator 1-alpha, nuclear respiratory factor 1, and ubiquinol-cytochrome c reductase complex assembly factor 1. Beyond attenuating lipid peroxidation, the dietary compounds also suppressed intracellular reactive oxygen species and enhanced antioxidant responses, including the mRNA expression of nuclear factor erythroid 2-related factor 2. These envisaged benefits were associated with decreased cellular apoptosis. This preclinical study supports and warrants further investigation into the potential benefits of these dietary compounds or foods rich in aspalathin or sulforaphane in protecting against lipid-induced oxidative damage within the myocardium.
Collapse
Affiliation(s)
- Sinenhlanhla X.H. Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho, 2735, South Africa
| | | | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
- Department of Human Sciences and Promotion of Quality of Life, University of San Raffaele, 00166 Roma, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J.F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Phiwayinkosi V. Dludla
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa
| |
Collapse
|
4
|
Wu N, Luo Z, Deng R, Zhang Z, Zhang J, Liu S, Luo Z, Qi Q. Sulforaphane: An emerging star in neuroprotection and neurological disease prevention. Biochem Pharmacol 2025; 233:116797. [PMID: 39929442 DOI: 10.1016/j.bcp.2025.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/18/2025] [Accepted: 02/06/2025] [Indexed: 02/16/2025]
Abstract
Neurological diseases, including both acute injuries and chronic neurodegenerative disorders, represent major contributors to morbidity and mortality worldwide. Chronic neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), which require long-term management, present significant challenges in the search for neuroprotective agents with reduced adverse effects and enhanced therapeutic efficacy. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables like broccoli and cauliflower, has garnered considerable attention for its potent neuroprotective properties and overall health benefits. Marketed primarily as a dietary supplement, SFN has shown a variety of biological activities and therapeutic potential in neurological diseases. Recent surging studies including ours have highlighted its ability to impede the progression of AD, PD, and cerebral ischemia by fostering neurogenesis and inhibiting apoptosis, oxidative stress, and neuroinflammation. This review aims to summarize the latest research on SFN, exploring its advanced therapeutic potential and underlying mechanisms in various neurological diseases, offering a comprehensive overview for researchers focused on neurological pathogenesis and drug development in neuroprotection.
Collapse
Affiliation(s)
- Na Wu
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000 China
| | - Zepeng Luo
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000 China
| | - Renfu Deng
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000 China
| | - Zhijing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632 China
| | - Jichun Zhang
- China Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 China
| | - Songlin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008 China.
| | - Zhongping Luo
- Department of Neurosurgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000 China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632 China.
| |
Collapse
|
5
|
Clack G, Moore C, Ruston L, Wilson D, Koch A, Webb D, Mallard N. A Phase 1 Randomized, Placebo-Controlled Study Evaluating the Safety, Tolerability, and Pharmacokinetics of Enteric-Coated Stabilized Sulforaphane (SFX-01) in Male Participants. Adv Ther 2025; 42:216-232. [PMID: 39520658 PMCID: PMC11782309 DOI: 10.1007/s12325-024-03018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Sulforaphane (SFN) is a naturally occurring isothiocyanate associated with various health benefits, including reduced cancer risk, and has been extensively explored as a potential therapeutic. However, its inherent instability presents challenges in formulation, storage, and administration as a medicinal product. SFX-01 (Sulforadex®) is a patented synthetic form of d,l-SFN stabilized within a biologically inert alpha-cyclodextrin complex. METHODS The safety, tolerability, and pharmacokinetics of an enteric-coated tablet formulation of SFX-01 were evaluated in a randomized, double-blind, placebo-controlled, dose-escalation study [300 mg once daily (46.2 mg SFN), 300 mg twice daily or 600 mg once daily (92.4 mg SFN)] over 7 days in healthy male participants. RESULTS Treatment-emergent adverse events (TEAEs) occurred in 94% of participants who received SFX-01 and were most commonly gastrointestinal events, which were mild in severity and related to treatment. Following ingestion of SFX-01 tablets, SFN was rapidly absorbed, with a timescale consistent with the enteric coating, and subsequently metabolized. The observed peak blood concentration (Cmax) for the sum of SFN and metabolites (total thiol) across all treatment cohorts ranged from 0.43 to 2.12 µmol/L in 3-6 h. Cmax data were considered inconclusive with respect to dose-proportionality and there was minimal evidence of accumulation of SFN and metabolites. Urinary excretion of SFN and individual metabolites ranged from < 1 to 41%, and the proportion excreted did not appear to be influenced by the dose. CONCLUSION This study demonstrated the safety and tolerability of SFX-01 over 7 days and indicated that the pharmacokinetic behavior of SFX-01 enteric-coated tablets was in line with expectations. TRIAL REGISTRATION European Union Drug Regulating Authorities Clinical Trials Database (EudraCT) number: 2022-001601-43; ISRCTN Study Registration number: ISRCTN9628565.
Collapse
Affiliation(s)
- Glen Clack
- TheraCryf PLC (Formerly Evgen Pharma PLC), Block 24, Alderley Park, Congleton Road, Nether Alderley, Cheshire, SK10 4TG, UK.
| | | | | | | | | | | | - Nicholas Mallard
- TheraCryf PLC (Formerly Evgen Pharma PLC), Block 24, Alderley Park, Congleton Road, Nether Alderley, Cheshire, SK10 4TG, UK
| |
Collapse
|
6
|
Balducci M, Pérez JT, del Río CT, Pérez MC, Carranza ADV, Gomez Escribano AP, Vázquez-Manrique RP, Tarozzi A. Erucin, a Natural Isothiocyanate, Prevents Polyglutamine-Induced Toxicity in Caenorhabditis elegans via aak-2/AMPK and daf-16/FOXO Signaling. Int J Mol Sci 2024; 25:12220. [PMID: 39596283 PMCID: PMC11594550 DOI: 10.3390/ijms252212220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Several neurodegenerative diseases (NDDs), such as Huntington's disease, six of the spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy, are caused by abnormally long polyglutamine (polyQ) tracts. Natural compounds capable of alleviating polyQ-induced toxicity are currently of great interest. In this work, we investigated the modulatory effect against polyQ neurotoxic aggregates exerted by erucin (ERN), an isothiocyanate naturally present in its precursor glucoerucin in rocket salad leaves and in its oxidized form, sulforaphane (SFN), in broccoli. Using C. elegans models expressing polyQ in different tissues, we demonstrated that ERN protects against polyQ-induced toxicity and that its action depends on the catalytic subunit of AMP-activated protein kinase (aak-2/AMPKα2) and, downstream in this pathway, on the daf-16/FOXO transcription factor, since nematodes deficient in aak-2/AMPKα2 and daf-16 did not respond to the treatment, respectively. Although triggered by a different source of neurotoxicity than polyQ diseases, i.e., by α-synuclein (α-syn) aggregates, Parkinson's disease (PD) was also considered in our study. Our results showed that ERN reduces α-syn aggregates and slightly improves the motility of worms. Therefore, further preclinical studies in mouse models of protein aggregation are justified and could provide insights into testing whether ERN could be a potential neuroprotective compound in humans.
Collapse
Affiliation(s)
- Martina Balducci
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Julia Tortajada Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Cristina Trujillo del Río
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Mar Collado Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Andrea del Valle Carranza
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Ana Pilar Gomez Escribano
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Rafael P. Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46012 Valencia, Spain; (J.T.P.); (C.T.d.R.); (M.C.P.); (A.d.V.C.); (A.P.G.E.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Andrea Tarozzi
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy
| |
Collapse
|
7
|
Zhou J, Fu C, Shen M, Tao J, Liu H. Sulforaphane Promotes Proliferation of Porcine Granulosa Cells via the H3K27ac-Mediated GDF8-ALK5-ERK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21635-21649. [PMID: 39294897 DOI: 10.1021/acs.jafc.4c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Follicle development, a crucial process in reproductive biology, hinges upon the dynamic proliferation of granulosa cells (GCs). Growth differentiation factor-8 (GDF8) is well-known as myostatin for inhibiting skeletal muscle growth, and it also exists in ovarian GCs and follicle fluid. However, the relationship between GCs proliferation and GDF8 remains elusive. Sulforaphane (SFN) is a potent bioactive compound, which in our study has been demonstrated to induce the expression of GDF8 in GCs. Meanwhile, we discover a novel role of SFN in promoting the proliferation of porcine GCs. Specifically, SFN enhances GCs proliferation by accelerating the progression of the cell cycle through the G1 phase to the S phase. By performing gene expression profiling, we showed that the promoting proliferative effects of SFN are highly correlated with the TGF-β signaling pathways and cell cycle. Among the ligand factors of TGF-β signaling, we identify GDF8 as a critical downstream effector of SFN, which acts through ALK5 to mediate SFN-induced proliferation and G1/S transition. In addition, we identify a noncanonical downstream pathway by which GDF8 induces the activation of MAPK/ERK to facilitate the cell cycle progression in GCs. Moreover, we reveal that the expression of GDF8 is regulated by SFN through epigenetic modifications of H3K27 acetylation. These findings not only provide mechanistic insights into the regulation of GCs proliferation but also establish a previously unrecognized role of GDF8 in follicle development, which have significant implications for developing strategies to improve female fertility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Bizzoca ME, Caponio VCA, Lo Muzio L, Claudio PP, Cortese A. Methods for Overcoming Chemoresistance in Head and Neck Squamous Cell Carcinoma: Keeping the Focus on Cancer Stem Cells, a Systematic Review. Cancers (Basel) 2024; 16:3004. [PMID: 39272862 PMCID: PMC11394389 DOI: 10.3390/cancers16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
According to the "cancer stem cell" (CSCs) theory, tumors are a diverse and expanding group of malignant cells that originate from a small number of CSCs. Despite treatment, these cells can still become active and proliferate, which can result in distant metastasis and local recurrences. A new paradigm in cancer treatment involves targeting both CSCs and the cancer cells in a tumor. This review aims to examine the literature on methods published to overcome chemoresistance due to the presence of CSCs in head and neck cancers. The review was registered with PROSPERO (ID# CRD42024512809). After Pub Med, Scopus, and WoS database searches, 31 relevant articles on oral squamous cell carcinoma (OSCC) were selected. Compounds that increased chemosensitivity by targeting CSCs in head and neck squamous cell carcinoma (HNSCC) were divided into (1) natural products, (2) adjuvant molecules to traditional chemotherapy, and (3) CSCs targeting patient-specific fresh biopsies for functional precision medicine.
Collapse
Affiliation(s)
- Maria Eleonora Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Antonio Cortese
- Unit of Maxillofacial Surgery, Department of Medicine, Surgery, and Dentistry, University of Salerno, 84084 Salerno, Italy
| |
Collapse
|
9
|
Zhang Y, Zhao X, Liu Y, Yang X. Sulforaphane and ophthalmic diseases. Food Sci Nutr 2024; 12:5296-5311. [PMID: 39139965 PMCID: PMC11317731 DOI: 10.1002/fsn3.4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 08/15/2024] Open
Abstract
Sulforaphane (SFN) is an organosulfur compound categorized as an isothiocyanate (ITC), primarily extracted from cruciferous vegetables like broccoli and cabbage. The molecular formula of sulforaphane (SFN) is C6H11NOS2. SFN is generated by the hydrolysis of glucoraphanin (GRP) through the enzyme myrosinase, showing notable properties including anti-diabetic, anti-inflammatory, antimicrobial, anti-angiogenic, and anticancer attributes. Ongoing clinical trials are investigating its potential in diseases such as cancer, neurodegenerative diseases, diabetes-related complications, chronic kidney disease, cardiovascular disease, and liver diseases. Several animal carcinogenesis models and cell culture models have shown it to be a very effective chemopreventive agent, and the protective effects of SFN in ophthalmic diseases have been linked to multiple mechanisms. In murine models of diabetic retinopathy and age-related macular degeneration, SFN delays retinal photoreceptor cell degeneration through the Nrf2 antioxidative pathway, NF-κB pathway, AMPK pathway, and Txnip/mTOR pathway. In rabbit models of keratoconus and cataract, SFN has been shown to protect corneal and lens epithelial cells from oxidative stress injury by activating the Keap1-Nrf2-ARE pathway and the Nrf-2/HO-1 antioxidant pathway. Oral delivery or intraperitoneal injection at varying concentrations are the primary strategies for SFN intake in current preclinical studies. Challenges remain in the application of SFN in eye disorders due to its weak solubility in water and limited bioavailability because of the presence of blood-ocular barrier systems. This review comprehensively outlines recent research on SFN, elucidates its mechanisms of action, and discusses potential therapeutic benefits for eye disorders such as age-related macular degeneration (AMD), diabetic retinopathy (DR), cataracts, and other ophthalmic diseases, while also indicating directions for future clinical research to achieve efficient SFN treatment for ophthalmic diseases.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiaojing Zhao
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Yang Liu
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiuxia Yang
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
10
|
Bouranis JA, Ren Y, Beaver LM, Choi J, Wong CP, He L, Traber MG, Kelly J, Booth SL, Stevens JF, Fern XZ, Ho E. Identification of biological signatures of cruciferous vegetable consumption utilizing machine learning-based global untargeted stable isotope traced metabolomics. Front Nutr 2024; 11:1390223. [PMID: 39021604 PMCID: PMC11253721 DOI: 10.3389/fnut.2024.1390223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years there has been increased interest in identifying biological signatures of food consumption for use as biomarkers. Traditional metabolomics-based biomarker discovery approaches rely on multivariate statistics which cannot differentiate between host- and food-derived compounds, thus novel approaches to biomarker discovery are required to advance the field. To this aim, we have developed a new method that combines global untargeted stable isotope traced metabolomics and a machine learning approach to identify biological signatures of cruciferous vegetable consumption. Participants consumed a single serving of broccoli (n = 16), alfalfa sprouts (n = 16) or collard greens (n = 26) which contained either control unlabeled metabolites, or that were grown in the presence of deuterium-labeled water to intrinsically label metabolites. Mass spectrometry analysis indicated 133 metabolites in broccoli sprouts and 139 metabolites in the alfalfa sprouts were labeled with deuterium isotopes. Urine and plasma were collected and analyzed using untargeted metabolomics on an AB SCIEX TripleTOF 5,600 mass spectrometer. Global untargeted stable isotope tracing was completed using openly available software and a novel random forest machine learning based classifier. Among participants who consumed labeled broccoli sprouts or collard greens, 13 deuterium-incorporated metabolomic features were detected in urine representing 8 urine metabolites. Plasma was analyzed among collard green consumers and 11 labeled features were detected representing 5 plasma metabolites. These deuterium-labeled metabolites represent potential biological signatures of cruciferous vegetables consumption. Isoleucine, indole-3-acetic acid-N-O-glucuronide, dihydrosinapic acid were annotated as labeled compounds but other labeled metabolites could not be annotated. This work presents a novel framework for identifying biological signatures of food consumption for biomarker discovery. Additionally, this work presents novel applications of metabolomics and machine learning in the life sciences.
Collapse
Affiliation(s)
- John A. Bouranis
- School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Yijie Ren
- Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, United States
| | - Laura M. Beaver
- School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Carmen P. Wong
- School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Lily He
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Maret G. Traber
- School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Jennifer Kelly
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Sarah L. Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Xiaoli Z. Fern
- Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, United States
| | - Emily Ho
- School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
11
|
Baladia E, Moñino M, Pleguezuelos E, Russolillo G, Garnacho-Castaño MV. Broccoli Consumption and Risk of Cancer: An Updated Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2024; 16:1583. [PMID: 38892516 PMCID: PMC11174709 DOI: 10.3390/nu16111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The scientific literature has reported an inverse association between broccoli consumption and the risk of suffering from several types of cancer; however, the results were not entirely consistent across studies. A systematic review and meta-analysis of observational studies were conducted to determine the association between broccoli consumption and cancer risk with the aim of clarifying the beneficial biological effects of broccoli consumption on cancer. METHODS PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library (CENTRAL), and Epistemonikos databases were searched to identify all published papers that evaluate the impact of broccoli consumption on the risk of cancer. Citation chasing of included studies was conducted as a complementary search strategy. The risk of bias in individual studies was assessed using the Newcastle-Ottawa Scale. A random-effects model meta-analysis was employed to quantitatively synthesize results, with the I2 index used to assess heterogeneity. RESULTS Twenty-three case-control studies (n = 12,929 cases and 18,363 controls; n = 31,292 individuals) and 12 cohort studies (n = 699,482 individuals) were included in the meta-analysis. The results suggest an inverse association between broccoli consumption and the risk of cancer both in case-control studies (OR: 0.64, 95% CI from 0.58 to 0.70, p < 0.001; Q = 35.97, p = 0.072, I2 = 30.49%-moderate heterogeneity; τ2 = 0.016) and cohort studies (RR: 0.89, 95% CI from 0.82 to 0.96, p = 0.003; Q = 13.51, p = 0.333, I2 = 11.21%-low heterogeneity; τ2 = 0.002). Subgroup analysis suggested a potential benefit of broccoli consumption in site-specific cancers only in case-control studies. CONCLUSIONS In summary, the findings indicate that individuals suffering from some type of cancer consumed less broccoli, suggesting a protective biological effect of broccoli on cancer. More studies, especially cohort studies, are necessary to clarify the possible beneficial effect of broccoli on several types of cancer.
Collapse
Affiliation(s)
- Eduard Baladia
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain; (E.B.); (M.M.); (G.R.)
| | - Manuel Moñino
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain; (E.B.); (M.M.); (G.R.)
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 28029 Madrid, Spain
| | - Eulogio Pleguezuelos
- Department of Physical Medicine and Rehabilitation, Mataró Hospital, Mataró, 08304 Barcelona, Spain;
| | - Giuseppe Russolillo
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain; (E.B.); (M.M.); (G.R.)
| | - Manuel Vicente Garnacho-Castaño
- DAFNiS Research Group, Pain, Physical Activity, Nutrition and Health, Campus Docent Sant Joan de Déu, Universitat de Barcelona, Sant Boi de Llobregat, 08830 Barcelona, Spain
- Facultad de Ciencias de la Salud, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| |
Collapse
|
12
|
Alaba TE, Holman JM, Ishaq SL, Li Y. Current Knowledge on the Preparation and Benefits of Cruciferous Vegetables as Relates to In Vitro, In Vivo, and Clinical Models of Inflammatory Bowel Disease. Curr Dev Nutr 2024; 8:102160. [PMID: 38779039 PMCID: PMC11108850 DOI: 10.1016/j.cdnut.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition with a significant economic and social burden. The disease is complex and challenging to treat because it involves several pathologies, such as inflammation, oxidative stress, dysbiosis, and intestinal damage. The search for an effective treatment has identified cruciferous vegetables and their phytochemicals as potential management options for inflammatory bowel disease because they contain prebiotics, probiotics, and anti-inflammatory and antioxidant metabolites essential for a healthy gut. This critical narrative style review provides a robust insight into the pharmacological effects and benefits of crucifers and their documented bioactive compounds in in vitro and in vivo models, as well as clinical inflammatory bowel disease. The review highlights the significant impact of crucifer preparation and the presence of glucosinolates, isothiocyanates, flavonoids, and polyphenolic compounds, which are essential for the anti-inflammatory and antioxidative benefits of cruciferous vegetables, as well as their ability to promote the healthy microbial community and maintain the intestinal barrier. This review may serve as a viable nutritional guide for future research on methods and features essential to developing experiments, preventions, and treatments for inflammatory bowel disease. There is limited clinical information and future research may utilize current innovative tools, such as metabolomics, for adequate knowledge and effective translation into clinical therapy.
Collapse
Affiliation(s)
- Tolu E Alaba
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Johanna M Holman
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, NY, United States
| |
Collapse
|
13
|
Wang J, Shen Y, Sheng X, Yu H, Song M, Wang Q, Gu H. Unravelling Glucoraphanin and Glucoerucin Metabolism across Broccoli Sprout Development: Insights from Metabolite and Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:750. [PMID: 38592746 PMCID: PMC10976094 DOI: 10.3390/plants13060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts.
Collapse
Affiliation(s)
- Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Mengfei Song
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China;
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| |
Collapse
|
14
|
Bouranis JA, Beaver LM, Wong CP, Choi J, Hamer S, Davis EW, Brown KS, Jiang D, Sharpton TJ, Stevens JF, Ho E. Sulforaphane and Sulforaphane-Nitrile Metabolism in Humans Following Broccoli Sprout Consumption: Inter-individual Variation, Association with Gut Microbiome Composition, and Differential Bioactivity. Mol Nutr Food Res 2024; 68:e2300286. [PMID: 38143283 PMCID: PMC10922398 DOI: 10.1002/mnfr.202300286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Indexed: 12/26/2023]
Abstract
SCOPE The glucosinolate glucoraphanin from broccoli is converted to sulforaphane (SFN) or sulforaphane-nitrile (SFN-NIT) by plant enzymes or the gut microbiome. Human feeding studies typically observe high inter-individual variation in absorption and excretion of SFN, however, the source of this variation is not fully known. To address this, a human feeding trial to comprehensively evaluate inter-individual variation in the absorption and excretion of all known SFN metabolites in urine, plasma, and stool, and tested the hypothesis that gut microbiome composition influences inter-individual variation in total SFN excretion has been conducted. METHODS AND RESULTS Participants (n = 55) consumed a single serving of broccoli or alfalfa sprouts and plasma, stool, and total urine are collected over 72 h for quantification of SFN metabolites and gut microbiome profiling using 16S gene sequencing. SFN-NIT excretion is markedly slower than SFN excretion (72 h vs 24 h). Members of genus Bifidobacterium, Dorea, and Ruminococcus torques are positively associated with SFN metabolite excretion while members of genus Alistipes and Blautia has a negative association. CONCLUSION This is the first report of SFN-NIT metabolite levels in human plasma, urine, and stool following consumption of broccoli sprouts. The results help explain factors driving inter-individual variation in SFN metabolism and are relevant for precision nutrition.
Collapse
Affiliation(s)
- John A Bouranis
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Laura M Beaver
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Carmen P Wong
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Sean Hamer
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Ed W Davis
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kevin S Brown
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Thomas J Sharpton
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
15
|
Renz M, Rohn S, Hanschen FS. Thermal degradation and oxidation of glucosinolates in model systems and Brassica vegetable broth is mediated by redox-active compounds. Food Chem 2024; 431:137108. [PMID: 37595380 DOI: 10.1016/j.foodchem.2023.137108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Glucosinolates (GLSs) are secondary plant metabolites with health-promoting effects found in Brassica vegetables. Recently, next to non-enzymatic degradation yielding nitriles, 4-(methylthio)butyl GLS (4MTB-GLS) was shown to undergo side chain oxidation during thermal treatment, forming 4-(methylsulfinyl)butyl GLS (4MSOB-GLS). Here, we investigated natural plant components and artificial analogs on their capability of altering the thermal reactivity of 4MTB-GLS in vegetable broths and model systems using buffers. Addition of ascorbic acid and dehydroascorbic acid caused varying effects: in broth samples, it increased nitrile formation, while in buffer, 4MSOB-GLS was formed. In further experiments, the antioxidant compounds quercetin and Trolox triggered the side chain oxidation of 4MTB-GLS, while H2S terminated its degradation. A synergistic effect of ascorbic acid and Fe2+ was observed, degrading 98% of 4MTB-GLS to the nitrile after 60 min of boiling. Deepening the understanding of factors that influence the non-enzymatic degradation of GLSs will help to preserve their health-promoting effects.
Collapse
Affiliation(s)
- Matthias Renz
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Sascha Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| |
Collapse
|
16
|
Costa-Pérez A, Sánchez-Bravo P, Medina S, Domínguez-Perles R, García-Viguera C. Bioaccessible Organosulfur Compounds in Broccoli Stalks Modulate the Inflammatory Mediators Involved in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:800. [PMID: 38255874 PMCID: PMC10815348 DOI: 10.3390/ijms25020800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Inflammatory diseases are strongly associated with global morbidity and mortality. Several mediators are involved in this process, including proinflammatory interleukins and cytokines produced by damaged tissues that, somehow, act as initiators of the autoreactive immune response. Bioactive compounds present in plant-based foods and byproducts have been largely considered active agents with the potential to treat or prevent inflammatory diseases, being a valuable alternative to traditional therapeutic agents used nowadays, which present several side effects. In this regard, the present research uncovers the anti-inflammatory activity of the bioaccessible fraction of broccoli stalks processed, by applying different conditions that render specific concentrations of bioactive sulforaphane (SFN). The raw materials' extracts exhibited significantly different contents of total glucosinolates (GSLs) that ranged between 3993.29 and 12,296.48 mg/kg dry weight (dw), with glucoraphanin as the most abundant one, followed by GI and GE. The indolic GSLs were represented by hydroxy-glucobrassicin, glucobrassicin, methoxy-glucobrassicin, and neo-glucobrassicin, with the two latter as the most abundant. Additionally, SFN and indole-3-carbinol were found in lower concentrations than the corresponding GSL precursors in the raw materials. When exploring the bioaccessibility of these organosulfur compounds, the GSL of all matrices remained at levels lower than the limit of detection, while SFN was the only breakdown product that remained stable and at quantifiable concentrations. The highest concentration of bioaccessible SFN was provided by the high-ITC materials (~4.00 mg/kg dw). The results retrieved on the cytotoxicity of the referred extracts evidenced that the range of supplementation of growth media tested (0.002-430.400 µg of organosulfur compounds/mL) did not display cytotoxic effects on Caco-2 cells. The obtained extracts were assessed based on their capacity to reduce the production of key proinflammatory cytokines (interleukin 6 (IL-6), IL-8, and TNF-α) by the intestinal epithelium. Most of the tested processing conditions provided plant material with significant anti-inflammatory activity and the absence of cytotoxic effects. These data confirm that SFN from broccoli stalks, processed to optimize the bioaccessible concentration of SFN, may be potential therapeutic leads to treat or prevent human intestinal inflammation.
Collapse
Affiliation(s)
- Antonio Costa-Pérez
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, Espinardo, 30100 Murcia, Spain; (A.C.-P.); (P.S.-B.); (S.M.); (C.G.-V.)
| | - Paola Sánchez-Bravo
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, Espinardo, 30100 Murcia, Spain; (A.C.-P.); (P.S.-B.); (S.M.); (C.G.-V.)
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche (UMH), Carretera de Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, Espinardo, 30100 Murcia, Spain; (A.C.-P.); (P.S.-B.); (S.M.); (C.G.-V.)
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, Espinardo, 30100 Murcia, Spain; (A.C.-P.); (P.S.-B.); (S.M.); (C.G.-V.)
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, Espinardo, 30100 Murcia, Spain; (A.C.-P.); (P.S.-B.); (S.M.); (C.G.-V.)
| |
Collapse
|
17
|
Bouranis JA, Wong CP, Beaver LM, Uesugi SL, Papenhausen EM, Choi J, Davis EW, Da Silva AN, Kalengamaliro N, Chaudhary R, Kharofa J, Takiar V, Herzog TJ, Barrett W, Ho E. Sulforaphane Bioavailability in Healthy Subjects Fed a Single Serving of Fresh Broccoli Microgreens. Foods 2023; 12:3784. [PMID: 37893677 PMCID: PMC10606698 DOI: 10.3390/foods12203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cruciferous vegetable consumption is associated with numerous health benefits attributed to the phytochemical sulforaphane (SFN) that exerts antioxidant and chemopreventive properties, among other bioactive compounds. Broccoli sprouts, rich in SFN precursor glucoraphanin (GRN), have been investigated in numerous clinical trials. Broccoli microgreens are similarly rich in GRN but have remained largely unexplored. The goal of this study was to examine SFN bioavailability and the microbiome profile in subjects fed a single serving of fresh broccoli microgreens. Eleven subjects participated in a broccoli microgreens feeding study. Broccoli microgreens GRN and SFN contents and stability were measured. Urine and stool SFN metabolite profiles and microbiome composition were examined. Broccoli microgreens had similar GRN content to values previously reported for broccoli sprouts, which was stable over time. Urine SFN metabolite profiles in broccoli microgreens-fed subjects were similar to those reported previously in broccoli sprouts-fed subjects, including the detection of SFN-nitriles. We also reported the detection of SFN metabolites in stool samples for the first time. A single serving of broccoli microgreens did not significantly alter microbiome composition. We showed in this study that broccoli microgreens are a significant source of SFN. Our work provides the foundation for future studies to establish the health benefits of broccoli microgreens consumption.
Collapse
Affiliation(s)
- John A. Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Sandra L. Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Ethan M. Papenhausen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Edward W. Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | | | | | - Rekha Chaudhary
- Department of Medical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Thomas J. Herzog
- Department of OB/GYN, Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - William Barrett
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Yan L, Yan Y. Therapeutic potential of sulforaphane in liver diseases: a review. Front Pharmacol 2023; 14:1256029. [PMID: 37705537 PMCID: PMC10495681 DOI: 10.3389/fphar.2023.1256029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
The burden of liver diseases such as metabolic-associated fatty liver diseases and hepatocellular carcinoma has increased rapidly worldwide over the past decades. However, pharmacological therapies for these liver diseases are insufficient. Sulforaphane (SFN), an isothiocyanate that is mainly found in cruciferous vegetables, has been found to have a broad spectrum of activities like antioxidation, anti-inflammation, anti-diabetic, and anticancer effects. Recently, a growing number of studies have reported that SFN could significantly ameliorate hepatic steatosis and prevent the development of fatty liver, improve insulin sensitivity, attenuate oxidative damage and liver injury, induce apoptosis, and inhibit the proliferation of hepatoma cells through multiple signaling pathways. Moreover, many clinical studies have demonstrated that SFN is harmless to the human body and well-tolerated by individuals. This emerging evidence suggests SFN to be a promising drug candidate in the treatment of liver diseases. Nevertheless, limitations exist in the development of SFN as a hepatoprotective drug due to its special properties, including instability, water insolubility, and high inter-individual variation of bioavailability when used from broccoli sprout extracts. Herein, we comprehensively review the recent progress of SFN in the treatment of common liver diseases and the underlying mechanisms, with the aim to provide a better understanding of the therapeutic potential of SFN in liver diseases.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | |
Collapse
|
19
|
van Steenwijk HP, Winter E, Knaven E, Brouwers JF, van Baardwijk M, van Dalum JB, Luijendijk TJC, van Osch FHM, Troost FJ, Bast A, Semen KO, de Boer A. The beneficial effect of sulforaphane on platelet responsiveness during caloric load: a single-intake, double-blind, placebo-controlled, crossover trial in healthy participants. Front Nutr 2023; 10:1204561. [PMID: 37485383 PMCID: PMC10359317 DOI: 10.3389/fnut.2023.1204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Background and aims As our understanding of platelet activation in response to infections and/or inflammatory conditions is growing, it is becoming clearer that safe, yet efficacious, platelet-targeted phytochemicals could improve public health beyond the field of cardiovascular diseases. The phytonutrient sulforaphane shows promise for clinical use due to its effect on inflammatory pathways, favorable pharmacokinetic profile, and high bioavailability. The potential of sulforaphane to improve platelet functionality in impaired metabolic processes has however hardly been studied in humans. This study investigated the effects of broccoli sprout consumption, as a source of sulforaphane, on urinary 11-dehydro-thromboxane B2 (TXB2), a stable thromboxane metabolite used to monitor eicosanoid biosynthesis and response to antithrombotic therapy, in healthy participants exposed to caloric overload. Methods In this double-blind, placebo-controlled, crossover trial 12 healthy participants were administered 16g of broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to challenge healthy homeostasis. Urine samples were collected during the study visits and analyzed for 11-dehydro-TXB2, sulforaphane and its metabolites. Genotyping was performed using Illumina GSA v3.0 DTCBooster. Results Administration of broccoli sprouts before the caloric load reduced urinary 11-dehydro-TXB2 levels by 50% (p = 0.018). The amount of sulforaphane excreted in the urine during the study visits correlated negatively with 11-dehydro-TXB2 (rs = -0.377, p = 0.025). Participants carrying the polymorphic variant NAD(P)H dehydrogenase quinone 1 (NQO1*2) showed decreased excretion of sulforaphane (p = 0.035). Conclusion Sulforaphane was shown to be effective in targeting platelet responsiveness after a single intake. Our results indicate an inverse causal relationship between sulforaphane and 11-dehydro-TXB2, which is unaffected by the concomitant intake of the metabolic challenge. 11-Dehydro-TXB2 shows promise as a non-invasive, sensitive, and suitable biomarker to investigate the effects of phytonutrients on platelet aggregation within hours. Clinical trial registration [https://clinicaltrials.gov/], identifier [NCT05146804].
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Evi Winter
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Edward Knaven
- Research Group Analysis Techniques in the Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Jos F. Brouwers
- Research Group Analysis Techniques in the Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Myrthe van Baardwijk
- Omnigen B.V., Delft, Netherlands
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Frits H. M. van Osch
- Department of Clinical Epidemiology, VieCuri Medical Center, Venlo, Netherlands
- Department of Epidemiology, NUTRIM, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Freddy J. Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, Netherlands
| | - Aalt Bast
- University College Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Khrystyna O. Semen
- University College Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Alie de Boer
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
20
|
Rosés C, Garcia-Ibañez P, Agudelo A, Viadel B, Tomás-Cobos L, Gallego E, Carvajal M, Milagro FI, Barceló A. Effects of Glucosinolate-Enriched Red Radish ( Raphanus sativus) on In Vitro Models of Intestinal Microbiota and Metabolic Syndrome-Related Functionalities. ACS OMEGA 2023; 8:23373-23388. [PMID: 37426251 PMCID: PMC10324062 DOI: 10.1021/acsomega.2c08128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 07/11/2023]
Abstract
The gut microbiota profile is determined by diet composition, and therefore this interaction is crucial for promoting specific bacterial growth and enhancing the health status. Red radish (Raphanus sativusL.) contains several secondary plant metabolites that can exert a protective effect on human health. Recent studies have shown that radish leaves have a higher content of major nutrients, minerals, and fiber than roots, and they have garnered attention as a healthy food or supplement. Therefore, the consumption of the whole plant should be considered, as its nutritional value may be of greater interest. The aim of this work is to evaluate the effects of glucosinolate (GSL)-enriched radish with elicitors on the intestinal microbiota and metabolic syndrome-related functionalities by using an in vitro dynamic gastrointestinal system and several cellular models developed to study the GSL impact on different health indicators such as blood pressure, cholesterol metabolism, insulin resistance, adipogenesis, and reactive oxygen species (ROS). The treatment with red radish had an influence on short-chain fatty acids (SCFA) production, especially on acetic and propionic acid and many butyrate-producing bacteria, suggesting that consumption of the entire red radish plant (leaves and roots) could modify the human gut microbiota profile toward a healthier one. The evaluation of the metabolic syndrome-related functionalities showed a significant decrease in the gene expression of endothelin, interleukin IL-6, and cholesterol transporter-associated biomarkers (ABCA1 and ABCG5), suggesting an improvement of three risk factors associated with metabolic syndrome. The results support the idea that the use of elicitors on red radish crops and its further consumption (the entire plant) may contribute to improving the general health status and gut microbiota profile.
Collapse
Affiliation(s)
- Carles Rosés
- Servei
de Genòmica, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Cerdanyola
del Vallés, Spain
| | - Paula Garcia-Ibañez
- Aquaporins
Group, Centro de Edafología y Biología
Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100 Murcia, Spain
- Phytochemistry
and Healthy Foods Lab, Department of Food Science Technology, Centro de Edafología y Biología Aplicada
del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
| | - Agatha Agudelo
- Sakata
Seed Ibérica S.L., Pl, Poeta Vicente Gaos, 6 bajo, Valencia 46021, Spain
- Universidad
Politécnica de Valencia, UPV, Camino de Vera s/n, Valencia 46022, Spain
| | - Blanca Viadel
- AINIA,
Technology Centre, C/
Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valenca, Spain
| | - Lidia Tomás-Cobos
- AINIA,
Technology Centre, C/
Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valenca, Spain
| | - Elisa Gallego
- AINIA,
Technology Centre, C/
Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valenca, Spain
| | - Micaela Carvajal
- Aquaporins
Group, Centro de Edafología y Biología
Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100 Murcia, Spain
- Phytochemistry
and Healthy Foods Lab, Department of Food Science Technology, Centro de Edafología y Biología Aplicada
del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
| | - Fermín I. Milagro
- Center for
Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
- Navarra
Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro
de Investigación Biomédica en Red de la Fisiopatología
de la Obesidad y Nutrición (CIBERobn), Instituto de la Salud Carlos III, 289029 Madrid, Spain
| | - Anna Barceló
- Servei
de Genòmica, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Cerdanyola
del Vallés, Spain
| |
Collapse
|
21
|
Holman J, Hurd M, Moses PL, Mawe GM, Zhang T, Ishaq SL, Li Y. Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in inflammatory bowel diseases. J Nutr Biochem 2023; 113:109238. [PMID: 36442719 PMCID: PMC9974906 DOI: 10.1016/j.jnutbio.2022.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.
Collapse
Affiliation(s)
- Johanna Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Peter L Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA; Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| |
Collapse
|
22
|
Li L, Ma P, Nirasawa S, Liu H. Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Crit Rev Food Sci Nutr 2023; 64:7118-7148. [PMID: 36847125 DOI: 10.1080/10408398.2023.2181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.
Collapse
Affiliation(s)
- Lizhen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Satoru Nirasawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki Japan
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Zhang T, Holman J, McKinstry D, Trindade BC, Eaton KA, Mendoza-Castrejon J, Ho S, Wells E, Yuan H, Wen B, Sun D, Chen GY, Li Y. A steamed broccoli sprout diet preparation that reduces colitis via the gut microbiota. J Nutr Biochem 2023; 112:109215. [PMID: 36370930 DOI: 10.1016/j.jnutbio.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Sulforaphane is a bioactive metabolite with anti-inflammatory activity and is derived from the glucosinolate glucoraphanin, which is highly abundant in broccoli sprouts. However, due to its inherent instability its use as a therapeutic against inflammatory diseases has been limited. There are few studies to investigate a whole food approach to increase sulforaphane levels with therapeutic effect and reduce inflammation. In the current study, using a mouse model of inflammatory bowel disease, we investigated the ability of steamed broccoli sprouts to ameliorate colitis and the role of the gut microbiota in mediating any effects. We observed that despite inactivation of the plant myrosinase enzyme responsible for the generation of sulforaphane via steaming, measurable levels of sulforaphane were detectable in the colon tissue and feces of mice after ingestion of steamed broccoli sprouts. In addition, this preparation of broccoli sprouts was also capable of reducing chemically-induced colitis. This protective effect was dependent on the presence of an intact microbiota, highlighting an important role for the gut microbiota in the metabolism of cruciferous vegetables to generate bioactive metabolites and promote their anti-inflammatory effects.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Johanna Holman
- College of Science and Humanities, Husson University, Bangor, Maine, USA
| | - Delaney McKinstry
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruno C Trindade
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonny Mendoza-Castrejon
- Postbac Research Education Program, University of Michigan, Ann Arbor, Michigan, USA; Currently at Department of Pediatrics, Washington University School of Medicine, St. Louis, Mississippi, USA
| | - Sharon Ho
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Wells
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Grace Y Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Yanyan Li
- College of Science and Humanities, Husson University, Bangor, Maine, USA.
| |
Collapse
|
24
|
Bouranis JA, Beaver LM, Jiang D, Choi J, Wong CP, Davis EW, Williams DE, Sharpton TJ, Stevens JF, Ho E. Interplay between Cruciferous Vegetables and the Gut Microbiome: A Multi-Omic Approach. Nutrients 2022; 15:nu15010042. [PMID: 36615700 PMCID: PMC9824405 DOI: 10.3390/nu15010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Brassica vegetables contain a multitude of bioactive compounds that prevent and suppress cancer and promote health. Evidence suggests that the gut microbiome may be essential in the production of these compounds; however, the relationship between specific microbes and the abundance of metabolites produced during cruciferous vegetable digestion are still unclear. We utilized an ex vivo human fecal incubation model with in vitro digested broccoli sprouts (Broc), Brussels sprouts (Brus), a combination of the two vegetables (Combo), or a negative control (NC) to investigate microbial metabolites of cruciferous vegetables. We conducted untargeted metabolomics on the fecal cultures by LC-MS/MS and completed 16S rRNA gene sequencing. We identified 72 microbial genera in our samples, 29 of which were significantly differentially abundant between treatment groups. A total of 4499 metabolomic features were found to be significantly different between treatment groups (q ≤ 0.05, fold change > 2). Chemical enrichment analysis revealed 45 classes of compounds to be significantly enriched by brassicas, including long-chain fatty acids, coumaric acids, and peptides. Multi-block PLS-DA and a filtering method were used to identify microbe−metabolite interactions. We identified 373 metabolites from brassica, which had strong relationships with microbes, such as members of the family Clostridiaceae and genus Intestinibacter, that may be microbially derived.
Collapse
Affiliation(s)
- John A. Bouranis
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Edward W. Davis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - David E. Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Thomas J. Sharpton
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| |
Collapse
|
25
|
Aziz A, Noreen S, Khalid W, Mubarik F, Niazi MK, Koraqi H, Ali A, Lima CMG, Alansari WS, Eskandrani AA, Shamlan G, AL-Farga A. Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. Molecules 2022; 27:7320. [PMID: 36364145 PMCID: PMC9658993 DOI: 10.3390/molecules27217320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, we discuss the advantages of vegetable sprouts in the development of food products as well as their beneficial effects on a variety of disorders. Sprouts are obtained from different types of plants and seeds and various types of leafy, root, and shoot vegetables. Vegetable sprouts are enriched in bioactive compounds, including polyphenols, antioxidants, and vitamins. Currently, different conventional methods and advanced technologies are used to extract bioactive compounds from vegetable sprouts. Due to some issues in traditional methods, increasingly, the trend is to use recent technologies because the results are better. Applications of phytonutrients extracted from sprouts are finding increased utility for food processing and shelf-life enhancement. Vegetable sprouts are being used in the preparation of different functional food products such as juices, bread, and biscuits. Previous research has shown that vegetable sprouts can help to fight a variety of chronic diseases such as cancer and diabetes. Furthermore, in the future, more research is needed that explores the extraordinary ways in which vegetable sprouts can be incorporated into green-food processing and preservation for the purpose of enhancing shelf-life and the formation of functional meat products and substitutes.
Collapse
Affiliation(s)
- Afifa Aziz
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fizza Mubarik
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Madiha khan Niazi
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, St. Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410017, China
| | | | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
26
|
Accumulation of Sulforaphane and Alliin in Human Prostate Tissue. Nutrients 2022; 14:nu14163263. [PMID: 36014767 PMCID: PMC9415180 DOI: 10.3390/nu14163263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Diets rich in cruciferous vegetables have been associated with a lower risk of incidence and progression of prostate cancer. Sulforaphane, an isothiocyanate derived from 4-methylsulphinylbutyl glucosinolate (glucoraphanin) that accumulates in certain of these vegetables, notably broccoli, has been implicated in their protective effects. Likewise, the consumption of garlic and its sulphur-containing compounds such as alliin have been associated with a reduction in risk of prostate cancer. In this study, we tested whether consuming glucoraphanin derived from broccoli seeds and alliin derived from garlic resulted in the occurrence of these potential bioactive compounds in the prostate, which may contribute to our understanding of the putative protective effects of these dietary components. We recruited 42 men scheduled for a trans-perineal prostate biopsy into a randomised, double-blinded, 2 × 2-factorial dietary supplement four-week intervention study, and 39 completed the study. The two active interventions were supplements providing glucoraphanin from broccoli (BroccoMax®) and alliin from garlic (Kwai Heartcare®). Following the intervention, prostate biopsy tissue was analysed for the presence of sulforaphane and its thiol conjugates and for alliin and associated metabolites. Sulforaphane occurred in significantly higher levels in the prostate tissue (both within the transition and peripheral zone) of men consuming the glucoraphanin containing supplements (p < 0.0001) compared to men not consuming these supplements. However, while alliin and alliin-derived metabolites were detected within the prostate, there was no significant difference in the concentrations of these compounds in the prostate of men consuming supplements derived from garlic compared to men not consuming these supplements.
Collapse
|
27
|
Esquivel MK. Nutrition Benefits and Considerations for Whole Foods Plant-Based Eating Patterns. Am J Lifestyle Med 2022; 16:284-290. [PMID: 35706588 PMCID: PMC9189583 DOI: 10.1177/15598276221075992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Whole foods plant-based approaches to eating place an emphasis on the intake of fruits, vegetables, whole grains, and legumes and have many health benefits. While there are key nutrients and phytochemicals that can contribute to the purported health benefits, practitioners and patients should also be advised of key nutrients for which intake may be compromised when following this dietary pattern. With careful planning and utility of dietary supplements, individuals can achieve optimal intake of calcium, iron, vitamin D, omega 3 fatty acid-docosahexaenoic acid (DHA), and vitamin B12 and experience the health benefits of a dietary fiber and a host of phytochemicals. This article presents the health benefits of these food substances and approaches for overcoming nutrients of concern when following whole food plant-based eating patterns.
Collapse
Affiliation(s)
- Monica K Esquivel
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
28
|
Bauman JE, Hsu CH, Centuori S, Guillen-Rodriguez J, Garland LL, Ho E, Padi M, Bageerathan V, Bengtson L, Wojtowicz M, Szabo E, Chow HHS. Randomized Crossover Trial Evaluating Detoxification of Tobacco Carcinogens by Broccoli Seed and Sprout Extract in Current Smokers. Cancers (Basel) 2022; 14:cancers14092129. [PMID: 35565256 PMCID: PMC9105060 DOI: 10.3390/cancers14092129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023] Open
Abstract
Consumption of cruciferous vegetables, rich in the isothiocyanate glucoraphanin, is associated with reduced risk of tobacco-related cancers. Sulforaphane, released by hydrolysis of glucoraphanin, potently induces cytoprotective phase II enzymes. Sulforaphane decreased the incidence of oral cancer in the 4NQO carcinogenesis model. In residents of Qidong, China, broccoli seed and sprout extracts (BSSE) increased detoxification of air pollutants benzene and acrolein, also found in tobacco smoke. This randomized, crossover trial evaluated detoxification of tobacco carcinogens by the BSSE Avmacol® in otherwise healthy smokers. Participants were treated for 2 weeks with both low and higher-dose BSSE (148 µmol vs. 296 µmol of glucoraphanin daily), separated by a 2-week washout, with randomization to low-high vs. high-low sequence. The primary endpoint was detoxification of benzene, measured by urinary excretion of its mercapturic acid, SPMA. Secondary endpoints included bioavailability, detoxification of acrolein and crotonaldehyde, modulation by GST genotype, and toxicity. Forty-nine participants enrolled, including 26 (53%) females with median use of 20 cigarettes/day. Low and higher-dose BSSE showed a mean bioavailability of 11% and 10%, respectively. Higher-dose BSSE significantly upregulated urinary excretion of the mercapturic acids of benzene (p = 0.04), acrolein (p < 0.01), and crotonaldehyde (p = 0.02), independent of GST genotype. Retention and compliance were high resulting in early study completion. In conclusion, BSSE significantly upregulated detoxification of the tobacco carcinogens benzene, acrolein, and crotonaldehyde in current tobacco smokers.
Collapse
Affiliation(s)
- Julie E. Bauman
- Department of Medicine, Division of Hematology/Oncology, University of Arizona (UA) and UA Cancer Center, Tucson, AZ 85724, USA; (S.C.); (L.L.G.); (H.-H.S.C.)
- Department of Medicine, Division of Hematology/Oncology, George Washington (GW) University and GW Cancer Center, Washington, DC 20037, USA
- Correspondence:
| | - Chiu-Hsieh Hsu
- Department of Epidemiology and Biostatistics, UA and UA Cancer Center, Tucson, AZ 85724, USA;
| | - Sara Centuori
- Department of Medicine, Division of Hematology/Oncology, University of Arizona (UA) and UA Cancer Center, Tucson, AZ 85724, USA; (S.C.); (L.L.G.); (H.-H.S.C.)
| | - Jose Guillen-Rodriguez
- Biostatistics and Bioinformatics Shared Resource, UA Cancer Center, Tucson, AZ 85724, USA; (J.G.-R.); (M.P.); (V.B.)
| | - Linda L. Garland
- Department of Medicine, Division of Hematology/Oncology, University of Arizona (UA) and UA Cancer Center, Tucson, AZ 85724, USA; (S.C.); (L.L.G.); (H.-H.S.C.)
| | - Emily Ho
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Megha Padi
- Biostatistics and Bioinformatics Shared Resource, UA Cancer Center, Tucson, AZ 85724, USA; (J.G.-R.); (M.P.); (V.B.)
- Department of Molecular and Cellular Biology, UA, Tucson, AZ 85724, USA
| | - Vignesh Bageerathan
- Biostatistics and Bioinformatics Shared Resource, UA Cancer Center, Tucson, AZ 85724, USA; (J.G.-R.); (M.P.); (V.B.)
| | - Lisa Bengtson
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA; (L.B.); (M.W.); (E.S.)
| | - Malgorzata Wojtowicz
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA; (L.B.); (M.W.); (E.S.)
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA; (L.B.); (M.W.); (E.S.)
| | - H.-H. Sherry Chow
- Department of Medicine, Division of Hematology/Oncology, University of Arizona (UA) and UA Cancer Center, Tucson, AZ 85724, USA; (S.C.); (L.L.G.); (H.-H.S.C.)
| |
Collapse
|
29
|
Kaur P, Singh D, Singh G, Attri S, Singh D, Sharma M, Buttar HS, Bedi N, Singh B, Arora S. Pharmacokinetics and toxicity profiling of 4-(methylthio)butyl isothiocyanate with special reference to pre-clinical safety assessment studies. Toxicon 2022; 212:19-33. [PMID: 35395273 DOI: 10.1016/j.toxicon.2022.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022]
Abstract
4-(methylthio)butyl isothiocyanate (4-MTBITC) also called erucin is abundantly present in the seeds of Eruca sativa plant closely related to cruciferous vegetables rich in isothiocyanates. We have previously reported the molecular targets of 4-MTBITC, but no acute, subacute and subchronic toxicity studies have been carried out to evaluate its safety. The non-everted gut sac method was used to study intestinal absorption and it revealed the highest absorption of 4-MTBITC in the jejunum. Dose-dependent pharmacokinetic parameters were observed in rats given 10, 20, and 40 mg/kg oral doses of 4-MTBITC. At the highest dose of 40 mg/kg, Cmax was 437.33 μg/ml and Tmax was 30 min, suggesting quick absorption and delayed elimination with elimination constant, 0.0036 ± 0.0002min-1. In a 14 days toxicity study, the mean LD50 of 4-MTBITC was 500 mg/kg body weight. After 28 and 90 days of treatment with 4-MTBITC (2.5, 10, 40 mg/kg/day), significant increases were observed in SGOT, cholesterol, and antioxidant enzymes. The levels of glycine, alanine and lysine were markedly increased in the liver tissue, thereby indicating that the liver was the target organ of 4-MTBITC induced toxicity in female animals. The histopathological examination of liver, kidney, and lung tissues revealed little focal necrosis, apoptosis, and reduction in the levels of amino acids involved in cellular metabolic pathways, indicating the anti-proliferative potential of 4-MTBITC against rapidly growing cells.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Manisha Sharma
- Consultant Pathologist, Smt. Paarvati Devi Hospital, Amritsar, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
30
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
31
|
Glucosinolates, Ca, Se Contents, and Bioaccessibility in Brassica rapa Vegetables Obtained by Organic and Conventional Cropping Systems. Foods 2022; 11:foods11030350. [PMID: 35159500 PMCID: PMC8834489 DOI: 10.3390/foods11030350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
In northwest Spain and Portugal, there is a long tradition of cultivating B. rapa subsp. rapa to obtain turnip greens and turnip tops. Brassica rapa L. subsp. rapa (turnip greens and turnip tops) were grown under conventional and organic conditions in two Farms in southern Spain. Glucosinolatescontents were higher in Brassicas grown under conventional conditions than those grown under organic ones. Average Ca total and bioaccessible contents ranged between 14.6–23.4 mg/g; 8.9–12.0 mg/g for turnip greens and 6.4–8.9 mg/g; 4.3–4.8 mg/g for turnip tops. According to these concentrations, an intake of 100–200 g (fresh weight) of the studied Brassica rapa fulfills Ca dietary reference intakes (DRI) (considering the total content data) and complies with 72–100% Ca DRI percentage (considering the bioaccessible data). Se concentrations ranged between 0.061–0.073 µg/g and 0.039–0.053 µg/g for turnip greens and turnip tops respectively. Se bioaccessibility values were high, with percentages of around 90%. Finally, the total glucosinolate content ranged between 13.23–21.28 µmol/g for turnip greens and 13.36–20.20 µmol/g for turnip tops. In general, the bioaccessibility of the total glucosinolates analyzed in this study was high, with mean values of around 73% and 66% for turnip greens and turnip tops, respectively. Brassica rapa vegetables grown under both organic and conventional conditions in southern Spain are an excellent dietary source of Ca, Se, and glucosinolates with a high bioaccessibility.
Collapse
|
32
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
33
|
Rafiq T, Azab SM, Teo KK, Thabane L, Anand SS, Morrison KM, de Souza RJ, Britz-McKibbin P. Nutritional Metabolomics and the Classification of Dietary Biomarker Candidates: A Critical Review. Adv Nutr 2021; 12:2333-2357. [PMID: 34015815 PMCID: PMC8634495 DOI: 10.1093/advances/nmab054] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in metabolomics allow for more objective assessment of contemporary food exposures, which have been proposed as an alternative or complement to self-reporting of food intake. However, the quality of evidence supporting the utility of dietary biomarkers as valid measures of habitual intake of foods or complex dietary patterns in diverse populations has not been systematically evaluated. We reviewed nutritional metabolomics studies reporting metabolites associated with specific foods or food groups; evaluated the interstudy repeatability of dietary biomarker candidates; and reported study design, metabolomic approach, analytical technique(s), and type of biofluid analyzed. A comprehensive literature search of 5 databases (PubMed, EMBASE, Web of Science, BIOSIS, and CINAHL) was conducted from inception through December 2020. This review included 244 studies, 169 (69%) of which were interventional studies (9 of these were replicated in free-living participants) and 151 (62%) of which measured the metabolomic profile of serum and/or plasma. Food-based metabolites identified in ≥1 study and/or biofluid were associated with 11 food-specific categories or dietary patterns: 1) fruits; 2) vegetables; 3) high-fiber foods (grain-rich); 4) meats; 5) seafood; 6) pulses, legumes, and nuts; 7) alcohol; 8) caffeinated beverages, teas, and cocoas; 9) dairy and soya; 10) sweet and sugary foods; and 11) complex dietary patterns and other foods. We conclude that 69 metabolites represent good candidate biomarkers of food intake. Quantitative measurement of these metabolites will advance our understanding of the relation between diet and chronic disease risk and support evidence-based dietary guidelines for global health.
Collapse
Affiliation(s)
- Talha Rafiq
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Sandi M Azab
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
- Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| | - Koon K Teo
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | - Sonia S Anand
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | - Russell J de Souza
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | | |
Collapse
|
34
|
Ugolini L, Cilia G, Pagnotta E, Malaguti L, Capano V, Guerra I, Zavatta L, Albertazzi S, Matteo R, Lazzeri L, Righetti L, Nanetti A. Glucosinolate Bioactivation by Apis mellifera Workers and Its Impact on Nosema ceranae Infection at the Colony Level. Biomolecules 2021; 11:1657. [PMID: 34827655 PMCID: PMC8615805 DOI: 10.3390/biom11111657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/02/2022] Open
Abstract
The microsporidian fungus Nosema ceranae represents one of the primary bee infection threats worldwide and the antibiotic fumagillin is the only registered product for nosemosis disease control, while few alternatives are, at present, available. Natural bioactive compounds deriving from the glucosinolate-myrosinase system (GSL-MYR) in Brassicaceae plants, mainly isothiocyanates (ITCs), are known for their antimicrobial activity against numerous pathogens and for their health-protective effects in humans. This work explored the use of Brassica nigra and Eruca sativa defatted seed meal (DSM) GSL-containing diets against natural Nosema infection in Apis mellifera colonies. DSM patties from each plant species were obtained by adding DSMs to sugar candy at the concentration of 4% (w/w). The feeding was administered in May to mildly N. ceranae-infected honey bee colonies for four weeks at the dose of 250 g/week. In the treated groups, no significant effects on colony development and bee mortality were observed compared to the negative controls. The N. ceranae abundance showed a slight but significant decrease. Furthermore, the GSL metabolism in bees was investigated, and MYR hydrolytic activity was qualitatively searched in isolated bee midgut and hindgut. Interestingly, MYR activity was detected both in the bees fed DSMs and in the control group where the bees did not receive DSMs. In parallel, ITCs were found in gut tissues from the bees treated with DSMs, corroborating the presence of a MYR-like enzyme capable of hydrolyzing ingested GSLs. On the other hand, GSLs and other GSL hydrolysis products other than ITCs, such as nitriles, were found in honey produced by the treated bees, potentially increasing the health value of the final product for human consumption. The results are indicative of a specific effect on the N. ceranae infection in managed honey bee colonies depending on the GSL activation within the target organ.
Collapse
Affiliation(s)
- Luisa Ugolini
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Eleonora Pagnotta
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Lorena Malaguti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Vittorio Capano
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Irene Guerra
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Sergio Albertazzi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Roberto Matteo
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Luca Lazzeri
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| |
Collapse
|
35
|
Zhou J, Zhu X, Dong Y, Yang B, Lu R, Xing G, Wang S, Li F. Type 2 diabetes mellitus potentiates acute acrylonitrile toxicity: Potentiation reduction by phenethyl isothiocyanate. Toxicol Ind Health 2021; 37:695-704. [PMID: 34643460 DOI: 10.1177/07482337211048583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acrylonitrile (AN) is a known animal carcinogen and suspected human carcinogen. Recently, occupational exposure to AN has considerably increased. Previously, we demonstrated that streptozotocin-induced diabetes potentiates AN-induced acute toxicity in rats and that the induced cytochrome P450 2E1 (CYP2E1) is responsible for this effect. In the present study, we examined whether induction of CYP2E1 is also the underlying mechanism for the potentiation of AN-induced acute toxicity in type 2 diabetes in db/db mice. The effect of phenethyl isothiocyanate (PEITC) in reducing potentiation was also investigated. The mice were randomly divided into the normal control, diabetic control, AN, diabetes + AN, PEITC + AN, and diabetes + PEITC + AN groups. PEITC (40 mg/kg) was orally administered to rats for 3 days, and 1 h after the last PEITC gavage, 45 mg/kg AN was intraperitoneally injected. Time to death was observed. The CYP2E1 level and enzymatic activity, cytochrome c oxidase (CCO) activity, and reactive oxygen species (ROS) levels were measured. The survival rate was decreased in AN-treated db/db mice compared with that in AN-treated wild-type mice. The hepatic CYP2E1 level and enzymatic activity remained unaltered in db/db mice. Phenethyl isothiocyanate alleviated AN-induced acute toxicity in db/db mice as evident in the increased survival rate, restored CCO activity, and decreased ROS level in both the liver and brain. The study results suggested that CYP2E1 may not be responsible for the sensitivity to AN-induced acute toxicity in db/db mice and that PEITC reduced the potentiation of AN-induced acute toxicity in db/db mice.
Collapse
Affiliation(s)
- Jie Zhou
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueyu Zhu
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Dong
- Department of Clinical Laboratory, Rugao Municipal People's Hospital, Rugao, Jiangsu, China
| | - Bobo Yang
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rongzhu Lu
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangwei Xing
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Suhua Wang
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Li
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
36
|
Bouranis JA, Beaver LM, Ho E. Metabolic Fate of Dietary Glucosinolates and Their Metabolites: A Role for the Microbiome. Front Nutr 2021; 8:748433. [PMID: 34631775 PMCID: PMC8492924 DOI: 10.3389/fnut.2021.748433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Robust evidence shows that phytochemicals from cruciferous vegetables, like broccoli, are associated with numerous health benefits. The anti-cancer properties of these foods are attributed to bioactive isothiocyanates (ITCs) and indoles, phytochemicals generated from biological precursor compounds called glucosinolates. ITCs, and particularly sulforaphane (SFN), are of intense interest as they block the initiation, and suppress the progression of cancer, through genetic and epigenetic mechanisms. The efficacy of these compounds is well-demonstrated in cell culture and animal models, however, high levels of inter-individual variation in absorption and excretion of ITCs is a significant barrier to the use of dietary glucosinolates to prevent and treat disease. The source of inter-individual ITC variation has yet to be fully elucidated and the gut microbiome may play a key role. This review highlights evidence that the gut microbiome influences the metabolic fate and activity of ITCs. Human feeding trials have shown inter-individual variations in gut microbiome composition coincides with variations in ITC absorption and excretion, and some bacteria produce ITCs from glucosinolates. Additionally, consumption of cruciferous vegetables can alter the composition of the gut microbiome and shift the physiochemical environment of the gut lumen, influencing the production of phytochemicals. Microbiome and diet induced changes to ITC metabolism may lead to the decrease of cancer fighting phytochemicals such as SFN and increase the production of biologically inert ones like SFN-nitrile. We conclude by offering perspective on the use of novel “omics” technologies to elucidate the interplay of the gut microbiome and ITC formation.
Collapse
Affiliation(s)
- John A Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
37
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
38
|
Chemosensory approach supported-analysis of wintering radishes produced in Jeju island by different processing methods. Food Sci Biotechnol 2021; 30:1033-1049. [PMID: 34471558 DOI: 10.1007/s10068-021-00948-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
The purpose of this study was to investigate sensory characteristics in radishes, processed through different methods, using chemosensory-assisted instruments. For electronic tongue (E-tongue) analysis, freeze-dried radish was high in the sensor values of sourness, umami, and sweetness, however, the saltiness was the lowest. In particular, the sensor values of taste freeze-dried radish have changed more than that of thermally processed radishes. Unlike the results of E-tongue, volatiles of freeze-dried radish have changed less than that of thermally processed radishes. In detail, amounts of sulfur-containing compound (thiophene) in freeze-dried radish were relatively higher than thermally processed radishes by an electronic nose. For gas chromatography-mass spectrometry and GC-olfactometry, the amount of sulfur-containing compounds in freeze-dried radish were also relatively higher than thermally processed radishes, and odor active compounds were also high in freeze-dried radish.
Collapse
|
39
|
Annie-Mathew AS, Prem-Santhosh S, Jayasuriya R, Ganesh G, Ramkumar KM, Sarada DVL. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol Res 2021; 173:105853. [PMID: 34455076 DOI: 10.1016/j.phrs.2021.105853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
Adipose tissue is instrumental in maintaining metabolic homeostasis by regulating energy storage in the form of triglycerides. In the case of over-nutrition, adipocytes favorably regulate lipogenesis over lipolysis and accumulate excess triglycerides, resulting in increased adipose tissue mass. An abnormal increase in hypertrophic adipocytes is associated with chronic complications such as insulin resistance, obesity, diabetes, atherosclerosis and nonalcoholic fatty liver disease. Experimental studies indicate the occurrence of oxidative stress in the pathogenesis of obesity. A common underlying link between increasing adipose tissue mass and oxidative stress is the Nuclear Factor Erythroid 2-related factor 2 (Nrf2), Keap1-Nrf2-ARE signaling, which plays an indispensable role in metabolic homeostasis by regulating oxidative and inflammatory responses. Additionally, Nrf2 also activates CCAAT/enhancer-binding protein α, (C/EBP-α), C/EBP-β and peroxisome proliferator-activated receptor γ (PPARγ) the crucial pro-adipogenic factors that promote de novo adipogenesis. Hence, at the forefront of research is the quest for prospecting novel compounds to modulate Nrf2 activity in the context of adipogenesis and obesity. This review summarizes the molecular mechanism behind the activation of the Keap1-Nrf2-ARE signaling network and the role of Nrf2 activators in adipocyte pathophysiology.
Collapse
Affiliation(s)
- A S Annie-Mathew
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Subramanian Prem-Santhosh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Goutham Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
40
|
Ngo SNT, Williams DB. Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives. Anticancer Agents Med Chem 2021; 21:1413-1430. [PMID: 32972351 DOI: 10.2174/1871520620666200924104550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effect of cruciferous vegetable intake on breast cancer survival is controversial at present. Glucosinolates are the naturally occurring constituents found across the cruciferous vegetables. Isothiocyanates are produced from the hydrolysis of glucosinolates and this reaction is catalysed by the plant-derived enzyme myrosinase. The main Isothiocyanates (ITCs) from cruciferous vegetables are sulforaphane, benzyl ITC, and phenethyl ITC, which had been intensively investigated over the last decade for their anti-breast cancer effects. OBJECTIVE The aim of this article is to systematically review the evidence from all types of studies, which examined the protective effect of cruciferous vegetables and/or their isothiocyanate constituents on breast cancer. METHODS A systematic review was conducted in Pubmed, EMBASE, and the Cochrane Library from inception to 27 April 2020. Peer-reviewed studies of all types (in vitro studies, animal studies, and human studies) were selected. RESULTS The systematic literature search identified 16 human studies, 4 animal studies, and 65 in vitro studies. The effect of cruciferous vegetables and/or their ITCs intake on breast cancer survival was found to be controversial and varied greatly across human studies. Most of these trials were observational studies conducted in specific regions, mainly in the US and China. Substantial evidence from in vitro and animal studies was obtained, which strongly supported the protective effect of sulforaphane and other ITCs against breast cancer. Evidence from in vitro studies showed that sulforaphane and other ITCs reduced cancer cell viability and proliferation via multiple mechanisms and pathways. Isothiocyanates inhibited cell cycle, angiogenesis and epithelial mesenchymal transition, as well as induced apoptosis and altered the expression of phase II carcinogen detoxifying enzymes. These are the essential pathways that promote the growth and metastasis of breast cancer. Noticeably, benzyl ITC showed a significant inhibitory effect on breast cancer stem cells, a new dimension of chemo-resistance in breast cancer treatment. Sulforaphane and other ITCs displayed anti-breast cancer effects at variable range of concentrations and benzyl isothiocyanate appeared to have a relatively lower inhibitory concentration IC50. The mechanisms underlying the cancer protective effect of sulforaphane and other ITCs have also been highlighted in this article. CONCLUSION Current preclinical evidence strongly supports the role of sulforaphane and other ITCs as potential therapeutic agents for breast cancer, either as adjunct therapy or combined therapy with current anti-breast cancer drugs, with sulforaphane displaying the greatest potential.
Collapse
Affiliation(s)
- Suong N T Ngo
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5071, Australia
| | - Desmond B Williams
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
41
|
Shakour ZT, Shehab NG, Gomaa AS, Wessjohann LA, Farag MA. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnol Adv 2021; 54:107784. [PMID: 34102260 DOI: 10.1016/j.biotechadv.2021.107784] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Glucosinolate-producing plants have long been recognized for both their distinctive benefits to human nutrition and their resistance traits against pathogens and herbivores. Despite the accumulation of glucosinolates (GLS) in plants is associated with their resistance to various biotic and abiotic stresses, the defensive and biological activities of GLS are commonly conveyed by their metabolic products. In view of this, metabolism is considered the driving factor upon the interactions of GLS-producing plants with other organisms, also influenced by plant and plant attacking or digesting organism characteristics. Several microbial pathogens and insects have evolved the capacity to detoxify GLS-hydrolysis products or inhibit their formation via different means, highlighting the relevance of their metabolic abilities for the plants' defense system activation and target organism detoxification. Strikingly, some bacteria, fungi and insects can likewise produce their own myrosinase (MYR)-like enzymes in one of the most important adaptation strategies against the GLS-MYR plant defense system. Knowledge of GLS metabolic pathways in herbivores and pathogens can impact plant protection efforts and may be harnessed upon for genetically modified plants that are more resistant to predators. In humans, the interest in the implementation of GLS in diets for the prevention of chronic diseases has grown substantially. However, the efficiency of such approaches is dependent on GLS bioavailability and metabolism, which largely involves the human gut microbiome. Among GLS-hydrolytic products, isothiocyanates (ITC) have shown exceptional properties as chemical plant defense agents against herbivores and pathogens, along with their health-promoting benefits in humans, at least if consumed in reasonable amounts. Deciphering GLS metabolic pathways provides critical information for catalyzing all types of GLS towards the generation of ITCs as the biologically most active metabolites. This review provides an overview on contrasting metabolic pathways in plants, bacteria, fungi, insects and humans towards GLS activation or detoxification. Further, suggestions for the preparation of GLS containing plants with improved health benefits are presented.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Naglaa G Shehab
- Department of Pharmaceutical Chemistry and Natural Products, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Ahmed S Gomaa
- Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
42
|
Hu X, Xiao Y, Sun J, Ji B, Luo S, Wu B, Zheng C, Wang P, Xu F, Cheng K, Hua H, Li D. New possible silver lining for pancreatic cancer therapy: Hydrogen sulfide and its donors. Acta Pharm Sin B 2021; 11:1148-1157. [PMID: 34094825 PMCID: PMC8144891 DOI: 10.1016/j.apsb.2020.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
As one of the most lethal diseases, pancreatic cancer shows a dismal overall prognosis and high resistance to most treatment modalities. Furthermore, pancreatic cancer escapes early detection during the curable period because early symptoms rarely emerge and specific markers for this disease have not been found. Although combinations of new drugs, multimodal therapies, and adjuvants prolong survival, most patients still relapse after surgery and eventually die. Consequently, the search for more effective treatments for pancreatic cancer is highly relevant and justified. As a newly re-discovered mediator of gasotransmission, hydrogen sulfide (H2S) undertakes essential functions, encompassing various signaling complexes that occupy key processes in human biology. Accumulating evidence indicates that H2S exhibits bimodal modulation of cancer development. Thus, endogenous or low levels of exogenous H2S are thought to promote cancer, whereas high doses of exogenous H2S suppress tumor proliferation. Similarly, inhibition of endogenous H2S production also suppresses tumor proliferation. Accordingly, H2S biosynthesis inhibitors and H2S supplementation (H2S donors) are two distinct strategies for the treatment of cancer. Unfortunately, modulation of endogenous H2S on pancreatic cancer has not been studied so far. However, H2S donors and their derivatives have been extensively studied as potential therapeutic agents for pancreatic cancer therapy by inhibiting cell proliferation, inducing apoptosis, arresting cell cycle, and suppressing invasion and migration through exploiting multiple signaling pathways. As far as we know, there is no review of the effects of H2S donors on pancreatic cancer. Based on these concerns, the therapeutic effects of some H2S donors and NO–H2S dual donors on pancreatic cancer were summarized in this paper. Exogenous H2S donors may be promising compounds for pancreatic cancer treatment.
Collapse
Key Words
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- AMPK, adenosine 5′-monophosphate-activated protein kinase
- Antitumor effect
- BCL-2, B-cell lymphoma-2
- BITC, benzyl isothiocyanate
- BRCA2, breast cancer 2
- CAT, cysteine aminotransferase
- CBS, cystathionine-β-synthase
- CDC25B, cell division cycle 25B
- CDK1, cyclin-dependent kinase 1
- CHK2, checkpoint kinase 2
- CSE, cystathionine-γ-lyase
- Cell proliferation
- DATS, diallyl trisulfide
- DR4, death receptor
- EMT, epithelial–mesenchymal transition
- ERK1/2, extracellular signal-regulated kinase
- ERU, erucin
- FOXM1, forkhead box protein M1
- GLUTs, glucose transporters
- H2S, hydrogen sulfide
- HDAC, histone deacetylase
- HEATR1, human HEAT repeat-containing protein 1
- HIF-1α, hypoxia inducible factor
- Hydrogen sulfide donor
- ITCs, isothiocyanates
- JNK, c-Jun N-terminal kinase
- KEAP1‒NRF2‒ARE, the recombinant protein 1-nuclear factor erythroid-2 related factor 2-antioxidant response element
- KRAS, kirsten rat sarcoma viral oncogene
- NF-κB, nuclear factor kappa B
- NO, nitric oxide
- OCT-4, octamer-binding transcription factor 4
- P16, multiple tumor suppressor 1
- PARP, poly(ADP-ribose)-polymerase
- PDGFRα, platelet-derived growth factor receptor
- PEITC, phenethyl isothiocyanate
- PI3K/AKT, phosphoinositide 3-kinase/v-AKT murine thymoma viral oncogene
- Pancreatic cancer
- RASAL2, RAS protein activator like 2
- ROS, reactive oxygen species
- RPL10, human ribosomal protein L10
- SFN, sulforaphane
- SHH, sonic hedgehog
- SMAD4, mothers against decapentaplegic homolog 4
- STAT-3, signal transducer and activator of transcription 3
- Signaling pathway
- Sulfur-containing compound
- TRAIL, The human tumor necrosis factor-related apoptosis-inducing ligand
- VEGF, vascular endothelial growth factor
- XIAP, X-linked inhibitor of apoptosis protein
- ZEB1, zinc finger E box-binding protein-1
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Xiao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bao Ji
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Bo Wu
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| |
Collapse
|
43
|
Elkashty OA, Tran SD. Sulforaphane as a Promising Natural Molecule for Cancer Prevention and Treatment. Curr Med Sci 2021; 41:250-269. [PMID: 33877541 DOI: 10.1007/s11596-021-2341-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Tumorigenicity-inhibiting compounds have been identified in our daily diet. For example, isothiocyanates (ITCs) found in cruciferous vegetables were reported to have potent cancer-prevention activities. The best characterized ITC is sulforaphane (SF). SF can simultaneously modulate multiple cellular targets involved in carcinogenesis, including (1) modulating carcinogen-metabolizing enzymes and blocking the action of mutagens; (2) inhibition of cell proliferation and induction of apoptosis; and (3) inhibition of neo-angiogenesis and metastasis. SF targets cancer stem cells through modulation of nuclear factor kappa B (NF-κB), Sonic hedgehog (SHH), epithelial-mesenchymal transition, and Wnt/β-catenin pathways. Conventional chemotherapy/SF combination was tested in several studies and resulted in favorable outcomes. With its favorable toxicological profile, SF is a promising agent in cancer prevention and/or therapy. In this article, we discuss the human metabolism of SF and its effects on cancer prevention, treatment, and targeting cancer stem cells, as well as providing a brief review of recent human clinical trials on SF.
Collapse
Affiliation(s)
- Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.,Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.
| |
Collapse
|
44
|
Almushayti AY, Brandt K, Carroll MA, Scotter MJ. Current analytical methods for determination of glucosinolates in vegetables and human tissues. J Chromatogr A 2021; 1643:462060. [PMID: 33770631 DOI: 10.1016/j.chroma.2021.462060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Numerous epidemiological studies have indicated the potential effects of glucosinolates and their metabolites against cancer as well as other non-communicable diseases, such as cardiovascular disease and neurodegenerative disorders. However, information on the presence and quantity of glucosinolates in commonly consumed vegetables and in human fluids is sparse, largely because well-standardised methods for glucosinolate determination are not available, resulting in published data being inconsistent and conflicting. Thus, studies published since 2002 on the most recent developments of glucosinolate extraction and identification have been collected and reviewed with emphasis on determination of the intact glucosinolates by LC-MS and LC-MS/MS. This overview highlights the glucosinolate extraction methods used, the stability of glucosinolates during extraction, the availability of stable isotope labelled internal standards and the use of NMR for purity analysis, as well as the current analytical techniques that have been applied for glucosinolate analysis, e.g. liquid chromatography with mass spectrometric detection (LC-MS). It aims to interpret the findings with a focus on the development of a validated method, which will help to determine the glucosinolate content of vegetative plants and human tissues, and the identification and determination of selected glucosinolate metabolites.
Collapse
Affiliation(s)
- Albatul Y Almushayti
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; College of Agriculture and Veterinary Medicine, Department of Food Science and Human Nutrition, Qassim University, Qassim, KSA.
| | - Kirsten Brandt
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Michael A Carroll
- School of Natural & Environmental Sciences-Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
45
|
Lv C, Zhang Y, Zou L, Sun J, Song X, Mao J, Wu Y. Simultaneous Hydrolysis and Extraction Increased Erucin Yield from Broccoli Seeds. ACS OMEGA 2021; 6:6385-6392. [PMID: 33718729 PMCID: PMC7948436 DOI: 10.1021/acsomega.0c06319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Isothiocyanates (ITCs) are well-known chemopreventive agents that have received significant interest across the nutrition and pharmaceutical industries owing to their anticancer properties, thus it is essential to increase the conversion of glucosinolate to ITCs by myrosinase to maximize their health benefits. In this paper, using broccoli seed meals as a raw material, we comparatively analyzed the outcomes of two extraction methods: (i) hydrolysis followed by extraction (HFE) and (ii) simultaneous hydrolysis and extraction (SHE) in terms of the ITC yield. The results revealed that the SHE method showed a relatively greater erucin production from broccoli seeds and greater antitumor and antioxidant activities. A similar phenomenon was found for the hydrolysates of crude myrosinase and crude glucosinolate separated from broccoli seeds. However, when the crude glucosinolates were hydrolyzed by purified broccoli myrosinase, or when pure glucoraphanin was hydrolyzed by crude myrosinase, no significant effects were noted on the types and yields of ITCs between the SHE and HFE methods.
Collapse
Affiliation(s)
- Chengzhi Lv
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yao Zhang
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Ligen Zou
- Hangzhou
Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Juan Sun
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Xinjie Song
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Jianwei Mao
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
- Zhejiang
Provincial Key Laboratory for Chem and Bio Processing Technology of
Farm Produces, Hangzhou, Zhejiang 310023, China
| | - Yuanfeng Wu
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
46
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
47
|
Broccoli extract increases drug-mediated cytotoxicity towards cancer stem cells of head and neck squamous cell carcinoma. Br J Cancer 2020; 123:1395-1403. [PMID: 32773768 PMCID: PMC7591858 DOI: 10.1038/s41416-020-1025-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Head and neck squamous cell carcinomas (HNSCC) are malignant neoplasms with poor prognosis. Treatment-resistant cancer stem cell (CSC) is one reason for treatment failure. Considerable attention has been focused on sulforaphane (SF), a phytochemical from broccoli possessing anticancer properties. We investigated whether SF could enhance the chemotherapeutic effects of cisplatin (CIS) and 5-fluorouracil (5-FU) against HNSCC–CSCs, and its mechanisms of action. Methods CD44+/CD271+ FACS-isolated CSCs from SCC12 and SCC38 human cell lines were treated with SF alone or combined with CIS or 5-FU. Cell viability, colony- and sphere-forming ability, apoptosis, CSC-related gene and protein expression and in vivo tumour growth were assessed. Safety of SF was tested on non-cancerous stem cells and in vivo. Results SF reduced HNSCC–CSC viability in a time- and dose-dependent manner. Combining SF increased the cytotoxicity of CIS twofold and 5-FU tenfold, with no effects on non-cancerous stem cell viability and functions. SF-combined treatments inhibited CSC colony and sphere formation, and tumour progression in vivo. Potential mechanisms of action included the stimulation of caspase-dependent apoptotic pathway, inhibition of SHH pathway and decreased expression of SOX2 and OCT4. Conclusions Combining SF allowed lower doses of CIS or 5-FU while enhancing these drug cytotoxicities against HNSCC–CSCs, with minimal effects on healthy cells.
Collapse
|
48
|
Le TN, Chiu CH, Hsieh PC. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. PLANTS 2020; 9:plants9080946. [PMID: 32727144 PMCID: PMC7465980 DOI: 10.3390/plants9080946] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.
Collapse
|
49
|
Tomasello B, Di Mauro MD, Malfa GA, Acquaviva R, Sinatra F, Spampinato G, Laudani S, Villaggio G, Bielak-Zmijewska A, Grabowska W, Barbagallo IA, Liuzzo MT, Sbisà E, Forte MG, Di Giacomo C, Bonucci M, Renis M. Rapha Myr ®, a Blend of Sulforaphane and Myrosinase, Exerts Antitumor and Anoikis-Sensitizing Effects on Human Astrocytoma Cells Modulating Sirtuins and DNA Methylation. Int J Mol Sci 2020; 21:E5328. [PMID: 32727075 PMCID: PMC7432334 DOI: 10.3390/ijms21155328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Brain and other nervous system cancers are the 10th leading cause of death worldwide. Genome instability, cell cycle deregulation, epigenetic mechanisms, cytoarchitecture disassembly, redox homeostasis as well as apoptosis are involved in carcinogenesis. A diet rich in fruits and vegetables is inversely related with the risk of developing cancer. Several studies report that cruciferous vegetables exhibited antiproliferative effects due to the multi-pharmacological functions of their secondary metabolites such as isothiocyanate sulforaphane deriving from the enzymatic hydrolysis of glucosinolates. We treated human astrocytoma 1321N1 cells for 24 h with different concentrations (0.5, 1.25 and 2.5% v/v) of sulforaphane plus active myrosinase (Rapha Myr®) aqueous extract (10 mg/mL). Cell viability, DNA fragmentation, PARP-1 and γH2AX expression were examined to evaluate genotoxic effects of the treatment. Cell cycle progression, p53 and p21 expression, apoptosis, cytoskeleton morphology and cell migration were also investigated. In addition, global DNA methylation, DNMT1 mRNA levels and nuclear/mitochondrial sirtuins were studied as epigenetic biomarkers. Rapha Myr® exhibited low antioxidant capability and exerted antiproliferative and genotoxic effects on 1321N1 cells by blocking the cell cycle, disarranging cytoskeleton structure and focal adhesions, decreasing the integrin α5 expression, renewing anoikis and modulating some important epigenetic pathways independently of the cellular p53 status. In addition, Rapha Myr® suppresses the expression of the oncogenic p53 mutant protein. These findings promote Rapha Myr® as a promising chemotherapeutic agent for integrated cancer therapy of human astrocytoma.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Maria Domenica Di Mauro
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Giuseppe Antonio Malfa
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Fulvia Sinatra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95125 Catania, Italy; (F.S.); (S.L.); (G.V.)
| | - Giorgia Spampinato
- Services Center B.R.I.T. of the University of Catania, 95124 Catania, Italy;
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95125 Catania, Italy; (F.S.); (S.L.); (G.V.)
| | - Giusy Villaggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95125 Catania, Italy; (F.S.); (S.L.); (G.V.)
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland; (A.B.-Z.); (W.G.)
| | - Wioleta Grabowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland; (A.B.-Z.); (W.G.)
| | - Ignazio Alberto Barbagallo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | | | - Elisabetta Sbisà
- Institute of Biomedical Technologies -National Research Council Bari, 70126 Bari, Italy;
| | | | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Massimo Bonucci
- Association Research Center for Integrative Oncology Treatments (ARTOI), 00165 Rome, Italy;
| | - Marcella Renis
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| |
Collapse
|
50
|
Santos PW, Machado ART, De Grandis R, Ribeiro DL, Tuttis K, Morselli M, Aissa AF, Pellegrini M, Antunes LMG. Effects of sulforaphane on the oxidative response, apoptosis, and the transcriptional profile of human stomach mucosa cells in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503201. [PMID: 32660825 DOI: 10.1016/j.mrgentox.2020.503201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
Oxidative stress is a critical factor in the pathogenesis of several gastrointestinal diseases. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables, activates the redox-sensitive nuclear erythroid 2-related factor 2 (NRF2). In addition to its protective role, SFN exerts cytotoxic effects on cancer cells. However, there is a lack of information concerning the toxicity of SFN in normal cells. We investigated the effects of SFN on cell viability, antioxidant defenses, and gene expression in human stomach mucosa cells (MNP01). SFN reduced ROS formation and protected the cells against induced oxidative stress but high concentrations increased apoptosis. An intermediate SFN concentration (8 μM) was chosen for RNA sequencing studies. We observed upregulation of genes of the NRF2 (antioxidant) pathway, the DNA damage response, and apoptosis signaling; whereas SFN downregulated cell cycle and DNA repair pathway genes. SFN may be cytoprotective at low concentrations and cytotoxic at high concentrations.
Collapse
Affiliation(s)
- Patrick Wellington Santos
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Rone De Grandis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Katiuska Tuttis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Alexandre Ferro Aissa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.
| |
Collapse
|