1
|
Gómez de Cedrón M, Moreno-Rubio J, de la O Pascual V, Alvarez B, Villarino M, Sereno M, Gómez-Raposo C, Roa S, López Gómez M, Merino-Salvador M, Jiménez-Gordo A, Falagán S, Aguayo C, Zambrana F, Tabarés B, Garrido B, Cruz-Gil S, Fernández Díaz CM, Fernández LP, Molina S, Crespo MC, Ouahid Y, Montoya JJ, Ramos Ruíz R, Reglero G, Ramírez de Molina A, Casado E. Randomized clinical trial in cancer patients shows immune metabolic effects exerted by formulated bioactive phenolic diterpenes with potential clinical benefits. Front Immunol 2025; 16:1519978. [PMID: 40034703 PMCID: PMC11872936 DOI: 10.3389/fimmu.2025.1519978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Nutrients, including bioactive natural compounds, have been demonstrated to affect key metabolic processes implicated in tumor growth and progression, both in preclinical and clinical trials. Although the application of precision nutrition as a complementary approach to improve cancer treatments is still incipient in clinical practice, the development of powerful "omics" techniques has opened new possibilities for delivering nutritional advice to cancer patients. Precision nutrition may contribute to improving the plasticity and function of antitumor immune responses. Objectives Herein, we present the results of a randomized, prospective, longitudinal, double-blind, and parallel clinical trial (NCT05080920) in cancer patients to explore the immune-metabolic effects of a bioactive formula based on diterpenic phenols from rosemary, formulated with bioactive alkylglycerols (Lipchronic© WO/2017/187000). The trial involved cancer patients, including those with lung cancer (LC), colorectal cancer (CRC), and breast cancer (BC), undergoing chemotherapy, targeted biological therapy, and/or immunotherapy. The main readouts of the study were the analysis of Lip on systemic inflammation, hemogram profile, anthropometry, lipid and glucose profiles, and tolerability. Additionally, a deep immune phenotyping of peripheral blood mononuclear cells (PBMCs) was performed to identify the functional effects of Lip on key mediators of the immune system. Results Lip was well tolerated. The lung cancer subgroup of patients showed a reduction in biomarkers of systemic inflammation, including the neutrophil-to-lymphocyte ratio (NLR). Furthermore, modulation of key players in the immune system associated with the experimental treatment Lip compared to the control placebo (Pla) treatment was revealed, with particularities among the distinct subgroups of patients. Our results encourage further research to apply molecular nutrition-based strategies as a complementary tool in the clinical management of cancer patients, particularly in the current era of novel immunotherapies. Clinical trial registration ClinicalTrials.gov, identifier NCT05080920.
Collapse
Affiliation(s)
| | - Juan Moreno-Rubio
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Victor de la O Pascual
- Precision Nutrition and Cardiometabolic Health, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
- Faculty of Health Sciences, International University of La Rioja (UNIR), Logroño, Spain
| | - Beatriz Alvarez
- Centro Nacional de Investigaciones Cardiovasculares CarlosIII (CNIC Carlos III), Madrid, Spain
| | - Marta Villarino
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - César Gómez-Raposo
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Silvia Roa
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Miriam López Gómez
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - María Merino-Salvador
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Ana Jiménez-Gordo
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Sandra Falagán
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Cristina Aguayo
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Francisco Zambrana
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Beatriz Tabarés
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Beatriz Garrido
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Silvia Cruz-Gil
- Molecular Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | | | | | - Susana Molina
- Molecular Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | | | - Youness Ouahid
- MiRNAX Biosens Research & Development Unit (MBR&DU), Madrid, Spain
| | - Juan José Montoya
- MiRNAX Biosens Research & Development Unit (MBR&DU), Madrid, Spain
- Faculty of Medicine, School of Sport Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Guillermo Reglero
- Institute of Food Science Research CIAL CSIC-UAM, Madrid, Spain
- Production and Development of Foods for Health, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | | | - Enrique Casado
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
2
|
Nazıroğlu A, Çarhan A, Nazıroğlu M. Erucic acid increases the potency of cisplatin-induced colorectal cancer cell death and oxidative stress by upregulating the TRPM2 channel. Cell Biol Int 2024; 48:1862-1876. [PMID: 39308167 DOI: 10.1002/cbin.12248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 08/18/2024] [Indexed: 11/15/2024]
Abstract
Erucic acid (ErA) is a source of omega-9 monounsaturated fatty acids. ErA exhibited antitumor effects by causing apoptosis and oxidative stress in tumor cells, with the exception of the HT-29 human colorectal cancer cell line. The apoptotic and Ca2+ signaling pathways in tumor cells are triggered when mitochondrial Ca2+ and Zn2+ accumulation produce reactive free oxygen species (ROS), which in turn activate TRPM2. ErA-induced ROS and TRPM2 stimulation may augment the anticancer action of cisplatin (CSP). We aimed to study the effects of ErA and CSP incubations on ROS, apoptosis, and cell death in the HT-29 cells by activating TRPM2. The cells were divided into five groups: control, ErA (200 µM for 48 h), CSP (25 µM for 24 h), and ErA + CSP + TRPM2 antagonists (200 µM carvacrol and 25 µM N-(p-amylcinnamoyl)anthranilic acid for 24 h). The TRPM2 antagonists reduced ErA plus CSP-induced increases in H2O2-induced intracellular free Ca2+ concentration ([Ca2+]c) and adenosine diphosphate-ribose-caused TRPM2 currents. ErA and CSP were found to cause apoptosis and cell death by raising the intracellular free Zn2+ concentration (Zn2+]c), caspase-3, -8, and -9, mitochondrial membrane dysfunction, and ROS, while lowering reduced glutathione, cell viability, and cell number. The oxidative, apoptotic, and tumor cell death effects of CSP in the cells were enhanced by the increase of ErA-mediated [Ca2+]c and Zn2+]c entering mitochondria through the activation of TRPM2. In conclusion, we observed that the combination of ErA and CSP was synergistic via TRPM2 activation for the treatment of HT-29 tumor cells.
Collapse
Affiliation(s)
- Ayşenur Nazıroğlu
- Cancer Biology Unit, Department of Medical Biology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ahmet Çarhan
- Cancer Biology Unit, Department of Medical Biology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Mustafa Nazıroğlu
- Neuroscience Research Center (NOROBAM), Suleyman Demirel University, Isparta, Türkiye
- BSN Health, Analyses, Innov., Consult., Org., Agricul., Ltd., Isparta, Türkiye
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Türkiye
| |
Collapse
|
3
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
4
|
Kaya MM. Silver nanoparticles stimulate 5-Fluorouracil-induced colorectal cancer cells to kill through the upregulation TRPV1-mediated calcium signaling pathways. Cell Biol Int 2024; 48:712-725. [PMID: 38499507 DOI: 10.1002/cbin.12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
The involvement of the TRP vanilloid 1 (TRPV1) cation channel on the 5-Fluorouracil (5-FU)-caused Ca2+ signals through the activation of the apoptotic signaling pathway and stimulating the mitochondrial Ca2+ and Zn2+ accumulation-induced reactive oxygen species (ROS) productions in several cancer cells, except the colorectal cancer (HT-29) cell line, was recently reported. I aimed to investigate the action of silver nanoparticles (SiNPs) and 5-FU incubations through the activation of TRPV1 on ROS, apoptosis, and cell death in the HT-29 cell line. The cells were divided into four groups: control, SiNP (100 µM for 48 h), 5-FU (25 μM for 24 h), and 5-FU + SiNP. SiNP treatment through TRPV1 activation (via capsaicin) stimulated the oxidant and apoptotic actions of 5-FU in the cells, whereas they were diminished in the cells by the TRPV1 antagonist (capsazepine) treatment. The apoptotic and cell death actions of 5-FU were determined by increasing the propidium iodide/Hoechst rate, caspase-3, -8, and -9 activations, mitochondrial membrane depolarization, lipid peroxidation, and ROS, but decreasing the glutathione and glutathione peroxidase. The increase of cytosolic free Ca2+ and Zn2+ into mitochondria via the stimulation of TRPV1 current density increased oxidant and apoptotic properties of 5-FU in the cells. For the therapy of HT-29 tumor cells, I found that the combination of SiNPs and 5-FU was synergistic via TRPV1 activation.
Collapse
Affiliation(s)
- Müge Mavioğlu Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, Kars, Türkiye
| |
Collapse
|
5
|
Salek S, Moazamian E, Mohammadi Bardbori A, Shamsdin SA. The anticancer effect of potential probiotic L. fermentum and L. plantarum in combination with 5-fluorouracil on colorectal cancer cells. World J Microbiol Biotechnol 2024; 40:139. [PMID: 38514489 DOI: 10.1007/s11274-024-03929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
5-Fluorouracil (5-FU) is an effective chemotherapy drug in the treatment of colorectal cancer (CRC). However, auxiliary or alternative therapies must be sought due to its resistance and potential side effects. Certain probiotic metabolites exhibit anticancer properties. In this study evaluated the anticancer and potential therapeutic activities of cell extracts potential probiotic strains, Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from the mule milk and the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG) against the human colon cancer cell line (HT-29) and the normal cell line (HEK-293) alone or in combination with 5-FU. In this study, L. plantarum and L. fermentum, which were isolated from mule milk, were identified using biochemical and molecular methods. Their probiotic properties were investigated in vitro and compared with the standard probiotic strain of the species L. rhamnosus GG. The MTT assay, acridine orange/ethidium bromide (AO/EB) fluorescent staining, and flow cytometry were employed to measure the viability of cell lines, cell apoptosis, and production rates of Th17 cytokines, respectively. The results demonstrated that the combination of lactobacilli cell extracts and 5-FU decreased cell viability and induced apoptosis in HT-29 cells. Furthermore, this combination protected HEK-293 cells from the cytotoxic effects of 5-FU, enhancing their viability and reducing apoptosis. Moreover, the combination treatment led to an increase in the levels of IL-17A, IFN-γ, and TNF-α, which can enhance anti-tumor immunity. In conclusion, the cell extracts of the lactobacilli strains probably can act as a potential complementary anticancer therapy.
Collapse
Affiliation(s)
- Sanaz Salek
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Afshin Mohammadi Bardbori
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Zaib S, Shah HS, Khan I, Jawad Z, Sarfraz M, Riaz H, Asjad HMM, Ishtiaq M, Ogaly HA, Othman G, Ahmed DAEM. Fabrication and evaluation of anticancer potential of diosgenin incorporated chitosan-silver nanoparticles; in vitro, in silico and in vivo studies. Int J Biol Macromol 2024; 254:127975. [PMID: 37944715 DOI: 10.1016/j.ijbiomac.2023.127975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The discovery of effective therapeutic approaches with minimum side effects and their tendency to completely eradicate the disease is the main challenge in the history of cancer treatment. Fenugreek (FGK) seeds are a rich source of phytochemicals, especially Diosgenin (DGN), which shows outstanding anticancer activities. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Diosgenin (DGN-ChAgNPs) were synthesized and evaluated for their anticancer activity against breast cancer cell line (MCF-7). For the physical characterization, the hydrodynamic diameter and zeta potential of DGN-ChAgNPs were determined to be 160.4 ± 12 nm and +37.19 ± 5.02 mV, respectively. Transmission electron microscopy (TEM) showed that nanoparticles shape was mostly round with smooth edges. Moreover, DGN was efficiently entrapped in nanoformulation with good entrapment efficacy (EE) of ~88 ± 4 %. The in vitro anti-proliferative activity of DGN-ChAgNPs was performed by sulforhodamine B (SRB) assay with promising inhibitory concentration of 6.902 ± 2.79 μg/mL. DAPI staining, comet assay and flow cytometry were performed to validate the anticancer potential of DGN-ChAgNPs both qualitatively and quantitatively. The percentage of survival rate and tumor reduction weight was evaluated in vivo in different groups of mice. Cisplatin was used as a standard anticancer drug. The DGN-ChAgNPs (12.5 mg/kg) treated group revealed higher percentage of survival rate and tumor reduction weight as compared to pure DGN treated group. These findings suggest that DGN-ChAgNPs could be developed as potential treatment therapy for breast cancer.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| | - Zobia Jawad
- Ladywillingdon Hospital, King Edward Medical University, Lahore, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Huma Riaz
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Hafiz Muhammad Mazhar Asjad
- Department of Pharmaceutical Sciences, Faculty of Biomedical Sciences and Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur, KPK, Pakistan
| | - Memoona Ishtiaq
- Leads College of Pharmacy, Lahore LEADS University, Lahore, Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | | |
Collapse
|
7
|
Cianciosi D, Armas Diaz Y, Alvarez-Suarez JM, Chen X, Zhang D, Martínez López NM, Briones Urbano M, Quiles JL, Amici A, Battino M, Giampieri F. Can the phenolic compounds of Manuka honey chemosensitize colon cancer stem cells? A deep insight into the effect on chemoresistance and self-renewal. Food Chem 2023; 427:136684. [PMID: 37418807 DOI: 10.1016/j.foodchem.2023.136684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/09/2023]
Abstract
Manuka honey, which is rich in pinocembrin, quercetin, naringenin, salicylic, p-coumaric, ferulic, syringic and 3,4-dihydroxybenzoic acids, has been shown to have pleiotropic effects against colon cancer cells. In this study, potential chemosensitizing effects of Manuka honey against 5-Fluorouracil were investigated in colonspheres enriched with cancer stem cells (CSCs), which are responsible for chemoresistance. Results showed that 5-Fluorouracil increased when it was combined with Manuka honey by downregulating the gene expression of both ATP-binding cassette sub-family G member 2, an efflux pump and thymidylate synthase, the main target of 5-Fluorouracil which regulates the ex novo DNA synthesis. Manuka honey was associated with decreased self-renewal ability by CSCs, regulating expression of several genes in Wnt/β-catenin, Hedgehog and Notch pathways. This preliminary study opens new areas of research into the effects of natural compounds in combination with pharmaceuticals and, potentially, increase efficacy or reduce adverse effects.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche - Università Politecnica delle Marche, Via Ranieri 65, 60130 Ancona, Italy
| | - Yasmany Armas Diaz
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche - Università Politecnica delle Marche, Via Ranieri 65, 60130 Ancona, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Diego de Robles s/n, Quito 170901, Ecuador
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nohora Milena Martínez López
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico; Fundación Universitaria Internacional de Colombia, Bogotá, Colombia; Universidad Internacional Iberoamericana Arecibo, Puerto Rico 00613, USA
| | - Mercedes Briones Urbano
- Universidad Europea del Atlántico, 39011 Santander, Spain; Universidad Internacional Iberoamericana, Campeche 24560, Mexico; Universidad Internacional Iberoamericana Arecibo, Puerto Rico 00613, USA
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, 18016 Granada, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, Santander 39011, Spain; Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Granada 18016, Spain
| | - Adolfo Amici
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche - Università Politecnica delle Marche, Via Ranieri 65, 60130 Ancona, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche - Università Politecnica delle Marche, Via Ranieri 65, 60130 Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, Santander 39011, Spain.
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, Santander 39011, Spain.
| |
Collapse
|
8
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
9
|
Bouzas A, Gómez de Cedrón M, Colmenarejo G, Laparra-Llopis JM, Moreno-Rubio J, Montoya JJ, Reglero G, Casado E, Tabares B, Sereno M, Ramírez de Molina A. Phenolic diterpenes from Rosemary supercritical extract inhibit non-small cell lung cancer lipid metabolism and synergise with therapeutic drugs in the clinic. Front Oncol 2022; 12:1046369. [PMID: 36439419 PMCID: PMC9682134 DOI: 10.3389/fonc.2022.1046369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 02/25/2024] Open
Abstract
UNLABELLED Lung cancer is one of the most deadly and common cancers in the world. The molecular features of patient's tumours dictate the different therapeutic decisions, which combines targeted therapy, chemotherapy, and immunotherapy. Altered cellular metabolism is one of the hallmarks of cancer. Tumour cells reprogram their metabolism to adapt to their novel requirements of growth, proliferation, and survival. Together with the Warburg effect, the role of lipid metabolism alterations in cancer development and prognosis has been highlighted. Several lipid related genes have been shown to promote transformation and progression of cancer cells and have been proposed as biomarkers for prognosis. Nevertheless, the exact mechanisms of the regulation of lipid metabolism and the biological consequences in non-small cell lung cancer (NSCLC) have not been elucidated yet. There is an urgent necessity to develop multidisciplinary and complementary strategies to improve NSCLC patients´ well-being and treatment response. Nutrients can directly affect fundamental cellular processes and some diet-derived ingredients, bioactive natural compounds and natural extracts have been shown to inhibit the tumour growth in preclinical and clinical trials. Previously, we described a supercritical extract of rosemary (SFRE) (12 - 16% composition of phenolic diterpenes carnosic acid and carnosol) as a potential antitumoral agent in colon and breast cancer due to its effects on the inhibition of lipid metabolism and DNA synthesis, and in the reduction of resistance to 5-FluoroUracil (5-FU). Herein, we demonstrate SFRE inhibits NSCLC cell bioenergetics identifying several lipid metabolism implicated targets. Moreover, SFRE synergises with standard therapeutic drugs used in the clinic, such as cisplatin, pemetrexed and pembrolizumab to inhibit of cell viability of NSCLC cells. Importantly, the clinical relevance of SFRE as a complement in the treatment of NSCLC patients is suggested based on the results of a pilot clinical trial where SFRE formulated with bioactive lipids (PCT/ES2017/070263) diminishes metabolic and inflammatory targets in peripheral-blood mononuclear cells (PBMC), such as MAPK (p=0.04), NLRP3 (p=0.044), and SREBF1 (p=0.047), which may augment the immune antitumour function. Based on these results, SFRE merits further investigation as a co-adjuvant in the treatment of NSCLC. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT05080920.
Collapse
Affiliation(s)
- Adrián Bouzas
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- CANAAN Research & Investment Group, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | | | - Juan Moreno-Rubio
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Juan José Montoya
- CANAAN Research & Investment Group, Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Guillermo Reglero
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) (CSIC.UAM), Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Beatriz Tabares
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| |
Collapse
|
10
|
Cytotoxic Effect of Rosmarinus officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines. Molecules 2022; 27:molecules27196348. [PMID: 36234882 PMCID: PMC9573533 DOI: 10.3390/molecules27196348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Rosmarinus officinalis is a well-studied plant, known for its therapeutic properties. However, its biological activity against several diseases is not known in detail. The aim of this study is to present new data regarding the cytotoxic activity of a hydroethanolic extract of Rosmarinus officinalis on glioblastoma (A172) and rhabdomyosarcoma (TE671) cancer cell lines. The chemical composition of the extract is evaluated using liquid chromatography combined with time-of-flight mass spectrometry, alongside its total phenolic content and antioxidant activity. The extract showed a promising time- and dose-dependent cytotoxic activity against both cell lines. The lowest IC50 values for both cell lines were calculated at 72 h after treatment and correspond to 0.249 ± 1.09 mg/mL for TE671 cell line and 0.577 ± 0.98 mg/mL for A172 cell line. The extract presented high phenolic content, equal to 35.65 ± 0.03 mg GAE/g of dry material as well as a strong antioxidant activity. The IC50 values for the antioxidant assays were estimated at 12.8 ± 2.7 μg/mL (DPPH assay) and 6.98 ± 1.9 μg/mL (ABTS assay). The compound detected in abundance was carnosol, a phenolic diterpene, followed by the polyphenol rosmarinic acid, while the presence of phenolic compounds such as rhamnetin glucoside, hesperidin, cirsimaritin was notable. These preliminary results suggest that R. officinalis is a potential, alternative source of bioactive compounds to further examine for abilities against glioblastoma and rhabdomyosarcoma.
Collapse
|
11
|
Yin B, Wang X, Yuan F, Li Y, Lu P. Research progress on the effect of gut and tumor microbiota on antitumor efficacy and adverse effects of chemotherapy drugs. Front Microbiol 2022; 13:899111. [PMID: 36212852 PMCID: PMC9538901 DOI: 10.3389/fmicb.2022.899111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Chemotherapy is one of the most effective methods of systemic cancer treatment. Chemotherapy drugs are delivered through the blood circulation system, and they can act at all stages of the cell cycle, and can target DNA, topoisomerase, or tubulin to prevent the growth and proliferation of cancer cells. However, due to the lack of specific targets for chemotherapeutic agents, there are still unavoidable complications of cytotoxic effects. The effect of the microbiome on human health is clear. There is growing evidence of the potential relationship between the microbiome and the efficacy of cancer therapy. Gut microbiota can regulate the metabolism of drugs in several ways. The presence of bacteria in the tumor environment can also affect the response to cancer therapy by altering the chemical structure of chemotherapeutic agents and affecting their activity and local concentration. However, the underlying mechanisms by which the gut and tumor microbiota affect cancer therapeutic response are unclear. This review provides an overview of the effects of gut and tumor microbiota on the efficacy and adverse effects of chemotherapy in cancer patients, thus facilitating personalized treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Fang Yuan
- Department of Digestive Endoscopy, The Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- Yan Li,
| | - Ping Lu
- Department of Cardiovascular Surgery, Shandong Engineering Research Center for Health Transplant and Material, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Ping Lu,
| |
Collapse
|
12
|
Dolghi A, Coricovac D, Dinu S, Pinzaru I, Dehelean CA, Grosu C, Chioran D, Merghes PE, Sarau CA. Chemical and Antimicrobial Characterization of Mentha piperita L. and Rosmarinus officinalis L. Essential Oils and In Vitro Potential Cytotoxic Effect in Human Colorectal Carcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186106. [PMID: 36144839 PMCID: PMC9505364 DOI: 10.3390/molecules27186106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022]
Abstract
Colorectal cancer is one of the most frequently diagnosed forms of cancer, and the therapeutic solutions are frequently aggressive requiring improvements. Essential oils (EOs) are secondary metabolites of aromatic plants with important pharmacological properties that proved to be beneficial in multiple pathologies including cancer. Mentha piperita L. (M_EO) and Rosmarinus officinalis L. (R_EO) essential oils are well-known for their biological effects (antimicrobial, antioxidant, anti-inflammatory and cytotoxic in different cancer cells), but their potential as complementary treatment in colorectal cancer is underexplored. The aim of the present study was to investigate the M_EO and R_EO in terms of chemical composition, antioxidant, antimicrobial, and cytotoxic effects in a colorectal cancer cell line—HCT 116. The gas-chromatographic analysis revealed menthone and menthol, and eucalyptol, α-pinene and L-camphor as major compounds in M_EO and R_EO respectively. M_EO exhibited potent antimicrobial activity, moderate antioxidant activity and a low cytotoxic effect in HCT 116 cells. R_EO presented a significant cytotoxicity in colorectal cancer cells and a low antimicrobial effect. The cytotoxic effect on non-cancerous cell line HaCaT was not significant for both essential oils. These results may provide an experimental basis for further research concerning the potential use of M_EO and R_EO for anticancer treatment.
Collapse
Affiliation(s)
- Alina Dolghi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (S.D.); (I.P.)
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (S.D.); (I.P.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Grosu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Doina Chioran
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Petru Eugen Merghes
- Faculty of Bioengineering of Animal Resources, University of Life Science “King Michael I of Romania” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Cristian Andrei Sarau
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
13
|
Jamali R, Ghassami E, Dinani MS, Ghasemi R, Mirian M. Fabrication and optimization of electrospun polymeric nanofibers loaded with 5-fluorouracil and rosemary extract. Pharm Nanotechnol 2022; 10:PNT-EPUB-124757. [PMID: 35747975 DOI: 10.2174/2211738510666220623153552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Topical 5-fluorouracil [5FU] is one of the mostly prescribed medications for different types of skin cancer; however, it is associated with drug resistance and adverse effects. Rosemary extract has promising dose-dependent antitumor effects, as well as a synergistic effect in combination with 5-fluorouracil besides sensitizing the 5-FU-resistant cells. OBJECTIVE Polymeric nanofibers loaded with 5FU and rosemary extract were optimized to combine both ingredients in one controlled release drug delivery system, aiming to enhance the efficacy while retaining the adverse effects. METHOD Polymeric nanofibers loaded with 5-FU and rosemary were fabricated via electrospinning technique. Design expert software was utilized to study the effect of independent variables including polymer concentration, voltage, and feeding rate on the characteristics of the resulting nanofibers. Afterwards, the FTIR spectrum and release kinetic of the drug and extract from the optimized nanofibers and their cytotoxic effect against A375 cell line were investigated. RESULTS The formulation composed of 6.65% PVA electrospun at 1 mL.h-1 and 17.5kV was chosen as the optimum fabrication condition. The mean diameter of the optimized nanofibers was 755 nm. The drug and rosemary extract contents were 75.38 and 93.42%, respectively. The fabrication yield was 100%, bioadhesion force was 1.28 N, and bead abundance was 10 per field. The cytotoxicity of the optimized formulation was significantly higher than the control groups. CONCLUSION According to the appropriate loading percent, release efficiency and release kinetics, bioadhesion force, and cytotoxicity, these nanofibers could be further investigated as a topical treatment option to increase the efficacy of 5-FU.
Collapse
Affiliation(s)
- Reza Jamali
- Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfaneh Ghassami
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Ghasemi
- Department of Nano biotechnology, Jabir Ibn Hayyan Institute, Technical and Vocational Training Organization, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Henao-Rojas JC, Osorio E, Isaza S, Madronero-Solarte IA, Sierra K, Zapata-Vahos IC, Betancur-Pérez JF, Arboleda-Valencia JW, Gallego AM. Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113559. [PMID: 35684496 PMCID: PMC9182276 DOI: 10.3390/molecules27113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Spearmint (Mentha spicata L.) has been widely studied for its diversity of compounds for product generation. However, studies describing the chemical and biological characteristics of commercial spearmint materials from different origins are scarce. For this reason, this research aimed to bioprospecting spearmint from three origins: Colombia (Col), Mexico (Mex), and Egypt (Eg). We performed a biological activity analysis, such as FRAP, DPPH, and ABTS, inhibition potential of S. pyogenes, K. pneumoniae, E. coli, P. aeuroginosa, S. aureus, S aureus Methicillin-Resistant, and E. faecalis. Furthermore, we performed chemical assays, such as total polyphenol and rosmarinic acid, and untargeted metabolomics via HPLC-MS/MS. Finally, we developed a causality analysis to integrate biological activities with chemical analyses. We found significant differences between the samples for the total polyphenol and rosmarinic acid contents, FRAP, and inhibition analyses for Methicillin-Resistant S. aureus and E. faecalis. Also, clear metabolic differentiation was observed among the three commercial materials evaluated. These results allow us to propose data-driven uses for the three spearmint materials available in current markets.
Collapse
Affiliation(s)
- Juan Camilo Henao-Rojas
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
- Correspondence: (J.C.H.-R.); (A.M.G.)
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Cl. 70 No. 52-21, Medellin 0500100, Colombia; (E.O.); (K.S.)
| | - Stephanie Isaza
- Hierbas y Plantas Tropicales SAS-HIPLANTRO, Cra. 56a No. 72a 101, Itagüí 055410, Colombia;
| | - Inés Amelia Madronero-Solarte
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
| | - Karina Sierra
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Cl. 70 No. 52-21, Medellin 0500100, Colombia; (E.O.); (K.S.)
| | - Isabel Cristina Zapata-Vahos
- Facultad de Ciencias de la Salud, Atención Primaria en Salud, Universidad Católica de Oriente, Rionegro 054040, Colombia;
| | - Jhon Fredy Betancur-Pérez
- Centro de Investigaciones en Medio Ambiente y Desarrollo—CIMAD, Facultad de Ciencias Contables, Económicas y Administrativas, Universidad de Manizales, Cra. 9 No 19-03, Manizales 170001, Colombia; (J.F.B.-P.); (J.W.A.-V.)
| | - Jorge W. Arboleda-Valencia
- Centro de Investigaciones en Medio Ambiente y Desarrollo—CIMAD, Facultad de Ciencias Contables, Económicas y Administrativas, Universidad de Manizales, Cra. 9 No 19-03, Manizales 170001, Colombia; (J.F.B.-P.); (J.W.A.-V.)
- Grupo de Investigación FITOBIOL, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Cl. 67 No 53-108, Medellin 050010, Colombia
| | - Adriana M. Gallego
- Biomasnest, Medellin 050010, Colombia
- Correspondence: (J.C.H.-R.); (A.M.G.)
| |
Collapse
|
15
|
Sanaei MJ, Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Shahrokh S, Zali MR, Bashash D. The PI3K/Akt/mTOR axis in colorectal cancer: Oncogenic alterations, non-coding RNAs, therapeutic opportunities, and the emerging role of nanoparticles. J Cell Physiol 2021; 237:1720-1752. [PMID: 34897682 DOI: 10.1002/jcp.30655] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the deadliest human malignancies worldwide. Several molecular pathways have been demonstrated to be involved in the initiation and development of CRC which among them, the overactivation of the phosphatidyl-inositol 3-kinase (PI3K)/Akt/mTOR axis is of importance. The current review aims to unravel the mechanisms by which the PI3K/Akt/mTOR pathway affects CRC progression; and also, to summarize the original data obtained from international research laboratories on the oncogenic alterations and polymorphisms affecting this pathway in CRC. Besides, we provide a special focus on the regulatory role of noncoding RNAs targeting the PI3K/Akt/mTOR pathway in this malignancy. Questions on how this axis is involved in the inhibition of apoptosis, in the induction of drug resistance, and the angiogenesis, epithelial to mesenchymal transition, and metastasis are also responded. We also discussed the PI3K/Akt pathway-associated prognostic and predictive biomarkers in CRC. In addition, we provide a general overview of PI3K/Akt/mTOR pathway inhibition whether by chemical-based drugs or by natural-based medications in the context of CRC, either as monotherapy or in combination with other therapeutic agents; however, those treatments might have life-threatening side effects and toxicities. To the best of our knowledge, the current review is one of the first ones highlighting the emerging roles of nanotechnology to overcome challenges related to CRC therapy in the hope that providing a promising platform for the treatment of CRC.
Collapse
Affiliation(s)
- Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Chan EWC, Wong SK, Chan HT. An overview of the chemistry and anticancer properties of rosemary extract and its diterpenes. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rosemary (Rosmarinus officinalis L.), a culinary herb of the family Lamiaceae, has promising anticancer activity. This overview has updated the current knowledge on the chemistry and anticancer properties of rosemary extract, carnosic acid, carnosol, and rosmanol, focusing on colon and prostate cancer cells since they are the most susceptible. The information was procured from Google, Google Scholar, PubMed, PubMed Central, Science Direct, J-Stage, and PubChem. Phenolic compounds isolated from the aerial parts of R. officinalis are flavonoids, phenolic acids, diterpenes, triterpenes, terpenoids, and phenylpropanoids. Some of the compounds are new to science, to the genus, and to the species. Almost 30 compounds possess anticancer properties. Rosemary extracts contain abietane diterpenes, with carnosic acid, carnosol, and rosmanol being the most common. Their molecular structures are similar to three fused aromatic rings. Carnosic acid has a –COOH group at C20, carnosol has a lactone ring occurs across the B ring, and rosmanol has a –OH group at C7. Against colon and prostate cancer cells, the rosemary extract and diterpenes inhibited cell viability and induced apoptosis and G2/M phase cell cycle arrest. The inhibition of cell migration and adhesion has also been reported. The rosemary extract and diterpenes also inhibited colon and prostate cancer xenograft in mice. Rosemary extract is more cytotoxic than the diterpenes due to its polyphenols such as flavonoids and triterpenes. In vitro and in vivo cytotoxic activities involve different molecular targets and signalling pathways. Some prospects and areas for future research are suggested.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Siu Kuin Wong
- School of Foundation Studies, Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Hung Tuck Chan
- Secretariat of International Society for Mangrove Ecosystems (ISME), Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
17
|
Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem Toxicol 2021; 156:112484. [PMID: 34389368 DOI: 10.1016/j.fct.2021.112484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022]
Abstract
Colorectal cancer remains a challenging health burden worldwide. This study aimed to assess the potentiality of Strawberry tree honey (STH), a polyphenol-enriched food, to increase the effectiveness of 5-Fluorouracil (5-FU) in adenocarcinoma (HCT-116) and metastatic (LoVo) colon cancer cell lines. The combined treatment reduced cell viability and caused oxidative stress, by increasing oxidative biomarkers and decreasing antioxidant defence, in a more potent way compared to 5-FU alone. The expression of endoplasmic reticulum (ATF-6, XBP-1) and MAPK (p-p38 MAPK, p-ERK1/2) markers were also elevated after the combined treatment, enhancing the cell cycle arrest through the modulation of regulatory genes (i.e., cyclins and CDKs). Apoptotic gene (i.e., caspases) expressions were also increased after the combined treatment, while those of proliferation (i.e., EGFR), cell migration, invasion (i.e., matrix metallopeptidase) and epithelial-mesenchymal transition (N-cadherin, β-catenin) were suppressed. Finally, the combined treatment led cell metabolism towards a quiescent stage, by reducing mitochondrial respiration and glycolysis. In conclusion, this work represents an initial step to highlight the possibility to use STH in combination with 5-FU in the treatment of colon cancer, even if further in vitro an in vivo studies are strongly needed to confirm the possible chemo-sensitizing effects of STH.
Collapse
|
18
|
Exosome-Mediated Transfer of circ_0000338 Enhances 5-Fluorouracil Resistance in Colorectal Cancer through Regulating MicroRNA 217 (miR-217) and miR-485-3p. Mol Cell Biol 2021; 41:MCB.00517-20. [PMID: 33722958 DOI: 10.1128/mcb.00517-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are microvesicles secreted by body cells for intercellular communication. The circular RNA circ_0000338 was found to be present in extracellular vesicles and improve the chemoresistance of colorectal cancer (CRC) cells. However, the role of exosomal circ_0000338 in 5-fluorouracil (5-FU) resistance in CRC is largely unknown. The levels of circ_0000338, microRNA 217 (miR-217), and miR-485-3p were detected using quantitative real-time PCR (qRT-PCR). The 50% inhibitory concentration (IC50) values of cells for 5-FU, cell proliferation, and apoptosis were evaluated using cell counting kit 8 (CCK-8), colony formation, flow cytometry, and Western blot assays. The interaction between miR-217 or miR-485-3p and circ_0000338 was confirmed by RNA immunoprecipitation (RIP), dual-luciferase reporter, and pulldown assays. Exosomes were isolated by ultracentrifugation and qualified by transmission electron microscopy (TEM), Nanosight tracking analysis (NTA), and Western blotting. Xenograft models were performed to analyze whether circ_0000338-loaded exosomes could increase resistance of CRC cells to 5-FU in vivo The circ_0000338 level was elevated in 5-FU-resistant CRC tissues and cells, and circ_0000338 knockdown sensitized 5-FU-resistant CRC cells to 5-FU through enhancing apoptosis and decreasing proliferation in vitro Mechanistically, circ_0000338 directly bound to miR-217 and miR-485-3p, and the inhibition of miR-217 or miR-485-3p reversed the effects of circ_0000338 knockdown on cell 5-FU resistance in CRC. Additionally, extracellular circ_0000338 could be incorporated into secreted exosomes and transmitted to 5-FU-sensitive cells. Treatment-sensitive cells with exosomes containing circ_0000338 reduced the 5-FU response in CRC both in vitro and in vivo Besides that, the exosomal circ_0000338 concentration was higher in patients exhibiting resistance to 5-FU and showed good diagnostic efficiency in 5-FU-resistant CRC. The delivery of circ_0000338 via exosomes enhanced 5-FU resistance in CRC through negative regulation of miR-217 and miR-485-3p, indicating a promising diagnostic and therapeutic marker for 5-FU-based chemotherapy in CRC patients.
Collapse
|
19
|
Xu D, Wang Y, Wu J, Zhang Z, Chen J, Xie M, Tang R, Cheng C, Chen L, Lin S, Luo X, Zheng J. MTIF2 impairs 5 fluorouracil-mediated immunogenic cell death in hepatocellular carcinoma in vivo: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 163:105265. [PMID: 33129983 DOI: 10.1016/j.phrs.2020.105265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related morbidity and mortality; it has been reported that immune cell infiltration is a prognosis factor. Here we identified genes that associated with tumor immune cell infiltrate; the underlying mechanism was verified by in vivo and in vitro experiment. In this study, Weighted correlation network analysis (WGCNA) and CIBERSORT tool were used to identify MTIF2 as the hub tumor immune infiltrating gene in HCC. To investigate the underlying role played by MTIF2, MTIF2 was knocked down by transfection of shRNA targeting MTIF2, CCK8, and EdU incorporation assay was used to evaluate the effect of MTIF2 on proliferation, wound heal assay and transwell assay was used to confirm its effect on cell migration. Ecto-calreticulin on the cell surface was evaluated by flow cytometry, ATP, and HMGB1 secretion were tested to the investigated effect of MTIF2 on the immunogenic cell death (ICD) process. We found that down-regulation of MTIF2 impaired proliferation and migration capacity of HCC cells, chemoresistance to 5-Fluorouracil (5-FU) weakened after MTIF2 was knocked down. Reduced release of damage-associated molecular patterns (DAMP) was observed after MTIF2 was overexpressed, which subsequently impaired dendritic cell (DC) maturation and proliferation of CD8 + T cells. Mechanically, the co-IP experiment confirmed that MTIF2 could interact with AIFM1, prevents AIFM1 induced transcription of caspase3, and finally suppress apoptosis. In vivo experiment also used to confirm our previously conclusion, our result indicated that MTIF2 overexpression suppresses tumor apoptosis and immune cell activity in the 5-FU therapy in vivo model, by suppression maturation of tumor-infiltrated DC. Collectively, our study confirmed that MTIF2 impair drug-induced immunogenic cell death in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Mingwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Rong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Chen Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Shiyun Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Xiangxiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China.
| |
Collapse
|
20
|
Gómez de Cedrón M, Navarro del Hierro J, Reguero M, Wagner S, Bouzas A, Quijada-Freire A, Reglero G, Martín D, de Molina AR. Saponin-Rich Extracts and Their Acid Hydrolysates Differentially Target Colorectal Cancer Metabolism in the Frame of Precision Nutrition. Cancers (Basel) 2020; 12:E3399. [PMID: 33212825 PMCID: PMC7698026 DOI: 10.3390/cancers12113399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
Saponins or their aglycone form, sapogenin, have recently gained interest as bioactive agents due to their biological activities, their antitumoral effects being among them. Metabolic reprogramming has been recognized as a hallmark of cancer and, together with the increased aerobic glycolysis and glutaminolysis, the altered lipid metabolism is considered crucial to support cancer initiation and progression. The purpose of this study was to assess and compare the inhibitory effects on colorectal cancer cell lines of saponin-rich extracts from fenugreek and quinoa (FE and QE, respectively) and their hydrolyzed extracts as sapogenin-rich extracts (HFE and HQE, respectively). By mean of the latest technology in the analysis of cell bioenergetics, we demonstrate that FE and HFE diminished mitochondrial oxidative phosphorylation and aerobic glycolysis; meanwhile, quinoa extracts did not show relevant activities. Distinct molecular mechanisms were identified for fenugreek: FE inhibited the expression of TYMS1 and TK1, synergizing with the chemotherapeutic drug 5-fluorouracil (5-FU); meanwhile, HFE inhibited lipid metabolism targets, leading to diminished intracellular lipid content. The relevance of considering the coexisting compounds of the extracts or their hydrolysis transformation as innovative strategies to augment the therapeutic potential of the extracts, and the specific subgroup of patients where each extract would be more beneficial, are discussed in the frame of precision nutrition.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain; (M.R.); (S.W.); (A.B.); (A.Q.-F.)
| | - Joaquín Navarro del Hierro
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) (CSIC.UAM), 28049 Madrid, Spain; (J.N.d.H.); (G.R.); (D.M.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marina Reguero
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain; (M.R.); (S.W.); (A.B.); (A.Q.-F.)
- NATAC BIOTECH, Electronica 7, 28923 Madrid, Spain
| | - Sonia Wagner
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain; (M.R.); (S.W.); (A.B.); (A.Q.-F.)
- Medicinal Gardens SL, Marques de Urquijo 47, 28008 Madrid, Spain
| | - Adrián Bouzas
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain; (M.R.); (S.W.); (A.B.); (A.Q.-F.)
- Forchronic, CANAAN Research & Investment Group, Agustín de Betancourt 21, 28003 Madrid, Spain
| | - Adriana Quijada-Freire
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain; (M.R.); (S.W.); (A.B.); (A.Q.-F.)
| | - Guillermo Reglero
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) (CSIC.UAM), 28049 Madrid, Spain; (J.N.d.H.); (G.R.); (D.M.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diana Martín
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) (CSIC.UAM), 28049 Madrid, Spain; (J.N.d.H.); (G.R.); (D.M.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain; (M.R.); (S.W.); (A.B.); (A.Q.-F.)
| |
Collapse
|
21
|
Allegra A, Tonacci A, Pioggia G, Musolino C, Gangemi S. Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials. Nutrients 2020; 12:E1739. [PMID: 32532056 PMCID: PMC7352773 DOI: 10.3390/nu12061739] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative treatments for neoplastic diseases with new drugs are necessary because the clinical effectiveness of chemotherapy is often reduced by collateral effects. Several natural substances of plant origin have been demonstrated to be successful in the prevention and treatment of numerous tumors. Rosmarinus officinalis L. is a herb that is cultivated in diverse areas of the world. There is increasing attention being directed towards the pharmaceutical capacities of rosemary, utilized for its anti-inflammatory, anti-infective or anticancer action. The antitumor effect of rosemary has been related to diverse mechanisms, such as the antioxidant effect, antiangiogenic properties, epigenetic actions, regulation of the immune response and anti-inflammatory response, modification of specific metabolic pathways, and increased expression of onco-suppressor genes. In this review, we aim to report the results of preclinical studies dealing with the anticancer effects of rosemary, the molecular mechanisms related to these actions, and the interactions between rosemary and anticancer drugs. The prospect of utilizing rosemary as an agent in the treatment of different neoplastic diseases is discussed. However, although the use of rosemary in the therapy of neoplasms constitutes a fascinating field of study, large and controlled studies must be conducted to definitively clarify the real impact of this substance in clinical practice.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
22
|
Comparative lipidomics of 5-Fluorouracil-sensitive and -resistant colorectal cancer cells reveals altered sphingomyelin and ceramide controlled by acid sphingomyelinase (SMPD1). Sci Rep 2020; 10:6124. [PMID: 32273521 PMCID: PMC7145850 DOI: 10.1038/s41598-020-62823-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/14/2020] [Indexed: 11/08/2022] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat colorectal cancer. 5-FU is known to gradually lose its efficacy in treating colorectal cancer following the acquisition of resistance. We investigated the mechanism of 5-FU resistance using comprehensive lipidomic approaches. We performed lipidomic analysis on 5-FU–resistant (DLD-1/5-FU) and -sensitive (DLD-1) colorectal cancer cells using MALDI-MS and LC-MRM-MS. In particular, sphingomyelin (SM) species were significantly up-regulated in 5-FU–resistant cells in MALDI-TOF analysis. Further, we quantified sphingolipids including SM and Ceramide (Cer) using Multiple Reaction Monitoring (MRM), as they play a vital role in drug resistance. We found that 5-FU resistance in DLD-1/5-FU colorectal cancer cells was mainly associated with SM increase and Cer decrease, which are controlled by acid sphingomyelinase (SMPD1). In addition, reduction of SMPD1 expression was confirmed by LC-MRM-MS analysis and the effect of SMPD1 in drug resistance was assessed by treating DLD-1 cells with siRNA-SMPD1. Furthermore, clinical colorectal cancer data set analysis showed that down-regulation of SMPD1 was associated with resistance to chemotherapy regimens that include 5-FU. Thus, from our study, we propose that SM/Cer and SMPD1 are new potential target molecules for therapeutic strategies to overcome 5-FU resistance.
Collapse
|
23
|
Choukairi Z, Hazzaz T, José MF, Fechtali T. The cytotoxic activity of Salvia officinalis L. and Rosmarinus officinalis L. Leaves extracts on human glioblastoma cell line and their antioxidant effect. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:/j/jcim.ahead-of-print/jcim-2018-0189/jcim-2018-0189.xml. [PMID: 32229691 DOI: 10.1515/jcim-2018-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/26/2019] [Indexed: 11/15/2022]
Abstract
Background Rosmarinus officinalis L. (Rosemary) and Salvia officinalis L. (Sage) are two Mediterranean species growing spontaneously in some area in Morocco. They are used in traditional and complementary medicine to treat numerous disorders. The aim of this work was to assess the in vitro antitumoral effect of the methanolic total extract prepared from rosemary and sage on human glioblastoma cell line (42 GMBA), conjointly with their antioxidant activity. Methods The accelerated solvent extractor was used to obtain the total extract of the studied plants. The antitumor activity was performed using the microculture tetrazolium cytotoxique assay while the antioxidant effect was evaluated using the ferric reducing antioxidant power (FRAP), and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. Results Our results show that the total extract of R.O and S.O have a cytotoxic effect on glioblastoma but not on cortical neurons. On the other hand, the results obtained in the FRAP and DPPH tests show a dose-dependent antioxidant activity correlated with an important level of phenols and flavonoids. Conclusion Rosmarinus officinalis L. and Salvia officinalis L. were found to have an antitumoral activity which may be linked, probably, to an antioxidant process.
Collapse
Affiliation(s)
- Zineb Choukairi
- Laboratory of Biosciences, Functional, integrated and molecular exploration, School of Sciences and Technology- Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Tahar Hazzaz
- Laboratory of Biosciences, Functional, integrated and molecular exploration, School of Sciences and Technology- Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Manuel Ferrandez José
- Laboratory of "Inteligencia Ambiental", Polytechnic University of Cartagena, Cartagena, Spain
| | - Taoufiq Fechtali
- Laboratory of Biosciences, Functional, integrated and molecular exploration, School of Sciences and Technology- Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
24
|
Naz I, Ramchandani S, Khan MR, Yang MH, Ahn KS. Anticancer Potential of Raddeanin A, a Natural Triterpenoid Isolated from Anemone raddeana Regel. Molecules 2020; 25:E1035. [PMID: 32106609 PMCID: PMC7179125 DOI: 10.3390/molecules25051035] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Natural compounds extracted from plants have gained immense importance in the fight against cancer cells due to their lesser toxicity and potential therapeutic effects. Raddeanin A (RA), an oleanane type triterpenoid is a major compound isolated from Anemone raddeana Regel. As an anticancer agent, RA induces apoptosis, cell cycle arrest, inhibits invasion, migration and angiogenesis in malignant cell lines as well as in preclinical models. In this systemic review, the pharmacological effects of RA and its underlying molecular mechanisms were carefully analyzed and potential molecular targets have been highlighted. The apoptotic potential of RA can be mediated through the modulation of Bcl-2, Bax, caspase-3, caspase-8, caspase-9, cytochrome c and poly-ADP ribose polymerase (PARP) cleavage. PI3K/Akt signaling pathway serves as the major molecular target affected by RA. Furthermore, RA can block cell proliferation through inhibition of canonical Wnt/β-catenin signaling pathway in colorectal cancer cells. RA can also alter the activation of NF-κB and STAT3 signaling pathways to suppress invasion and metastasis. RA has also exhibited promising anticancer potential against drug resistant cancer cells and can enhance the anticancer effects of several chemotherapeutic agents. Overall, RA may function as a promising compound in combating cancer, although further in-depth study is required under clinical settings to validate its efficacy in cancer patients.
Collapse
Affiliation(s)
- Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | | | | | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
25
|
Albogami S, Darwish H, Abdelmigid HM, Alotaibi S, El-Deen AN, Alnefaie A, Alattas A. Anticancer Potential of Calli Versus Seedling Extracts Derived from Rosmarinus officinalis and Coleus hybridus. Curr Pharm Biotechnol 2020; 21:1528-1538. [PMID: 32188380 DOI: 10.2174/1389201021666200318114817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 02/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In Saudi Arabia, the incidence and mortality rates of breast cancer are high. Although current treatments are effective, breast cancer cells develop resistance to these treatments. Numerous studies have demonstrated that active compounds in plant extracts, such as the phenolic compound Rosmarinic Acid (RA), exert anti-cancer effects. OBJECTIVE We investigated the anticancer properties of methanolic crude extracts of seedlings and calli of Rosmarinus officinalis and Coleus hybridus, two Lamiaceae species. METHODS MCF-7 human breast cancer cells were treated with methanolic crude extracts obtained from plant calli and seedlings generated in vitro, and cell proliferation was evaluated. Transcriptional profiling of the seedling and callus tissues was also conducted. RESULTS The mRNA expression levels of RA genes were higher in C. hybridus seedlings than in R. officinalis seedlings, as well as in C. hybridus calli than in R. officinalis calli, except for TAT and C4H. In addition, seedling and callus extracts of both R. officinalis and C. hybridus showed anti-proliferative effects against MCF-7 cells after 24 or 48 h of treatment. DISCUSSION At a low concentration of 10 μg/mL, C. hybridus calli and seedling extracts showed the most significant anti-proliferative effects after 24 and 48 h of exposure (p < 0.01); controls (doxorubicin) also showed significant inhibition, but lesser than that observed with C. hybridus (p < 0.05). Results with R. officinalis callus and seedling extracts did not significantly differ from those with untreated cells. CONCLUSION Methanolic extracts of R. officinalis and C. hybridus are potentially valuable options for breast cancer treatment.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hala M Abdelmigid
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Saqer Alotaibi
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed Nour El-Deen
- Department of Biology, Faculty of Sciences, Taif University, Saudi Arabia
| | - Alaa Alnefaie
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Afnan Alattas
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
26
|
Aiello P, Sharghi M, Mansourkhani SM, Ardekan AP, Jouybari L, Daraei N, Peiro K, Mohamadian S, Rezaei M, Heidari M, Peluso I, Ghorat F, Bishayee A, Kooti W. Medicinal Plants in the Prevention and Treatment of Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2075614. [PMID: 32377288 PMCID: PMC7187726 DOI: 10.1155/2019/2075614] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
The standard treatment for cancer is generally based on using cytotoxic drugs, radiotherapy, chemotherapy, and surgery. However, the use of traditional treatments has received attention in recent years. The aim of the present work was to provide an overview of medicinal plants effective on colon cancer with special emphasis on bioactive components and underlying mechanisms of action. Various literature databases, including Web of Science, PubMed, and Scopus, were used and English language articles were considered. Based on literature search, 172 experimental studies and 71 clinical cases on 190 plants were included. The results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo models. Various anticolon cancer mechanisms of these medicinal plants include induction of superoxide dismutase, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reducing the expression of PI3K, P-Akt protein, and MMP as well; reduction of antiapoptotic Bcl-2 and Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1 and cyclin E. Plant compounds also increase both the expression of the cell cycle inhibitors p53, p21, and p27, and the BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vivo models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.
Collapse
Affiliation(s)
- Paola Aiello
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, La Sapienza University of Rome, Rome, Italy
| | - Maedeh Sharghi
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azam Pourabbasi Ardekan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nahid Daraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Peiro
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Sima Mohamadian
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Rezaei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Heidari
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ilaria Peluso
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Fereshteh Ghorat
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Wesam Kooti
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
27
|
Antioxidant and Antiproliferative Activities of Bioactive Compounds Contained in Rosmarinus officinalis Used in the Mediterranean Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7623830. [PMID: 31827560 PMCID: PMC6885246 DOI: 10.1155/2019/7623830] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022]
Abstract
Background Rosmarinus officinalis (R. officinalis) is a medicinal plant called rosemary, largely used in the Mediterranean diet for many decades ago. Objective The aim of the present study was to investigate the polyphenolic content, the antioxidant activity, and the antiproliferative effect against human prostate cancer cell lines (LNCaP) of carnosol and carnosic acid as bioactive compounds contained in R. officinalis growing in Morocco. Materials and Methods Polyphenolic content of R. officinalis ethanolic extract was studied using colorimetric assay. Carnosol and carnosic acid contained in R. officinalis extract were quantified using high-performance liquid chromatography (HPLC). The antiproliferative effect of the studied extracts on LNCaP was evaluated by WST-1 bioassay, and the antioxidant activity was assessed using DPPH assay. Results The extracts of R. officinalis showed an important polyphenolic content ranging from 74.15 μg·GAE/mg to 146.63 μg·GAE/mg. The percentage of carnosol and carnosic acid in rosemary crops ranges from 11.7 to 17.3% and 1.09% to 3%, respectively. The extracts of R. officinalis exhibited a promoting antioxidant activity with IC50 ranging from 0.236 mg/mL to 0.176 mg/mL. Regarding the antiproliferative effect, the WST-1 assay revealed that all the tested extracts reduced notably the cell viability with IC50 values ranging from 14.15 to 15. 04 μg/mL. Conclusion In the current work, carnosol and carnosic acid exhibit antioxidant and antiproliferative activities in a concentration-dependent manner.
Collapse
|
28
|
Fang Y, Yang C, Zhang L, Wei L, Lin J, Zhao J, Peng J. Spica Prunellae Extract Enhances Fluorouracil Sensitivity of 5-Fluorouracil-Resistant Human Colon Carcinoma HCT-8/5-FU Cells via TOP2 α and miR-494. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5953619. [PMID: 31662984 PMCID: PMC6791265 DOI: 10.1155/2019/5953619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
The use of 5-fluorouracil (5-FU) has been proven benefits, but it also has adverse events in colorectal cancer (CRC) chemotherapy. In this study, we explored the mechanism of 5-FU resistance by bioinformatics analysis of the NCBI public dataset series GSE81005. Fifteen hub genes were screened out of 582 different expressed genes. Modules of the hub genes in protein-protein interaction networks gathered to TOP2α showed a decrease in HCT-8 cells but an increase in 5-FU-resistant HCT-8/5-FU cells with 5-FU exposure. Downregulation of TOP2α with siRNA or miR-494 transfection resulted in an increase of cytotoxicity and decrease of cell colonies to 5-FU for HCT-8/5-FU cells. Moreover, we found that an ethanol extract of Spica Prunellae (EESP), which is a traditional Chinese medicine with clinically beneficial effects in various cancers, was able to enhance the sensitivity of 5-FU in HCT-8/5-FU cells and partly reverse the 5-FU resistance effect. It significantly helped suppress cell growth and induced cell apoptosis in HCT-8/5-FU cells with the expression of TOP2α being significantly suppressed, which increased by 5-FU. Consistently, miR-494, which reportedly regulates TOP2α, exhibited reverse trends in EESP/5-FU combination treatment. These results suggested that Spica Prunellae may be beneficial in the treatment of 5-FU-resistant CRC patients.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chi Yang
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
29
|
Demirci S, Demirbaş N. Anticancer activities of novel Mannich bases against prostate cancer cells. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02426-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Tolerability and Safety of a Nutritional Supplement with Potential as Adjuvant in Colorectal Cancer Therapy: A Randomized Trial in Healthy Volunteers. Nutrients 2019; 11:nu11092001. [PMID: 31450563 PMCID: PMC6769991 DOI: 10.3390/nu11092001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Bioactive supplements display relevant therapeutic properties when properly applied according to validated molecular effects. Our previous research efforts established the basis to develop a dietary supplement based on a Rosmarinus officinalis supercritical extract. This was enriched in phenolic diterpenes (RE) with proven properties against signaling pathways involved in colon tumorigenesis, and shark liver oil rich in alkylglycerols (AKG) as a bioactive lipid vehicle to improve RE bioavailability and synergize with the potential therapeutic action of the extract. Herein, we have investigated the tolerability and safety of the supplement and the biological and molecular effects from an immuno-nutritional perspective. Sixty healthy volunteers participated in a six week, double-blind, randomized parallel pilot study with two study arms: RE-AKG capsules (CR) and control capsules (CC). Mean age (±SD) of volunteers was 28.32 (±11.39) and 27.5 (±9.04) for the control and the study groups, respectively. Safety of the CR product consumption was confirmed by analyzing liver profile, vital constants, and oxidation markers (LDLox in blood and isoprostanes and thromboxanes in urine). The following were monitored: (1) the phenotyping of plasmatic leukocytes and the ex vivo response of lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs); (2) expression of genes associated with immune-modulation, inflammation, oxidative stress, lipid metabolism, and tumorigenesis; and (3) the correlation of selected genetic variants (SNPs) with the differential responses among individuals. The lack of adverse effects on liver profile and oxidation markers, together with adequate tolerability and safe immunological adaptations, provide high-quality information for the potential use of CR as co-adjuvant of therapeutic strategies against colorectal cancer.
Collapse
|
31
|
Guo SS, Wang Y, Fan QX. Raddeanin A promotes apoptosis and ameliorates 5-fluorouracil resistance in cholangiocarcinoma cells. World J Gastroenterol 2019; 25:3380-3391. [PMID: 31341363 PMCID: PMC6639556 DOI: 10.3748/wjg.v25.i26.3380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/18/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bile duct cancer is characterized by fast metastasis and invasion and has been regarded as one of the most aggressive tumors due to the absence of effective diagnosis at an early stage. Therefore, it is in the urgent demand to explore novel diagnostic approaches and therapeutic strategies for bile duct cancer to improve patient survival. Raddeanin A (RA) is extracted from the anemone raddeana regel and has been demonstrated to play antitumor roles in various cancers.
AIM To investigate the effects of RA treatment on bile duct cancer cells.
METHODS In this study, four cholangiocarcinoma cell lines (RBE, LIPF155C, LIPF178C, and LICCF) treated with RA were used to test the cell viability. The RA-associated cell functional analysis, 5-fluorouracil (5-Fu) effectiveness as well as cell cycle- and apoptosis-related protein expression were investigated.
RESULTS RA reduced cell viability in a dose-dependent pattern in four cell lines, and the migration and colony formation abilities were also impaired by RA in RBE and LIPF155C cell lines. RA sensitized cell lines to 5-Fu treatment and enhanced the effects of 5-Fu in cholangiocarcinoma. Also, RA decreased protein expression of Wee1, while the combinational effect of RA and 5-Fu decreased protein expressions of cyclooxygenase-2, B cell lymphoma 2, and Wee1 but increased protein levels of Bax, cyclin D1, and cyclin E.
CONCLUSION Taken together, the results suggest that RA acts as an anti-cancer agent and enhancer of 5-Fu in bile duct cancer cells via regulating multiple cell cycle and apoptosis-related proteins. This finding provides novel clues to exploring a novel antitumor drug for bile duct cancer.
Collapse
Affiliation(s)
- Shuang-Shuang Guo
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Department of Oncology, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Ying Wang
- Department of Oncology, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Qing-Xia Fan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
32
|
Demirci S, Hayal TB, Kıratlı B, Şişli HB, Demirci S, Şahin F, Doğan A. Design and synthesis of phenylpiperazine derivatives as potent anticancer agents for prostate cancer. Chem Biol Drug Des 2019; 94:1584-1595. [PMID: 31148379 DOI: 10.1111/cbdd.13575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/19/2022]
Abstract
Novel thiourea (5a, 5b) and thiazolidinone derivatives (6a, 6b) were synthesized by hybridizing molecules starting from the compound 6-(4-phenylpiperazin-1-yl)pyridin-3-amine (4) which is known to show anticancer activity. The synthesis of the leading compound was carried out by using 1-(5-nitropyridin-2-yl)-4-phenylpiperazine (3) which was obtained by a novel method of the reaction of 2-chloro-5-nitropyridine (1) and N-phenylpiperazine (2). The structures of the compounds were confirmed using FTIR, 1 H NMR, 13 C NMR, HRMS spectroscopic methods and elemental analysis. The organic molecules were tested for their anticancer activities against prostate cancer (PC) cell lines: DU 145, PC-3 and LNCaP. As the compound 5a exerted the highest cytotoxic activity, IC50 concentrations of compound 5a were further investigated in terms of morphology, colony-forming ability, RNA expression, fragmented DNA and cell cycle distributions of PC cell lines. Overall data revealed that compound 5a treatment induces apoptosis and DNA fragmentation in PC cell lines and inhibits cell cycle progression resulting in the accumulation of cells in either the G1 or the S phases.
Collapse
Affiliation(s)
- Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Binnur Kıratlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selami Demirci
- Cellular and Molecular Therapeutics, Sickle Cell Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
33
|
Handali S, Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, Angali KA, Saremy S, Dorkoosh FA. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed Pharmacother 2018; 108:1259-1273. [DOI: 10.1016/j.biopha.2018.09.128] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
|
34
|
Qiu X, Jacobsen C, Sørensen ADM. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil. Food Chem 2018; 263:119-126. [DOI: 10.1016/j.foodchem.2018.04.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
|
35
|
Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Afrin S, Giampieri F, Forbes-Hernández TY, Gasparrini M, Amici A, Cianciosi D, Quiles JL, Battino M. Manuka honey synergistically enhances the chemopreventive effect of 5-fluorouracil on human colon cancer cells by inducing oxidative stress and apoptosis, altering metabolic phenotypes and suppressing metastasis ability. Free Radic Biol Med 2018; 126:41-54. [PMID: 30056083 DOI: 10.1016/j.freeradbiomed.2018.07.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/24/2023]
Abstract
The development of chemo-sensitizers is urgently needed to overcome 5-fluorouracil (5-FU) therapeutic resistance and adverse toxicity in colorectal cancer. This work aims to evaluate the synergic effects of 5-FU and Manuka honey (MH), a rich source of bioactive compounds, in enhancing the anticancer effects of this drug on human colon cancer HCT-116 and LoVo cells. Compared to 5-FU alone, MH synergistically enhanced the chemotherapeutic effects of 5-FU, by reducing cell proliferation through the suppression of EGFR, HER2, p-Akt and p-mTOR expression, and promoting apoptosis by the modulation pro-apoptotic (p53, Bax, Cyto c, FasL caspase-3, -8, -9 and cleave-PARP) and anti-apoptotic (Bcl-2) markers. The activations of p-p38MAPK and p-Erk1/2 pathways and ROS production were also involved in this process. Downregulation of transcription factor (NF-κB and Nrf2) and antioxidant enzyme activity (SOD, catalase, glutathione peroxidase and glutathione reductase) and expression (SOD, catalase and HO-1) were more evident after the combined treatment, leading to more cell death by oxidative stress. Moreover, additive effects were also observed by increasing lipid and protein oxidation and arresting cell cycle. All the parameters of mitochondrial respiration and glycolysis function decreased and both cells entered the quiescent stage after the combined treatments. MH also influenced the anti-metastasis effects of 5-FU by decreasing migration ability, suppressing the expression of MMP-2, MMP-9 and increasing N-cadherin and E-cadherin. In conclusion, MH could be a useful preventive or adjuvant agent in the treatment of colorectal cancer with 5-FU.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Adolfo Amici
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Josè L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Centre, University of Granada, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
37
|
Mouhid L, Gómez de Cedrón M, Vargas T, García-Carrascosa E, Herranz N, García-Risco M, Reglero G, Fornari T, Ramírez de Molina A. Identification of antitumoral agents against human pancreatic cancer cells from Asteraceae and Lamiaceae plant extracts. Altern Ther Health Med 2018; 18:254. [PMID: 30223811 PMCID: PMC6142333 DOI: 10.1186/s12906-018-2322-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
Background Pancreatic cancer is one of the most aggressive and mortal cancers. Although several drugs have been proposed for its treatment, it remains resistant and new alternatives are needed. In this context, plants and their derivatives constitute a relevant source of bioactive components which might efficiently inhibit tumor cell progression. Methods In this study, we have analyzed the potential anti-carcinogenic effect of different Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) plant extracts obtained by different green technologies (Supercritical CO2 Extraction –SFE- and Ultrasonic Assisted Extraction –UAE-) to identify efficient plant extracts against human pancreatic cancer cells that could constitute the basis of novel treatment approaches. Results Asteraceae extracts showed better results as antitumoral agents than Lamiaceae by inducing cytotoxicity and inhibiting cell transformation, and SFE extracts were most efficient than UAE extracts. In addition, SFE derived plant extracts from Achillea millefolium and Calendula officinalis displayed synergism with the chemotherapeutic 5-Fluororacil. Conclusion These results show how Yarrow and Marigold SFE-derived extracts can inhibit pancreatic cancer cell growth, and could be proposed for a comprehensive study to determine the molecular mechanisms involved in their bioactivity with the final aim to propose them as potential adjuvants in pancreatic cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12906-018-2322-6) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Yuan L, Zhang S, Li H, Yang F, Mushtaq N, Ullah S, Shi Y, An C, Xu J. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother 2018; 108:184-193. [PMID: 30219675 DOI: 10.1016/j.biopha.2018.08.165] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is one of the most frequently diagnosed cancers worldwide. Gut flora can modulate the host response to chemotherapeutic drugs. However, the understanding regarding the relationship between the gut microbiota and the antitumor efficacy of 5- Fluorouracil (5-FU) treatment is limited. Therefore, we compared the tumor size and profiled the gut microbiota of mice treated with 5-FU, combined with probiotics or ABX (an antibiotic cocktail of antibiotics) by using the Colorectal Cancer (CRC) mouse model and high-throughput sequencing. The results elucidated that ABX administration diminished the antitumor efficacy of 5-FU in mice and supplementation of probiotics upon 5-FU treatment could not significantly increase the efficacy of 5-FU treatment, despite improving mice body weight at day 33. There were significant differences in fecal bacteria community among the four groups (ANOSIM p < 0.05). ABX administration reduced microbiota biodiversity and altered microbiota community. The pathogenic bacteria included Escherichia shigella and Enterobacter significantly increased, while other commensal bacterial decreased unidentified Firmicutes increased and the opportunistic pathogens decreased after the administration of Probiotics. In addition, 5-FU treatment also changed the diversity and the community composition of the gut mirobiota. The relative abundance of genus Lachnospiracea_NK4 A136, Bacteroides, Odoribacter, Mucispirillum, and Blautia were significantly increased compared to the control group. Additionally, functional capacity analysis of gut microbiota using PICRUSt showed that genes involved in amino acid metabolism, replication and repair translation, nucleotide metabolism expressed much lower in FU.ABX group than the other groups. The current results suggest that ABX administration disrupted the gut microbiota in mice, which contributed to the reduction of antitumor efficacy of 5-FU.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Siruo Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Huan Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Fan Yang
- Department of Neurosurgery, Navy General Hospital of PLA, Beijing, China
| | - Noosheen Mushtaq
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Shakir Ullah
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yi Shi
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Cuihong An
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
39
|
The role of glycosyltransferase enzyme GCNT3 in colon and ovarian cancer prognosis and chemoresistance. Sci Rep 2018; 8:8485. [PMID: 29855486 PMCID: PMC5981315 DOI: 10.1038/s41598-018-26468-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
Glycosyltransferase enzyme GCNT3, has been proposed as a biomarker for prognosis in colorectal cancer (CRC). Our study goes in depth into the molecular basis of GCNT3 role in tumorigenesis and drug resistance, and it explores its potential role as biomarker in epithelial ovarian cancer (EOC). High levels of GCNT3 are associated with increased sensibility to 5-fluoracil in metastatic cells. Accordingly, GCNT3 re-expression leads to the gain of anti-carcinogenic cellular properties by reducing cell growth, invasion and by changing metabolic capacities. Integrated transcriptomic and proteomic analyses reveal that GCNT3 is linked to cellular cycle, mitosis and proliferation, response to drugs and metabolism pathways. The vascular epithelial growth factor A (VEGFA) arises as an attractive partner of GCNT3 functions in cell invasion and resistance. Finally, GCNT3 expression was analyzed in a cohort of 56 EOC patients followed by a meta-analysis of more than one thousand patients. This study reveals that GCNT3 might constitute a prognostic factor also in EOC, since its overexpression is associated with better clinical outcome and response to initial therapy. GCNT3 emerges as an essential glycosylation-related molecule in CRC and EOC progression, with potential interest as a predictive biomarker of response to chemotherapy.
Collapse
|
40
|
Martín-Hernández R, Reglero G, Dávalos A. Data mining of nutrigenomics experiments: Identification of a cancer protective gene signature. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
41
|
Tao J, Li Y, Li S, Li HB. Plant foods for the prevention and management of colon cancer. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
42
|
Matejczyk M, Świsłocka R, Golonko A, Lewandowski W, Hawrylik E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv Med Sci 2018; 63:14-21. [PMID: 28818744 DOI: 10.1016/j.advms.2017.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/10/2017] [Accepted: 07/18/2017] [Indexed: 01/04/2023]
Abstract
PURPOSE The aim of this study was to examine the cytotoxic, genotoxic, antioxidant and antimicrobial activity of caffeic and rosmarinic acids and their salts with Li, Na and K with use of Escherichia coli K-12 recA:gfp strain as a model organism. METHODS Cytotoxic potency of tested chemicals were calculated on the basis on the dose that confers inhibition percentage such as 20% for each concentrations of analysed chemicals. Genotoxic properties were calculated on the basis of the fold increase (FI) of SFI values normalized with control. Antioxidant potencies were established on the base of DPPH assay. Antimicrobial activity of chemicals were established on the value of minimal inhibitory concentration (MIC). RESULTS Obtained results indicated that lower concentrations of tested compounds exhibited stronger GFP fluorescence response after rosmarinic acids and their salts treatment. Genotoxic effects seemed to be independent of the salt ions. The caffeic acid salts with Li, Na and K showed reduced genotoxic effect in comparison to the caffeic acid while increased cytotoxic effect than that of caffeic acid. Moreover, caffeinate salts exhibited better antimicrobial activity against E. coli (MIC=250μg/mL) than K caffeinate salt (MIC>500μg/mL). The MIC values of Li, Na and K rosmarinate salts were above 500μg/mL against all tested microorganisms. CONCLUSION The results of the experiment show that there is no clear positive correlation between the antioxidant potency of caffeic and rosmarinic acids and their Li, Na and K salts and their cytotoxic effect. Used salts ions Li, Na and K do not significantly affect the antioxidant effect of natural phenolic compounds and they do not have a significant impact on the biological parameters such as cyto- and genotoxicity. Perhaps it is connected with the reaction environment including polarity of the solvent (water).
Collapse
Affiliation(s)
- Marzena Matejczyk
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Sanitary Biology and Biotechnology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Renata Świsłocka
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Wiejska 45E, 15-351 Bialystok, Poland
| | - Aleksandra Golonko
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Wiejska 45E, 15-351 Bialystok, Poland
| | - Włodzimierz Lewandowski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Eliza Hawrylik
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Sanitary Biology and Biotechnology, Wiejska 45E, 15-351 Bialystok, Poland
| |
Collapse
|
43
|
Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA 2018; 4:FSO283. [PMID: 29682318 PMCID: PMC5905578 DOI: 10.4155/fsoa-2017-0124] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/21/2017] [Indexed: 01/31/2023] Open
Abstract
The worldwide interest in the use of medicinal plants has been growing, and its beneficial effects being rediscovered for the development of new drugs. Based on their vast ethnopharmacological applications, which inspired current research in drug discovery, natural products can provide new and important leads against various pharmacological targets. This work pioneers an extensive and an updated literature review on the current state of research on Rosmarinus officinalis L., elucidating which compounds and biological activities are the most relevant. Therefore, a search was made in the databases PubMed, ScienceDirect and Web of Science with the terms ‘rosemary’, ‘Rosmarinus officinalis’, ‘rosmarinic acid’ ‘carnosol’ and ‘carnosic acid’, which included 286 articles published since 1990 about rosemary's pharmacological activities and their isolated compounds. According to these references, there has been an increasing interest in the therapeutic properties of this plant, regarding carnosic acid, carnosol, rosmarinic acid and the essential oil. The present manuscript provides an updated review upon the most reported activities on R. officinalis and its active constituents. The worldwide interest in the use of medicinal plants has been growing, and their beneficial effects being rediscovered for the development of new drugs. Actually, current research in drug discovery has been inspired on the vast ethnopharmacological applications of natural products, providing new and important leads against various pharmacological targets. In this work, an updated literature review is presented to clarify the current state of research on Rosmarinus officinalis L., elucidating its constituents and their most relevant biological activities. Therefore, this work provides an updated review upon the most reported medicinal properties, namely, antitumoral, anti-inflammatory, analgesic, neurodegenerative, endocrinal, anti-infective and antioxidant.
Collapse
|
44
|
Afsharmoghadam N, Haghighatian Z, Mazdak H, Mirkheshti N, Mehrabi Koushki R, Alavi SA. Concentration- Dependent Effects of Curcumin on 5-Fluorouracil Efficacy in Bladder Cancer Cells. Asian Pac J Cancer Prev 2017; 18:3225-3230. [PMID: 29281876 PMCID: PMC5980875 DOI: 10.22034/apjcp.2017.18.12.3225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purpose: Curcumin (Cur), a herbal ingredient with anticancer properties, has been shown to inhibit growth of malignant cells in vivo and in vitro. However, studies on combination therapy of Cur with chemotherapeutic drugs have been limited. Here, effects of Cur on the cytotoxicity of 5-Fluorouracil (FU) were investigated with epithelial bladder cancer cells (EJ138) in vitro. Methods: EJ138 cells were treated with 5 and 15 μM of Cur and/ or 100 μM of FU. Cell viability was measured by sulforhodamine B colorimetric assay. The glucose concentration as an index of cell metabolism was evaluated by an enzymatic method. Total oxidant and antioxidant capacities were estimated by the ferrous oxidation-xylenol (FOX1) method and ferric reducing antioxidant power assay (FRAP), respectively. Results: Combination of 5 μM Cur with FU significantly reduced its cytotoxicity in EJ138 cells, while 15 μM Cur caused an opposite increase. Significant increase in glucose concentration at 24 h and decrease in the FRAP value at 48 h incubation was observed in cells treated with FU in combination with Cur. There were no significant changes in total oxidant capacity with the combination therapy. Conclusion: Our findings suggest a crucial role of Cur concentration in regulating chemotherapeutic agent-induced cytotoxicity. Further investigations are needed to understand the precise mechanisms of action of Cur and determine appropriate doses with combination therapy for clinical application against human cancers.
Collapse
Affiliation(s)
- Noushin Afsharmoghadam
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | | | |
Collapse
|
45
|
Kamel KM, Khalil IA, Rateb ME, Elgendy H, Elhawary S. Chitosan-Coated Cinnamon/Oregano-Loaded Solid Lipid Nanoparticles to Augment 5-Fluorouracil Cytotoxicity for Colorectal Cancer: Extract Standardization, Nanoparticle Optimization, and Cytotoxicity Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7966-7981. [PMID: 28813148 DOI: 10.1021/acs.jafc.7b03093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aimed to coat lipid-based nanocarriers with chitosan to encapsulate nutraceuticals, minimize opsonization, and facilitate passive-targeting. Phase one was concerned with standardization according to the World Health Organization. Qualitative analysis using liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS) investigated the active constituents, especially reported cytotoxic agents. Cinnamaldehyde and rosmarinic acid were selected to be quantified using high-performance liquid chromatography. Phase two was aimed to encapsulate both extracts in solid lipid nanoparticles (core) and chitosan (shell) to gain the advantages of both materials properties. The developed experimental model suggested an optimum formulation with 2% lipid, 2.3% surfactant, and 0.4% chitosan to achieve a particle size of 254.77 nm, polydispersity index of 0.28, zeta potential of +15.26, and entrapment efficiency percentage of 77.3% and 69.1% for cinnamon and oregano, respectively. Phase three was focused on the evaluation of cytotoxic activity unencapsulated/encapsulated cinnamon and oregano extracts with/without 5-fluorouracil on HCT-116 cells. This study confirmed the success of the suggested combination with 5-fluorouracil for treating human colon carcinoma with a low dose leading to decreasing side effects and allowing uninterrupted therapy.
Collapse
Affiliation(s)
| | - Islam A Khalil
- Nanomaterials Lab., Center of Material Science (CMS), Zewail City of Science and Technology , 6th of October, Giza 12588, Egypt
| | - Mostafa E Rateb
- School of Science & Sport, University of the West of Scotland , Paisley PA1 2BE, Scotland U.K
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University , Beni-Suef 62511, Egypt
| | | | - Seham Elhawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| |
Collapse
|
46
|
Rosemary ( Rosmarinus officinalis ) as a functional ingredient: recent scientific evidence. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2016.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
García-Risco MR, Mouhid L, Salas-Pérez L, López-Padilla A, Santoyo S, Jaime L, Ramírez de Molina A, Reglero G, Fornari T. Biological Activities of Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) Plant Extracts. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:96-102. [PMID: 28101823 DOI: 10.1007/s11130-016-0596-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) extracts were obtained by applying two sequential extraction processes: supercritical fluid extraction with carbon dioxide, followed by ultrasonic assisted extraction using green solvents (ethanol and ethanol:water 50:50). The extracts were analyzed in terms of the total content of phenolic compounds and the content of flavonoids; the volatile oil composition of supercritical extracts was analyzed by gas chromatography and the antioxidant capacity and cell toxicity was determined. Lamiaceae plant extracts presented higher content of phenolics (and flavonoids) than Asteraceae extracts. Regardless of the species studied, the supercritical extracts presented the lowest antioxidant activity and the ethanol:water extracts offered the largest, following the order Origanum majorana > Melissa officinalis ≈ Achillea millefolium > Calendula officinalis. However, concerning the effect on cell toxicity, Asteraceae (especially Achillea millefolium) supercritical extracts were significantly more efficient despite being the less active as an antioxidant agent. These results indicate that the effect on cell viability is not related to the antioxidant activity of the extracts.
Collapse
Affiliation(s)
| | - Lamia Mouhid
- Madrid Institute for Advanced Studies on Food (IMDEA-Food), Madrid, Spain
| | | | | | - Susana Santoyo
- Institute of Food Science Research (CIAL), Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Madrid, Spain
| | | | - Guillermo Reglero
- Institute of Food Science Research (CIAL), Madrid, Spain
- Madrid Institute for Advanced Studies on Food (IMDEA-Food), Madrid, Spain
| | | |
Collapse
|
48
|
Martin D, Salas‐Perez L, Villalva M, Vázquez L, Garcia‐Risco MR, Jaime L, Reglero G. Effect of alkylglycerol‐rich oil and rosemary extract on oxidative stability and antioxidant properties of a cooked meat product. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Diana Martin
- Departamento de Producción y Caracterización de Nuevos AlimentosInstituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM)MadridSpain
- Sección Departamental de Ciencias de la Alimentación, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
| | | | - Marisol Villalva
- Departamento de Producción y Caracterización de Nuevos AlimentosInstituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM)MadridSpain
- Sección Departamental de Ciencias de la Alimentación, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
| | - Luis Vázquez
- Departamento de Producción y Caracterización de Nuevos AlimentosInstituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM)MadridSpain
- Sección Departamental de Ciencias de la Alimentación, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
| | - Monica R. Garcia‐Risco
- Departamento de Producción y Caracterización de Nuevos AlimentosInstituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM)MadridSpain
- Sección Departamental de Ciencias de la Alimentación, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
| | - Laura Jaime
- Departamento de Producción y Caracterización de Nuevos AlimentosInstituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM)MadridSpain
- Sección Departamental de Ciencias de la Alimentación, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos AlimentosInstituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM)MadridSpain
- Sección Departamental de Ciencias de la Alimentación, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
- Imdea‐Food Institute. CEI UAM + CSICMadridSpain
| |
Collapse
|
49
|
Shrestha S, Song YW, Kim H, Lee DS, Cho SK. Sageone, a diterpene from Rosmarinus officinalis, synergizes with cisplatin cytotoxicity in SNU-1 human gastric cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1671-1679. [PMID: 27823632 DOI: 10.1016/j.phymed.2016.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/23/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND PURPOSE Chemotherapy resistance is a major obstacle for the effective treatment of cancers. Although several studies have described the anticancer properties of rosemary extract and its components, the detailed mechanisms of action are poorly understood. METHODS Activity-guided fractionation and repeated chromatographic separation of the n-hexane fraction of the aqueous methanol extract over silica gel, RP C18, and Sephadex LH-20 led to the isolation of three compounds. The structures of the compounds were determined using 1H, 13C, and two-dimensional nuclear magnetic resonance spectroscopy, mass spectroscopy, and infrared spectroscopy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to evaluate the cytotoxicity of these compounds. Cell cycle, apoptotic cell populations, and mitochondrial membrane potential were analyzed by flow cytometry. Western blot analysis was conducted to detect apoptosis-related proteins. RESULTS An abietane diterpenoid, sageone (1), an icetexane diterpenoid, (-)-barbatusol (2), and a monoterpene, (+)-verbenone (3), were identified. Of these compounds, sageone (1) showed cytotoxicity against SNU-1 cells with an IC50 of 9.45 ± 1.33 µM. Sageone reduced the expression of Akt dramatically, as opposed to cisplatin, which increased phosphorylated Akt. Sageone combined with a subtoxic dose of cisplatin had synergistic effects on apoptosis induction in SNU-1 cells, as confirmed by calculating the combination index. Co-treatment was significantly more effective than monotherapy at reducing cell viability and inducing apoptosis, as determined by analyzing DNA fragmentation. The combined treatment of sageone and cisplatin markedly reduced Akt expression and phosphorylation, accompanied by increases in cleaved caspase-3, -9 and PARP. CONCLUSION This is the first time compounds 1 and 2 have been isolated from R. officinalis. Sageone induced apoptosis in SNU-1 human gastric cancer cells and notably enhanced the cytotoxicity of cisplatin in SNU-1 cells, which are known to be resistant to cisplatin. These findings suggest that sageone represents a promising anticancer agent against gastric cancer that warrants further study.
Collapse
Affiliation(s)
- Sabina Shrestha
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Yeon Woo Song
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea
| | - Hyeonji Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea.
| |
Collapse
|
50
|
Lu J, Xu J, Shi Q. Effect of ethanol extract of HPRS, a Traditional Chinese Medicine formula, on HCT116 cell Line. J TRADIT CHIN MED 2016; 36:760-7. [PMID: 29949709 DOI: 10.1016/s0254-6272(17)30012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE In this study, we investigated the effects of ethanol extract of Hupiruisu Fang (HPRS), a
formula of Traditional Chinese Medicine, on HCT116 cell line. METHODS MKN45, A549, Hela and HCT116 cells were treated with ethanol extract of HPRS alone or
the extract plus 5-Fluorouracil (5-FU) for 48 h, and then the cell viabilities were measured using CCK-8
Kit. The early apoptosis rate and total apoptosis rate in both HCT116 cells were evaluated by flow
cytometry. The mRNA levels of apoptosis-related genes including caspase-3, caspase-8, Bcl2 and Bax were detected by real-time quantitative polymerase chain reaction. Lastly, the protein activities
and expressions of those apoptosis related genes were observed for further verifying the pro-apoptosis
of the extract of HPRS. RESULTS Ethanol extract of HPRS could significantly induce apoptosis in HCT116 cell line. Synergistic
analysis revealed that the extract exhibited a significant effect upon 5-FU-associated cytotoxicity in the
cell line. CONCLUSION The ethanol extract of HPRS plus 5-FU might have the potential to improve the treatment of colorectal cancer.
Collapse
|