1
|
Zhu Y, Zhang J, Zhao X, Guo M, Chen C, Zhou Y, Xu L. MicroRNA-7 as a multifaceted regulator of tumor glycolytic metabolism: Mechanistic insights and therapeutic perspectives. Pharmacol Res 2025; 218:107822. [PMID: 40518088 DOI: 10.1016/j.phrs.2025.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/29/2025] [Accepted: 06/09/2025] [Indexed: 06/22/2025]
Abstract
Aberrant glycolysis is a hallmark of tumor and a key oncogenic driver. However, the complex regulatory networks and dynamic signaling interactions governing glycolysis within the tumor microenvironment (TME) remain incompletely understood, posing significant challenges for developing targeted metabolic therapies. MicroRNA-7 (miR-7), a highly conserved non-coding RNA, is broadly expressed across tissues and plays pivotal roles in development, immune regulation, and disease pathogenesis, including tumor. Recent evidence positions miR-7 as a multifaceted regulator of tumor glycolysis, capable of modulating glucose metabolism through diverse mechanisms. miR-7 inhibits glucose uptake and glycolytic flux in tumor cells by directly targeting glucose transporters and glycolytic enzymes. Additionally, it influences key signaling pathways that govern the expression of glycolysis-related genes. Notably, miR-7 regulates the HIF-1α/ENO2 axis and impacts immune checkpoint expression, such as PD-L1, thereby reshaping the immunosuppressive TME and facilitating metabolic-immune crosstalk. These findings underscore the unique role of miR-7 in tumor metabolic regulation and its potential as a therapeutic target. This review provides a comprehensive overview of the molecular mechanisms by which miR-7 modulates tumor glycolysis, offering new insights into tumorigenesis and informing the development of precision oncology strategies. We also highlight unresolved questions and future directions, including the potential of miR-7-based combinatorial approaches targeting metabolic and immune pathways in tumor.
Collapse
Affiliation(s)
- Yiling Zhu
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jiayi Zhang
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Xu Zhao
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Chao Chen
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| | - Ya Zhou
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Medical Physics, Zunyi Medical University, Guizhou 563000, China.
| | - Lin Xu
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| |
Collapse
|
2
|
He HX, Dong ZR, Jing W, Huang YK, Gao ZY, Yuan GC, Jiang LB, Zhao MD. Role of the hedgehog pathway in the formation, maintenance, and degeneration of intervertebral disc. Connect Tissue Res 2025:1-15. [PMID: 40492455 DOI: 10.1080/03008207.2025.2511821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/21/2025] [Indexed: 06/12/2025]
Abstract
Low back pain (LBP), one of the most common health problems, is the leading cause of disability globally. Intervertebral disc degeneration (IDD) accounts for most LBP. However, the molecular mechanism underlying IDD remains unclear, and the existing treatment strategy for IDD is still limited. A growing body of evidences suggest that the Hedgehog (HH) pathway plays an essential role in the formation, maintenance, and degeneration of intervertebral discs (IVDs), with Sonic HH (SHH) being primarily involved in the development and maturation of the IVDs and a strong link between Indian HH(IHH) and disc calcification. This review provides an overview of the role of the HH signaling pathway in the developmental maturation and degeneration of IVDs and suggests potential therapeutic targets for IDD that may interfere with HH signaling.
Collapse
Affiliation(s)
- Huan-Xin He
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Rui Dong
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wang Jing
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yu-Kai Huang
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Yang Gao
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guang-Cheng Yuan
- Department of orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Bo Jiang
- Department of orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-Dong Zhao
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lu L, Ma Y, Tao Q, Xie J, Liu X, Wu Y, Zhang Y, Xie X, Liu M, Jin Y. Hypoxia-inducible factor-1 alpha (HIF-1α) inhibitor AMSP-30 m attenuates CCl 4-induced liver fibrosis in mice by inhibiting the sonic hedgehog pathway. Chem Biol Interact 2025; 413:111480. [PMID: 40113123 DOI: 10.1016/j.cbi.2025.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Liver fibrosis is a passive and irreversible wound healing process caused by chronic liver injury. Research has shown that the upregulation of hypoxia inducible factor-1 alpha (HIF-1α) is closely related to the occurrence and development of liver fibrosis and HIF-1 α may be a promising target for the treatment of liver fibrosis. AMSP-30 m is a newly developed novel HIF-1α inhibitor by our group, which has strong anti-tumor and anti-inflammatory effects. In this study, we described the therapeutic effect and specific mechanism of AMSP-30 m on carbon tetrachloride (CCl4) induced liver fibrosis in mice. Liver fibrosis induced by CCl4 in mice and liver fibrosis induced by cobalt dichloride (CoCl2) in LX-2 cells (human hepatic stellate cell (HSC) line) were studied. Hematoxylin & eosin (H&E)and Masson's trichrome staining were used to observe pathological conditions. Western Blot, immunofluorescence and immunohistochemistry were used to detect protein expression and localization in cells, and quantitative real-time PCR analysis (qRT-PCR) was used to detect mRNA expression. Biochemical detection kits were used to detect alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The results demonstrated that AMSP-30 m significantly alleviated pathological symptoms, reduced ALT and AST levels, and inhibited the expression of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1α1) in CCl4-induced liver fibrosis in mice. AMSP-30 m could significantly reduce the expression of HIF-1α and sonic hedgehog (Shh) pathway related proteins (Smoothened (Smo), Shh, and glioma-associated oncogene-1 (Gli-1)) in CCl4 induced liver fibrosis mice. AMSP-30 m also played a similar role in the CoCl2-induced anoxic liver fibrosis model of LX-2 cells. Further experiments showed that Cyclopamine (a Shh inhibitor) could significantly inhibit the increase of α-SMA and COL1α1 resulting from HIF-1α but not significantly inhibit HIF-1α induced by CoCl2 in LX-2 cells. And the combination of Cyclopamine and AMSP-30 m further reduced the expression of α-SMA and COL1α1 induced by HIF-1α. In summary, this study demonstrates that the HIF-1α inhibitor AMSP-30 m exerts a robust anti-fibrotic effect by inhibiting the Shh pathway, which is identified as a critical underlying mechanism. These findings suggest a promising therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Lili Lu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuchen Ma
- Pharmacy Department, Fuyang Cancer Hospital, Fuyang, Anhui, China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yang Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiuli Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mingming Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Wu J, Fu J, Li X, Xiong F, Yang F. Down-regulation of MYO1A inhibits trophoblast cell proliferation and migration through SMURF2/Hedgehog signaling pathway and leads to fetal growth restriction. Placenta 2025; 164:73-83. [PMID: 40147359 DOI: 10.1016/j.placenta.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is most commonly related to insufficient placental perfusion caused by insufficient trophoblast proliferation and migration. Myosin Ia, encoded by the gene MYO1A, plays an important role in cytoskeleton recombination and cell movement. In this study, we found that downregulation of MYO1A inhibits Hedgehog (Hh) signaling by interacting with SMURF2 in choriocarcinoma cells, leading to FGR. METHODS A total of 59 placenta samples (26 FGR placentas and 33 normal placentas) were collected. The expression of MYO1A in placental tissues of the two groups was detected by qRT-PCR and Western blotting. The proliferation ability of choriocarcinoma cell lines HTR-8/SVneo and JEG3 was tested by CCK8 and colony formation experiments, and the migration ability was tested by transwell and wound healing experiments. Co-immunoprecipitation assay is used to verify the interaction between myosin Ia and SMURF2. RESULT We found that MYO1A expression was significantly lower in the placentas of pregnant women with FGR than in normal pregnant women. Moreover, the knockdown of MYO1A has been observed to inhibit choriocarcinoma cells proliferation and migration. Downregulation of MYO1A inhibits Hh signaling by reducing SMURF2 expression. DISCUSSION Our findings suggest that FGR is associated with a down-regulation of MYO1A, which may affect the Hh pathway through its interaction with SMURF2. This provides clues for a deeper understanding of the specific mechanisms underlying FGR.
Collapse
Affiliation(s)
- Jie Wu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Fu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyun Li
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fang Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
6
|
Niu L, Hu G. EHMT2 Suppresses ARRB1 Transcription and Activates the Hedgehog Signaling to Promote Malignant Phenotype and Stem Cell Property in Oral Squamous Cell Carcinoma. Mol Biotechnol 2025; 67:1446-1462. [PMID: 38573544 DOI: 10.1007/s12033-024-01130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Oral squamous cell carcinoma (OSCC) represents the primary subtype of head and neck squamous cell carcinoma (HNSCC), characterized by a high morbidity and mortality rate. Although previous studies have established specific correlations between euchromatic histone lysine methyltransferase 2 (EHMT2), a histone lysine methyltransferase, and the malignant phenotype of OSCC cells, its biological functions in OSCC remain largely unknown. This study, grounded in bioinformatics predictions, aims to clarify the influence of EHMT2 on the malignant behavior of OSCC cells and delve into the underlying mechanisms. EHMT2 exhibited high expression in OSCC tissues and demonstrated an association with poor patient outcomes. Artificial EHMT2 silencing in OSCC cells, achieved through lentiviral vector infection, significantly inhibited colony formation, migration, invasion, and cell survival. Regarding the mechanism, EHMT2 was found to bind the promoter of arrestin beta 1 (ARRB1), thereby suppressing its transcription through H3K9me2 modification. ARRB1, in turn, was identified as a negative regulator of the Hedgehog pathway, leading to a reduction in the proteins GLI1 and PTCH1. Cancer stem cells (CSCs) were enriched through repeated sphere formation assays in two OSCC cell lines. EHMT2 was found to activate the Hedgehog pathway, thus promoting sphere formation, migration and invasion, survival, and tumorigenic activity of the OSCC-CSCs. Notably, these effects were counteracted by the additional overexpression of ARRB1. In conclusion, this study provides novel evidence suggesting that EHMT2 plays specific roles in enhancing stem cell properties in OSCC by modulating the ARRB1-Hedgehog signaling cascade.
Collapse
Affiliation(s)
- Ling Niu
- Department of Stomatology, Affiliated Hospital of Beihua University, No. 3999, Binjiang East Road, Fengman District, Jilin, 132011, Jilin, People's Republic of China
| | - Guangyao Hu
- Department of Stomatology, Affiliated Hospital of Beihua University, No. 3999, Binjiang East Road, Fengman District, Jilin, 132011, Jilin, People's Republic of China.
| |
Collapse
|
7
|
Wang Y, Peng L, Wang F. M6A-mediated molecular patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma. Cancer Biol Ther 2024; 25:2333590. [PMID: 38532632 DOI: 10.1080/15384047.2024.2333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most predominant RNA epigenetic regulation in eukaryotic cells. Numerous evidence revealed that m6A modification exerts a crucial role in the regulation of tumor microenvironment (TME) cell infiltration in several tumors. Nevertheless, the potential role and mechanism of m6A modification in nasopharyngeal carcinoma (NPC) remains unknown. mRNA expression data and clinical information from GSE102349, and GSE53819 datasets obtained from Gene Expression Omnibus (GEO) was used for differential gene expression and subsequent analysis. Consensus clustering was used to identify m6A-related molecular patterns of 88 NPC samples based on prognostic m6A regulators using Univariate Cox analysis. The TME cell-infiltrating characteristics of each m6A-related subclass were explored using single-sample gene set enrichment (ssGSEA) algorithm and CIBERSORT algotithm. DEGs between two m6A-related subclasses were screened using edgeR package. The prognostic signature and predicated nomogram were constructed based on the m6A-related DEGs. The cell infiltration and expression of prognostic signature in NPC was determined using immunohistochemistry (IHC) analysis. Chi-square test was used to analysis the significance of difference of the categorical variables. And survival analysis was performed using Kaplan-Meier plots and log-rank tests. The NPC samples were divided into two m6A-related subclasses. The TME cell-infiltrating characteristics analyses indicated that cluster 1 is characterized by immune-related and metabolism pathways activation, better response to anit-PD1 and anti-CTLA4 treatment and chemotherapy. And cluster 2 is characterized by stromal activation, low expression of HLA family and immune checkpoints, and a worse response to anti-PD1 and anti-CTLA4 treatment and chemotherapy. Furthermore, we identified 1558 DEGs between two m6A-related subclasses and constructed prognostic signatures to predicate the progression-free survival (PFS) for NPC patients. Compared to non-tumor samples, REEP2, TMSB15A, DSEL, and ID4 were upregulated in NPC samples. High expression of REEP2 and TMSB15A showed poor survival in NPC patients. The interaction between REEP2, TMSB15A, DSEL, ID4, and m6A regulators was detected. Our finding indicated that m6A modification plays an important role in the regulation of TME heterogeneity and complexity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lisha Peng
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Feng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
9
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Patel HV, Joshi JS, Shah FD. Implicating clinical utility of altered expression of PTCH1 & SMO in oral squamous cell carcinoma. J Mol Histol 2024; 55:379-389. [PMID: 38954185 DOI: 10.1007/s10735-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Oral cancer poses a significant burden on public health in India, with higher incidence and mortality rates. Despite advancements in treatment modalities, prognosis remains poor due to factors such as localized recurrence and lymph node metastasis, potentially influenced by cancer stem cells. Among signaling pathways implicated in CSC regulation, the Hedgehog pathway plays a crucial role in oral squamous cell carcinoma (OSCC). MATERIAL & METHODS 97 OSCC patients' tissue samples were collected and subjected to RNA isolation, cDNA synthesis and quantitative real-time PCR to analyze PTCH1 and SMO expression. Protein expression was assessed through immunohistochemistry. Clinicopathological parameters were correlated with gene and protein expression. Statistical analysis included Pearson chi-square tests, co-relation co-efficient tests, Kaplan-Meier survival analysis and ROC curve analysis. RESULTS PTCH1 expression correlated with lymphatic permeation (p = 0.002) and tumor stage (p = 0.002), while SMO expression correlated with lymph node status (p = 0.034) and tumor stage (p = 0.021). PTCH1 gene expression correlated with lymph node status (p = 0.024). High PTCH1 gene expression was associated with shorter survival in tongue cancer patients. ROC curve analysis indicated diagnostic potential for PTCH1 and SMO gene and cytoplasmic SMO expression in distinguishing malignant tissues from adjacent normal tissues. CONCLUSION PTCH1 and SMO play a crucial role in oral cancer progression, correlating with tumor stages and metastatic potential. Despite not directly influencing overall survival, PTCH1 expression at specific anatomical sites hints at its prognostic implications. PTCH1 and SMO exhibit diagnostic potential, suggesting their utility as molecular markers in oral cancer management and therapeutic strategies.
Collapse
Affiliation(s)
- Hitarth V Patel
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
- Gujarat University, Ahmedabad, Gujarat, India
| | - Jigna S Joshi
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
11
|
Guo L, Wang J, Yu D, Zhang Y, Zhang H, Guo Y. Expression and Functional Analysis of the Smo Protein in Apis mellifera. INSECTS 2024; 15:555. [PMID: 39057287 PMCID: PMC11277047 DOI: 10.3390/insects15070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Smoothened (Smo) is a critical component regulating the Hedgehog signaling pathway. However, whether Smo is associated with the modulation of olfactory recognition capabilities of bees remains unclear. In this study, we amplified Smo from Apis mellifera. The coding sequence of Smo was 2952 bp long, encoded 983 amino acids. Smo was most highly expressed in the antennae. Cyclopamine (200 μg/mL) significantly reduced but purmorphamine (800 μg/mL) significantly increased Smo expression (p < 0.05). OR152 and OR2 expression in the cyclopamine group significantly decreased, whereas OR152 expression in the purmorphamine group significantly increased (p < 0.05). A significant decrease in the relative values of electroantennography was observed in the cyclopamine group exposed to neral. Behavioral tests indicated a significant decrease in the attractive rates of neral, VUAA1, linalool, and methyl heptenone in the cyclopamine group. Conversely, the selection rates of linalool and methyl heptenone in the purmorphamine group significantly increased. Our findings indicate that Smo may play a role in modulating olfactory receptors in bees.
Collapse
Affiliation(s)
- Lina Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Jue Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Diandian Yu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Yu Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Huiman Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Yuan Guo
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
12
|
Gherman LM, Isachesku E, Zanoaga O, Braicu C, Berindan-Neagoe I. Molecular Markers in Canine Mammary Tumors. ACTA VET-BEOGRAD 2024; 74:159-182. [DOI: 10.2478/acve-2024-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Abstract
Canine mammary tumors (CMTs) are one of the most common neoplasms in female dogs. Unfortunately, the current diagnosis often occurs in later stages, and there is a pressing need for more comprehensive data on treatment options to improve overall prognosis. Consequently, the early detection of these tumors is critical for improving treatment outcomes and survival rates. As such, biomarkers are essential for improving the diagnosis, treatment, and prognosis of CMT, the reason for which further research is required to enhance our understanding of the disease. The most studied biomarkers for CMT are evaluated from serum and tissue samples using different molecular approaches and relate to proliferation and cell cycle. Several biomarkers were also described regarding cell damage, autophagy and apoptotic-related pathways, hypoxia, angiogenesis, EMT, invasion, metastasis or cancer stem features. Overall, biomarkers have shown the potential to be used as a tool for the early detection of mammary tumors in dogs. However, more research is needed to validate these biomarkers and to develop sensitive and specific diagnostic tests. In this regard, we aimed to review known biomarkers and their role in CMT comprehensively. We also encouraged further investigations of reliable biomarkers that could improve treatment outcomes and survival rates for dogs with this disease.
Collapse
Affiliation(s)
- Luciana-Mădălina Gherman
- University of Medicine and Pharmacy , Research Center of Functional Genomics, Biomedicine, and Translational Medicine Iuliu Hatieganu , Cluj-Napoca , Romania
- Animal Facility University of Medicine and Pharmacy Iuliu-Hatieganu , Cluj-Napoca , Romania
| | - Ekaterina Isachesku
- University of Medicine and Pharmacy , Research Center of Functional Genomics, Biomedicine, and Translational Medicine Iuliu Hatieganu , Cluj-Napoca , Romania
| | - Oana Zanoaga
- University of Medicine and Pharmacy , Research Center of Functional Genomics, Biomedicine, and Translational Medicine Iuliu Hatieganu , Cluj-Napoca , Romania
| | - Cornelia Braicu
- University of Medicine and Pharmacy , Research Center of Functional Genomics, Biomedicine, and Translational Medicine Iuliu Hatieganu , Cluj-Napoca , Romania
| | - Ioana Berindan-Neagoe
- University of Medicine and Pharmacy , Research Center of Functional Genomics, Biomedicine, and Translational Medicine Iuliu Hatieganu , Cluj-Napoca , Romania
| |
Collapse
|
13
|
Han S, Hu Y, Jia D, Lv Y, Liu M, Wang D, Chao J, Xia X, Wang Q, Liu P, Cai Y, Ren X. IFT27 regulates the long-term maintenance of photoreceptor outer segments in zebrafish. Gene 2024; 905:148237. [PMID: 38310983 DOI: 10.1016/j.gene.2024.148237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Approximately a quarter of Retinitis Pigmentosa (RP) is caused by mutations in transport-related genes in cilia. IFT27 (Intraflagellar Transport 27), a core component of the ciliary intraflagellar transport (IFT) system, has been implicated as a significant pathogenic gene in RP. The pathogenic mechanisms and subsequent pathology related to IFT27 mutations in RP are largely obscure. Here, we utilized TALEN technology to create an ift27 knockout (ift27-/-) zebrafish model. Electroretinography (ERG) detection showed impaired vision in this model. Histopathological examinations disclosed that ift27 mutations cause progressive degeneration of photoreceptors in zebrafish, and this degeneration was late-onset. Immunofluorescence labeling of outer segments showed that rods degenerated before cones, aligning with the conventional characterization of RP. In cultured human retinal pigment epithelial cells, we found that IFT27 was involved in maintaining ciliary morphology. Furthermore, decreased IFT27 expression resulted in the inhibition of the Hedgehog (Hh) signaling pathway, including decreased expression of key factors in the Hh pathway and abnormal localization of the ciliary mediator Gli2. In summary, we generated an ift27-/- zebrafish line with retinal degeneration which mimicked the symptoms of RP patients, highlighting IFT27's integral role in the long-term maintenance of cilia via the Hh signaling pathway. This work may furnish new insights into the treatment or delay of RP caused by IFT27 mutations.
Collapse
Affiliation(s)
- Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Yue Hu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Danna Jia
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yuexia Lv
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Qiong Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Pei Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yu Cai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Fakhri S, Moradi SZ, Abbaszadeh F, Faraji F, Amirian R, Sinha D, McMahon EG, Bishayee A. Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals. Cancer Metastasis Rev 2024; 43:261-292. [PMID: 38169011 DOI: 10.1007/s10555-023-10161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Plasticity of phenotypic traits refers to an organism's ability to change in response to environmental stimuli. As a result, the response may alter an organism's physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700 026, West Bengal, India
| | - Emily G McMahon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
16
|
Doboszewska U, Maret W, Wlaź P. GPR39: An orphan receptor begging for ligands. Drug Discov Today 2024; 29:103861. [PMID: 38122967 DOI: 10.1016/j.drudis.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Progress in the understanding of the receptor GPR39 is held up by inconsistent pharmacological data. First, the endogenous ligand(s) remain(s) contentious. Data pointing to zinc ions (Zn2+) and/or eicosanoids as endogenous ligands are a matter of debate. Second, there are uncertainties in the specificity of the widely used synthetic ligand (agonist) TC-G 1008. Third, activation of GPR39 has been often proposed as a novel treatment strategy, but new data also support that inhibition might be beneficial in certain disease contexts. Constitutive activity/promiscuous signaling suggests the need for antagonists/inverse agonists in addition to (biased) agonists. Here, we scrutinize data on the signaling and functions of GPR39 and critically assess factors that might have contributed to divergent outcomes and interpretations of investigations on this important receptor.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
17
|
Chandel SS, Mishra A, Dubey G, Singh RP, Singh M, Agarwal M, Chawra HS, Kukreti N. Unravelling the role of long non-coding RNAs in modulating the Hedgehog pathway in cancer. Pathol Res Pract 2024; 254:155156. [PMID: 38309021 DOI: 10.1016/j.prp.2024.155156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Cancer is a multifactorial pathological condition characterized by uncontrolled cellular proliferation, genomic instability, and evasion of regulatory mechanisms. It arises from the accumulation of genetic mutations confer selective growth advantages, leading to malignant transformation and tumor formation. The intricate interplay between LncRNAs and the Hedgehog pathway has emerged as a captivating frontier in cancer research. The Hedgehog pathway, known for its fundamental roles in embryonic development and tissue homeostasis, is frequently dysregulated in various cancers, contributing to aberrant cellular proliferation, survival, and differentiation. The Hh pathway is crucial in organizing growth and maturation processes in multicellular organisms. It plays a pivotal role in the initiation of tumors as well as in conferring resistance to conventional therapeutic approaches. The crosstalk among the Hh pathway and lncRNAs affects the expression of Hh signaling components through various transcriptional and post-transcriptional processes. Numerous pathogenic processes, including both non-malignant and malignant illnesses, have been identified to be induced by this interaction. The dysregulation of lncRNAs has been associated with the activation or inhibition of the Hh pathway, making it a potential therapeutic target against tumorigenesis. Insights into the functional significance of LncRNAs in Hedgehog pathway modulation provide promising avenues for diagnostic and therapeutic interventions. The dysregulation of LncRNAs in various cancer types underscores their potential as biomarkers for early detection and prognostication. Additionally, targeting LncRNAs associated with the Hedgehog pathway presents an innovative strategy for developing precision therapeutics to restore pathway homeostasis and impede cancer progression. This review aims to elucidate the complex regulatory network orchestrated by LncRNAs, unravelling their pivotal roles in modulating the Hedgehog pathway and influencing cancer progression.
Collapse
Affiliation(s)
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
18
|
Luo X, He X, Zhang X, Zhao X, Zhang Y, Shi Y, Hua S. Hepatocellular carcinoma: signaling pathways, targeted therapy, and immunotherapy. MedComm (Beijing) 2024; 5:e474. [PMID: 38318160 PMCID: PMC10838672 DOI: 10.1002/mco2.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a high mortality rate. It is regarded as a significant public health issue because of its complicated pathophysiology, high metastasis, and recurrence rates. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Traditional treatment methods such as surgical resection, radiotherapy, chemotherapy, and interventional therapies have limited therapeutic effects for HCC patients with recurrence or metastasis. With the development of molecular biology and immunology, molecular signaling pathways and immune checkpoint were identified as the main mechanism of HCC progression. Targeting these molecules has become a new direction for the treatment of HCC. At present, the combination of targeted drugs and immune checkpoint inhibitors is the first choice for advanced HCC patients. In this review, we mainly focus on the cutting-edge research of signaling pathways and corresponding targeted therapy and immunotherapy in HCC. It is of great significance to comprehensively understand the pathogenesis of HCC, search for potential therapeutic targets, and optimize the treatment strategies of HCC.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xin He
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xingmei Zhang
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiaohui Zhao
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yuzhe Zhang
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yusheng Shi
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Shengni Hua
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
19
|
Shao S, Sun Y, Zhao D, Tian Y, Yang Y, Luo N. A ubiquitination-related risk model for predicting the prognosis and immunotherapy response of gastric adenocarcinoma patients. PeerJ 2024; 12:e16868. [PMID: 38313020 PMCID: PMC10838090 DOI: 10.7717/peerj.16868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Ubiquitination is crucial for the growth of cancer. However, the role of ubiquitination-related genes (URGs) in stomach adenocarcinoma (STAD) remains unclear. Differentially expressed URGs (DE-URGs) were examined in the whole TCGA-STAD dataset, and the prognosis-related genes were discovered from the The Cancer Genome Atlas (TCGA) training set. Prognostic genes were discovered using selection operator regression analysis and absolute least shrinkage (LASSO). A multivariate Cox analysis was further employed, and a polygene-based risk assessment system was established. Signatures were verified using the Gene Expression Omnibus (GEO) database record GSE84433 and the TCGA test set. Using the MEXPRESS dataset, a detailed analysis of gene expression and methylation was carried out. Using the DAVID database, DE-URG function and pathway enrichment was examined. The identified 163 DE-URGs were significantly associated with pathways related to protein ubiquitination, cell cycle, and cancer. A prognostic signature based on 13 DE-URGs was constructed, classifying patients into two risk groups. Compared to low-risk patients, people at high risk had considerably shorter survival times. Cox regression analyses considered prognostic parameters independent of age and risk score and were used to generate nomograms. Calibration curves show good agreement between nomogram predictions and observations. Furthermore, the results of the MEXPRESS analysis indicated that 13 prognostic DE-URGs had an intricate methylation profile. The enhanced Random Forest-based model showed greater efficacy in predicting prognosis, mutation, and immune infiltration. The in vitro validation, including CCK8, EdU, Transwell, and co-culture Transwell, proved that RNF144A was a potent oncogene in STAD and could facilitate the migration of M2 macrophages. In this research, we have created a genetic model based on URGs that can appropriately gauge a patient's prognosis and immunotherapy response, providing clinicians with a reliable tool for prognostic assessment and supporting clinical treatment decisions.
Collapse
Affiliation(s)
- Shuai Shao
- General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yang Sun
- General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dongmei Zhao
- Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yu Tian
- Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yifan Yang
- General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Luo
- Infection, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Zhou Y, Xue X, Luo J, Li P, Xiao Z, Zhang W, Zhou J, Li P, Zhao J, Ge H, Tian Z, Zhao X. Circular RNA circ-FIRRE interacts with HNRNPC to promote esophageal squamous cell carcinoma progression by stabilizing GLI2 mRNA. Cancer Sci 2023; 114:3608-3622. [PMID: 37417427 PMCID: PMC10475760 DOI: 10.1111/cas.15899] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023] Open
Abstract
Increasing evidence has shown that circular RNAs (circRNAs) interact with RNA-binding proteins (RBPs) and promote cancer progression. However, the function and mechanism of the circRNA/RBP complex in esophageal squamous cell carcinoma (ESCC) are still largely unknown. Herein, we first characterized a novel oncogenic circRNA, circ-FIRRE, by RNA sequencing (Ribo-free) profiling of ESCC samples. Furthermore, we observed marked circ-FIRRE overexpression in ESCC patients with high TNM stage and poor overall survival. Mechanistic studies indicated that circ-FIRRE, as a platform, interacts with the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein to stabilize GLI2 mRNA by directly binding to its 3'-UTR in the cytoplasm, thereby resulting in elevated GLI2 protein expression and subsequent transcription of its target genes MYC, CCNE1, and CCNE2, ultimately contributing to ESCC progression. Moreover, HNRNPC overexpression in circ-FIRRE knockdown cells notably abolished circ-FIRRE knockdown-mediated Hedgehog pathway inhibition and ESCC progression impairment in vitro and in vivo. Clinical specimen results showed that circ-FIRRE and HNRNPC expression was positively correlated with GLI2 expression, which reveals the clear significance of the circ-FIRRE/HNRNPC-GLI2 axis in ESCC. In summary, our results indicate that circ-FIRRE could serve as a valuable biomarker and potential therapeutic target for ESCC and highlight a novel mechanism of the circ-FIRRE/HNRNPC complex in ESCC progression regulation.
Collapse
Affiliation(s)
- Yongjia Zhou
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Xia Xue
- Department of PharmacyThe Second Hospital of Shandong UniversityJinanChina
| | - Junwen Luo
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Peiwei Li
- Institute of Medical SciencesThe Second Hospital of Shandong UniversityJinanChina
| | - Zhaohua Xiao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Wenhao Zhang
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Jie Zhou
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Peichao Li
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Jiangfeng Zhao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Haibo Ge
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Zhongxian Tian
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
- Key Laboratory of Thoracic Cancer in Universities of ShandongThe Second Hospital of Shandong UniversityJinanChina
| | - Xiaogang Zhao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
- Key Laboratory of Thoracic Cancer in Universities of ShandongThe Second Hospital of Shandong UniversityJinanChina
| |
Collapse
|
21
|
Mirzaei R, Shafiee S, Vafaei R, Salehi M, Jalili N, Nazerian Z, Muhammadnajad A, Yadegari F, Reza Esmailinejad M, Farahmand L. Production of novel recombinant anti-EpCAM antibody as targeted therapy for breast cancer. Int Immunopharmacol 2023; 122:110656. [PMID: 37473710 DOI: 10.1016/j.intimp.2023.110656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND The utilization of monoclonal antibodies (moAbs), an issue correlated with the biopharmaceutical professions, is developing and maturing. Coordinated with this conception, we produced the appealingly modeled anti-EpCAM scFv for breast cancer tumors. METHODS Afterward cloning and expression of recombinant antibody in Escherichia coli bacteria, the correctness of the desired antibody was checked by western blotting. Flow cytometry was utilized to determine the capacity of the recombinant antibody to append to the desired receptors in the malignant breast cancer (BC)cell line. The recombinant antibody (anti-EpCAM scFv) was examined for preclinical efficacy in reducing tumor growth, angiogenesis, and invasiveness (in vitro- in vivo). FINDINGS A target antibody-mediated attenuation of migration and invasion in the examined cancer cell lines was substantiated (P-value < 0.05). Grafted tumors from breast cancer in mice indicated significant and compelling suppression of tumor growth and decrement in blood supply in reaction to the recombinant anti-EpCAM intervention. Evaluations of immunohistochemical and histopathological findings revealed an enhanced response rate to the treatment. CONCLUSION The desired anti-EpCAM scFv can be a therapeutic tool to reduce invasion and proliferation in malignant breast cancer.
Collapse
Affiliation(s)
- Roya Mirzaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Soodabeh Shafiee
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rana Vafaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Nazerian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ahad Muhammadnajad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohamad Reza Esmailinejad
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
22
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
23
|
Song T, He N, Hao Z, Yang Y. Upregulation of ENKD1 disrupts cellular homeostasis to promote lymphoma development. J Cell Physiol 2023; 238:1308-1323. [PMID: 36960713 DOI: 10.1002/jcp.31012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a common and aggressive form of B cell lymphoma. Approximately 40% of DLBCL patients are incurable despite modern therapeutic approaches. To explore the molecular mechanisms driving the growth and progression of DLBCL, we analyzed genes with differential expression in DLBCL using the Gene Expression Profiling Interactive Analysis database. Enkurin domain-containing protein 1 (ENKD1), a centrosomal protein-encoding gene, was found to be highly expressed in DLBCL samples compared with normal samples. The phylogenetic analysis revealed that ENKD1 is evolutionarily conserved. Depletion of ENKD1 in cultured DLBCL cells induced apoptosis, suppressed cell proliferation, and blocked cell cycle progression in the G2/M phase. Moreover, ENKD1 expression positively correlates with the expression levels of a number of cellular homeostatic regulators, including Sperm-associated antigen 5, a gene encoding an important mitotic regulator. These findings thus demonstrate a critical function for ENKD1 in regulating the cellular homeostasis and suggest a potential value of targeting ENKD1 for the treatment of DLBCL.
Collapse
Affiliation(s)
- Ting Song
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| | - Na He
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ziqian Hao
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| |
Collapse
|
24
|
Farahzadi R, Valipour B, Montazersaheb S, Fathi E. Targeting the stem cell niche micro-environment as therapeutic strategies in aging. Front Cell Dev Biol 2023; 11:1162136. [PMID: 37274742 PMCID: PMC10235764 DOI: 10.3389/fcell.2023.1162136] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Adult stem cells (ASCs) reside throughout the body and support various tissue. Owing to their self-renewal capacity and differentiation potential, ASCs have the potential to be used in regenerative medicine. Their survival, quiescence, and activation are influenced by specific signals within their microenvironment or niche. In better words, the stem cell function is significantly influenced by various extrinsic signals derived from the niche. The stem cell niche is a complex and dynamic network surrounding stem cells that plays a crucial role in maintaining stemness. Studies on stem cell niche have suggested that aged niche contributes to the decline in stem cell function. Notably, functional loss of stem cells is highly associated with aging and age-related disorders. The stem cell niche is comprised of complex interactions between multiple cell types. Over the years, essential aspects of the stem cell niche have been revealed, including cell-cell contact, extracellular matrix interaction, soluble signaling factors, and biochemical and biophysical signals. Any alteration in the stem cell niche causes cell damage and affects the regenerative properties of the stem cells. A pristine stem cell niche might be essential for the proper functioning of stem cells and the maintenance of tissue homeostasis. In this regard, niche-targeted interventions may alleviate problems associated with aging in stem cell behavior. The purpose of this perspective is to discuss recent findings in the field of stem cell aging, heterogeneity of stem cell niches, and impact of age-related changes on stem cell behavior. We further focused on how the niche affects stem cells in homeostasis, aging, and the progression of malignant diseases. Finally, we detail the therapeutic strategies for tissue repair, with a particular emphasis on aging.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
25
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
26
|
Yu X, Li W, Feng Y, Gao Z, Wu Q, Xia Y. The prognostic value of hedgehog signaling in bladder cancer by integrated bioinformatics. Sci Rep 2023; 13:6241. [PMID: 37069207 PMCID: PMC10110581 DOI: 10.1038/s41598-023-33140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Bladder cancer is the second most prevalent urological malignancy. It's a big contributor to cancer-related deaths throughout the globe. Researchers discovered that the hedgehog signaling (HhS) pathway contributed to the onset and spread of many different kinds of cancer. Nevertheless, the present understanding of the function of HhS in the bladder cancer molecular landscape is incomplete. Raw data were gotten from the IMvigor210, the Gene Expression Omnibus, and The Cancer Genome Atlas databases. Bioinformatics was used to examine the HhS score of each sample, and the enrichment of differentially expressed genes (DEGs), differentiation characteristics, immunological infiltration, and metabolic activity. The HhS prognostic signature was developed with significant assistance from the least absolute shrinkage and selection operator regression and Cox regression. An HhS-related nomogram was developed to assist in the prediction of patients' survival probability. We found that HhS was linked to poor prognosis in bladder cancer, and its activation was linked to the Basal subtype of bladder cancer. Bladder cancer with high HhS activity has higher glycolysis, nucleotide metabolism, amino acid metabolism, and other cancer-promoting metabolic activities. Furthermore, HhS mediates an immunosuppressive microenvironment in bladder cancer on the basis that HhS negatively correlates with the CD8 + T cells and correlates positively with immune checkpoints and T cell exhaustion scores. Finally, an HhS-related signature was developed for predicting the prognosis of patients with bladder cancer. Targeting HhS may be a potential therapy choice for bladder cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Yanjun Feng
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Yue Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
28
|
Zheng G, Ren J, Shang L, Bao Y. Sonic Hedgehog Signaling Pathway: A Role in Pain Processing. Neurochem Res 2023; 48:1611-1630. [PMID: 36738366 DOI: 10.1007/s11064-023-03864-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Pain, as one of the most prevalent clinical symptoms, is a complex physiological and psychological activity. Long-term severe pain can become unbearable to the body. However, existing treatments do not provide satisfactory results. Therefore, new mechanisms and therapeutic targets need to be urgently explored for pain management. The Sonic hedgehog (Shh) signaling pathway is crucial in embryonic development, cell differentiation and proliferation, and nervous system regulation. Here, we review the recent studies on the Shh signaling pathway and its action in multiple pain-related diseases. The Shh signaling pathway is dysregulated under various pain conditions, such as pancreatic cancer pain, bone cancer pain, chronic post-thoracotomy pain, pain caused by degenerative lumbar disc disease, and toothache. Further studies on the Shh signaling pathway may provide new therapeutic options for pain patients.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
29
|
Chen R, Liu X, Tan N. Bone Marrow Mesenchymal Stem Cell (BMSC)-Derived Exosomes Regulates Growth of Breast Cancer Cells Mediated by Hedgehog Signaling Pathway. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BMSCs promote breast cancer development mainly through tumor microenvironment pathway and secreting exosomes. However, the mechanism is unclear. This study mainly explores whether BMSC-derived exosomes influence breast cancer by mediating Hedgehog signaling pathway. MCF-7 and BMSC were
cultured and then assigned into MCF-7 +Vehicle group, MCF-7+ Exosome group, and MCF-7+Exosome+Gant61 (Hedgehog signaling blocker) group followed by analysis of cell proliferation and migration, p-Akt and β-catenin expression. MCF-7+Exosome group had the highest OD450 value compared
to other two groups (P >0.05). In addition, migration distance of MCF-7 cells was the highest in MCF-7+Exosome group without difference between other two groups (P >0.05). Gli1 and SMO expression in MCF-7+Exosome group was highest compared to other two groups (P
>0.05). In conclusion, exosome from BMSC promotes breast cancer cell proliferation and migration. The mechanism may be through raising GLI1, Smo protein expression, further raising the Hedgehog signaling pathway to some extent.
Collapse
Affiliation(s)
- Ruying Chen
- Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, 410007, China
| | - Xiulan Liu
- Department of Emergency, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, 410007, China
| | - Na Tan
- Department of Outpatient Clinic, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, 410007, China
| |
Collapse
|
30
|
Lin L, Zhu S, Huang H, Wu LP, Huang J. Chemically modified small interfering RNA targeting Hedgehog signaling pathway for rheumatoid arthritis therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:88-104. [PMID: 36618268 PMCID: PMC9813581 DOI: 10.1016/j.omtn.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that leads to disability; however, existing therapies are still unsatisfactory. Activated fibroblast-like synoviocytes (FLSs) play an essential role in synovitis formation and joint destruction in RA. The Hedgehog signaling pathway is aberrantly activated and contributes to the aggressive phenotype of RA-FLSs. However, it remains uncertain whether inhibiting Smoothened (SMO), a critical component of the Hedgehog signaling pathway, is an effective treatment for RA. Here, we design a series of small interfering RNAs (siRNAs) that specifically target the SMO gene. With precise chemical modifications, siRNAs' efficacy and stability are significantly improved, and the off-target effects are minimized. The optimized chemically modified siRNA (si-S1A3-Chol) decreases RA-FLS proliferation and invasiveness without the transfection reagent. Furthermore, si-S1A3-Chol injected intra-articularly effectively alleviates joint destruction and improves motor function in collagen-induced arthritis mouse models. Consequently, our results demonstrate that chemically modified siRNA targeting the Hedgehog signaling pathway may be a potential therapy for RA.
Collapse
Affiliation(s)
- Lang Lin
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China
| | - Shangling Zhu
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China
| | - Hongyu Huang
- Division of Clinical Public Health and Institute for Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China,Corresponding author: Lin-Ping Wu, Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China.
| | - Jianlin Huang
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China,Corresponding author: Jianlin Huang, Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China.
| |
Collapse
|
31
|
Feng Z, Zhu S, Li W, Yao M, Song H, Wang RB. Current approaches and strategies to identify Hedgehog signaling pathway inhibitors for cancer therapy. Eur J Med Chem 2022; 244:114867. [DOI: 10.1016/j.ejmech.2022.114867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
|
32
|
Resveratrol Induces Apoptosis, Suppresses Migration, and Invasion of Cervical Cancer Cells by Inhibiting the Hedgehog Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8453011. [PMID: 36246980 PMCID: PMC9568329 DOI: 10.1155/2022/8453011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
To investigate the effect and mechanism of resveratrol on the biological behavior of cervical cancer cells (HeLa cells), the apoptosis, migration, and invasion of HeLa cells were detected by flow cytometry, wound healing, and transwell assays. The expression levels of Hedgehog signal pathway proteins (smoothened (SMO), zinc finger transcription factors (Gli1), and sonic hedgehog homolog (Shh)) were detected by quantitative real-time PCR (qPCR) and western blotting. Compared with that control group, resveratrol (RES) significantly induced apoptosis, inhibited the migration and invasion of the HeLa cells. The expression of SMO, Gli1, and Shh were downregulated in the HeLa cells treated with RES. The Hedgehog agonist purmorphamine (PUR) reversed the RES-induced increase of apoptosis and reduction of migration and invasion in the HeLa cells. In conclusion, RES induced the apoptosis and suppressed the migration and invasion of HeLa cells by inhibiting Hedgehog signal pathway.
Collapse
|
33
|
Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, Jayaraman S, Patil S, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci 2022; 9:965730. [PMID: 36250024 PMCID: PMC9560780 DOI: 10.3389/fmolb.2022.965730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Collapse
Affiliation(s)
- Dibyashree Chhetri
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Varadharaju Balachandran
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Ashok Iyaswamy
- Centre for Parkinsons Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| |
Collapse
|
34
|
Hassanin F, Al Hussain H, Maktabi A, Adly N, Alsuabeyl M, Abedalthagafi M, Edward DP, Strianese D. Periocular Pigmented Basal Cell Carcinomas: Clinicopathologic Features and Mutational Profile. Ophthalmic Plast Reconstr Surg 2022; 38:475-482. [PMID: 35699213 DOI: 10.1097/iop.0000000000002173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Pigmented basal cell carcinomas (PBCC) is an uncommon variant of basal cell carcinoma of the periocular region with limited information in the literature. We highlight the clinicopathological profile and somatic mutations in periocular PBCC. METHODS The clinicopathological features and somatic mutations in patients with periocular PBCC were examined and compared with periocular non-PBCC reported in the literature. Next-generation sequencing panel analysis for the excised tumors identified somatic mutations. RESULTS In a total of 31 patients, PBCC was common in females (54%; p = 0.03); as a unilateral lower eyelid (n = 22; 71%), solitary mass (n = 30; 98%). Pathologic subtypes were variable. Most were nodular or mixed variants (n = 23; 74%). During the follow up (2.5-4.5 years), 1 patient (3.5%) had a recurrence. The clinical and pathologic features of PBCC were similar to those reported in nonperiocular locations. Somatic mutations detected in 25/31 tumors. Variants in 50/161 genes in the panel were noted. PTCH1 (14/31), TERT (12/31), and SMO (7/31) variants were common. Fifteen patients had novel drivers, including POLE, FANCD2, and CREBBP. SMO mutations were significantly more common in females (7/7), lower eyelid (5/7), and TERT mutations were more common in nodular subtype (10/12). CONCLUSIONS In this large cohort of a relatively uncommon variant of BCC, the clinicopathological features and tumor behavior of PBCC was similar to periocular non-PBCC. The somatic mutation spectrum of PBCC resembles that reported in nonperiocular cutaneous BCC with novel drivers identified. We identified several potential actionable mutations that could be targeted with molecular therapy.
Collapse
Affiliation(s)
- Fadi Hassanin
- King Khaled Eye Specialty Hospital, Riyadh, Saudi Arabia
- Department of Ophthalmology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Azza Maktabi
- King Khaled Eye Specialty Hospital, Riyadh, Saudi Arabia
| | - Nouran Adly
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz, City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad Alsuabeyl
- Life Science and Environmental Institute, King Abdulaziz, City for Science and Technology, Riyadh, Saudi Arabia
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz, City for Science and Technology, Riyadh, Saudi Arabia
| | - Deepak P Edward
- King Khaled Eye Specialty Hospital, Riyadh, Saudi Arabia
- Department of Ophthalmology and Visual Sciences and Pathology, University of Illinois College of Medicine, Chicago, Illinois, U.S.A
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | | |
Collapse
|
35
|
Wumei Pill Ameliorates AOM/DSS-Induced Colitis-Associated Colon Cancer through Inhibition of Inflammation and Oxidative Stress by Regulating S-Adenosylhomocysteine Hydrolase- (AHCY-) Mediated Hedgehog Signaling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4061713. [PMID: 35927991 PMCID: PMC9345734 DOI: 10.1155/2022/4061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Wumei Pill (WMP) is a traditional Chinese herbal formulation and widely used to treat digestive system diseases in clinical. S-Adenosylhomocysteine hydrolase (AHCY) can catalyze the hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine in living organisms, and its abnormal expression is linked to the pathogenesis of many diseases including colorectal cancer (CRC). A previous study reported that WMP could prevent CRC in mice; however, the underlying mechanisms especially the roles of AHCY in WMP-induced anti-CRC remain largely unknown. Here, we investigated the regulatory roles and potential mechanisms of AHCY in WMP-induced anti-CRC. WMP notably alleviated the azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colitis-associated colon cancer (CAC) in mice. Besides, WMP inhibited the inflammation and oxidative stress in AOM/DSS-induced CAC mice. AHCY was high expression in clinical samples of colon cancer compared to the adjacent tissues. WMP inhibited the AHCY expression in AOM/DSS-induced CAC mice. An in vitro study found that AHCY overexpression induced cell proliferation, colony formation, invasion, and tumor angiogenesis, whereas its knockdown impaired its oncogenic function. AHCY overexpression enhanced, while its knockdown weakened the inflammation and oxidative stress in colon cancer cells. Interestingly, WMP potently suppressed the hedgehog (Hh) signaling in AOM/DSS-induced CAC mice. A further study showed that AHCY overexpression activated the Hh signaling while AHCY knockdown inactivated the Hh signaling. Moreover, activation of the Hh signaling reversed the effect of AHCY silencing on inflammation and oxidative stress in vitro. In conclusion, WMP alleviated the AOM/DSS-induced CAC through inhibition of inflammation and oxidative stress by regulating AHCY-mediated hedgehog signaling in mice. These findings uncovered a potential molecular mechanism underlying the anti-CAC effect of WMP and suggested WMP as a promising therapeutic candidate for CRC.
Collapse
|
36
|
Wang X, Liu Y, He J, Wang J, Chen X, Yang R. Regulation of signaling pathways in hair follicle stem cells. BURNS & TRAUMA 2022; 10:tkac022. [PMID: 35795256 PMCID: PMC9250793 DOI: 10.1093/burnst/tkac022] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Hair follicle stem cells (HFSCs) reside in the bulge region of the outer root sheath of the hair follicle. They are considered slow-cycling cells that are endowed with multilineage differentiation potential and superior proliferative capacity. The normal morphology and periodic growth of HFSCs play a significant role in normal skin functions, wound repair and skin regeneration. The HFSCs involved in these pathophysiological processes are regulated by a series of cell signal transduction pathways, such as lymphoid enhancer factor/T-cell factor, Wnt/β-catenin, transforming growth factor-β/bone morphogenetic protein, Notch and Hedgehog. The mechanisms of the interactions among these signaling pathways and their regulatory effects on HFSCs have been previously studied, but many mechanisms are still unclear. This article reviews the regulation of hair follicles, HFSCs and related signaling pathways, with the aims of summarizing previous research results, revealing the regulatory mechanisms of HFSC proliferation and differentiation and providing important references and new ideas for treating clinical diseases.
Collapse
Affiliation(s)
| | | | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Xiaodong Chen
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| | - Ronghua Yang
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| |
Collapse
|
37
|
Zhang M, Tao Z, Gao L, Chen F, Ye Y, Xu S, Huang W, Li X. Toosendanin inhibits colorectal cancer cell growth through the Hedgehog pathway by targeting Shh. Drug Dev Res 2022; 83:1201-1211. [PMID: 35656621 DOI: 10.1002/ddr.21951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide. This complex and often fatal disease has a high mortality rate. The Hedgehog (Hh) signaling pathway is crucial in CRC. Many studies have indicated that Shh is overexpressed in cancer stem cells (CSCs), and shh overexpression is positively correlated with CRC tumorigenesis. New drugs that kill CRC cells through the Hh pathway are needed. Toosendanin (TSN), a natural triterpenoid saponin extracted from the bark or fruit of Melia toosendan Sieb. et Zucc, can inhibit various tumors. Here, we investigated the effects of TSN in CRC and explored the possible targets and mechanisms. Shh-Light Ⅱ cells were treated with TSN and tested by dual luciferase reporter assays to determine the relationship with the Hh pathway. Cell Counting Kit-8 (CCK-8) assays were used to test the inhibitory effects of TSN on CRC cells. The expression of Hh components after TSN treatment was detected using western blots and quantitative reverse transcription polymerase chain reaction. Cellular thermal shift assays confirmed the targets of TSN. The same effects of TSN on xenograft tumor growth were investigated in vivo. The average weight, volume of the finally resected tumor, and the expression of Shh in the TSN-treated groups were significantly lower than those of the control group. This result strongly suggested that TSN administration inhibited CRC growth in vivo. Our research preliminarily demonstrated that the target of TSN was Shh and that TSN inhibits CRC cell growth by inhibiting the Hh pathway, identifying a new anticancer molecular mechanism of TSN in CRC.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhongyi Tao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijuan Gao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fengyang Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shifang Xu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenkang Huang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyu Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Darvishi B, Eisavand MR, Majidzadeh-A K, Farahmand L. Matrix stiffening and acquired resistance to chemotherapy: concepts and clinical significance. Br J Cancer 2022; 126:1253-1263. [PMID: 35124704 PMCID: PMC9043195 DOI: 10.1038/s41416-021-01680-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) refers to the non-cellular components of the tumour microenvironment, fundamentally providing a supportive scaffold for cellular anchorage and transducing signaling cues that orchestrate cellular behaviour and function. The ECM integrity is abrogated in several cases of cancer, ending in aberrant activation of a number of mechanotransduction pathways and induction of multiple tumorigenic events such as extended proliferation, cell death resistance, epithelial-mesenchymal transition and most importantly the development of chemoresistance. In this regard, the present study mainly aims to elucidate how the ECM-stiffening process may contribute to the development of chemoresistance during cancer progression and what pharmacological approaches are required for tackling this issue. Hence, the first section of this review explains the process of ECM stiffening and the ways it may affect biochemical pathways to induce chemoresistance in a clinic. In addition, the second part focuses on describing some of the most important pharmacological agents capable of targeting ECM components and underlying pathways for overcoming ECM-induced chemoresistance. Finally, the third part discusses the obtained results from the application of these agents in the clinic for overcoming chemoresistance.
Collapse
Affiliation(s)
- Behrad Darvishi
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Eisavand
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
39
|
Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, Niu J, Zhao L. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer 2022; 21:115. [PMID: 35581586 PMCID: PMC9112456 DOI: 10.1186/s12943-022-01591-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China
| | - Jumin Niu
- Department of Gynecology, Shenyang Women's and Children's Hospital, Shenyang, 110011, People's Republic of China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
40
|
Xu S, Tang C. Cholesterol and Hedgehog Signaling: Mutual Regulation and Beyond. Front Cell Dev Biol 2022; 10:774291. [PMID: 35573688 PMCID: PMC9091300 DOI: 10.3389/fcell.2022.774291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (HH) signaling is one of the key agents that govern the precisely regulated developmental processes of multicellular organisms in vertebrates and invertebrates. The HH pathway in the receiving cell includes Patched1, a twelve-pass transmembrane receptor, and Smoothened, a seven-transmembrane G-protein coupled receptor (GPCR), and the downstream GLI family of three transcriptional factors (GLI1-GLI3). Mutations of HH gene and the main components in HH signaling are also associated with numerous types of diseases. Before secretion, the HH protein undergoes post-translational cholesterol modification to gain full activity, and cholesterol is believed to be essential for proper HH signaling transduction. In addition, results from recent studies show the reciprocal effect that HH signaling functions in cholesterol metabolism as well as in cholesterol homeostasis, which provides feedback to HH pathway. Here, we hope to provide new insights into HH signaling function by discussing the role of cholesterol in HH protein maturation, secretion and HH signaling transduction, and the potential role of HH in regulation of cholesterol as well.
Collapse
|
41
|
Zheng X, Liu X, Lei Y, Wang G, Liu M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front Oncol 2022; 12:824208. [PMID: 35251989 PMCID: PMC8889910 DOI: 10.3389/fonc.2022.824208] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Glypican-3 (GPC3) is a membrane-associated proteoglycan that is specifically up-regulated in hepatocellular carcinoma (HCC) although rarely or not expressed in normal liver tissues, making it a perfect diagnostic and treatment target for HCC. Several GPC3-based clinical trials are ongoing and recently several innovative GPC3-targeted therapeutic methods have emerged with exciting results, including GPC3 vaccine, anti-GPC3 immunotoxin, combined therapy with immune checkpoint blockades (ICBs), and chimeric antigen receptor (CAR) T or NK cells. Here, we review the value of GPC3 in the diagnosis and prognosis of HCC, together with its signaling pathways, with a specific focus on GPC3-targeted treatments of HCC and some prospects for the future GPC3-based therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
GLI3 and androgen receptor are mutually dependent for their malignancy-promoting activity in ovarian and breast cancer cells. Cell Signal 2022; 92:110278. [DOI: 10.1016/j.cellsig.2022.110278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
|
43
|
Peng X, Xiong X, Li Y, Feng C, Liu H, Wu P, Li C, Weng W. Encouraging Early Outcomes of Treatment With Arsenic Trioxide Combined With Chemotherapy for Alveolar Rhabdomyosarcoma in Children: 4 Case Reports. Front Oncol 2021; 11:751623. [PMID: 34778066 PMCID: PMC8586416 DOI: 10.3389/fonc.2021.751623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Alveolar rhabdomyosarcoma (ARMS) is a subtype of rhabdomyosarcoma characterized by its aggressive behavior and poor prognosis, highlighting the need for novel treatment options. Arsenic trioxide (ATO) has been shown to specifically inhibit tumor growth and the metastasis of ARMS in vitro by acting on the hedgehog pathway. Here we report on a pilot clinical study to evaluate the activity of an ATO-combined chemotherapy approach for the treatment of ARMS patients. Methods We designed a therapeutic schedule of an ATO-combined chemotherapy, incorporating comprehensive management according to the Intergroup Rhabdomyosarcoma Study Group protocol. ATO was administered at 0.16 mg/kg per day over 8 h via an IV for 10 days combined with a chemotherapeutic regimen of vincristine, actinomycin, and cyclophosphamide (VAC regimen) on the third day, which was repeated every 21 days. A total of eight cycles of ATO-combined chemotherapy were applied throughout the entire scheme. Results A total of three refractory/recurrent and one untreated ARMS patient, three male and one female, with a median age of 5.8 years (range, 5.1 to 12.5 years), were enrolled in the present study. All patients were sensitive to combined chemotherapy with ATO and achieved partial or complete remission during treatment. Except for reversible gastrointestinal reaction and myelosuppression, no other adverse events were observed during the process of treatment. Conclusions The combined chemotherapy of ATO and the VAC regimen exhibited beneficial activities against ARMS in pediatrics and was well tolerated, but prospective large-scale clinical trials are warranted to determine the long-term efficacy, optimal courses, and late toxicity in this population.
Collapse
Affiliation(s)
- Xiaomin Peng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xilin Xiong
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Li
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuchu Feng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyan Liu
- Hematology and Oncology Department ward 7, Beijing Jingdu Children's Hospital, Beijing, China
| | - Pingping Wu
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunmou Li
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Weng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
Merikhian P, Darvishi B, Jalili N, Esmailinejad MR, Khatibi AS, Kalbolandi SM, Salehi M, Mosayebzadeh M, Barough MS, Majidzadeh-A K, Yadegari F, Rahbarizadeh F, Farahmand L. Recombinant nanobody against MUC1 tandem repeats inhibits growth, invasion, metastasis, and vascularization of spontaneous mouse mammary tumors. Mol Oncol 2021; 16:485-507. [PMID: 34694686 PMCID: PMC8763658 DOI: 10.1002/1878-0261.13123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/20/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022] Open
Abstract
Alteration in glycosylation pattern of MUC1 mucin tandem repeats during carcinomas has been shown to negatively affect adhesive properties of malignant cells and enhance tumor invasiveness and metastasis. In addition, MUC1 overexpression is closely interrelated with angiogenesis, making it a great target for immunotherapy. Alongside, easier interaction of nanobodies (single-domain antibodies) with their antigens, compared to conventional antibodies, is usually associated with superior desirable results. Herein, we evaluated the preclinical efficacy of a recombinant nanobody against MUC1 tandem repeats in suppressing tumor growth, angiogenesis, invasion, and metastasis. Expressed nanobody demonstrated specificity only toward MUC1-overexpressing cancer cells and could internalize in cancer cell lines. The IC50 values (the concentration at which the nanobody exerted half of its maximal inhibitory effect) of the anti-MUC1 nanobody against MUC1-positive human cancer cell lines ranged from 1.2 to 14.3 nm. Similar concentrations could also effectively induce apoptosis in MUC1-positive cancer cells but not in normal cells or MUC1-negative human cancer cells. Immunohistochemical staining of spontaneously developed mouse breast tumors prior to in vivo studies confirmed cross-reactivity of nanobody with mouse MUC1 despite large structural dissimilarities between mouse and human MUC1 tandem repeats. In vivo, a dose of 3 µg nanobody per gram of body weight in tumor-bearing mice could attenuate tumor progression and suppress excessive circulating levels of IL-1a, IL-2, IL-10, IL-12, and IL-17A pro-inflammatory cytokines. Also, a significant decline in expression of Ki-67, MMP9, and VEGFR2 biomarkers, as well as vasculogenesis, was evident in immunohistochemically stained tumor sections of anti-MUC1 nanobody-treated mice. In conclusion, the anti-MUC1 tandem repeat nanobody of the present study could effectively overcome tumor growth, invasion, and metastasis.
Collapse
Affiliation(s)
- Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Azadeh Sharif Khatibi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shima Moradi Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahdieh Shokrollahi Barough
- Cancer Immunotherapy and Regenerative Medicine, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
45
|
Shen ZQ, Wang J, Tan WF, Huang TM. Berberine inhibits colorectal tumor growth by suppressing SHH secretion. Acta Pharmacol Sin 2021; 42:1190-1194. [PMID: 32958873 PMCID: PMC8209003 DOI: 10.1038/s41401-020-00514-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Hedgehog plays an important role in a wide range of physiological and pathological conditions. Paracrine activation of Hedgehog pathway in stromal cells increases the expression of VEGF, which promotes neovascularization in colorectal cancer and ultimately the growth of colorectal cancer. Berberine (BBR) has anticancer activity. In this study we investigated whether BBR inhibited the growth of colon cancer through suppressing the paracrine sonic hedgehog (SHH) signaling in vitro and in vivo. We showed that BBR (1-10 μM) dose-dependently inhibited the secretion and expression of SHH protein in HT-29 and SW480 cells. BBR did not influence the transcription of SHH, but promoted the degradation of SHH mRNA, thus decreased the SHH mRNA expression in the colorectal cancer cells. In nude mice bearing HT-29 xenograft, oral administration of BBR (100 mg · kg-1 · d-1) or a positive control drug GDC-0449 (100 mg · kg-1 · d-1) for 4 weeks markedly suppressed the growth of HT-29 tumor with BBR exhibiting a better antitumor efficacy. The tumor growth inhibition caused by BBR or GDC-0449 was comparable to their respective inhibitory effect on the mouse-specific Gli mRNA expression in the tumor. However, BBR (20 μM) did not affect the expression of human transcription factor Gli1 mRNA in HT-29 and SW480 cells. In conclusion, BBR promotes the degradation of SHH mRNA in colorectal cancer cells, interrupting the paracrine Hedgehog signaling pathway activity thus suppresses the colorectal cancer growth. This study reveals a novel molecular mechanism underlying the anticancer action of BBR.
Collapse
Affiliation(s)
- Zhu-Qing Shen
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wen-Fu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Tao-Min Huang
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
46
|
Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr 2021; 12:2415-2434. [PMID: 34167152 PMCID: PMC8634476 DOI: 10.1093/advances/nmab070] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Normal placental development and proper angiogenesis are essential for fetal growth during pregnancy. Angiogenesis involves the regulatory action of many angiogenic factors and a series of signal transduction processes inside and outside the cell. The obstruction of placental angiogenesis causes fetal growth restriction and serious pregnancy complications, even leading to fetal loss and pregnancy cessation. In this review, the effects of placental angiogenesis on fetal development are described, and several signaling pathways related to placental angiogenesis and their key regulatory mediators are summarized. These factors, which include vascular endothelial growth factor (VEGF)-VEGF receptor, delta-like ligand 4 (DLL-4)-Notch, Wnt, and Hedgehog, may affect the placental angiogenesis process. Moreover, the degree of vascularization depends on cell proliferation, migration, and differentiation, which is affected by the synthesis and secretion of metabolites or intermediates and mutual coordination or inhibition in these pathways. Furthermore, we discuss recent advances regarding the role of functional nutrients (including amino acids and fatty acids) in regulating placental angiogenesis. Understanding the specific mechanism of placental angiogenesis and its influence on fetal development may facilitate the establishment of new therapeutic strategies for the treatment of preterm birth, pre-eclampsia, or intrauterine growth restriction, and provide a theoretical basis for formulating nutritional regulation strategies during pregnancy.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | | |
Collapse
|
47
|
Huang GD, Cui P, Ma GX, Chen FF, Chen ZB, Li XJ, Liao ZJ, Li WP, Li ZY, Chen L. Phragmunis a suppresses glioblastoma through the regulation of MCL1-FBXW7 by blocking ELK1-SRF complex-dependent transcription. Neurochem Int 2021; 147:105051. [PMID: 33979572 DOI: 10.1016/j.neuint.2021.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor. During screening work, we found a new compound named phragmunis A (PGA), which is derived from the fruitbody of Trogia venenata, exhibits a potential cytotoxic effect on patient-derived recurrent GBM cells and temozolomide (TMZ)-resistant cell lines. The present study was designed to investigate the potential molecular mechanism of the anti-glioma effects of PGA in vitro and in vivo. Studies investigating the mechanism revealed that PGA diminished the binding efficiency of ETS family of transcription factor (ELK1) and Serum response factor (SRF), and suppressed ELK1-SRF complex-dependent transcription, which decreased the transcriptional levels of downstream genes Early growth response protein 1 (EGR1)-Polycomb ring finger (BMI1), thus inducing the imbalanced regulation between Myeloid cell leukaemia-1 (MCL1) and F-Box and WD repeat domain containing 7 (FBXW7). Finally, orthotopic xenograft models were established to confirm the anti-glioma effect of PGA on tumour growth. We showed, for the first time, that the cytotoxic effects of PGA occurred by inducing MCL1 inhibition and FBXW7 activation by blocking ELK1-SRF complex-dependent transcription. The blockage of ELK1-mediated transcription resulted in the suppression of EGR1-BMI1, which led to the upregulation of FBXW7 expression and downregulation of MCL1. These findings suggested that PGA could be a therapeutic drug candidate for the treatment of recurrent GBM by targeting the ELK1-SRF complex.
Collapse
Affiliation(s)
- Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Ping Cui
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Guo-Xu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Fan-Fan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Ze-Bin Chen
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Xue-Juan Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Zi-Jun Liao
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Wei-Ping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Zong-Yang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.
| |
Collapse
|
48
|
Wei SF, He DH, Zhang SB, Lu Y, Ye X, Fan XZ, Wang H, Wang Q, Liu YQ. Identification of pseudolaric acid B as a novel Hedgehog pathway inhibitor in medulloblastoma. Biochem Pharmacol 2021; 190:114593. [PMID: 33964282 DOI: 10.1016/j.bcp.2021.114593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Aberrant activation of the Hedgehog (Hh) pathway is implicated in the pathogenesis and development of multiple cancers, especially Hh-driven medulloblastoma (MB). Smoothened (SMO) is a promising therapeutic target of the Hh pathway in clinical cancer treatment. However, SMO mutations frequently occur, which leads to drug resistance and tumor relapse. Novel inhibitors that target both the wild-type and mutant SMO are in high demand. In this study, we identified a novel Hh pathway inhibitor, pseudolaric acid B (PAB), which significantly inhibited the expression of Gli1 and its transcriptional target genes, such as cyclin D1 and N-myc, thus inhibiting the proliferation of DAOY and Ptch1+/- primary MB cells. Mechanistically, PAB can potentially bind to the extracellular entrance of the heptahelical transmembrane domain (TMD) of SMO, based on molecular docking and the BODIPY-cyclopamine binding assay. Further, PAB also efficiently blocked ciliogenesis, demonstrating the inhibitory effects of PAB on the Hh pathway at multiple levels. Thus, PAB may overcome drug-resistance induced by SMO mutations, which frequently occurs in clinical setting. PAB markedly suppressed tumor growth in the subcutaneous allografts of Ptch1+/- MB cells. Together, our results identified PAB as a potent Hh pathway inhibitor to treat Hh-dependent MB, especially cases resistant to SMO antagonists.
Collapse
Affiliation(s)
- Su-Fen Wei
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan-Hua He
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shi-Bing Zhang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yongzhi Lu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaowei Ye
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang-Zhen Fan
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hong Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yong-Qiang Liu
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
49
|
A novel Lnc408 maintains breast cancer stem cell stemness by recruiting SP3 to suppress CBY1 transcription and increasing nuclear β-catenin levels. Cell Death Dis 2021; 12:437. [PMID: 33934099 PMCID: PMC8088435 DOI: 10.1038/s41419-021-03708-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022]
Abstract
Tumor initiation, development, and relapse may be closely associated with cancer stem cells (CSCs). The complicated mechanisms underlying the maintenance of CSCs are keeping in illustration. Long noncoding RNAs (lncRNAs), due to their multifunction in various biological processes, have been indicated to play a crucial role in CSC renewal and stemness maintenance. Using lncRNA array, we identified a novel lncRNA (named lnc408) in epithelial-mesenchymal transition-related breast CSCs (BCSCs). The lnc408 is high expressed in BCSCs in vitro and in vivo. The enhanced lnc408 is critical to BCSC characteristics and tumorigenesis. Lnc408 can recruit transcript factor SP3 to CBY1 promoter to serve as an inhibitor in CBY1 transcription in BCSCs. The high expressed CBY1 in non-BCSC interacts with 14-3-3 and β-catenin to form a ternary complex, which leads a translocation of the ternary complex into cytoplasm from nucleus and degradation of β-catenin in phosphorylation-dependent pattern. The lnc408-mediated decrease of CBY1 in BCSCs impairs the formation of 14-3-3/β-catenin/CBY1 complex, and keeps β-catenin in nucleus to promote CSC-associated CD44, SOX2, Nanog, Klf4, and c-Myc expressions and contributes to mammosphere formation; however, restoration of CBY1 expression in tumor cells reduces BCSC and its enrichment, thus lnc408 plays an essential role in maintenance of BCSC stemness. In shortly, these findings highlight that the novel lnc408 functions as an oncogenic factor by recruiting SP3 to inhibit CBY1 expression and β-catenin accumulation in nucleus to maintain stemness properties of BCSCs. Lnc408-CBY1-β-catenin signaling axis might serve as a new diagnostic and therapeutic target for breast cancer.
Collapse
|
50
|
Rodrigues PM, Olaizola P, Paiva NA, Olaizola I, Agirre-Lizaso A, Landa A, Bujanda L, Perugorria MJ, Banales JM. Pathogenesis of Cholangiocarcinoma. ANNUAL REVIEW OF PATHOLOGY 2021; 16:433-463. [PMID: 33264573 DOI: 10.1146/annurev-pathol-030220-020455] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) encompasses a group of malignancies that can arise at any point in the biliary tree. Although considered a rare cancer, the incidence of CCA is increasing globally. The silent and asymptomatic nature of these tumors, particularly in their early stages, in combination with their high aggressiveness, intra- and intertumor heterogeneity, and chemoresistance, significantly compromises the efficacy of current therapeutic options, contributing to a dismal prognosis. During the last few years, increasing efforts have been made to unveil the etiologies and pathogenesis of these tumors and to develop more effective therapies. In this review, we summarize current findings in the field of CCA, mainly focusing on the mechanisms of pathogenesis, cells of origin, genomic and epigenetic abnormalities, molecular alterations, chemoresistance, and therapies.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Nuno A Paiva
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Irene Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Alona Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Ana Landa
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|