1
|
Fässler D, Heinken A, Hertel J. Characterising functional redundancy in microbiome communities via relative entropy. Comput Struct Biotechnol J 2025; 27:1482-1497. [PMID: 40265160 PMCID: PMC12013412 DOI: 10.1016/j.csbj.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/24/2025] Open
Abstract
Functional redundancy has been hypothesised to be at the core of the well-evidenced relation between high ecological microbiome diversity and human health. Here, we conceptualise and operationalise functional redundancy on a single-trait level for functionally annotated microbial communities, utilising an information-theoretic approach based on relative entropy that also allows for the quantification of functional interdependency across species. Via constraint-based microbiome community modelling of a public faecal metagenomic dataset, we demonstrate that the strength of the relation between species diversity and functional redundancy is dependent on specific attributes of the function under consideration such as the rarity and the occurring functional interdependencies. Moreover, by integrating faecal metabolome data, we highlight that measures of functional redundancy have correlates in the host's metabolome. We further demonstrate that microbiomes sampled from colorectal cancer patients display higher levels of species-species functional interdependencies than those of healthy controls. By analysing microbiome community models from an inflammatory bowel disease (IBD) study, we show that although species diversity decreased in IBD subjects, functional redundancy increased for certain metabolites, notably hydrogen sulphide. This finding highlights their potential to provide valuable insights beyond species diversity. Here, we formalise the concept of functional redundancy in microbial communities and demonstrate its usefulness in real microbiome data, providing a foundation for a deeper understanding of how microbiome diversity shapes the functional capacities of a microbiome.
Collapse
Affiliation(s)
- Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Almut Heinken
- UMRS Inserm 1256 nGERE (Nutrition-Genetics-Environmental Risks), Vandœuvre-les-Nancy, France
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Mei Y, Li W, Wang B, Chen Z, Wu X, Lin Y, Wang M. Gut microbiota: an emerging target connecting polycystic ovarian syndrome and insulin resistance. Front Cell Infect Microbiol 2025; 15:1508893. [PMID: 40134784 PMCID: PMC11933006 DOI: 10.3389/fcimb.2025.1508893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a highly heterogeneous metabolic disorder, with oligomenorrhea and hirsutism as patients' primary complaints. Hyperinsulinemia is a crucial pathophysiological mechanism in the development of PCOS, with 50-70% of patients exhibiting insulin resistance (IR). This condition not only exacerbates ovulatory dysfunction but also leads to various adverse metabolic outcomes, such as dyslipidemia and diabetes, and increases the risk of cardiovascular events both before and after menopause. Gut microbiota is a microbial community within the host that possesses significant metabolic potential and is shaped by external environmental factors, the neuro-immune network, and metabolism. Recent studies have shown that gut microbiota dysbiosis is closely related to the development and progression of PCOS. Despite the growing recognition of the potential role of gut microbiota in the pathogenesis and treatment of PCOS, its clinical application remains in its infancy. Currently, most clinical guidelines and expert consensus still emphasize traditional therapeutic approaches, such as hormonal treatments, lifestyle modifications, and insulin sensitizers. However, accumulating evidence suggests that gut microbiota may influence the metabolic and reproductive health of PCOS patients through various mechanisms. Therefore, understanding the role of gut microbiota between PCOS and IR is essential. This review describes the changes in the gut microbiota of IR-PCOS patients, examines the potential mechanisms by which the gut microbiota contributes to IR in PCOS patients, and updates the evidence supporting the gut microbiota as a potential metabolic regulatory target in IR-PCOS. In summary, gut microbiota dysbiosis may be involved in the development and progression of IR in PCOS patients, and improving gut microbiota may offer metabolic stability benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Ioannou A, Berkhout MD, Geerlings SY, Belzer C. Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential. Nat Rev Microbiol 2025; 23:162-177. [PMID: 39406893 DOI: 10.1038/s41579-024-01106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host-microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Amiri P, Hosseini SA, Saghafi-Asl M, Roshanravan N, Tootoonchian M. Expression of PGC-1α, PPAR-α and UCP1 genes, metabolic and anthropometric factors in response to sodium butyrate supplementation in patients with obesity: a triple-blind, randomized placebo-controlled clinical trial. Eur J Clin Nutr 2025; 79:249-257. [PMID: 39448815 DOI: 10.1038/s41430-024-01512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES There is increasing evidence that gut metabolites have a role in the etiology of obesity. This study aimed to investigate the effects of sodium butyrate (NaB) supplementation on the expression of peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1α (PGC-1α), PPAR-α, and uncoupling protein-1 (UCP-1) genes, as well as on the metabolic parameters and anthropometric indices in persons with obesity. METHODS In this triple-blind placebo-controlled randomized clinical trial, 50 individuals with obesity were randomly assigned to NaB (600 mg/day) + hypo-caloric diet or placebo group + hypo-caloric diet for 8 weeks. The study measured the participants' anthropometric characteristics, food consumption, and feelings of hunger in addition to the serum levels of metabolic indices and the mRNA expression of the PGC-1α, PPAR-α, and UCP-1 genes in peripheral blood mononuclear cells (PBMCs). RESULTS PGC-1α and UCP-1 genes expression significantly increased in NaB group compared to the placebo at the endpoint. A significant decrease in weight, BMI, and waist circumference (WC) was observed in NaB group. Among the metabolic factors, NaB significantly decreased fasting blood sugar (FBS) (P = 0.04), low-density lipoprotein cholesterol (LDL-C) (P = 0.038) and increased high-density lipoprotein cholesterol (HDL-C) (P = 0.016). NaB could not significantly change serum GLP-1 level. CONCLUSIONS This study unveiled NaB supplementation alone cannot have significant beneficial effects on anthropometric, and biochemical factors. NaB could affect anthropometric and metabolic risk variables associated with obesity only when prescribed, along with calorie restriction. CLINICAL TRIAL REGISTRATION This study was registered in the Iranian Registry of Clinical Trials ( https://en.irct.ir/trial/53968 ) on 31 January 2021 (registry number IRCT20190303042905N2).
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Tootoonchian
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Clementino JR, de Oliveira LIG, Salgaço MK, de Oliveira FL, Mesa V, Tavares JF, Silva-Pereira L, Raimundo BVB, Oliveira KC, Medeiros AI, Silva FA, Sivieri K, Magnani M. β-Glucan Alone or Combined with Lactobacillus acidophilus Positively Influences the Bacterial Diversity and Metabolites in the Colonic Microbiota of Type II Diabetic Patients. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10491-9. [PMID: 40011383 DOI: 10.1007/s12602-025-10491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
β-Glucan is a fermentable polysaccharide with prebiotic properties that has been shown to improve metabolic indicators. This study evaluated the effects of spent brewer's yeast β-glucan (BGL) and Lactobacillus acidophilus LA-5 (106 CFU/g) (LA5) alone and in combination (LA5-BGL) on the composition of the fecal microbiome of adults with type 2 diabetes mellitus (T2DM) using the Human Gut Microbial Ecosystem Simulator (SHIME®). Short-chain fatty acids (SCFAs), ammonium ions, and cytokines (IL-6 and IL-10) were measured. BGL, LA5, and LA5-BGL increased (p < 0.05) the richness and diversity of microbial communities in the gut microbiome of individuals with T2DM. All treatments increased (p < 0.05) the abundance of Bacteroides, Alistipes, Lactobacillus, Subdoligranulum, and Acidaminococcus, along with increased (p < 0.05) production of SCFAs and anti-inflammatory cytokine (IL-10) compared to the control group. BGL treatments showed a greater increase in microbial diversity, SCFAs levels (butyric, propionic, and acetic acid), and the anti-inflammatory cytokine (IL-10). LA5 showed the highest decrease in ammonium ion levels. Results indicate that BGL may have a prebiotic and immunomodulatory effect on the fecal microbial community and metabolic indicators in adults with type 2 diabetes mellitus (T2DM). Findings underscore the role of BGL as a prebiotic food.
Collapse
Affiliation(s)
| | | | | | | | - Victoria Mesa
- School of Nutrition and Dietetics, Universidad de Antioquia, Medellín, Colombia
- Faculty of Pharmacy, Université Paris Cité, Paris, France
| | - Josean Fechine Tavares
- Department of Pharmaceutical Sciences, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ludmilla Silva-Pereira
- Department of Biological Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | | | - Karen Cristina Oliveira
- Department of Biological Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandra Ivo Medeiros
- Department of Biological Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | - Katia Sivieri
- Department of Food and Nutrition, São Paulo State University, Araraquara, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
6
|
Yu W, Sun S, Yan Y, Zhou H, Liu Z, Fu Q. The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol 2025; 16:1519925. [PMID: 39991152 PMCID: PMC11842938 DOI: 10.3389/fimmu.2025.1519925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Metabolic syndrome (Mets) is an important contributor to morbidity and mortality in cardiovascular, liver, neurological, and reproductive diseases. Short-chain fatty acid (SCFA), an organismal energy donor, has recently been demonstrated in an increasing number of studies to be an important molecule in ameliorating immuno-inflammation, an important causative factor of Mets, and to improve lipid distribution, blood glucose, and body weight levels in animal models of Mets. This study reviews recent research advances on SCFA in Mets from an immune-inflammatory perspective, including complications dominated by chronic inflammation, as well as the fact that these findings also contribute to the understanding of the specific mechanisms by which gut flora metabolites contribute to metabolic processes in humans. This review proposes an emerging role for SCFA in the inflammatory Mets, followed by the identification of major ambiguities to further understand the anti-inflammatory potential of this substance in Mets. In addition, this study proposes novel strategies to modulate SCFA for the treatment of Mets that may help to mitigate the prognosis of Mets and its complications.
Collapse
Affiliation(s)
- Wenqian Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Sun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yutong Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Wang S, Wang P, Wang D, Shen S, Wang S, Li Y, Chen H. Postbiotics in inflammatory bowel disease: efficacy, mechanism, and therapeutic implications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:721-734. [PMID: 39007163 DOI: 10.1002/jsfa.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Inflammatory bowel disease (IBD) is one of the most challenging diseases in the 21st century, and more than 10 million people around the world suffer from IBD. Because of the limitations and adverse effects associated with conventional IBD therapies, there has been increased scientific interest in microbial-derived biomolecules, known as postbiotics. Postbiotics are defined as the preparation of inanimate microorganisms and/or their components that confer a health benefit on the host, comprising inactivated microbial cells, cell fractions, metabolites, etc. Postbiotics have shown potential in enhancing IBD treatment by reducing inflammation, modulating the immune system, stabilizing intestinal flora and maintaining the integrity of intestinal barriers. Consequently, they are considered promising adjunctive therapies for IBD. Recent studies indicate that postbiotics offer distinctive advantages, including spanning clinical (safe origin), technological (easy for storage and transportation) and economic (reduced production costs) dimensions, rendering them suitable for widespread applications in functional food/pharmaceutical. This review offers a comprehensive overview of the definition, classification and applications of postbiotics, with an emphasis on their biological activity in both the prevention and treatment of IBD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuxin Wang
- Marine College, Shandong University, Weihai, China
| | - Pu Wang
- Marine College, Shandong University, Weihai, China
| | - Donghui Wang
- Marine College, Shandong University, Weihai, China
| | | | - Shiqi Wang
- Marine College, Shandong University, Weihai, China
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
8
|
Rodríguez-Castelán J, Delgado-González E, Sánchez-Tapia M, Anguiano B, Torres N, Aceves C. Preventive and therapeutic effects of molecular iodine in a model of diabetes mellitus induced by streptozotocin. J Nutr Biochem 2025; 135:109783. [PMID: 39424204 DOI: 10.1016/j.jnutbio.2024.109783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Diabetes mellitus (DM) is a multifactorial condition that involves oxidative alterations and dysbiosis of the gut microbiota associated with an imbalance in glucose metabolism. Therefore, the need to develop integrative therapies that are both effective and have fewer side effects has become evident in recent years. Molecular iodine (I2) has antioxidant effects in preclinical hyperglycemic models. The present work analyzes the preventive and therapeutic effects of oral I2 supplementation in a DM model induced by low doses of streptozotocin (STZ). Male CD1 mice (12 weeks old) were divided into the following groups: control, STZ (20 mg/kg/day, i.p., for 5 days), I2 (0.2 mg/Kg in drinking water), preventive (STZ + I2), and therapeutic (I2 supplementation from day 35 to day 90; STZ + I2(Ther)). The supplementation with I2 prevented and normalized hyperglycemia, hypercholesterolemia, and hypertriglyceridemia associated with STZ, preserving pancreatic, liver, muscle, and adipose tissue morphology and normalizing inflammatory gene induction (TLR2, TLR4, NFkβ, TNFα) in several tissues. Furthermore, compared to the STZ group, the presence of I2 favored a more significant abundance of beneficial bacteria that support the integrity of the intestinal epithelial barrier and higher α-diversity. In conclusion, the I2 supplement has preventive and therapeutic effects, reducing oxidative damage and reestablishing microbiota diversity following STZ exposure.
Collapse
Affiliation(s)
- Julia Rodríguez-Castelán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Juriquilla, Querétaro, México; División Académica de Medicina y Nutrición, Universidad Cristóbal Colón. Veracruz, Veracruz, México
| | | | - Mónica Sánchez-Tapia
- Depto de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Brenda Anguiano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Juriquilla, Querétaro, México
| | - Nimbe Torres
- Depto de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Juriquilla, Querétaro, México.
| |
Collapse
|
9
|
Guidi L, Martinez-Tellez B, Ortega Santos CP. Obesity, gut bacteria, and the epigenetic control of metabolic disease. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:333-368. [DOI: 10.1016/b978-0-443-18979-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Caprara GL, von Ameln Lovison O, Martins AF, Bernardi JR, Goldani MZ. Characterization of newborn gut microbiota according to the pre-gestational maternal nutritional status and delivery mode. Arch Gynecol Obstet 2024; 310:2889-2898. [PMID: 39387928 DOI: 10.1007/s00404-024-07772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE The aim of this study is to characterize the composition of the newborn gut microbiota based on the maternal pre-pregnancy nutritional status and the delivery mode. METHODS A biological sample was collected from the anal mucosa of the newborns between 24 and 48 h after delivery, as it was not possible to collect a meconium sample at that time. A general data collection questionnaire was administered. The microbiome of the samples was analyzed by next-generation sequencing of the hypervariable regions v3-v4 of the 16S gene. Alpha diversity analyses were performed using the Observed Richness and Shannon diversity index metrics and Beta diversity analyses were conducted using Nonmetric multidimensional scaling with Weighted Unifrac, Differential abundance analysis was performed using a Negative Binomial Wald Test with maximum likelihood estimation for coefficients of Generalized Linear Models. RESULTS Newborns of obese mothers exhibited lower alpha diversity compared to newborns of mothers with adequate BMI (body mass index). We observed variation in the composition of the microbial community in newborn stool samples, both from mothers with overweight/obesity and those with adequate pre-pregnancy BMI. We observed a visible correlation between the mode of delivery and the newborn's microbiota. We found variation in the overall composition of the microbial community in the stools of newborns, regardless of the delivery mode. CONCLUSIONS The results of our study demonstrate differences in the microbiota of neonates born via cesarean section compared to those born vaginally as well as differences in newborns of mothers with overweight/obesity compared to those with an adequate pre-pregnancy BMI.
Collapse
Affiliation(s)
- Gabriele Luiza Caprara
- Programa de Pós-Graduação Em Saúde da Criança E Do Adolescente, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Otávio von Ameln Lovison
- Laboratório de Pesquisa Em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Núcleo de Bioinformática (Bioinformatics Core), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Andreza Francisco Martins
- Laboratório de Pesquisa Em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Núcleo de Bioinformática (Bioinformatics Core), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Juliana Rombaldi Bernardi
- Programa de Pós-Graduação Em Saúde da Criança E Do Adolescente, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Alimentação, Nutrição E Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Zubaran Goldani
- Programa de Pós-Graduação Em Saúde da Criança E Do Adolescente, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Peng K, Xiao S, Xia S, Li C, Yu H, Yu Q. Butyrate Inhibits the HDAC8/NF-κB Pathway to Enhance Slc26a3 Expression and Improve the Intestinal Epithelial Barrier to Relieve Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24400-24416. [PMID: 39440960 DOI: 10.1021/acs.jafc.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dietary fiber is known to promote the production of short-chain fatty acids (SCFAs) by gut bacteria, which can enhance intestinal epithelial barrier function and ameliorate intestinal inflammation in patients with inflammatory bowel disease (IBD). Interestingly, some IBD patients show reduced expression of solute carrier family member 3 (Slc26a3) in intestinal epithelial cells. The objective of this research was to investigate the interaction between SCFAs and Slc26a3 during colitis and assess how this interaction affects intestinal epithelial barrier function. We showed that butyrate alleviated colonic inflammation in a dose-dependent manner in a dextran sulfate sodium salt (DSS)-induced colitis model. Consistent with this, butyrate increased Slc26a3 and tight junction protein levels. In addition, butyrate inhibited histone deacetylase (HDAC) levels and significantly increased the expression of Slc26a3 by the acetylation of histones in Caco-2BBe cells. The utilization of a pan-HDAC inhibitor or inhibitors specific to certain classes of HDACs revealed that butyrate primarily suppressed HDAC8 to blunt the NF-κB pathways and enhance the expression of Slc26a3. Notably, we demonstrated that HDAC8 activation counteracted the beneficial effect of butyrate in DSS-induced colitis. Therefore, we concluded that butyrate improves the expression of Slc26a3 via inhibition of the HDAC8/NF-κB pathway, leading to increased intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hongbing Yu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City 66160, Kansas, United States
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver V6H 3N1, British Columbia, Canada
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
12
|
Trouki C, Campanella B, Onor M, Vornoli A, Pozzo L, Longo V, Bramanti E. Probing the alterations in mice cecal content due to high-fat diet. Food Chem 2024; 455:139856. [PMID: 38823144 DOI: 10.1016/j.foodchem.2024.139856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
The global prevalence of obesity more than doubled between 1990 and 2022. By 2022, 2.5 billion adults aged 18 and older were overweight, with over 890 million of them living with obesity. The urgent need for understanding the impact of high-fat diet, together with the demanding of analytical methods with low energy/chemicals consumption, can be fulfilled by rapid, high-throughput spectroscopic techniques. To understand the impact of high-fat diet on the metabolic signatures of mouse cecal contents, we characterized metabolite variations in two diet-groups (standard vs high-fat diet) using FTIR spectroscopy and multivariate analysis. Their cecal content showed distinct spectral features corresponding to high- and low-molecular-weight metabolites. Further quantification of 13 low-molecular-weight metabolites using liquid chromatography showed significant reduction in the production of short chain fatty acids and amino acids associated with high-fat diet samples. These findings demonstrated the potential of spectroscopy to follow changes in gut metabolites.
Collapse
Affiliation(s)
- Cheherazade Trouki
- CNR-IPCF, Institute of Chemical and Physical Processes, National Research Council, via Moruzzi 1, Pisa 56124, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Beatrice Campanella
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, National Research Council, via Moruzzi 1, Pisa 56124, Italy.
| | - Massimo Onor
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, National Research Council, via Moruzzi 1, Pisa 56124, Italy
| | - Andrea Vornoli
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Luisa Pozzo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Vincenzo Longo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Emilia Bramanti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, National Research Council, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
13
|
Ashraf A, Hassan MI. Microbial Endocrinology: Host metabolism and appetite hormones interaction with gut microbiome. Mol Cell Endocrinol 2024; 592:112281. [PMID: 38810719 DOI: 10.1016/j.mce.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
14
|
Sharma SP, Gupta H, Kwon GH, Lee SY, Song SH, Kim JS, Park JH, Kim MJ, Yang DH, Park H, Won SM, Jeong JJ, Oh KK, Eom JA, Lee KJ, Yoon SJ, Ham YL, Baik GH, Kim DJ, Suk KT. Gut microbiome and metabolome signatures in liver cirrhosis-related complications. Clin Mol Hepatol 2024; 30:845-862. [PMID: 39048520 PMCID: PMC11540350 DOI: 10.3350/cmh.2024.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND/AIMS Shifts in the gut microbiota and metabolites are interrelated with liver cirrhosis progression and complications. However, causal relationships have not been evaluated comprehensively. Here, we identified complication-dependent gut microbiota and metabolic signatures in patients with liver cirrhosis. METHODS Microbiome taxonomic profiling was performed on 194 stool samples (52 controls and 142 cirrhosis patients) via V3-V4 16S rRNA sequencing. Next, 51 samples (17 controls and 34 cirrhosis patients) were selected for fecal metabolite profiling via gas chromatography mass spectrometry and liquid chromatography coupled to time-of-flight mass spectrometry. Correlation analyses were performed targeting the gut-microbiota, metabolites, clinical parameters, and presence of complications (varices, ascites, peritonitis, encephalopathy, hepatorenal syndrome, hepatocellular carcinoma, and deceased). RESULTS Veillonella bacteria, Ruminococcus gnavus, and Streptococcus pneumoniae are cirrhosis-related microbiotas compared with control group. Bacteroides ovatus, Clostridium symbiosum, Emergencia timonensis, Fusobacterium varium, and Hungatella_uc were associated with complications in the cirrhosis group. The areas under the receiver operating characteristic curve (AUROCs) for the diagnosis of cirrhosis, encephalopathy, hepatorenal syndrome, and deceased were 0.863, 0.733, 0.71, and 0.69, respectively. The AUROCs of mixed microbial species for the diagnosis of cirrhosis and complication were 0.808 and 0.847, respectively. According to the metabolic profile, 5 increased fecal metabolites in patients with cirrhosis were biomarkers (AUROC >0.880) for the diagnosis of cirrhosis and complications. Clinical markers were significantly correlated with the gut microbiota and metabolites. CONCLUSION Cirrhosis-dependent gut microbiota and metabolites present unique signatures that can be used as noninvasive biomarkers for the diagnosis of cirrhosis and its complications.
Collapse
Affiliation(s)
- Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Goo-Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Sang Yoon Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Seol Hee Song
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Jeoung Su Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Jeong Ha Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Min Ju Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Dong-Hoon Yang
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Hyunjoon Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Kyeong Jin Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Young Lim Ham
- Department of Nursing Daewon University College Jecheon, Korea
| | - Gwang Ho Baik
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
15
|
Havton GC, Tai ATC, Vasisht S, Davies DL, Asatryan L. Preclinical Evaluation of Sodium Butyrate's Potential to Reduce Alcohol Consumption: A Dose-Escalation Study in C57BL/6J Mice in Antibiotic-Enhanced Binge-Like Drinking Model. Pharmacology 2024; 110:36-48. [PMID: 39134007 PMCID: PMC11794028 DOI: 10.1159/000540882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION In our earlier efforts to establish gut-brain axis during alcohol use disorder (AUD), we have demonstrated that supplementation of C57BL/6J male mice with 8 mg/mL sodium butyrate, a major short-chain fatty acid, in drinking water reduced ethanol intake and neuroinflammatory response in antibiotic (ABX)-enhanced voluntary binge-like alcohol consumption model, drinking in the dark (DID). METHODS To further evaluate the preclinical potential of SB, we have set a dose-escalation study in C57BL/6J male mice to test effects of ad libitum 20 mg/mL SB and 50 mg/mL SB and their combinations with ABX in the DID procedure for 4 weeks. Effects of these SB concentrations on ethanol consumption and bodily parameters were determined for the duration of the treatments. At the end of study, blood, liver, and intestinal tissues were collected to study any potential adverse effects ad to measure blood ethanol concentrations. RESULTS Increasing SB concentrations in the drinking water caused a loss in the protective effect against ethanol consumption and produced adverse effects on body and liver weights, reduced overall liquid intake. The hypothesis that these effects were due to aversion to SB smell/taste at these high concentrations were further tested in a follow up proof-of-concept study with intragastric gavage administration of SB. The higher gavage dose (320 mg/kg) caused reduction in ethanol consumption without any adverse effects. CONCLUSION Overall, these findings added more support for the therapeutic potential of SB in management of AUD, given a proper form of administration. INTRODUCTION In our earlier efforts to establish gut-brain axis during alcohol use disorder (AUD), we have demonstrated that supplementation of C57BL/6J male mice with 8 mg/mL sodium butyrate, a major short-chain fatty acid, in drinking water reduced ethanol intake and neuroinflammatory response in antibiotic (ABX)-enhanced voluntary binge-like alcohol consumption model, drinking in the dark (DID). METHODS To further evaluate the preclinical potential of SB, we have set a dose-escalation study in C57BL/6J male mice to test effects of ad libitum 20 mg/mL SB and 50 mg/mL SB and their combinations with ABX in the DID procedure for 4 weeks. Effects of these SB concentrations on ethanol consumption and bodily parameters were determined for the duration of the treatments. At the end of study, blood, liver, and intestinal tissues were collected to study any potential adverse effects ad to measure blood ethanol concentrations. RESULTS Increasing SB concentrations in the drinking water caused a loss in the protective effect against ethanol consumption and produced adverse effects on body and liver weights, reduced overall liquid intake. The hypothesis that these effects were due to aversion to SB smell/taste at these high concentrations were further tested in a follow up proof-of-concept study with intragastric gavage administration of SB. The higher gavage dose (320 mg/kg) caused reduction in ethanol consumption without any adverse effects. CONCLUSION Overall, these findings added more support for the therapeutic potential of SB in management of AUD, given a proper form of administration.
Collapse
Affiliation(s)
- Gregory C Havton
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Alex T C Tai
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Surabhi Vasisht
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Daryl L Davies
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Liana Asatryan
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Ling Z, Lan Z, Cheng Y, Liu X, Li Z, Yu Y, Wang Y, Shao L, Zhu Z, Gao J, Lei W, Ding W, Liao R. Altered gut microbiota and systemic immunity in Chinese patients with schizophrenia comorbid with metabolic syndrome. J Transl Med 2024; 22:729. [PMID: 39103909 PMCID: PMC11302365 DOI: 10.1186/s12967-024-05533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is highly prevalent in individuals with schizophrenia (SZ), leading to negative consequences like premature mortality. Gut dysbiosis, which refers to an imbalance of the microbiota, and chronic inflammation are associated with both SZ and MetS. However, the relationship between gut dysbiosis, host immunological dysfunction, and SZ comorbid with MetS (SZ-MetS) remains unclear. This study aims to explore alterations in gut microbiota and their correlation with immune dysfunction in SZ-MetS, offering new insights into its pathogenesis. METHODS AND RESULTS We enrolled 114 Chinese patients with SZ-MetS and 111 age-matched healthy controls from Zhejiang, China, to investigate fecal microbiota using Illumina MiSeq sequencing targeting 16 S rRNA gene V3-V4 hypervariable regions. Host immune responses were assessed using the Bio-Plex Pro Human Cytokine 27-Plex Assay to examine cytokine profiles. In SZ-MetS, we observed decreased bacterial α-diversity and significant differences in β-diversity. LEfSe analysis identified enriched acetate-producing genera (Megamonas and Lactobacillus), and decreased butyrate-producing bacteria (Subdoligranulum, and Faecalibacterium) in SZ-MetS. These altered genera correlated with body mass index, the severity of symptoms (as measured by the Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms), and triglyceride levels. Altered bacterial metabolic pathways related to lipopolysaccharide biosynthesis, lipid metabolism, and various amino acid metabolism were also found. Additionally, SZ-MetS exhibited immunological dysfunction with increased pro-inflammatory cytokines, which correlated with the differential genera. CONCLUSION These findings suggested that gut microbiota dysbiosis and immune dysfunction play a vital role in SZ-MetS development, highlighting potential therapeutic approaches targeting the gut microbiota. While these therapies show promise, further mechanistic studies are needed to fully understand their efficacy and safety before clinical implementation.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China.
| | - Zhiyong Lan
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhimeng Li
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Ying Yu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Yuwei Wang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Li Shao
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
- Department of Basic Medicine, Shandong First Medical University, Jinan, Shandong, 250000, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Rongxian Liao
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China.
| |
Collapse
|
17
|
Zhao J, Duan L, Li J, Yao C, Wang G, Mi J, Yu Y, Ding L, Zhao Y, Yan G, Li J, Zhao Z, Wang X, Li M. New insights into the interplay between autophagy, gut microbiota and insulin resistance in metabolic syndrome. Biomed Pharmacother 2024; 176:116807. [PMID: 38795644 DOI: 10.1016/j.biopha.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a widespread and multifactorial disorder, and the study of its pathogenesis and treatment remains challenging. Autophagy, an intracellular degradation system that maintains cellular renewal and homeostasis, is essential for maintaining antimicrobial defense, preserving epithelial barrier integrity, promoting mucosal immune response, maintaining intestinal homeostasis, and regulating gut microbiota and microbial metabolites. Dysfunctional autophagy is implicated in the pathological mechanisms of MetS, involving insulin resistance (IR), chronic inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, with IR being a predominant feature. The study of autophagy represents a valuable field of research with significant clinical implications for identifying autophagy-related signals, pathways, mechanisms, and treatment options for MetS. Given the multifactorial etiology and various potential risk factors, it is imperative to explore the interplay between autophagy and gut microbiota in MetS more thoroughly. This will facilitate the elucidation of new mechanisms underlying the crosstalk among autophagy, gut microbiota, and MetS, thereby providing new insights into the diagnosis and treatment of MetS.
Collapse
Affiliation(s)
- Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Liyun Duan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chensi Yao
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoqiang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jia Mi
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yongjiang Yu
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yunyun Zhao
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Guanchi Yan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jing Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhixuan Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiuge Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
18
|
Yang T, Li G, Xu Y, He X, Song B, Cao Y. Characterization of the gut microbiota in polycystic ovary syndrome with dyslipidemia. BMC Microbiol 2024; 24:169. [PMID: 38760705 PMCID: PMC11100065 DOI: 10.1186/s12866-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrinopathy in childbearing-age females which can cause many complications, such as diabetes, obesity, and dyslipidemia. The metabolic disorders in patients with PCOS were linked to gut microbial dysbiosis. However, the correlation between the gut microbial community and dyslipidemia in PCOS remains unillustrated. Our study elucidated the different gut microbiota in patients with PCOS and dyslipidemia (PCOS.D) compared to those with only PCOS and healthy women. RESULTS In total, 18 patients with PCOS, 16 healthy females, and 18 patients with PCOS.D were enrolled. The 16 S rRNA sequencing in V3-V4 region was utilized for identifying the gut microbiota, which analyzes species annotation, community diversity, and community functions. Our results showed that the β diversity of gut microbiota did not differ significantly among the three groups. Regarding gut microbiota dysbiosis, patients with PCOS showed a decreased abundance of Proteobacteria, and patients with PCOS.D showed an increased abundance of Bacteroidota compared to other groups. With respect to the gut microbial imbalance at genus level, the PCOS.D group showed a higher abundance of Clostridium_sensu_stricto_1 compared to other two groups. Furthermore, the abundances of Faecalibacterium and Holdemanella were lower in the PCOS.D than those in the PCOS group. Several genera, including Faecalibacterium and Holdemanella, were negatively correlated with the lipid profiles. Pseudomonas was negatively correlated with luteinizing hormone levels. Using PICRUSt analysis, the gut microbiota community functions suggested that certain metabolic pathways (e.g., amino acids, glycolysis, and lipid) were altered in PCOS.D patients as compared to those in PCOS patients. CONCLUSIONS The gut microbiota characterizations in patients with PCOS.D differ from those in patients with PCOS and controls, and those might also be related to clinical parameters. This may have the potential to become an alternative therapy to regulate the clinical lipid levels of patients with PCOS in the future.
Collapse
Affiliation(s)
- Tianjin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Zhang WW, Thakur K, Zhang JG, Wei ZJ. Riboflavin ameliorates intestinal inflammation via immune modulation and alterations of gut microbiota homeostasis in DSS-colitis C57BL/6 mice. Food Funct 2024; 15:4109-4121. [PMID: 38597225 DOI: 10.1039/d4fo00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
While there have been advancements in understanding the direct and indirect impact of riboflavin (B2) on intestinal inflammation, the precise mechanisms are still unknown. This study focuses on evaluating the effects of riboflavin (B2) supplementation on a colitis mouse model induced with 3% dextran sodium sulphate (DSS). We administered three different doses of oral B2 (VB2L, VB2M, and VB2H) and assessed its impact on various physiological and biochemical parameters associated with colitis. Mice given any of the three doses exhibited relative improvement in the symptoms and intestinal damage. This was evidenced by the inhibition of the pro-inflammatory cytokines TNF-α, IL-1β, and CALP, along with an increase in the anti-inflammatory cytokine IL-10. B2 supplementation also led to a restoration of oxidative homeostasis, as indicated by a decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels and an increase in reduced glutathione (GSH) and catalase (CAT) activities. B2 intervention showed positive effects on intestinal barrier function, confirmed by increased expression of tight junction proteins (occludin and ZO-1). B2 was linked to an elevated relative abundance of Actinobacteriota, Desulfobacterota, and Verrucomicrobiota. Notably, Verrucomicrobiota showed a significant increase in the VB2H group, reaching 15.03% relative abundance. Akkermansia exhibited a negative correlation with colitis and might be linked to anti-inflammatory function. Additionally, a remarkable increase in n-butyric acid, i-butyric acid, and i-valeric acid was reported in the VB2H group. The ameliorating role of B2 in gut inflammation can be attributed to immune system modulation as well as alterations in the gut microbiota composition, along with elevated levels of fecal SCFAs.
Collapse
Affiliation(s)
- Wang-Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
20
|
Zhang Y, Li L, Sun S, Cheng L, Gu Z, Hong Y. Structural characteristics, digestion properties, fermentation properties, and biological activities of butyrylated starch: A review. Carbohydr Polym 2024; 330:121825. [PMID: 38368086 DOI: 10.1016/j.carbpol.2024.121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
Butyrylated starch is produced by the esterification of hydroxyl groups in starch with butyryl groups, which improves the structural diversity of starch and expands its function and biological activity. The paper summarizes the structural properties and digestive properties, fermentation properties, and biological activities of butyrylated starch and describes the conformational relationships generated by the butyryl groups to reveal the underlying mechanisms. The butyryl groups replace the hydroxyl groups in starch and break the hydrogen bonds, which consequently changes the molecular, crystal, and granular structures of starch, while the starch structure also affects the distribution of the butyryl groups. Binding to the butyryl groups gives starch efficacy in resisting digestion, lowering the glycaemic index, releasing butyric acid in the colon, and regulating intestinal flora and metabolites. Relationships between starch structural parameters and butyric acid production and intestinal flora were also concluded to provide guidance for the rational design of butyrylated starch to improve efficacy. Moreover, based on its digestive and fermentation properties, butyrylated starch has exhibited good therapeutic efficacy for intestinal diseases, diabetes, polycystic ovary syndrome, and chronic restraint stress-induced abnormalities. This review provides a valuable reference for butyrylated starch advancement and utilization.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Lingjin Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Shenglin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
21
|
Teng D, Jia W, Wang W, Liao L, Xu B, Gong L, Dong H, Zhong L, Yang J. Causality of the gut microbiome and atherosclerosis-related lipids: a bidirectional Mendelian Randomization study. BMC Cardiovasc Disord 2024; 24:138. [PMID: 38431594 PMCID: PMC10909291 DOI: 10.1186/s12872-024-03804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
AIMS Recent studies have indicated an association between intestinal flora and lipids. However, observational studies cannot indicate causality. In this study, we aimed to investigate the potentially causal relationships between the intestinal flora and blood lipids. METHODS We performed a bidirectional two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between intestinal flora and blood lipids. Summary statistics of genome-wide association studies (GWASs) for the 211 intestinal flora and blood lipid traits (n = 5) were obtained from public datasets. Five recognized MR methods were applied to assess the causal relationship with lipids, among which, the inverse-variance weighted (IVW) regression was used as the primary MR method. A series of sensitivity analyses were performed to test the robustness of the causal estimates. RESULTS The results indicated a potential causal association between 19 intestinal flora and dyslipidemia in humans. Genus Ruminococcaceae, Christensenellaceae, Parasutterella, Terrisporobacter, Parabacteroides, Class Erysipelotrichia, Family Erysipelotrichaceae, and order Erysipelotrichales were associated with higher dyslipidemia, whereas genus Oscillospira, Peptococcus, Ruminococcaceae UCG010, Ruminococcaceae UCG011, Dorea, and Family Desulfovibrionaceae were associated with lower dyslipidemia. After using the Bonferroni method for multiple testing correction, Only Desulfovibrionaceae [Estimate = -0.0418, 95% confidence interval [CI]: 0.9362-0.9826, P = 0.0007] exhibited stable and significant negative associations with ApoB levels. The inverse MR analysis did not find a significant causal effect of lipids on the intestinal flora. Additionally, no significant heterogeneity or horizontal pleiotropy for IVs was observed in the analysis. CONCLUSION The study suggested a causal relationship between intestinal flora and dyslipidemia. These findings will provide a meaningful reference to discover dyslipidemia for intervention to address the problems in the clinic.
Collapse
Affiliation(s)
- Da Teng
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
- Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenjuan Jia
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
- Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenlong Wang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
- Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lanlan Liao
- Dazhou Central Hospital, Dazhou, Sichuan, People's Republic of China
| | - Bowen Xu
- Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Lei Gong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
| | - Haibin Dong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
| | - Lin Zhong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China.
| | - Jun Yang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Xiao P, Cai X, Zhang Z, Guo K, Ke Y, Hu Z, Song Z, Zhao Y, Yao L, Shen M, Li J, Huang Y, Ye L, Huang L, Zhang Y, Liu R, Xu M, Xu X, Zhao Y, Cao Q. Butyrate Prevents the Pathogenic Anemia-Inflammation Circuit by Facilitating Macrophage Iron Export. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306571. [PMID: 38235606 PMCID: PMC10966513 DOI: 10.1002/advs.202306571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Most patients with inflammatory bowel disease (IBD) develop anemia, which is attributed to the dysregulation of iron metabolism. Reciprocally, impaired iron homeostasis also aggravates inflammation. How this iron-mediated, pathogenic anemia-inflammation crosstalk is regulated in the gut remains elusive. Herein, it is for the first time revealed that anemic IBD patients exhibit impaired production of short-chain fatty acids (SCFAs), particularly butyrate. Butyrate supplementation restores iron metabolism in multiple anemia models. Mechanistically, butyrate upregulates ferroportin (FPN) expression in macrophages by reducing the enrichment of histone deacetylase (HDAC) at the Slc40a1 promoter, thereby facilitating iron export. By preventing iron sequestration, butyrate not only mitigates colitis-induced anemia but also reduces TNF-α production in macrophages. Consistently, macrophage-conditional FPN knockout mice exhibit more severe anemia and inflammation. Finally, it is revealed that macrophage iron overload impairs the therapeutic effectiveness of anti-TNF-α antibodies in colitis, which can be reversed by butyrate supplementation. Hence, this study uncovers the pivotal role of butyrate in preventing the pathogenic circuit between anemia and inflammation.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang ProvinceHangzhou310058China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Xuechun Cai
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Zhou Zhang
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Ke Guo
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Yuehai Ke
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Ziwei Hu
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Yuening Zhao
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Lingya Yao
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Manlu Shen
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Jingyun Li
- Department of Colorectal Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Youling Huang
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Lingna Ye
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Lingjie Huang
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Rongbei Liu
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Xutao Xu
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Yuan Zhao
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Inflammatory Bowel Diseases Center, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| |
Collapse
|
23
|
Xiong C, Wu J, Ma Y, Li N, Wang X, Li Y, Ding X. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Gut Microbiota in Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome Mice: Compared Evaluation of Liraglutide and Semaglutide Intervention. Diabetes Metab Syndr Obes 2024; 17:865-880. [PMID: 38406269 PMCID: PMC10894520 DOI: 10.2147/dmso.s451129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose Polycystic ovary syndrome (PCOS) is a frequent cause of infertility in reproductive-age women. Our work aims to evaluate the effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on gut microbiota, with metabolic parameters including body weight and the hormone profile in PCOS. Patients and Methods Dehydroepiandrosterone (DHEA)-induced PCOS mice were established and then treated with two GLP-1RAs: liraglutide and novel form semaglutide for four weeks. Changes in body weight and metabolic parameters were measured. Fecal samples were collected and analyzed using metagenomic sequencing. Results Liraglutide and semaglutide modulated both alpha and beta diversity of the gut microbiota in PCOS. Liraglutide increased the Bacillota-to-Bacteroidota ratio through up-regulating the abundance of butyrate-producing members of Bacillota like Lachnospiraceae. Moreover, liraglutide showed the ability to reverse the altered microbial composition and the disrupted microbiota functions caused by PCOS. Semaglutide increased the abundance of Helicobacter in PCOS mice (p < 0.01) which was the only bacteria found negatively correlated with body weight. Moreover, pathways involving porphyrin and flavonoids were increased after semaglutide intervention. Conclusion Liraglutide and semaglutide improved reproductive and metabolic disorders by modulating the whole structure of gut microbiota in PCOS. The greater efficacy in weight loss compared with liraglutide observed after semaglutide intervention was positively related with Helicobacter. The study may provide new ideas in the treatment and the underlying mechanisms of GLP-1RAs to improve PCOS.
Collapse
Affiliation(s)
- Chuanhao Xiong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jingzhu Wu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuhang Ma
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Na Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
24
|
Yan J, Li J, Wang Y, Song J, Ni A, Fang L, Xi M, Qian Q, Wang Z, Wang H. Deciphering the molecular mediators of triclosan-induced lipid accumulation: Intervention via short-chain fatty acids and miR-101a. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123153. [PMID: 38103713 DOI: 10.1016/j.envpol.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
As a potential environmental obesogen, triclosan (TCS) carries inherent risks of inducing obesity and metabolic disorders. However, the underlying molecular mechanisms behind the lipid metabolism disorder induced by TCS have remained elusive. Through a fusion of transcriptomics and microRNA target prediction, we hypothesize that miR-101a as a responsive miRNA to TCS exposure in zebrafish, playing a central role in disturbing lipid homeostasis. As an evidence, TCS exposure triggers a reduction in miR-10a expression that accompanied by elevation of genes linked to regulation of lipid homeostasis. Through precision-controlled interventions involving miRNA expression modulation, we discovered that inhibition of miR-101a enhanced expression of its target genes implicated in lipid homeostasis, subsequently triggering excessive fat accumulation. Meanwhile, the overexpression of miR-101a acts as a protective mechanism, counteracting the lipid metabolism disorder induced by TCS in the larvae. Notably, the combination of short-chain fatty acids (SCFAs) emerged as a potential remedy to alleviate TCS-induced lipid accumulation partially by counteracting the decline in miR-101a expression induced by TCS. These revelations provide insight into a prospective molecular framework underlying TCS-triggered lipid metabolism disorders, thereby paving the way for pre-emptive strategies in combating the ramifications of TCS pollution.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
25
|
Debertin JG, Holzhausen EA, Walker DI, Pacheco BP, James KA, Alderete TL, Corlin L. Associations between metals and metabolomic profiles related to diabetes among adults in a rural region. ENVIRONMENTAL RESEARCH 2024; 243:117776. [PMID: 38043890 PMCID: PMC10872433 DOI: 10.1016/j.envres.2023.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Exposure to metals is associated with increased risk of type 2 diabetes (T2D). Potential mechanisms for metals-T2D associations involve biological processes including oxidative stress and disruption of insulin-regulated glucose uptake. In this study, we assessed whether associations between metal exposure and metabolite profiles relate to biological pathways linked to T2D. MATERIALS AND METHODS We used data from 29 adults rural Colorado residents enrolled in the San Luis Valley Diabetes Study. Urinary concentrations of arsenic, cadmium, cobalt, lead, manganese, and tungsten were measured. Metabolic effects were evaluated using untargeted metabolic profiling, which included 61,851 metabolite signals detected in serum. We evaluated cross-sectional associations between metals and metabolites present in at least 50% of samples. Primary analyses adjusted urinary heavy metal concentrations for creatinine. Metabolite outcomes associated with each metal exposure were evaluated using pathway enrichment to investigate potential mechanisms underlying the relationship between metals and T2D. RESULTS Participants had a mean age of 58.5 years (standard deviation = 9.2), 48.3% were female, 48.3% identified as Hispanic/Latino, 13.8% were current smokers, and 65.5% had T2D. Of the detected metabolites, 455 were associated with at least one metal, including 42 associated with arsenic, 22 with cadmium, 10 with cobalt, 313 with lead, 66 with manganese, and two with tungsten. The metabolic features were linked to 24 pathways including linoleate metabolism, butanoate metabolism, and arginine and proline metabolism. Several of these pathways have been previously associated with T2D, and our results were similar when including only participants with T2D. CONCLUSIONS Our results support the hypothesis that metals exposure may be associated with biological processes related to T2D, including amino acid, co-enzyme, and sugar and fatty acid metabolism. Insight into biological pathways could influence interventions to prevent adverse health outcomes due to metal exposure.
Collapse
Affiliation(s)
- Julia G Debertin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| | | | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Brismar Pinto Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|
26
|
Gan N, Fang Y, Weng W, Jiao T, Yu W. Antibacterial effects and microarray-based molecular mechanisms of trans-cinnamaldehyde against Porphyromonas gingivalis. Heliyon 2023; 9:e23048. [PMID: 38144276 PMCID: PMC10746420 DOI: 10.1016/j.heliyon.2023.e23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the keystone pathogenic bacteria of periodontitis and peri-implantitis. This study aimed to investigate the antibacterial effects and molecular mechanisms of trans-cinnamaldehyde (TC), a safe extract from natural plants, on P. gingivalis. Minimum inhibitory and minimum bactericidal concentrations (MIC and MBC) of TC were determined, and scanning and transmission electron microscopies were used to assess the morphological changes. The overall biomass was estimated, and the metabolic activity of biofilms was determined at different TC concentrations. A microarray-based bioinformatics analysis was performed to elucidate the underlying molecular mechanisms of TC-inhibited P. gingivalis, and significant differences among groups were determined. TC showed an inhibitory effect on the proliferation and survival of planktonic P. gingivalis, of which the MIC and MBC were 39.07 μg/mL and 78.13 μg/mL, respectively. TC also significantly suppressed the formation and metabolic activity of P. gingivalis biofilm. The results of the significant pathways and gene ontology (GO) analyses revealed that TC treatment inhibited two metabolic pathways, accompanied by the downregulation of relative genes of nitrogen metabolism (NrfA, NrfH, and PG_2213) and starch and sucrose metabolism (PG_1681, PG_1682, and PG_1683). Thus, this study confirmed TC to be a natural antimicrobial agent against P. gingivalis and further demonstrated that TC suppressed the microbial activity on P. gingivalis through the disruption of physiological metabolism, which might inhibit the growth and the biofilm formation of P. gingivalis.
Collapse
Affiliation(s)
- Ning Gan
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yingjing Fang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Weimin Weng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ting Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Fengcheng Hospital of Fengxian District, Shanghai, 201411, China
| | - Weiqiang Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
27
|
Biţă CE, Scorei IR, Vreju AF, Muşetescu AE, Mogoşanu GD, Biţă A, Dinescu VC, Dinescu ŞC, Criveanu C, Bărbulescu AL, Florescu A, Ciurea PL. Microbiota-Accessible Boron-Containing Compounds in Complex Regional Pain Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1965. [PMID: 38004014 PMCID: PMC10673453 DOI: 10.3390/medicina59111965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
The microbiota-gut-brain axis has garnered increasing attention in recent years for its role in various health conditions, including neuroinflammatory disorders like complex regional pain syndrome (CRPS). CRPS is a debilitating condition characterized by chronic neuropathic pain, and its etiology and pathophysiology remain elusive. Emerging research suggests that alterations in the gut microbiota composition and function could play a significant role in CRPS development and progression. Our paper explores the implications of microbiota in CRPS and the potential therapeutic role of boron (B). Studies have demonstrated that individuals with CRPS often exhibit dysbiosis, with imbalances in beneficial and pathogenic gut bacteria. Dysbiosis can lead to increased gut permeability and systemic inflammation, contributing to the chronic pain experienced in CRPS. B, an essential trace element, has shown promise in modulating the gut microbiome positively and exerting anti-inflammatory effects. Recent preclinical and clinical studies suggest that B supplementation may alleviate neuropathic pain and improve CRPS symptoms by restoring microbiota balance and reducing inflammation. Our review highlights the complex interplay between microbiota, inflammation, and neuropathic pain in CRPS and underscores the potential of B as a novel therapeutic approach to target the microbiota-gut-brain axis, offering hope for improved management of this challenging condition.
Collapse
Affiliation(s)
- Cristina Elena Biţă
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
| | - Ananu Florentin Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Anca Emanuela Muşetescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Ştefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Cristina Criveanu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Andreea Lili Bărbulescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Alesandra Florescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Paulina Lucia Ciurea
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| |
Collapse
|
28
|
Zeng W, Jin Q, Wang X. Reassessing the Effects of Dietary Fat on Cardiovascular Disease in China: A Review of the Last Three Decades. Nutrients 2023; 15:4214. [PMID: 37836498 PMCID: PMC10574257 DOI: 10.3390/nu15194214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of global mortality, and is considered one of diseases with the most rapid growth rate in China. Numerous studies have indicated a closed relationship between an increased incidence of CVD and dietary factors. Dietary fat is one of the three primary nutrients of consumption; however, high fat dietary in causing CVD has been neglected in some official dietary guidelines. Our present review has analyzed the relationship between dietary fat consumption and CVD in China over the past 30 years (from 1990 to 2019). There is a significant correlation between CVD incidence and mortality for consumption of both vegetable oils and animal fats, per capita consumption, and the relative weight of dietary fat exceeding that of other food ingredients (e.g., salt, fruit, and marine food). For fatty acid species, the proportion of ω6 fatty acid consumption increased, causing a significant increase in the ratios of ω6/ω3 fatty acids, whereas the proportion of monounsaturated fatty acid consumption decreased. Such changes have been considered a characteristic of dietary fat consumption in Chinese residents over the past 30 years, and are closely related to the incidence of CVD. Therefore, we suggest that the government should spread awareness regarding the consumption of dietary fat intake to prevent CVD and related health disorders. The public should be educated to avoid high fat diet and increase the intake of monounsaturated fatty acids and ω3 fatty acids.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (W.Z.); (Q.J.)
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Basic Medicine, Gannan Medical University, 1 Hexie Avenue, Ganzhou 341000, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (W.Z.); (Q.J.)
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (W.Z.); (Q.J.)
| |
Collapse
|
29
|
Li Y, Huang Y, Liang H, Wang W, Li B, Liu T, Huang Y, Zhang Z, Qin Y, Zhou X, Wang R, Huang T. The roles and applications of short-chain fatty acids derived from microbial fermentation of dietary fibers in human cancer. Front Nutr 2023; 10:1243390. [PMID: 37614742 PMCID: PMC10442828 DOI: 10.3389/fnut.2023.1243390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Dietary fibers (DFs) and their metabolites attract significant attention in research on health and disease, attributing to their effects on regulating metabolism, proliferation, inflammation, and immunity. When fermented by gut microbiota, DFs mainly produce short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid. As the essential nutrients for intestinal epithelial cells, SCFAs maintain intestinal homeostasis and play essential roles in a wide range of biological functions. SCFAs have been found to inhibit histone deacetylase, activate G protein-coupled receptors, and modulate the immune response, which impacts cancer and anti-cancer treatment. Notably, while extensive studies have illuminated the roles of SCFAs in colorectal cancer development, progression, and treatment outcomes, limited evidence is available for other types of cancers. This restricts our understanding of the complex mechanisms and clinical applications of SCFAs in tumors outside the intestinal tract. In this study, we provide a comprehensive summary of the latest evidence on the roles and mechanisms of SCFAs, with a focus on butyric acid and propionic acid, derived from microbial fermentation of DFs in cancer. Additionally, we recapitulate the clinical applications of SCFAs in cancer treatments and offer our perspectives on the challenges, limitations, and prospects of utilizing SCFAs in cancer research and therapy.
Collapse
Affiliation(s)
- Yuanqing Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yaxuan Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haili Liang
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection (GXQT), Nanning, China
| | - Wen Wang
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection (GXQT), Nanning, China
| | - Bo Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Liu
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuqi Huang
- The First School of Clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yutao Qin
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Tingting Huang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
30
|
Wang YX, Zhang JY, Cao YM, Liu T, Zhang ZK, Zhang BX, Feng WS, Li K, Zheng XK, Zhou N. Coptis chinensis-Induced Changes in Metabolomics and Gut Microbiota in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1547-1576. [PMID: 37530506 DOI: 10.1142/s0192415x23500702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Rhizoma coptidis (CR) is traditionally used for treating gastrointestinal diseases. Wine-processed CR (wCR), zingiber-processed CR (zCR), and evodia-processed CR (eCR) are its major processed products. However, the related study of their specific mechanisms is very limited, and they need to be further clarified. The aim of this study is to compare the intervening mechanism of wCR/zCR/eCR on rats via faecal metabolomics and 16S rDNA gene sequencing analysis. First, faecal samples were collected from the control and CR/wCR/zCR/eCR groups. Then, a metabolomics analysis was performed using UHPLC-Q/TOF-MS to obtain the metabolic profile and significantly altered metabolites. The 16S rDNA gene sequencing analysis was carried out to analyze the composition of gut microbiota and screen out the significantly altered microbiota at the genus level. Finally, a pathway enrichment analysis of the significantly altered metabolites via the KEGG database and a functional prediction of relevant gut microbes based on PICRUSt2 software were performed in combination. Together with the correlation analysis between metabolites and gut microbiota, the potential intervening mechanism of wCR/zCR/eCR was explored. The results suggested that wCR played a good role in maintaining immune homeostasis, promoting glycolysis, and reducing cholesterol; zCR had a better effect on protecting the integrity of the intestinal mucus barrier, preventing gastric ulcers, and reducing body cholesterol; eCR was good at protecting the integrity of the intestinal mucus barrier and promoting glycolysis. This study scientifically elucidated the intervening mechanism of wCR/zCR/eCR from the perspective of faecal metabolites and gut microbiota, providing a new insight into the processing mechanism research of Chinese herbs.
Collapse
Affiliation(s)
- Yong-Xiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Jin-Ying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Yu-Min Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Zhen-Kai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Bing-Xian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. Zhengzhou, Henan Province 450001, P. R. China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan Province 450018, P. R. China
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
- Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. Zhengzhou, Henan Province 450001, P. R. China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan Province 450018, P. R. China
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. Zhengzhou, Henan Province 450001, P. R. China
| |
Collapse
|
31
|
Amiri P, Hosseini SA, Roshanravan N, Saghafi-Asl M, Tootoonchian M. The effects of sodium butyrate supplementation on the expression levels of PGC-1α, PPARα, and UCP-1 genes, serum level of GLP-1, metabolic parameters, and anthropometric indices in obese individuals on weight loss diet: a study protocol for a triple-blind, randomized, placebo-controlled clinical trial. Trials 2023; 24:489. [PMID: 37528450 PMCID: PMC10392013 DOI: 10.1186/s13063-022-06891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/03/2022] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Obesity is a multifaceted disease characterized by an abnormal accumulation of adipose tissue. Growing evidence has proposed microbiota-derived metabolites as a potential factor in the pathophysiology of obesity and related metabolic conditions over the last decade. As one of the essential metabolites, butyrate affects several host cellular mechanisms related to appetite sensations and weight control. However, the effects of butyrate on obesity in humans have yet to be studied. Thus, the present study was aimed to evaluate the effects of sodium butyrate (SB) supplementation on the expression levels of peroxisome proliferator activated-receptor (PPAR) gamma coactivator-1α (PGC-1α), PPARα and uncoupling protein 1 (UCP1) genes, serum level of glucagon-like peptide (GLP1), and metabolic parameters, as well as anthropometric indices in obese individuals on a weight loss diet. METHODS This triple-blind randomized controlled trial (RCT) will include 50 eligible obese subjects aged between 18 and 60 years. Participants will be randomly assigned into two groups: 8 weeks of SB (600 mg/day) + hypo-caloric diet or placebo (600 mg/day) + hypo-caloric diet. At weeks 0 and 8, distinct objectives will be pursued: (1) PGC-1α, PPARα, and UCP1 genes expression will be evaluated by real-time polymerase chain reaction; (2) biochemical parameters will be assayed using enzymatic methods; and (3) insulin and GLP1 serum level will be assessed by enzyme-linked immunosorbent assay kit. DISCUSSION New evidence from this trial may help fill the knowledge gap in this realm and facilitate multi-center clinical trials with a substantially larger sample size. TRIAL REGISTRATION Iranian Registry of Clinical Trials: IRCT20190303042905N2 . Registered on 31 January 2021.
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, P.O. Box 61357-15794, Ahvaz, Iran.
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Tootoonchian
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Zhang H, Jin K, Xiong K, Jing W, Pang Z, Feng M, Cheng X. Disease-associated gut microbiome and critical metabolomic alterations in patients with colorectal cancer. Cancer Med 2023; 12:15720-15735. [PMID: 37260140 PMCID: PMC10417192 DOI: 10.1002/cam4.6194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Gut microbiota plays a significant role in the colorectal cancer (CRC) process. Ectopic colonization of multiple oral bacteria is reportedly associated with CRC pathogenesis and progression, but the details remain unclear. METHODS We enrolled a cohort of 50 CRC patients and 52 healthy controls from an East China population. Taxonomic and functional analysis of the fecal microbiota were performed using 16S rDNA (50 + 52 samples) and shotgun metagenomic sequencing (8 + 6 samples), respectively, with particular attention paid to gut-colonized oral bacteria. RESULTS AND CONCLUSIONS The results showed more detected bacterial species but lower species evenness within the samples from CRC patients. To determine the specific bacteria enriched in each group, we analyzed their possible protective, carcinogenic, or opportunistic roles in the CRC process. Among the ectopic oral bacteria, we observed a significant increase in the abundance of Fusobacterium and decreased abundance of Prevotella and Ruminococcus in the CRC group. Main differences in the functional composition of these two groups were related to energy metabolism and biosynthesis, especially the glycolytic pathway. Furthermore, we validated the colonization of Fusobacterium nucleatum subsp. animalis within CRC tissues and studied its impact on the host intestinal epithelium and tumor cells. With high selectivity for cancerous tissues, this subspecies promoted CRC cell proliferation and induced potential DNA damage.
Collapse
Affiliation(s)
- Hongze Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Kai Jin
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Surgical Intensive Care UnitHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Kunlong Xiong
- Department of Respiratory and Critical MedicineNingbo First HospitalNingboChina
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zhen Pang
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Hand Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
33
|
Dariushnejad H, Roshanravan N, Pirzeh L, Cheraghi M, Ghorbanzadeh V. Cardiac angiogenesis enhances by activating Mir-126 and related target proteins in type 2 diabetic rats: Rescue combination effect of Sodium butyrate and voluntary exercise therapy. J Diabetes Metab Disord 2023; 22:753-761. [PMID: 37255774 PMCID: PMC10225409 DOI: 10.1007/s40200-023-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Objective type 2 diabetes, metabolic disorder, is one of the main risk factors for cardiovascular disease, leading to angiogenesis injury. The present study wanted to discover the effect of sodium butyrate (NaB) and voluntary exercise, alone or together, on miR-126 and related proteins in rats with type 2 diabetes. Methods thirty-five male Wistar rats (200-250 g) were randomly divided into five groups: control, diabetes, diabetes-NaB, diabetes-exercise, and diabetes-NaB-exercise. Type 2 diabetes was induced by intraperitoneal injection of streptozotocin (35 mg/kg) and high-fat diet. The rats were then administrated NaB (200 mg/kg. ip) or were subjected to voluntary exercise, or combined NaB and voluntary exercise for 8 weeks. MiR-126 expression in the cardiac tissue was determined by real-time PCR, and the SPRED-1 and RAF proteins expression levels were measured by western blot. Results NaB and voluntary exercise up-regulated cardiac miR-126 and RAF expression levels and down-regulated SPRED-1 in cardiac tissue of type 2 diabetic rats. Moreover, the combination of NaB and voluntary exercise amplified their effects on those parameters. Both NaB and voluntary exercise or together markedly modulated serum glucose and HbA1c. Conclusion The present findings demonstrated that NaB combined with exercise could improve cardiac angiogenesis by increasing miR-126 and affecting related proteins. Thus, NaB together with voluntary exercise might be a promising intervention for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Hassan Dariushnejad
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lale Pirzeh
- 48A, Auf dem Mühlberg, 60599 Frankfurt am Main, Germany
| | - Mostafa Cheraghi
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
34
|
Tamarelle J, Creze MM, Savathdy V, Phonekeo S, Wallenborn J, Siengsounthone L, Fink G, Odermatt P, Kounnavong S, Sayasone S, Vonaesch P. Dynamics and consequences of nutrition-related microbial dysbiosis in early life: study protocol of the VITERBI GUT project. Front Nutr 2023; 10:1111478. [PMID: 37275646 PMCID: PMC10232750 DOI: 10.3389/fnut.2023.1111478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Early life under- and overnutrition (jointly termed malnutrition) is increasingly recognized as an important risk factor for adult obesity and metabolic syndrome, a diet-related cluster of conditions including high blood sugar, fat and cholesterol. Nevertheless, the exact factors linking early life malnutrition with metabolic syndrome remain poorly characterized. We hypothesize that the microbiota plays a crucial role in this trajectory and that the pathophysiological mechanisms underlying under- and overnutrition are, to some extent, shared. We further hypothesize that a "dysbiotic seed microbiota" is transmitted to children during the birth process, altering the children's microbiota composition and metabolic health. The overall objective of this project is to understand the precise causes and biological mechanisms linking prenatal or early life under- or overnutrition with the predisposition to develop overnutrition and/or metabolic disease in later life, as well as to investigate the possibility of a dysbiotic seed microbiota inheritance in the context of maternal malnutrition. Methods/design VITERBI GUT is a prospective birth cohort allowing to study the link between early life malnutrition, the microbiota and metabolic health. VITERBI GUT will include 100 undernourished, 100 normally nourished and 100 overnourished pregnant women living in Vientiane, Lao People's Democratic Republic (PDR). Women will be recruited during their third trimester of pregnancy and followed with their child until its second birthday. Anthropometric, clinical, metabolic and nutritional data are collected from both the mother and the child. The microbiota composition of maternal and child's fecal and oral samples as well as maternal vaginal and breast milk samples will be determined using amplicon and shotgun metagenomic sequencing. Epigenetic modifications and lipid profiles will be assessed in the child's blood at 2 years of age. We will investigate for possible associations between metabolic health, epigenetics, and microbial changes. Discussion We expect the VITERBI GUT project to contribute to the emerging literature linking the early life microbiota, epigenetic changes and growth/metabolic health. We also expect this project to give new (molecular) insights into the mechanisms linking malnutrition-induced early life dysbiosis and metabolic health in later life, opening new avenues for microbiota-engineering using microbiota-targeted interventions.
Collapse
Affiliation(s)
- Jeanne Tamarelle
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Margaux M. Creze
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vanthanom Savathdy
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao People’s Democratic Republic (PDR)
| | - Sengrloun Phonekeo
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao People’s Democratic Republic (PDR)
| | - Jordyn Wallenborn
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Latsamy Siengsounthone
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao People’s Democratic Republic (PDR)
| | - Günther Fink
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Odermatt
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sengchanh Kounnavong
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao People’s Democratic Republic (PDR)
| | - Somphou Sayasone
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao People’s Democratic Republic (PDR)
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado MC, Cammarota G, Ianiro G. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023; 15:2211. [PMID: 37432351 DOI: 10.3390/nu15092211] [Citation(s) in RCA: 302] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Short-chain fatty acids (SCFAs) play a key role in health and disease, as they regulate gut homeostasis and their deficiency is involved in the pathogenesis of several disorders, including inflammatory bowel diseases, colorectal cancer, and cardiometabolic disorders. SCFAs are metabolites of specific bacterial taxa of the human gut microbiota, and their production is influenced by specific foods or food supplements, mainly prebiotics, by the direct fostering of these taxa. This Review provides an overview of SCFAs' roles and functions, and of SCFA-producing bacteria, from their microbiological characteristics and taxonomy to the biochemical process that lead to the release of SCFAs. Moreover, we will describe the potential therapeutic approaches to boost the levels of SCFAs in the human gut and treat different related diseases.
Collapse
Affiliation(s)
- William Fusco
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Manuel Bernabeu Lorenzo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46022 Valencia, Spain
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Elena Lener
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46022 Valencia, Spain
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
36
|
Immuno-metabolic effect of pancreastatin inhibitor PSTi8 in diet induced obese mice: In vitro and in vivo findings. Life Sci 2023; 316:121415. [PMID: 36690247 DOI: 10.1016/j.lfs.2023.121415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
AIMS Pancreastatin (PST), an anti-insulin peptide derived from chromogranin A. Its levels increase in cases of obesity, which contributes to adipose tissue inflammation and insulin resistance. This study aims to investigate the immunometabolic effect of PST inhibitor (PSTi8) against PST by using in vitro and in vivo finding. MAIN METHODS 3T3-L1 cells were differentiated with or without PSTi8, and Oil Red O staining was performed. J774A.1 cells were used for macrophage polarization study. The diet-induced obesity and T2DM model was developed in C57BL/6 mice through high-fat diet for 8 weeks. Alzet osmotic pumps were filled with PSTi8 (release rate: 2 mg/kg/day) and implanted in mice for eight weeks. Further, insulin and glucose tolerance tests were performed. Liver and eWAT sections were stained with hematoxylin and eosin. FACS was used to measure mitochondrial ROS and membrane potential, while Oroboros O2k was used to measure oxygen consumption rate. Immunocytochemistry and qRT-PCR were done for protein and gene expression, respectively. KEY FINDINGS PSTi8 inhibited the expression of lipolytic genes and proteins in 3T3-L1 adipocytes. PSTi8 improved the inulin sensitivity, lipid profile, MMP, and OCR levels in the 3T3-L1 adipocyte and eWAT. It also increased the M1 to M2 macrophage polarization in J77A.1 cells and eWAT. Further, PSTi8 attenuated inflammatory CD4+ T, CD8+ T cells and increased the anti-inflammatory T-reg and eosinophil populations in the eWAT. It also reduced the expression of pro-inflammatory genes like Mcp1, Tnfα, and Il-6. SIGNIFICANCE Collectively, PSTi8 exerted its beneficial effect on adipose tissue inflammation and restored energy expenditure against diet-induced obesity.
Collapse
|
37
|
Impact of caloric restriction on the gut microbiota. Curr Opin Microbiol 2023; 73:102287. [PMID: 36868081 DOI: 10.1016/j.mib.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Caloric restriction (CR) and related time-restricted diets have been popularized as means of preventing metabolic disease while improving general well-being. However, evidence as to their long-term efficacy, adverse effects, and mechanisms of activity remains incompletely understood. The gut microbiota is modulated by such dietary approaches, yet causal evidence to its possible downstream impacts on host metabolism remains elusive. Herein, we discuss the positive and adverse influences of restrictive dietary interventions on gut microbiota composition and function, and their collective impacts on host health and disease risk. We highlight known mechanisms of microbiota influences on the host, such as modulation of bioactive metabolites, while discussing challenges in achieving mechanistic dietary-microbiota insights, including interindividual variability in dietary responses as well as other methodological and conceptual challenges. In all, causally understanding the impact of CR approaches on the gut microbiota may enable to better decode their overall influences on human physiology and disease.
Collapse
|
38
|
Singh DP, Yadav SK, Patel K, Patel S, Patil GP, Bijalwan V, Singh G, Palkhade R, Kondepudi KK, Boparai RK, Bishnoi M, Das S. Short-term trivalent arsenic and hexavalent chromium exposures induce gut dysbiosis and transcriptional alteration in adipose tissue of mice. Mol Biol Rep 2023; 50:1033-1044. [PMID: 36383337 DOI: 10.1007/s11033-022-07992-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Inorganic arsenic [As(III)] and hexavalent chromium [Cr(VI)] can potentially affect metabolic functions. These heavy metal(s)/metalloids can also affect the gut microbial architecture which affects metabolic health. Here, we assessed the effects of short-term exposure of As(III) and Cr(VI) on key transcription factors in adipose tissues and on selected gut microbial abundances to understand the possible modulatory role of these toxicants on host metabolic health. METHODS AND RESULTS qRT-PCR based relative bacterial abundance studies in cecal samples, gene expression analysis for gut wall integrity in ileum and colon and adipogenesis, lipolysis, and thermogenic genes in gonadal white and brown adipose tissue (gWAT and BAT), along with tissue oxidative stress parameters have been performed. As(III) and Cr(VI) exposure reduced beneficial Lactobacilli, Bifidobacteria, Akkermansia, Lachenospiraceae, Fecalibacterium, Eubacterium, and clostridium coccoid group while increasing lipopolysaccharides producing Enterobacteriaceae abundances. It also impaired structural features and expression of key tight junction and mucin production genes in ileum and colon (Cld-2, Cld-4, ZO-1, ZO-2, MUC-2 and - 4). In gWAT it inhibited adipogenesis (PPARγ, FASN, SREBP1a), lipolysis (HSL, ACOX-1), and thermogenesis (UCP-1, PGC1a, PRDM-16, PPARa) related genes expression, whereas in BAT, it enhanced adipogenesis and reduced thermogenesis. These exposures also reduces the endogenous antioxidants levels in these tissues and promote pro-inflammatory cytokines genes expression (TLRs, IL-6, MCP-1). The combinatorial exposure appears to have more deleterious effects. CONCLUSION These effects of As(III) and Cr(VI) may not directly be linked to their known toxicological effects, instead, more intriguing crosstalk with gut microbial ecosystem hold the key.
Collapse
Affiliation(s)
- Dhirendra Pratap Singh
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat, 380016, India.
| | - Shiv Kumar Yadav
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat, 380016, India
| | - Keya Patel
- Department of Biological and Lifesciences, School of arts and sciences, Ahmedabad University, Ahmedabad, Gujarat, 380009, India
| | - Shirali Patel
- Department of Biological and Lifesciences, School of arts and sciences, Ahmedabad University, Ahmedabad, Gujarat, 380009, India
| | - Gajanan Pratap Patil
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat, 380016, India
| | - Vandana Bijalwan
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat, 380016, India
| | - Gyanendra Singh
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat, 380016, India
| | - Rajendra Palkhade
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat, 380016, India
| | - Kanthi Kiran Kondepudi
- Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute, Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Ravneet Kaur Boparai
- Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute, Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Mahendra Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute, Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Santasabuj Das
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
39
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
40
|
Butyrate Lowers Cellular Cholesterol through HDAC Inhibition and Impaired SREBP-2 Signalling. Int J Mol Sci 2022; 23:ijms232415506. [PMID: 36555149 PMCID: PMC9779842 DOI: 10.3390/ijms232415506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
In animal studies, HDAC inhibitors such as butyrate have been reported to reduce plasma cholesterol, while conferring protection from diabetes, but studies on the underlying mechanisms are lacking. This study compares the influence of butyrate and other HDAC inhibitors to that of statins on cholesterol metabolism in multiple cell lines, but primarily in HepG2 hepatic cells due to the importance of the liver in cholesterol metabolism. Sodium butyrate reduced HepG2 cholesterol content, as did sodium valproate and the potent HDAC inhibitor trichostatin A, suggesting HDAC inhibition as the exacting mechanism. In contrast to statins, which increase SREBP-2 regulated processes, HDAC inhibition downregulated SREBP-2 targets such as HMGCR and the LDL receptor. Moreover, in contrast to statin treatment, butyrate did not increase cholesterol uptake by HepG2 cells, consistent with its failure to increase LDL receptor expression. Sodium butyrate also reduced ABCA1 and SRB1 protein expression in HepG2 cells, but these effects were not consistent across all cell types. Overall, the underlying mechanism of cell cholesterol lowering by sodium butyrate and HDAC inhibition is consistent with impaired SREBP-2 signalling, and calls into question the possible use of butyrate for lowering of serum LDL cholesterol in humans.
Collapse
|
41
|
Amiri P, Arefhosseini S, Bakhshimoghaddam F, Jamshidi Gurvan H, Hosseini SA. Mechanistic insights into the pleiotropic effects of butyrate as a potential therapeutic agent on NAFLD management: A systematic review. Front Nutr 2022; 9:1037696. [PMID: 36532559 PMCID: PMC9755748 DOI: 10.3389/fnut.2022.1037696] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 08/03/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic diseases worldwide. As a multifaceted disease, NAFLD's pathogenesis is not entirely understood, but recent evidence reveals that gut microbiota plays a significant role in its progression. Butyrate, a gut microbiota metabolite, has been reported to have hepato-protective effects in NAFLD animal models. The purpose of this systematic review is to determine how butyrate affects the risk factors for NAFLD. Searches were conducted using relevant keywords in electronic databases up to March 2022. According to the evidence presented in this study, butyrate contributes to a wide variety of biological processes in the gut-liver axis. Its beneficial properties include improving intestinal homeostasis and liver health as well as anti-inflammatory, metabolism regulatory and anti-oxidative effects. These effects may be attributed to butyrate's ability to regulate gene expression as an epigenetic modulator and trigger cellular responses as a signalling molecule. However, the exact underlying mechanisms remain unclear. Human trials have not been performed on the effect of butyrate on NAFLD, so there are concerns about whether the results of animal studies can be translated to humans. This review summarises the current knowledge about the properties of butyrate, particularly its potential effects and mechanisms on liver health and NAFLD management.
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnush Bakhshimoghaddam
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hannah Jamshidi Gurvan
- National Medical Emergency Organization, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
42
|
Herrera G, Arboleda JC, Pérez-Jaramillo JE, Patarroyo MA, Ramírez JD, Muñoz M. Microbial Interdomain Interactions Delineate the Disruptive Intestinal Homeostasis in Clostridioides difficile Infection. Microbiol Spectr 2022; 10:e0050222. [PMID: 36154277 PMCID: PMC9602525 DOI: 10.1128/spectrum.00502-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) creates an imbalance in the intestinal microbiota due to the interaction of the components making up this ecosystem, but little is known about the impact of this disease on other microbial members. This work has thus been aimed at evaluating the taxonomic composition, potential gene-associated functions, virulence factors, and antimicrobial resistance profiles of gut microbiomes. A total of 48 DNA samples obtained from patients with health care facility-acquired (HCFO) and community-onset (CO) diarrhea were distributed in the following four groups according to CDI status: HCFO/+ (n = 13), HCFO/- (n = 8), CO/+ (n = 13), and CO/- (n = 14). These samples were subjected to shotgun metagenomics sequencing. Although the CDI groups' microbiota had microbiome alterations, the greatest imbalance was observed in the in the HCFO+/- groups, with an increase in common pathogens and phage populations, as well as a decrease in beneficial microorganisms that leads to a negative impact on some intestinal homeostasis-related metabolic processes. A reduction in the relative abundance of butyrate metabolism-associated genes was also detected in the HCFO groups (P < 0.01), with an increase in some virulence factors and antibiotic-resistance markers. A set of 51 differentially abundant species in the groups with potential association to CDI enabled its characterization, leading to their spatial separation by onset. Strong correlations between phages and some archaeal and bacterial phyla were identified. This highlighted the need to study the microbiota's various components since their imbalance is multifactorial, with some pathogens contributing to a greater or lesser extent because of their interaction with the ecosystem they inhabit. IMPORTANCE Clostridioides difficile infection represents a serious public health problem in different countries due to its high morbi-mortality and the high costs it represents for health care systems. Studies have shown the impact of this infection on intestinal microbiome homeostasis, mainly on bacterial populations. Our research provides evidence of the impact of CDI at both the compositional (bacteria, archaea, and viruses), and functional levels, allowing us to understand that the alterations of the microbiota occur systemically and are caused by multiple perturbations generated by different members of the microbiota as well as by some pathogens that take advantage of the imbalance to proliferate. Likewise, the 51 differentially abundant species in the study groups with potential association to CDI found in this study could help us envisage future treatments against this and other inflammatory diseases, improving future therapeutic options for patients.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan Camilo Arboleda
- Unidad de Bioprospección and Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- Semillero de Investigación en Bioinformática-GenomeSeq, Seccional Oriente, Universidad de Antioquia, Medellín, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Juan E. Pérez-Jaramillo
- Semillero de Investigación en Bioinformática-GenomeSeq, Seccional Oriente, Universidad de Antioquia, Medellín, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
43
|
Baky MH, Salah M, Ezzelarab N, Shao P, Elshahed MS, Farag MA. Insoluble dietary fibers: structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Crit Rev Food Sci Nutr 2022; 64:1954-1968. [PMID: 36094440 DOI: 10.1080/10408398.2022.2119931] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumption of food rich in dietary fibers (DFs) has been long recognized to exert an overall beneficial effect on human health. This review aims to provide a holistic overview on how IDFs impact human gut health either directly, or through modulation of the gut microbiome. Several databases were searched for collecting papers such as PubMed, Google Scholar, Web of Science, Scopus and Reaxys from 2000 till 2022. Firstly, an overview of the chemical structure of the various IDFs and the pathways employed by gut microbiota for their degradation is provided. The impact of IDFs on microbial community structure and pathogens colonization inside the human gut was discussed. Finally, the impact of IDFs on gut homeostasis and systemic effects at the cellular level, as well as the overall immunological benefits of IDFs consumption were analyzed. IDFs viz., cellulose, hemicellulose, resistant starch, and lignin found enriched in food are discussed for these effects. IDFs were found to induce gut immunity, improve intestinal integrity and mucosal proliferation, and favor adhesion of probiotics and hence improve human health. Also, IDFs were concluded to improve the bioavailability of plant polyphenols and improve their health-related functional roles. Ultimately, dietary fibers processing by modification shows potential to enhance fibers-based functional food production, in addition to increase the economic value and usage of food-rich fibers and their by-products.
Collapse
Affiliation(s)
- Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Mohamed Salah
- Microbiology Department, College of Pharmacy, Port Said University, Port Said, Egypt
| | - Nada Ezzelarab
- Biology Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, PR China
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
44
|
Cheng X, Zhou T, He Y, Xie Y, Xu Y, Huang W. The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease. Front Microbiol 2022; 13:961536. [PMID: 36016798 PMCID: PMC9396028 DOI: 10.3389/fmicb.2022.961536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of the end-stage renal disease and is a major burden on the healthcare system. The current understanding of the mechanisms responsible for the progression of DKD recognizes the involvement of oxidative stress, low-grade inflammation, and fibrosis. Several circulating metabolites that are the end products of the fermentation process, released by the gut microbiota, are known to be associated with systemic immune-inflammatory responses and kidney injury. This phenomenon has been recognized as the “gut–kidney axis.” Butyrate is produced predominantly by gut microbiota fermentation of dietary fiber and undigested carbohydrates. In addition to its important role as a fuel for colonic epithelial cells, butyrate has been demonstrated to ameliorate obesity, diabetes, and kidney diseases via G-protein coupled receptors (GPCRs). It also acts as an epigenetic regulator by inhibiting histone deacetylase (HDAC), up-regulation of miRNAs, or induction of the histone butyrylation and autophagy processes. This review aims to outline the existing literature on the treatment of DKD by butyrate in animal models and cell culture experiments, and to explore the protective effects of butyrate on DKD and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Tingting Zhou,
| | - Yanqiu He
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yumei Xie
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- *Correspondence: Yong Xu,
| | - Wei Huang
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Wei Huang,
| |
Collapse
|
45
|
Sodium butyrate reduces endoplasmic reticulum stress by modulating CHOP and empowers favorable anti-inflammatory adipose tissue immune-metabolism in HFD fed mice model of obesity. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100079. [PMID: 35415672 PMCID: PMC8991629 DOI: 10.1016/j.fochms.2022.100079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Over the past decade, the gut microbiome has been linked to several diseases including gastrointestinal diseases, cancer, immune disorder and metabolic syndrome. Shifts in the gut bacterial population affect the overall metabolic health status leading towards obesity and Type II diabetes mellitus. Secondary metabolites secreted by the gut microbiome interact with various host-sensing signalling pathways and are responsible for functional modulation of immune resident cells in metabolic tissues (Blüher, 2019). Of these, short- chain fatty acids (SCFAs) i.e., acetate, propionate and butyrate have been significantly correlated with the disposition of diabetes and metabolic disorder. The altered gut microbial population depletes the intestinal barrier causing entry of LPS into circulation and towards metabolic tissues triggering pro-inflammatory responses. As butyrate has been known to maintain intestinal integrity, we aimed to assess the apparent effect of externally given sodium butyrate [NaB] on immuno-metabolic profiling of adipose tissue, and its association with metabolic and inflammatory status of adipose tissue. To assess this, we put groups of C57BL/6 mice i.e., Control fed with a regular chow diet and another group that was fed on a high fat diet (HFD, 60%) for 8 weeks. Following this, the HFD group were further subdivided into two groups one fed with HFD and the other with HFD + NaB (5%w/w) for another 8 weeks. Body composition, weight gain, body adiposity and biochemical parameters were assessed. NaB fed group showed an improved metabolic profile compared to HFD fed group. Administration of NaB also improved glucose tolerance capacity and insulin sensitivity as determined by IPGTT and ITT profiles. Earlier reports have shown gut leakage and increased LPS in circulation is the primary cause of setting up inflammation at the tissue level. Our studies exhibited that, NaB increased the expression of tight junction proteins of intestinal linings and thereby enhanced intestinal barrier integrity. The FITC dextran permeability assay further confirmed this enhanced intestinal barrier integrity. We assessed the quantitative and relative population of different types of resident immune cells from a stromal vascular fraction of adipose tissue. Flow cytometry studies revealed significantly increased M2 (CD206+ ) macrophages and Tregs (CD25+ ) relative to the M1 macrophage population and CD4+ T cells respectively in NaB treated mice, suggesting its potential role in alleviating the inflammatory profile. In a nutshell, taken together better glucose tolerance, better gut health, reduced inflammatory adipose tissue immune cells, suggest potential beneficial role of sodium butyrate in alleviating overall inflammation and metabolic dysfunction associated with obesity.
Collapse
|
46
|
Li D, Li Y, Yang S, Lu J, Jin X, Wu M. Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics. Biomed Pharmacother 2022; 153:113290. [PMID: 35724509 DOI: 10.1016/j.biopha.2022.113290] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022] Open
Abstract
The prevalence of metabolic diseases, including obesity, dyslipidemia, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), is a severe burden in human society owing to the ensuing high morbidity and mortality. Various factors linked to metabolic disorders, particularly environmental factors (such as diet and gut microbiota) and epigenetic modifications, contribute to the progression of metabolic diseases. Dietary components and habits regulate alterations in gut microbiota; in turn, microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), are influenced by diet. Interestingly, diet-derived microbial metabolites appear to produce substrates and enzymatic regulators for epigenetic modifications (such as DNA methylation, histone modifications, and non-coding RNA expression). Epigenetic changes mediated by microbial metabolites participate in metabolic disorders via alterations in intestinal permeability, immune responses, inflammatory reactions, and insulin resistance. In addition, microbial metabolites can trigger inflammatory immune responses and microbiota dysbiosis by directly binding to G-protein-coupled receptors (GPCRs). Hence, diet-gut microbiota-epigenetics may play a role in metabolic diseases. However, their complex relationships with metabolic diseases remain largely unknown and require further investigation. This review aimed to elaborate on the interactions among diet, gut microbiota, and epigenetics to uncover the mechanisms and therapeutics of metabolic diseases.
Collapse
Affiliation(s)
- Dan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yujuan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jing Lu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiao Jin
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
47
|
Ren HC, Sun JG, A JY, Gu SH, Shi J, Shao F, Ai H, Zhang JW, Peng Y, Yan B, Huang Q, Liu LS, Sai Y, Wang GJ, Yang CG. Mechanism-Based Pharmacokinetic Model for the Deglycosylation Kinetics of 20(S)-Ginsenosides Rh2. Front Pharmacol 2022; 13:804377. [PMID: 35694247 PMCID: PMC9175024 DOI: 10.3389/fphar.2022.804377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: The 20(S)-ginsenoside Rh2 (Rh2) is being developed as a new antitumor drug. However, to date, little is known about the kinetics of its deglycosylation metabolite (protopanoxadiol) (PPD) following Rh2 administration. The aim of this work was to 1) simultaneously characterise the pharmacokinetics of Rh2 and PPD following intravenous and oral Rh2 administration, 2) develop and validate a mechanism-based pharmacokinetic model to describe the deglycosylation kinetics and 3) predict the percentage of Rh2 entering the systemic circulation in PPD form. Methods: Plasma samples were collected from rats after the I.V. or P.O. administration of Rh2. The plasma Rh2 and PPD concentrations were determined using HPLC-MS. The transformation from Rh2 to PPD, its absorption, and elimination were integrated into the mechanism based pharmacokinetic model to describe the pharmacokinetics of Rh2 and PPD simultaneously at 10 mg/kg. The concentration data collected following a 20 mg/kg dose of Rh2 was used for model validation. Results: Following Rh2 administration, PPD exhibited high exposure and atypical double peaks. The model described the abnormal kinetics well and was further validated using external data. A total of 11% of the administered Rh2 was predicted to be transformed into PPD and enter the systemic circulation after I.V. administration, and a total of 20% of Rh2 was predicted to be absorbed into the systemic circulation in PPD form after P.O. administration of Rh2. Conclusion: The developed model provides a useful tool to quantitatively study the deglycosylation kinetics of Rh2 and thus, provides a valuable resource for future pharmacokinetic studies of glycosides with similar deglycosylation metabolism.
Collapse
Affiliation(s)
- Hong-can Ren
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- DMPK and Clinical Pharmacology Group, Hutchison MediPharma Ltd., Shanghai, China
- Department of Biology, GenFleet Therapeutics, Shanghai, China
| | - Jian-guo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ji-ye A
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| | - Sheng-hua Gu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Shanghai University of Tranditional Chinese Medicine, Shanghai, China
| | - Jian Shi
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Feng Shao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hua Ai
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing-wei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Bei Yan
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Huang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Lin-sheng Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Sai
- DMPK and Clinical Pharmacology Group, Hutchison MediPharma Ltd., Shanghai, China
| | - Guang-ji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| | - Cheng-guang Yang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| |
Collapse
|
48
|
Yan H, Chen Y, Zhu H, Huang WH, Cai XH, Li D, Lv YJ, Si-Zhao, Zhou HH, Luo FY, Zhang W, Li X. The Relationship Among Intestinal Bacteria, Vitamin K and Response of Vitamin K Antagonist: A Review of Evidence and Potential Mechanism. Front Med (Lausanne) 2022; 9:829304. [PMID: 35510250 PMCID: PMC9058076 DOI: 10.3389/fmed.2022.829304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
The vitamin K antagonist is a commonly prescribed effective oral anticoagulant with a narrow therapeutic range, and the dose requirements for different patients varied greatly. In recent years, studies on human intestinal microbiome have provided many valuable insights into disease development and drug reactions. A lot of studies indicated the potential relationship between microbiome and the vitamin K antagonist. Vitamin K is absorbed by the gut, and the intestinal bacteria are a major source of vitamin K in human body. A combined use of the vitamin K antagonist and antibiotics may result in an increase in INR, thus elevating the risk of bleeding, while vitamin K supplementation can improve stability of anticoagulation for oral vitamin K antagonist treatment. Recently, how intestinal bacteria affect the response of the vitamin K antagonist remains unclear. In this review, we reviewed the research, focusing on the physiology of vitamin K in the anticoagulation treatment, and investigated the potential pathways of intestinal bacteria affecting the reaction of the vitamin K antagonist.
Collapse
|
49
|
Miao R, Fang X, Wei J, Wu H, Wang X, Tian J. Akt: A Potential Drug Target for Metabolic Syndrome. Front Physiol 2022; 13:822333. [PMID: 35330934 PMCID: PMC8940245 DOI: 10.3389/fphys.2022.822333] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
The serine/threonine kinase Akt, also known as protein kinase B (PKB), is one of the key factors regulating glucose and lipid energy metabolism, and is the core focus of current research on diabetes and metabolic diseases. Akt is mostly expressed in key metabolism-related organs and it is activated in response to various stimuli, including cell stress, cell movement, and various hormones and drugs that affect cell metabolism. Genetic and pharmacological studies have shown that Akt is necessary to maintain the steady state of glucose and lipid metabolism and a variety of cellular responses. Existing evidence shows that metabolic syndrome is related to insulin resistance and lipid metabolism disorders. Based on a large number of studies on Akt-related pathways and reactions, we believe that Akt can be used as a potential drug target to effectively treat metabolic syndrome.
Collapse
Affiliation(s)
- Runyu Miao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Fang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Maruyama S, Matsuoka T, Hosomi K, Park J, Nishimura M, Murakami H, Konishi K, Miyachi M, Kawashima H, Mizuguchi K, Kobayashi T, Ooka T, Yamagata Z, Kunisawa J. Classification of the Occurrence of Dyslipidemia Based on Gut Bacteria Related to Barley Intake. Front Nutr 2022; 9:812469. [PMID: 35399681 PMCID: PMC8988889 DOI: 10.3389/fnut.2022.812469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Barley is a grain rich in β-glucan, a soluble dietary fiber, and its consumption can help maintain good health and reduce the risk of metabolic disorders, such as dyslipidemia. However, the effect of barley intake on the risk of dyslipidemia has been found to vary among individuals. Differences in gut bacteria among individuals may be a determining factor since dietary fiber is metabolized by gut bacteria and then converted into short-chain fatty acids with physiological functions that reduce the risk of dyslipidemia. This study examined whether gut bacteria explained individual differences in the effects of barley intake on dyslipidemia using data from a cross-sectional study. In this study, participants with high barley intake and no dyslipidemia were labeled as “responders” to the reduced risk of dyslipidemia based on their barley intake and their gut bacteria. The results of the 16S rRNA gene sequencing showed that the fecal samples of responders (n = 22) were richer in Bifidobacterium, Faecalibacterium, Ruminococcus 1, Subdoligranulum, Ruminococcaceae UCG-013, and Lachnospira than those of non-responders (n = 43), who had high barley intake but symptoms of dyslipidemia. These results indicate the presence of certain gut bacteria that define barley responders. Therefore, we attempted to generate a gut bacteria-based responder classification model through machine learning using random forest. The area under the curve value of the classification model in estimating the effect of barley on the occurrence of dyslipidemia in the host was 0.792 and the Matthews correlation coefficient was 0.56. Our findings connect gut bacteria to individual differences in the effects of barley on lipid metabolism, which could assist in developing personalized dietary strategies.
Collapse
Affiliation(s)
- Satoko Maruyama
- Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tsubasa Matsuoka
- Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
- *Correspondence: Tsubasa Matsuoka
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Mao Nishimura
- Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Kana Konishi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Hitoshi Kawashima
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Computational Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Toshiki Kobayashi
- Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Tadao Ooka
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan
- Graduate Schools of Medicine, Graduate School of Pharmaceutical Sciences, Graduate Schools of Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|