1
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Qi GX, Zhao RX, Gao C, Ma ZY, Wang S, Xu J. Recent advances and challenges in colorectal cancer: From molecular research to treatment. World J Gastroenterol 2025; 31:106964. [DOI: 10.3748/wjg.v31.i21.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/22/2025] [Accepted: 05/26/2025] [Indexed: 06/06/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the top causes of cancer-related fatalities globally. Recent progress in genomics, proteomics, and bioinformatics has greatly improved our comprehension of the molecular underpinnings of CRC, paving the way for targeted therapies and immunotherapies. Nonetheless, obstacles such as tumor heterogeneity and drug resistance persist, hindering advancements in treatment efficacy. In this context, the integration of artificial intelligence (AI) and organoid technology presents promising new avenues. AI can analyze genetic and clinical data to forecast disease risk, prognosis, and treatment responses, thereby expediting drug development and tailoring treatment plans. Organoids replicate the genetic traits and biological behaviors of tumors, acting as platforms for drug testing and the formulation of personalized treatment approaches. Despite notable strides in CRC research and treatment - from genetic insights to therapeutic innovations - numerous challenges endure, including the intricate tumor microenvironment, tumor heterogeneity, adverse effects of immunotherapies, issues related to AI data quality and privacy, and the need for standardization in organoid culture. Future initiatives should concentrate on clarifying the pathogenesis of CRC, refining AI algorithms and organoid models, and creating more effective therapeutic strategies to alleviate the global impact of CRC.
Collapse
Affiliation(s)
- Gao-Xiu Qi
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Rui-Xia Zhao
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Chen Gao
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Zeng-Yan Ma
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Shang Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jing Xu
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| |
Collapse
|
3
|
Killinger M, Szotkowská T, Lusková D, Zezula N, Bryja V, Buchtová M. Porcupine inhibition enhances hypertrophic cartilage differentiation. JBMR Plus 2025; 9:ziaf048. [PMID: 40406350 PMCID: PMC12097805 DOI: 10.1093/jbmrpl/ziaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 05/26/2025] Open
Abstract
Porcupine (PORCN) is a membrane-bound protein of the endoplasmic reticulum, which modifies Wnt proteins by adding palmitoleic acid. This modification is essential for Wnt ligand secretion. Patients with mutated PORCN display various skeletal abnormalities likely stemming from disrupted Wnt signaling pathways during the chondrocyte differentiation. To uncover the mechanism of PORCN action during chondrogenesis, we used 2 different PORCN inhibitors, C59 and LGK974, in several model systems, including micromasses, 3D cell cultures, long bone tissue cultures, and zebrafish animal model. PORCN inhibitors enhanced cartilaginous extracellular matrix (ECM) production and accelerated chondrocyte differentiation, which resulted in the earlier induction of cellular hypertrophy as well as cartilaginous mass expansion in micromass cultures and cartilaginous organoids. In addition, both PORCN inhibitors expanded the hypertrophic zone and reduced the proliferative zone in the growth plate. This led to a significant increase in cartilaginous tissue and ultimately resulted in the elongation of tibias in the mouse organ cultures. Also, LGK974 treatment of Danio rerio embryos induced expansion of craniofacial cartilage width together with the shortening of the body axis, which was consistent with a phenomenon occurring upon inhibition of non-canonical Wnt signaling. By combining PORCN inhibition with exogenous Wnt proteins activating either canonical/β-catenin (WNT3a) or non-canonical (WNT5a) signaling, we propose that the key mechanism mediating pro-chondrogenic effects of PORCN inhibition is the removal of canonical ligands that prevent chondrocyte differentiation. In summary, our results provide evidence of the distinct role of PORCN in both the early and late stages of cartilage development. Further, our data demonstrate that PORCN inhibitors can be used in the experimental and clinical strategies that need to trigger chondrocyte differentiation and/or cartilage outgrowth.
Collapse
Affiliation(s)
- Michael Killinger
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Tereza Szotkowská
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Denisa Lusková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| |
Collapse
|
4
|
Lundberg AS, Geuijen CAW, Hill S, Lammerts van Bueren JJ, Fumagalli A, de Kruif J, Silverman PB, Tabernero J. Petosemtamab, a Bispecific Antibody Targeting Epidermal Growth Factor Receptor (EGFR) and Leucine-Rich G Repeat-Containing Protein-Coupled Receptor (LGR5) Designed for Broad Clinical Applications. Cancers (Basel) 2025; 17:1665. [PMID: 40427162 PMCID: PMC12110399 DOI: 10.3390/cancers17101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Disease progression and treatment resistance in colorectal and other cancers are driven by a subset of cells within the tumor that have stem-cell-like properties and long-term tumorigenic potential. These stem-cell-like cells express the leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) and have characteristics similar to tissue-resident stem cells in normal adult tissues such as the colon. Organoid models of murine and human colorectal and other cancers contain LGR5-expressing (LGR5+) stem-cell-like cells and can be used to investigate the underlying mechanisms of cancer development, progression, therapy vulnerability, and resistance. A large biobank of organoids derived from colorectal cancer or adjacent normal tissue was developed. We performed a large-scale unbiased functional screen to identify bispecific antibodies (BsAbs) that preferentially inhibit the growth of colon tumor-derived, as compared to normal tissue-derived, organoids. We identified the most potent BsAb in the screen as petosemtamab, a Biclonics® BsAb targeting both LGR5 and the epidermal growth factor receptor (EGFR). Petosemtamab employs three distinct mechanisms of action: EGFR ligand blocking, EGFR receptor internalization and degradation in LGR5+ cells, and Fc-mediated activation of the innate immune system by antibody-dependent cellular phagocytosis (ADCP) and enhanced antibody-dependent cellular cytotoxicity (ADCC) (see graphical abstract). Petosemtamab has demonstrated substantial clinical activity in recurrent/metastatic head and neck squamous cell carcinoma (r/m HNSCC). The safety profile is generally favorable, with low rates of skin and gastrointestinal toxicity. Phase 3 trials are ongoing in both first-line programmed death-ligand 1-positive (PD-L1+) and second/third-line r/m HNSCC.
Collapse
Affiliation(s)
| | | | - Sally Hill
- Merus NV, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | - Josep Tabernero
- Vall d’Hebron Institute of Oncology (VHIO), Universitat de Vic/Central de Catalunya (UVic-UCC), 08035 Barcelona, Spain
| |
Collapse
|
5
|
Sun MX, Zhu HC, Yu Y, Yao Y, Li HY, Feng FB, Wang QY, Liu RJ, Sun CG. Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review). Int J Oncol 2025; 66:36. [PMID: 40145557 PMCID: PMC12068849 DOI: 10.3892/ijo.2025.5742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The focus on breast cancer treatment has shifted from the cytotoxic effects of single drugs on tumor cells to multidimensional multi‑pathway synergistic intervention strategies targeting the tumor microenvironment (TME). The activation of the Wnt signaling pathway in the TME of breast cancer cells serves a key regulatory role in tissue homeostasis and is a key driver of the carcinogenic process. Modulating the crosstalk between the Wnt pathway and TME of breast cancer is key for understanding the biological behavior of breast cancer and advancing the development of novel antitumor drugs. The present review aimed to summarize the complex mechanisms of the Wnt signaling pathway in the breast cancer TME, interactions between the Wnt signaling pathway and components of the breast cancer TME and breast cancer‑associated genes, as well as the interactions between the Wnt signaling pathway and other signaling cascades at the molecular level. Furthermore, the present review aimed to highlight the unique advantages of the Wnt signaling pathway in the macro‑regulation of the TME and the current therapeutic strategies targeting the Wnt signaling pathway, their potential clinical value and future research directions in breast cancer treatment.
Collapse
Affiliation(s)
- Meng Xuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Han Ci Zhu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Hua Yao Li
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fu Bin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Qing Yang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Rui Juan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Chang Gang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
6
|
Han J, Yuan Y, Zhang J, Hou Y, Xu H, Nie X, Zhao Z, Hou J. Regulatory effect of Wnt signaling on mitochondria in cancer: from mechanism to therapy. Apoptosis 2025:10.1007/s10495-025-02114-z. [PMID: 40257508 DOI: 10.1007/s10495-025-02114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Cancer is one of the most significant public health challenges in the new millennium, and complex mechanisms are at work to contribute to its pathogenesis and progression. The Wnt signaling pathways, which are crucial conserved cascades involved in embryological development and tissue homeostasis, and mitochondria, the intracellular powerhouses responsible for energy production, calcium and iron homeostasis, as well as mitochondrial apoptosis in eukaryotic cells, have their own mechanisms regulating these pathological processes. In the past decade, accumulating evidence has indicated that Wnt signaling pathways directly regulate mitochondrial biogenesis and function under physiological and pathological conditions. In this review, we systemically summarize the current understanding of how Wnt signaling pathways, particularly the canonical Wnt cascade, regulate mitochondrial fission, respiration, metabolism, and mitochondrial-dependent apoptosis in cancer. In addition, we discuss recent advancements in the research of anticancer agents and related pharmacological mechanisms targeting the signaling transduction of canonical Wnt pathway and/or mitochondrial function. We believe that the combined use of pharmaceuticals targeting Wnt signaling and/or mitochondria with conventional therapies, immunotherapy and targeted therapy based on accurate molecular pathological diagnosis will undoubtedly be the future mainstream direction of personalized cancer treatment, which could benefit more cancer patients.
Collapse
Affiliation(s)
- Jinping Han
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Yimeng Yuan
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Jianhua Zhang
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd, 475003, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Hongtao Xu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China.
| | - Zhenhua Zhao
- Ma'anshan 86 Hospital, China RongTong Medical Healthcare Group Co. Ltd, 243100, Ma'anshan, China
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd, 475003, Kaifeng, China
| |
Collapse
|
7
|
Haddadin L, Sun X. Stem Cells in Cancer: From Mechanisms to Therapeutic Strategies. Cells 2025; 14:538. [PMID: 40214491 PMCID: PMC11988674 DOI: 10.3390/cells14070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Stem cells have emerged as a pivotal area of research in the field of oncology, offering new insights into the mechanisms of cancer initiation, progression, and resistance to therapy. This review provides a comprehensive overview of the role of stem cells in cancer, focusing on cancer stem cells (CSCs), their characteristics, and their implications for cancer therapy. We discuss the origin and identification of CSCs, their role in tumorigenesis, metastasis, and drug resistance, and the potential therapeutic strategies targeting CSCs. Additionally, we explore the use of normal stem cells in cancer therapy, focusing on their role in tissue regeneration and their use as delivery vehicles for anticancer agents. Finally, we highlight the challenges and future directions in stem cell research in cancer.
Collapse
Affiliation(s)
| | - Xueqin Sun
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Zhang Y, Ju F, Yan L, Shen X, Guo S, Yu M, Cao Y, Wang W. Elevated Porcupine Disrupts Lipid Metabolism and Promotes Inflammatory Response in MASLD. Liver Int 2025; 45:e16130. [PMID: 39403838 DOI: 10.1111/liv.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 03/11/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a high incidence globally and is a major cause of cirrhosis and hepatocellular carcinoma, lacking of efficient interventions. Patients with MASLD exhibit exceeded serum levels of palmitic acid (PA). However, the association between PA and MASLD remains obscure. METHODS Gene expression omnibus dataset analysis, western blotting, mRNA-sequencing, RT-qPCR, a click chemistry-immunoprecipitation-immunofluorescence system, ELISA, lipid extraction and UHPLC-MS/MS analysis, CyTOF mass cytometry, gene knockdown via lentivirus-mediated shRNA, and high-fat methionine and choline-deficient diet-fed WT and db/db mice models were used to reveal the expression and functions of Porcupine in MASLD development both in vitro and in vivo. RESULTS Our findings show that PA, as a crucial substrate for protein palmitoylation, induced the expression of palmitoyltransferase Porcupine in a time-dependent manner. This induction was closely associated with dysregulated lipid metabolism and stimulated inflammatory response observed in vitro. Porcupine protein levels were significantly increased in liver tissues from both MASLD mice models, which was predominantly localised in lipid droplet-rich hepatocytes. Pharmacological inhibition of Porcupine by Wnt974 markedly ameliorated the aberrant lipid accumulation and inflammatory response in mouse livers. Furthermore, increased Porcupine positively correlated with CD36 at protein levels, and its inhibition or knockdown decreased CD36 protein levels via mechanisms irrelevant to transcriptional regulation, but primarily dependent on protein palmitoylation. CONCLUSIONS The current study reveals that PA-induced Porcupine disrupts lipid metabolism and promotes inflammatory response during MASLD development, which can be ameliorated by the Porcupine inhibitor Wnt974. Therefore, Porcupine may be a potential pharmacological target for the treatment of MASLD.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fengyu Ju
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Yan
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xin Shen
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shiqing Guo
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muchen Yu
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yujia Cao
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Wenhui Wang
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2025; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Cheng X, Liu J, Niu D, Zhang C, Lin Y, Li S, Yang J, Wen J. Prognostic prediction and diagnostic role of Rspondin 1 expression in esophageal squamous cell carcinoma. INDIAN J PATHOL MICR 2025; 68:11-16. [PMID: 38864442 DOI: 10.4103/ijpm.ijpm_452_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/14/2023] [Indexed: 06/13/2024] Open
Abstract
CONTEXT Rspondin 1 (Rspo1), a protein family member featuring secreted furin-like domains, plays a pivotal role in cancer development and exhibits a positive correlation with tumor progression. However, its expression in esophageal squamous cell carcinoma (ESCC) is still unknown. AIMS Here, we assessed the correlation between Rspo1 and clinicopathological features of ESCC patients, and further investigated the potential role of Rspo1 in ESCC development and clinical outcomes. SETTINGS AND DESIGN This was a pilot study. MATERIALS AND METHODS A total of 112 paraffin-embedded tumor samples from patients with ESCC, including 68 matched adjacent normal tissues, were collected post-surgery. Subsequently, tissue microarray (TMA) and immunohistochemistry (IHC) techniques were employed to assess the protein levels of Rspo1. STATISTICAL ANALYSIS All statistical analyses were performed with SPSS 20.0 (SPSS, Inc., Chicago, IL). RESULTS We found that Rspo1 expression was significantly higher in ESCC than in adjacent normal tissues ( P < 0.0001). Moreover, Rspo1 was highly expressed in ESCC tumor specimens and showed a significant correlation with the T classification of ESCC ( P < 0.05). Additionally, our findings indicate a positive relationship between Rspo1 and survival time in ESCC. Patients exhibiting moderate to high levels of Rspo1 expression demonstrated superior survival outcomes compared to those with low expression ( P = 0.0002). CONCLUSIONS Our investigation has demonstrated that Rspo1 is upregulated in ESCC and exhibits a positive correlation with disease progression. Furthermore, we have observed a significant association between Rspo1 overexpression and improved patient survival rates, indicating its potential as a prognostic marker and therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jiao Liu
- Department of Clinical Nutrition, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Danye Niu
- Department of Clinical Nutrition, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Changsong Zhang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Yuansheng Lin
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shengjun Li
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jiao Yang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jiangtao Wen
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Zhu Y, He Y, Gan R. Wnt Signaling in Hepatocellular Carcinoma: Biological Mechanisms and Therapeutic Opportunities. Cells 2024; 13:1990. [PMID: 39682738 PMCID: PMC11640042 DOI: 10.3390/cells13231990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), characterized by significant morbidity and mortality rates, poses a substantial threat to human health. The expression of ligands and receptors within the classical and non-classical Wnt signaling pathways plays an important role in HCC. The Wnt signaling pathway is essential for regulating multiple biological processes in HCC, including proliferation, invasion, migration, tumor microenvironment modulation, epithelial-mesenchymal transition (EMT), stem cell characteristics, and autophagy. Molecular agents that specifically target the Wnt signaling pathway have demonstrated significant potential for the treatment of HCC. However, the precise mechanism by which the Wnt signaling pathway interacts with HCC remains unclear. In this paper, we review the alteration of the Wnt signaling pathway in HCC, the mechanism of Wnt pathway action in HCC, and molecular agents targeting the Wnt pathway. This paper provides a theoretical foundation for identifying molecular agents targeting the Wnt pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Runliang Gan
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.Z.); (Y.H.)
| |
Collapse
|
12
|
Ding X, Huang H, Fang Z, Jiang J. From Subtypes to Solutions: Integrating CMS Classification with Precision Therapeutics in Colorectal Cancer. Curr Treat Options Oncol 2024; 25:1580-1593. [PMID: 39589648 DOI: 10.1007/s11864-024-01282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
OPINION STATEMENT The biological heterogeneity of colorectal cancer makes its molecular characteristics essential for therapeutic decision-making and prognostic evaluation. Recent advancements in consensus molecular subtyping, based on gene expression profiling, have provided deeper insights into the heterogeneity of CRC. CMS1, known as the immune subtype, is characterized by robust immune activity and microsatellite instability. CMS2, the canonical subtype, exhibits significant activation of the WNT and MYC signaling pathways. CMS3, the metabolic subtype, features unique metabolic dysregulations. CMS4, the mesenchymal subtype, is recognized for its stromal invasion and angiogenesis, which are associated with a poorer prognosis. This review delivers a thorough analysis of the biological and clinical responses of each CMS subtype in colorectal cancer, highlighting their therapeutic vulnerabilities. It integrates data and clinical trial results to suggest potential new therapies for each subtype. The goal is to improve therapeutic efficacy, minimize treatment disparities, and offer CRC patients more precise treatment options.
Collapse
Affiliation(s)
- Xinyi Ding
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
13
|
Li S, Niu J, Smits R. RNF43 and ZNRF3: Versatile regulators at the membrane and their role in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189217. [PMID: 39551397 DOI: 10.1016/j.bbcan.2024.189217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
RNF43 and ZNRF3 are recognized as important regulators of Wnt/β-catenin signaling by maintaining Wnt-receptors at minimal essential levels. In various cancer types, particularly gastrointestinal tumors, mutations in these genes lead to abnormal Wnt-dependent activation of β-catenin signaling. However, recent findings implicate RNF43/ZNRF3 also in the regulation of other tumor-related proteins, including EGFR, BRAF, and the BMP-signaling pathway, which may have important implications for tumor biology. Additionally, we describe in detail how phosphorylation and ubiquitination may finetune RNF43 and ZNRF3 activity. We also address the variety of mutations observed in cancers and the mechanism through which they support tumor growth, and challenge the prevailing view that specific missense mutations in the R-spondin and RING domains may possess dominant-negative activity in contributing to tumor formation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Jiahui Niu
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
14
|
Xing H, Gu X, Liu Y, Xu L, He Y, Xue C. NSUN2 regulates Wnt signaling pathway depending on the m5C RNA modification to promote the progression of hepatocellular carcinoma. Oncogene 2024; 43:3469-3482. [PMID: 39375506 DOI: 10.1038/s41388-024-03184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
5-Methylcytosine (m5C) RNA modification is a highly abundant and important epigenetic modification in mammals. As an important RNA m5C methyltransferase, NOP2/Sun-domain family member 2 (NSUN2)-mediated m5C RNA modification plays an important role in the regulation of the biological functions in many cancers. However, little is known about the biological role of NSUN2 in hepatocellular carcinoma (HCC). In this study, we found that the expression of NSUN2 was significantly upregulated in HCC, and the HCC patients with higher expression of NSUN2 had a poorer prognosis than those with lower expression of NSUN2. NSUN2 could affect the tumor immune regulation of HCC in several ways. In vitro and in vivo experiments confirmed that NSUN2 knockdown significantly decreased the abilities of proliferation, colony formation, migration and invasion of HCC cells. The methylated RNA immunoprecipitation-sequencing (MeRIP-seq) showed NSUN2 knockdown significantly affected the abundance, distribution, and composition of m5C RNA modification in HCC cells. Functional enrichment analyses and in vitro experiments suggested that NSUN2 could promote the HCC cells to proliferate, migrate and invade by regulating Wnt signaling pathway. SARS2 were identified via the RNA immunoprecipitation-sequencing (RIP-Seq) and MeRIP-seq as downstream target of NSUN2, which may play an important role in tumor-promoting effect of NSUN2-mediated m5C RNA modification in HCC. In conclusion, NSUN2 promotes HCC progression by regulating Wnt signaling pathway and SARS2 in an m5C-dependent manner.
Collapse
Affiliation(s)
- Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
16
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
17
|
Yu J, Liao PJ, Keller TH, Cherian J, Virshup DM, Xu W. Ultra-large scale virtual screening identifies a small molecule inhibitor of the Wnt transporter Wntless. iScience 2024; 27:110454. [PMID: 39104418 PMCID: PMC11298631 DOI: 10.1016/j.isci.2024.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Wnts are lipid-modified glycoproteins that play key roles in both embryonic development and adult homeostasis. Wnt signaling is dysregulated in many cancers and preclinical data shows that targeting Wnt biosynthesis and secretion can be effective in Wnt-addicted cancers. An integral membrane protein known as Wntless (WLS/Evi) is essential for Wnt secretion. However, WLS remains undrugged thus far. The cryo-EM structure of WLS in complex with WNT8A shows that WLS has a druggable G-protein coupled receptor (GPCR) domain. Using Active Learning/Glide, we performed an ultra-large scale virtual screening from Enamine's REAL 350/3 Lead-Like library containing nearly 500 million compounds. 68 hits were examined after on-demand synthesis in cell-based Wnt reporter and other functional assays. ETC-451 emerged as a potential first-in-class WLS inhibitor. ETC-451 blocked WLS-WNT3A interaction and decreased Wnt-addicted pancreatic cancer cell line proliferation. The current hit provides a starting chemical scaffold for further structure or ligand-based drug discovery targeting WLS.
Collapse
Affiliation(s)
- Jia Yu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pei-Ju Liao
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Thomas H. Keller
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| | - Joseph Cherian
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| | - David M. Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weijun Xu
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| |
Collapse
|
18
|
Peterson K, Turos-Cabal M, Salvador AD, Palomo-Caturla I, Howell AJ, Vieira ME, Greiner SM, Barnoud T, Rodriguez-Blanco J. Mechanistic insights into medulloblastoma relapse. Pharmacol Ther 2024; 260:108673. [PMID: 38857789 PMCID: PMC11270902 DOI: 10.1016/j.pharmthera.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Pediatric brain tumors are the leading cause of cancer-related deaths in children, with medulloblastoma (MB) being the most common type. A better understanding of these malignancies has led to their classification into four major molecular subgroups. This classification not only facilitates the stratification of clinical trials, but also the development of more effective therapies. Despite recent progress, approximately 30% of children diagnosed with MB experience tumor relapse. Recurrent disease in MB is often metastatic and responds poorly to current therapies. As a result, only a small subset of patients with recurrent MB survive beyond one year. Due to its dismal prognosis, novel therapeutic strategies aimed at preventing or managing recurrent disease are urgently needed. In this review, we summarize recent advances in our understanding of the molecular mechanisms behind treatment failure in MB, as well as those characterizing recurrent cases. We also propose avenues for how these findings can be used to better inform personalized medicine approaches for the treatment of newly diagnosed and recurrent MB. Lastly, we discuss the treatments currently being evaluated for MB patients, with special emphasis on those targeting MB by subgroup at diagnosis and relapse.
Collapse
Affiliation(s)
- Kendell Peterson
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Turos-Cabal
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - April D Salvador
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | - Ashley J Howell
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Megan E Vieira
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Sean M Greiner
- Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
20
|
Zheng K, Hao Y, Xia C, Cheng S, Yu J, Chen Z, Li Y, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Zhao J, Li R, Zong J, Zhang H, Lai L, Huang P, Zhou C, Xia J, Zhang X, Wu J. Effects and mechanisms of the myocardial microenvironment on cardiomyocyte proliferation and regeneration. Front Cell Dev Biol 2024; 12:1429020. [PMID: 39050889 PMCID: PMC11266095 DOI: 10.3389/fcell.2024.1429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Cheng
- Jingshan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Wang H, Zhang L, Hu C, Li H, Jiang M. Wnt signaling and tumors (Review). Mol Clin Oncol 2024; 21:45. [PMID: 38798312 PMCID: PMC11117032 DOI: 10.3892/mco.2024.2743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Wnt signaling is a highly conserved evolutionary pathway that plays a key role in regulation of embryonic development, as well as tissue homeostasis and regeneration. Abnormalities in Wnt signaling are associated with tumorigenesis and development, leading to poor prognosis in patients with cancer. However, the pharmacological effects and mechanisms underlying Wnt signaling and its inhibition in cancer treatment remain unclear. In addition, potential side effects of inhibiting this process are not well understood. Therefore, the present review outlines the role of Wnt signaling in tumorigenesis, development, metastasis, cancer stem cells, radiotherapy resistance and tumor immunity. The present review further identifies inhibitors that target Wnt signaling to provide a potential novel direction for cancer treatment. This may facilitate early application of safe and effective drugs targeting Wnt signaling in clinical settings. An in-depth understanding of the mechanisms underlying inhibition of Wnt signaling may improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Lihai Zhang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
22
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
23
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
24
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
26
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
28
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Alve S, Gramolelli S, Jukonen J, Juteau S, Pink A, Manninen AA, Hänninen S, Monto E, Lackman MH, Carpén O, Saharinen P, Karaman S, Vaahtomeri K, Ojala PM. DLL4/Notch3/WNT5B axis mediates bidirectional prometastatic crosstalk between melanoma and lymphatic endothelial cells. JCI Insight 2024; 9:e171821. [PMID: 37971882 PMCID: PMC10906450 DOI: 10.1172/jci.insight.171821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Despite strong indications that interactions between melanoma and lymphatic vessels actively promote melanoma progression, the molecular mechanisms are not yet completely understood. To characterize molecular factors of this crosstalk, we established human primary lymphatic endothelial cell (LEC) cocultures with human melanoma cell lines. Here, we show that coculture with melanoma cells induced transcriptomic changes in LECs and led to multiple changes in their function. WNT5B, a paracrine signaling molecule upregulated in melanoma cells upon LEC interaction, was found to contribute to the functional changes in LECs. Moreover, WNT5B transcription was regulated by Notch3 in melanoma cells following the coculture with LECs, and Notch3 and WNT5B were coexpressed in melanoma patient primary tumor and metastasis samples. Moreover, melanoma cells derived from LEC coculture escaped efficiently from the primary site to the proximal tumor-draining lymph nodes, which was impaired upon WNT5B depletion. This supported the role of WNT5B in promoting the metastatic potential of melanoma cells through its effects on LECs. Finally, DLL4, a Notch ligand expressed in LECs, was identified as an upstream inducer of the Notch3/WNT5B axis in melanoma. This study elucidated WNT5B as a key molecular factor mediating bidirectional crosstalk between melanoma cells and lymphatic endothelium and promoting melanoma metastasis.
Collapse
Affiliation(s)
- Sanni Alve
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Silvia Gramolelli
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Joonas Jukonen
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Susanna Juteau
- Department of Pathology, Helsinki University Hospital (HUS), University of Helsinki, Helsinki, Finland
| | - Anne Pink
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Atte A. Manninen
- Department of Plastic Surgery, Park Hospital, Helsinki University Hospital (HUS), and
| | - Satu Hänninen
- Department of Pathology, Helsinki University Hospital (HUS), University of Helsinki, Helsinki, Finland
| | - Elisa Monto
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Madeleine H. Lackman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Helsinki Biobank, and
- Department of Pathology and Research Program in Systems Oncology, University of Helsinki, HUS Diagnostic Center, Helsinki University Hospital, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sinem Karaman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum, Helsinki, Finland
| | - Kari Vaahtomeri
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum, Helsinki, Finland
| | - Päivi M. Ojala
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, Helsinki University Hospital (HUS), University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Huang ZY, Wen L, Ye LF, Lu YT, Pat Fong W, Zhang RJ, Wu SX, Chen ZG, Cai YY, Xu RH, Li YH, Du ZM, Wang DS. Clinical and molecular characteristics of RNF43 mutations as promising prognostic biomarkers in colorectal cancer. Ther Adv Med Oncol 2024; 16:17588359231220600. [PMID: 38205077 PMCID: PMC10777808 DOI: 10.1177/17588359231220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
Background Transmembrane E3 ubiquitin ligase (RNF43) mutations are present in approximately 6-18% of colorectal cancers (CRC) and could enhance Wnt/β-catenin signaling, which is emerging as a promising therapeutic target. This study aims to investigate the clinical and molecular characteristics and potential heterogeneity of RNF43-mutant CRC. Methods A total of 78 patients with RNF43-mutant CRC were enrolled from July 2013 to November 2022. Demographic data, clinical characteristics, treatment regimens used, and survival outcomes were collected and analyzed. Results Our study uncovered that patients with RNF43 mutations in the N-terminal domain (NTD; n = 50) exhibited shorter overall survival (OS; median months, 50.80 versus not reached; p = 0.043) compared to those in the C-terminal domain (CTD; n = 17). Most RNF43 mutations in NTD had positive primary lymph node status, low tumor mutation burden (TMB-L), and correlated with proficient mismatch repair (pMMR)/microsatellite stable (MSS) status. By contrast, RNF43 mutations in CTD were significantly enriched in deficient MMR (dMMR)/microsatellite instability (MSI-H) tumors with high TMB (TMB-H). N-terminal RNF43-mutated tumors harbored a hotspot variant (RNF43 R117fs), which independently predicted a significantly worse outcome in pMMR/MSS CRC with a median OS of 18.9 months. Patients with RNF43 mutations and the BRAF V600E alterations demonstrated sensitivity to BRAF/EGFR inhibitors. Moreover, we observed that pMMR/MSS patients with RNF43 R117fs mutation had a higher incidence of stage IV, ⩾2 metastatic sites, low TMB, and none of them received PD-1/PD-L1 inhibitor therapy. Conclusion Our findings provide the first evidence that RNF43 mutations in NTD and the R117fs variant correlate with a poorer prognosis in CRC patients, providing strategies for Wnt-targeted therapy to improve clinical efficacy.
Collapse
Affiliation(s)
- Zi-Yao Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Lei Wen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Liu-Fang Ye
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yu-Ting Lu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - William Pat Fong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Ren-Jing Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Si-Xian Wu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Zhi-Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yan-Yu Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yu-Hong Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P. R. China
| | - Zi-Ming Du
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - De-Shen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P. R. China
| |
Collapse
|
31
|
Peña-Oyarzún D, Flores T, Torres VA, Quest AFG, Lobos-González L, Kretschmar C, Contreras P, Maturana-Ramírez A, Criollo A, Reyes M. Inhibition of PORCN Blocks Wnt Signaling to Attenuate Progression of Oral Carcinogenesis. Clin Cancer Res 2024; 30:209-223. [PMID: 37812478 DOI: 10.1158/1078-0432.ccr-23-0318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC) is commonly preceded by potentially malignant lesions, referred to as oral dysplasia. We recently reported that oral dysplasia is associated with aberrant activation of the Wnt/β-catenin pathway, due to overexpression of Wnt ligands in a Porcupine (PORCN)-dependent manner. Pharmacologic inhibition of PORCN precludes Wnt secretion and has been proposed as a potential therapeutic approach to treat established cancers. Nevertheless, there are no studies that explore the effects of PORCN inhibition at the different stages of oral carcinogenesis. EXPERIMENTAL DESIGN We performed a model of tobacco-induced oral cancer in vitro, where dysplastic oral keratinocytes (DOK) were transformed into oral carcinoma cells (DOK-TC), and assessed the effects of inhibiting PORCN with the C59 inhibitor. Similarly, an in vivo model of oral carcinogenesis and ex vivo samples derived from patients diagnosed with oral dysplasia and OSCC were treated with C59. RESULTS Both in vitro and ex vivo oral carcinogenesis approaches revealed decreased levels of nuclear β-catenin and Wnt3a, as observed by immunofluorescence and IHC analyses. Consistently, reduced protein and mRNA levels of survivin were observed after treatment with C59. Functionally, treatment with C59 in vitro resulted in diminished cell migration, viability, and invasion. Finally, by using an in vivo model of oral carcinogenesis, we found that treatment with C59 prevented the development of OSCC by reducing the size and number of oral tumor lesions. CONCLUSIONS The inhibition of Wnt ligand secretion with C59 represents a feasible treatment to prevent the progression of early oral lesions toward OSCC.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzún
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), School of Medicine, Faculty of Medicine, San Felipe Campus, Universidad de Valparaiso, Chile
| | - Tania Flores
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Research Centre in Dental Science (CICO), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Catalina Kretschmar
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pamela Contreras
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Maturana-Ramírez
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Montserrat Reyes
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Yuan T, Zhang J, Zhao Y, Guo Y, Fan S. Single-cell RNA sequencing of intestinal crypts reveals vital events in damage repair and the double-edged sword effect of the Wnt3/β-catenin pathway in irradiated mice. Redox Biol 2023; 68:102942. [PMID: 37918127 PMCID: PMC10638071 DOI: 10.1016/j.redox.2023.102942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we executed single-cell RNA sequencing of intestinal crypts. We analyzed the differentially expressed genes (DEGs) at different time points (the first, third, and fifth days) after 13 Gy and 15 Gy abdominal body radiation (ABR) exposure and then executed gene ontology (GO) enrichment analysis, RNA velocity analysis, cell communication analysis, and ligand‒receptor interaction analysis to explore the vital events in damage repair and the multiple effects of the Wnt3/β-catenin pathway on irradiated mice. Results from bioinformatics analysis were confirmed by a series of biological experiments. Results showed that the antibacterial response is a vital event during the damage response process after 13 Gy ABR exposure; ionizing radiation (IR) induced high heterogeneity in the transient amplification (TA) cluster, which may differentiate into mature cells and stem cells in irradiated small intestine (SI) crypts. Conducting an enrichment analysis of the DEGs between mice exposed to 13 Gy and 15 Gy ABR, we concluded that the Wnt3/β-catenin and MIF-CD74/CD44 signaling pathways may contribute to 15 Gy ABR-induced mouse death. Wnt3/β-catenin promotes the recovery of irradiated SI stem/progenitor cells, which may trigger macrophage migration inhibitory factor (MIF) release to further repair IR-induced SI injury; however, with the increase in radiation dose, activation of CD44 on macrophages provides the receptor for MIF signal transduction, initiating the inflammatory cascade response and ultimately causing a cytokine release syndrome. In contrast to previous research, we confirmed that inhibition of the Wnt3/β-catenin pathway or blockade of CD44 on the second day after 15 Gy ABR may significantly protect against ABR-induced death. This study indicates that the Wnt3/β-catenin pathway plays multiple roles in damage repair after IR exposure; we also propose a novel point that the interaction between intestinal crypt stem cells (ISCs) and macrophages through the MIF-CD74/CD44 axis may exacerbate SI damage in irradiated mice.
Collapse
Affiliation(s)
- Tong Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, 300192, People's Republic of China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, 300192, People's Republic of China.
| | - Yue Zhao
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, People's Republic of China
| | - Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, 300192, People's Republic of China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
33
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
34
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
35
|
Kishore C, Zi X. Wnt Signaling and Therapeutic Resistance in Castration-Resistant Prostate Cancer. CURRENT PHARMACOLOGY REPORTS 2023; 9:261-274. [PMID: 37994344 PMCID: PMC10664806 DOI: 10.1007/s40495-023-00333-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 11/24/2023]
Abstract
Purpose of Review Castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer (PCa) due to the development of resistance to androgen deprivation therapy and anti-androgens. Here, we review the emerging role of Wnt signaling in therapeutic resistance of CRPC. Recent Findings Convincing evidence have accumulated that Wnt signaling is aberrantly activated through genomic alterations and autocrine and paracrine augmentations. Wnt signaling plays a critical role in a subset of CRPC and in resistance to anti-androgen therapies. Wnt signaling navigates CRPC through PCa heterogeneity, neuroendocrine differentiation, DNA repair, PCa stem cell maintenance, epithelial-mesenchymal-transition and metastasis, and immune evasion. Summary Components of Wnt signaling can be harnessed for inhibiting PCa growth and metastasis and for developing novel therapeutic strategies to manage metastatic CRPC. There are many Wnt pathway-based potential drugs in different stages of pre-clinical development and clinical trials but so far, no Wnt signaling-specific drug has been approved by FDA for clinical use in CRPC.
Collapse
Affiliation(s)
- Chandra Kishore
- Department of Urology, University of California, Irvine, 101 The City Drive South, Rt.81 Bldg.55 Rm.204, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, 101 The City Drive South, Rt.81 Bldg.55 Rm.204, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| |
Collapse
|
36
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
37
|
Pan Q, Yu F, Jin H, Zhang P, Huang X, Peng J, Xie X, Li X, Ma N, Wei Y, Wen W, Zhang J, Zhang B, Yu H, Xiao Y, Liu R, Liu Q, Meng X, Lee M. eIF3f Mediates SGOC Pathway Reprogramming by Enhancing Deubiquitinating Activity in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300759. [PMID: 37544925 PMCID: PMC10520677 DOI: 10.1002/advs.202300759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Indexed: 08/08/2023]
Abstract
Numerous studies have demonstrated that individual proteins can moonlight. Eukaryotic Initiation translation factor 3, f subunit (eIF3f) is involved in critical biological functions; however, its role independent of protein translation in regulating colorectal cancer (CRC) is not characterized. Here, it is demonstrated that eIF3f is upregulated in CRC tumor tissues and that both Wnt and EGF signaling pathways are participating in eIF3f's oncogenic impact on targeting phosphoglycerate dehydrogenase (PHGDH) during CRC development. Mechanistically, EGF blocks FBXW7β-mediated PHGDH ubiquitination through GSK3β deactivation, and eIF3f antagonizes FBXW7β-mediated PHGDH ubiquitination through its deubiquitinating activity. Additionally, Wnt signals transcriptionally activate the expression of eIF3f, which also exerts its deubiquitinating activity toward MYC, thereby increasing MYC-mediated PHGDH transcription. Thereby, both impacts allow eIF3f to elevate the expression of PHGDH, enhancing Serine-Glycine-One-Carbon (SGOC) signaling pathway to facilitate CRC development. In summary, the study uncovers the intrinsic role and underlying molecular mechanism of eIF3f in SGOC signaling, providing novel insight into the strategies to target eIF3f-PHGDH axis in CRC.
Collapse
Affiliation(s)
- Qihao Pan
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of Obstetrics and GynecologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Fenghai Yu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Huilin Jin
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Peng Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiaoling Huang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Jingxuan Peng
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiaoshan Xie
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiangli Li
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Ning Ma
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Yue Wei
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Weijie Wen
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Jieping Zhang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Boyu Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Hongyan Yu
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Yuanxun Xiao
- Burn Plastic SurgeryYue bei People's HospitalWujiang512099China
| | - Ran‐yi Liu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qingxin Liu
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiangqi Meng
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Mong‐Hong Lee
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of OncologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| |
Collapse
|
38
|
Zhang X, Yu X. Crosstalk between Wnt/β-catenin signaling pathway and DNA damage response in cancer: a new direction for overcoming therapy resistance. Front Pharmacol 2023; 14:1230822. [PMID: 37601042 PMCID: PMC10433774 DOI: 10.3389/fphar.2023.1230822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Wnt signaling plays an important role in regulating the biological behavior of cancers, and many drugs targeting this signaling have been developed. Recently, a series of research have revealed that Wnt signaling could regulate DNA damage response (DDR) which is crucial for maintaining the genomic integrity in cells and closely related to cancer genome instability. Many drugs have been developed to target DNA damage response in cancers. Notably, different components of the Wnt and DDR pathways are involved in crosstalk, forming a complex regulatory network and providing new opportunities for cancer therapy. Here, we provide a brief overview of Wnt signaling and DDR in the field of cancer research and review the interactions between these two pathways. Finally, we also discuss the possibility of therapeutic agents targeting Wnt and DDR as potential cancer treatment strategies.
Collapse
Affiliation(s)
| | - Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Xue W, Cai L, Li S, Hou Y, Wang YD, Yang D, Xia Y, Nie X. WNT ligands in non-small cell lung cancer: from pathogenesis to clinical practice. Discov Oncol 2023; 14:136. [PMID: 37486552 PMCID: PMC10366069 DOI: 10.1007/s12672-023-00739-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the malignant tumor with the highest morbidity and leading cause of death worldwide, whereas its pathogenesis has not been fully elucidated. Although mutations in some crucial genes in WNT pathways such as β-catenin and APC are not common in NSCLC, the abnormal signal transduction of WNT pathways is still closely related to the occurrence and progression of NSCLC. WNT ligands (WNTs) are a class of secreted glycoproteins that activate WNT pathways through binding to their receptors and play important regulatory roles in embryonic development, cell differentiation, and tissue regeneration. Therefore, the abnormal expression or dysfunction of WNTs undoubtedly affects WNT pathways and thus participates in the pathogenesis of diseases. There are 19 members of human WNTs, WNT1, WNT2, WNT2b, WNT3, WNT3a, WNT4, WNT5a, WNT5b, WNT6, WNT7a, WNT7b, WNT8a, WNT8b, WNT9a, WNT9b, WNT10a, WNT10b, WNT11 and WNT16. The expression levels of WNTs, binding receptors, and activated WNT pathways are diverse in different tissue types, which endows the complexity of WNT pathways and multifarious biological effects. Although abundant studies have reported the role of WNTs in the pathogenesis of NSCLC, it still needs further study as therapeutic targets for lung cancer. This review will systematically summarize current research on human WNTs in NSCLC, from molecular pathogenesis to potential clinical practice.
Collapse
Affiliation(s)
- Wanting Xue
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Lihong Cai
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China
| | - Su Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yujia Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dongbin Yang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Hebi, 458030, China.
| | - Yubing Xia
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China.
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
40
|
Wu H, Tang LX, Wang XM, Li LP, Chen XK, He YJ, Yang DZ, Shi Y, Shou JL, Zhang ZS, Wang L, Lu BJ, An SM, Zeng CY, Wang WE. Porcupine inhibitor CGX1321 alleviates heart failure with preserved ejection fraction in mice by blocking WNT signaling. Acta Pharmacol Sin 2023; 44:1149-1160. [PMID: 36473990 PMCID: PMC10203103 DOI: 10.1038/s41401-022-01025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is highly prevalent, and lacks effective treatment. The aberration of WNT pathway underlies many pathological processes including cardiac fibrosis and hypertrophy, while porcupine is an acyltransferase essential for the secretion of WNT ligands. In this study we investigated the role of WNT signaling pathway in HFpEF as well as whether blocking WNT signaling by a novel porcupine inhibitor CGX1321 alleviated HFpEF. We established two experimental HFpEF mouse models, namely the UNX/DOCA model and high fat diet/L-NAME ("two-hit") model. The UNX/DOCA and "two-hit" mice were treated with CGX1321 (3 mg·kg-1·d-1) for 4 and 10 weeks, respectively. We showed that CGX1321 treatment significantly alleviated cardiac hypertrophy and fibrosis, thereby improving cardiac diastolic function and exercise performance in both models. Furthermore, both canonical and non-canonical WNT signaling pathways were activated, and most WNT proteins, especially WNT3a and WNT5a, were upregulated during the development of HEpEF in mice. CGX1321 treatment inhibited the secretion of WNT ligands and repressed both canonical and non-canonical WNT pathways, evidenced by the reduced phosphorylation of c-Jun and the nuclear translocation of β-catenin and NFATc3. In an in vitro HFpEF model, MCM and ISO-treated cardiomyocytes, knockdown of porcupine by siRNA leads to a similar inhibitory effect on WNT pathways, cardiomyocyte hypertrophy and cardiac fibroblast activation as CGX1321 did, whereas supplementation of WNT3a and WNT5a reversed the anti-hypertrophy and anti-fibrosis effect of CGX1321. We conclude that WNT signaling activation plays an essential role in the pathogenesis of HFpEF, and porcupine inhibitor CGX1321 exerts a therapeutic effect on HFpEF in mice by attenuating cardiac hypertrophy, alleviating cardiac fibrosis and improving cardiac diastolic function.
Collapse
Affiliation(s)
- Hao Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Lu-Xun Tang
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, 610083, China
| | - Xue-Mei Wang
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Liang-Peng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Xiao-Kang Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Yan-Ji He
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - De-Zhong Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Yu Shi
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Jia-Ling Shou
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Zong-Shu Zhang
- Guangzhou Curegenix Co. Ltd., International Business Incubator, Guangzhou Science City, Guangzhou, 510663, China
| | - Liang Wang
- Guangzhou Curegenix Co. Ltd., International Business Incubator, Guangzhou Science City, Guangzhou, 510663, China
| | - Bing-Jun Lu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Songzhu Michael An
- Guangzhou Curegenix Co. Ltd., International Business Incubator, Guangzhou Science City, Guangzhou, 510663, China
- Curegenix, Inc., Burlingame, CA, 94010, USA
| | - Chun-Yu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China.
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China.
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, 350001, China.
- Department of Cardiology, Chongqing General Hospital, Chongqing, 401147, China.
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, 400722, China.
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China.
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China.
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
41
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
42
|
Katanaev VL, Baldin A, Denisenko TV, Silachev DN, Ivanova AE, Sukhikh GT, Jia L, Ashrafyan LA. Cells of the tumor microenvironment speak the Wnt language. Trends Mol Med 2023; 29:468-480. [PMID: 37045723 DOI: 10.1016/j.molmed.2023.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Wnt signaling plays numerous functions in cancer, from primary transformation and tumor growth to metastasis. In addition to these cancer cell-intrinsic functions, Wnt signaling emerges to critically control cross-communication among cancer cells and the tumor microenvironment (TME). Here, we summarize the evidence that not only multiple cancer cell types, but also cells constituting the TME 'speak the Wnt language'. Fibroblasts, macrophages, endothelia, and lymphocytes all use the Wnt language to convey messages to and from cancer cells and among themselves; these messages are important for tumor progression and fate. Decoding this language will advance our understanding of tumor biology and unveil novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Alexey Baldin
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Tatiana V Denisenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Denis N Silachev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia; Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna E Ivanova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Gennadiy T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Lev A Ashrafyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| |
Collapse
|
43
|
Chen Z, Xin Q, Wei W, Wu Y. The pathogenesis and development of targeted drugs in acute T lymphoblastic leukaemia. Br J Pharmacol 2023; 180:1017-1037. [PMID: 36623836 DOI: 10.1111/bph.16029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is mainly classified into acute T- and B-lymphoblastic leukaemia according to the source of its lymphocytes, thymus and bone. Among them, the incidence of adult T-cell accounts for about 25% of adult acute lymphoblastic leukaemia, but the degree of malignancy is high and the treatment rate and prognosis are poor. At this stage, there are few targeted drugs and the commonly used broad-spectrum chemotherapeutic drugs have poor efficacy and many adverse drug reactions. Understanding and investigating the pathogenesis of T-acute lymphoblastic leukaemia is very important for further developing new targeting drugs and improving existing drugs. Dysregulated signalling pathways are the main aetiological factors of T-acute lymphoblastic leukaemia. They play crucial roles in promoting tumour initiation, progression, drug design and therapy responses. This is primarily because signalling pathways are indispensable for many cellular biological processes, including tumour growth, migration, invasion, metastasis and others. As a result, small molecule inhibitors targeting the major kinase components of the signalling pathway have received a lot of attention and have been developed and evaluated in preclinical models and clinical trials. Already marketed drugs are also being repurposed in combination therapies to further improve efficacy and overcome tumour cell resistance. In this review, we have aimed to examine the latest and most classical signalling pathways in the aetiology of T-acute lymphoblastic leukaemia and shed light on potential targets for novel therapeutic agents to act on.
Collapse
Affiliation(s)
- Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
44
|
Werner J, Boonekamp KE, Zhan T, Boutros M. The Roles of Secreted Wnt Ligands in Cancer. Int J Mol Sci 2023; 24:5349. [PMID: 36982422 PMCID: PMC10049518 DOI: 10.3390/ijms24065349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Wnt ligands are secreted signaling proteins that display a wide range of biological effects. They play key roles in stimulating Wnt signaling pathways to facilitate processes such as tissue homeostasis and regeneration. Dysregulation of Wnt signaling is a hallmark of many cancers and genetic alterations in various Wnt signaling components, which result in ligand-independent or ligand-dependent hyperactivation of the pathway that have been identified. Recently, research is focusing on the impact of Wnt signaling on the interaction between tumor cells and their micro-environment. This Wnt-mediated crosstalk can act either in a tumor promoting or suppressing fashion. In this review, we comprehensively outline the function of Wnt ligands in different tumor entities and their impact on key phenotypes, including cancer stemness, drug resistance, metastasis, and immune evasion. Lastly, we elaborate approaches to target Wnt ligands in cancer therapy.
Collapse
Affiliation(s)
- Johannes Werner
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kim E. Boonekamp
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Mannheim University Hospital, Heidelberg University, D-68167 Mannheim, Germany;
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| |
Collapse
|
45
|
López-Camacho E, Prado-Vázquez G, Martínez-Pérez D, Ferrer-Gómez M, Llorente-Armijo S, López-Vacas R, Díaz-Almirón M, Gámez-Pozo A, Vara JÁF, Feliu J, Trilla-Fuertes L. A Novel Molecular Analysis Approach in Colorectal Cancer Suggests New Treatment Opportunities. Cancers (Basel) 2023; 15:1104. [PMID: 36831448 PMCID: PMC9953902 DOI: 10.3390/cancers15041104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a molecular and clinically heterogeneous disease. In 2015, the Colorectal Cancer Subtyping Consortium classified CRC into four consensus molecular subtypes (CMS), but these CMS have had little impact on clinical practice. The purpose of this study is to deepen the molecular characterization of CRC. A novel approach, based on probabilistic graphical models (PGM) and sparse k-means-consensus cluster layer analyses, was applied in order to functionally characterize CRC tumors. First, PGM was used to functionally characterize CRC, and then sparse k-means-consensus cluster was used to explore layers of biological information and establish classifications. To this aim, gene expression and clinical data of 805 CRC samples from three databases were analyzed. Three different layers based on biological features were identified: adhesion, immune, and molecular. The adhesion layer divided patients into high and low adhesion groups, with prognostic value. The immune layer divided patients into immune-high and immune-low groups, according to the expression of immune-related genes. The molecular layer established four molecular groups related to stem cells, metabolism, the Wnt signaling pathway, and extracellular functions. Immune-high patients, with higher expression of immune-related genes and genes involved in the viral mimicry response, may benefit from immunotherapy and viral mimicry-related therapies. Additionally, several possible therapeutic targets have been identified in each molecular group. Therefore, this improved CRC classification could be useful in searching for new therapeutic targets and specific therapeutic strategies in CRC disease.
Collapse
Affiliation(s)
- Elena López-Camacho
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Guillermo Prado-Vázquez
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Daniel Martínez-Pérez
- Medical Oncology Service, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - María Ferrer-Gómez
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Sara Llorente-Armijo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Mariana Díaz-Almirón
- Biostatistics Unit, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedical Research Networking Center on Oncology—CIBERONC, Carlos III Healthy Institute ISCIII, 28029 Madrid, Spain
| | - Jaime Feliu
- Medical Oncology Service, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedical Research Networking Center on Oncology—CIBERONC, Carlos III Healthy Institute ISCIII, 28029 Madrid, Spain
- Translational Oncology Group, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Lucía Trilla-Fuertes
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Translational Oncology Group, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
46
|
Targeted next-generation sequencing reveals activating CTNNB1 mutations in SMARCA4/BRG1-deficient sinonasal carcinomas: a report of two new cases and a brief review of the literature with an emphasis on histogenesis. Virchows Arch 2023; 482:453-460. [PMID: 36396744 DOI: 10.1007/s00428-022-03449-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
SMARCA4/BRG1 is a catalytic subunit of the SWItch/sucrose non-fermentable (SWI/SNF) complex and its inactivation is known to drive a variety of cancers across different organs. SMARCA4/BRG1-deficient carcinoma is a relatively new entity in the sinonasal region, and a comprehensive molecular investigation of the underlying genetic abnormalities is largely lacking. In this study, we report two new cases of SMARCA4/BRG1-deficient sinonasal carcinoma with targeted next-generation sequencing analysis, both of which revealed activating mutation of CTNNB1 in addition to somatic loss-of-function mutation of SMARCA4, providing further insights into its tumorigenesis and theoretical basis for the potential future targeted therapy. Activating CTNNB1 mutations in our cases may provide further evidence that SMARCA4-deficient sinonasal carcinoma, sinonasal teratocarcinosarcoma, and olfactory carcinoma are genetically closely related lesions, as recently proposed in the literature.
Collapse
|
47
|
Kim DY, Ryu YS, Lee ES, Koh DI, Moon JH, Jung SA, Kim MJ, Yun H, You JE, Jeong HR, Yoon DI, Kim CH, Hong SW, Gong YD, Jin DH. DGG-300273, a novel WNT/β-catenin inhibitor, induces apoptotic cell death by activating ROS-BIM signaling in a Wnt-dependent manner in colon cancer cells. Invest New Drugs 2023; 41:105-114. [PMID: 36538258 DOI: 10.1007/s10637-022-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
Dysregulated Wnt signaling is associated with malignant oncogenic transformation, especially in colon cancer. Recently, numerous drugs have been developed based on tumorigenesis biomarkers, thus having high potential as drug targets. Likewise, WNT/β-catenin pathway members are attractive therapeutic targets for colon cancer and are currently in various stages of development. However, although inhibitors of proteins regulating the WNT/β-catenin signaling pathway have been extensively studied, they have yet to be clinically approved, and the underlying molecular mechanism(s) of their anticancer effects remain poorly understood. Herein, we show that a novel WNT/β-catenin inhibitor, DGG-300273, inhibits colon cancer cell growth in a Wnt-dependent manner due to upregulation of the BCL2-family protein Bim and caspase-dependent apoptotic cell death. Additionally, DGG-300273-mediated cell death occurs by increased reactive oxygen species (ROS), as shown by abrogation of apoptotic cell death and ROS production following pretreatment with the antioxidant N-acetylcysteine. These results suggest that DGG-300273 represents a promising investigational drug for the treatment of Wnt-associated cancer, thus warranting further characterization and study.
Collapse
Affiliation(s)
- Do Yeon Kim
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yea Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eun-Sil Lee
- Innovative Drug-Like Library Research Center, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dong-In Koh
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jai-Hee Moon
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Soo-A Jung
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Mi Jin Kim
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyeseon Yun
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji-Eun You
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hong-Rae Jeong
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong-Il Yoon
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Chul Hee Kim
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung-Woo Hong
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young-Dae Gong
- Innovative Drug-Like Library Research Center, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| | - Dong-Hoon Jin
- Asan Institute for Life Science, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43 gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
48
|
Zhang H, Liu C, Zhu D, Zhang Q, Li J. Medicinal Chemistry Strategies for the Development of Inhibitors Disrupting β-Catenin's Interactions with Its Nuclear Partners. J Med Chem 2023; 66:1-31. [PMID: 36583662 DOI: 10.1021/acs.jmedchem.2c01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with various aspects of cancer, including tumor initiation, proliferation, and metastasis as well as antitumor immunity, and presents a promising opportunity for cancer therapy. Wnt/β-catenin signaling activation increases nuclear dephosphorylated β-catenin levels, resulting in β-catenin binding to TCF and additional cotranscription factors, such as BCL9, CBP, and p300. Therefore, directly disrupting β-catenin's interactions with these nuclear partners holds promise for the effective and selective suppression of the aberrant activation of Wnt/β-catenin signaling. Herein, we summarize recent advances in biochemical techniques and medicinal chemistry strategies used to identify potent peptide-based and small-molecule inhibitors that directly disrupt β-catenin's interactions with its nuclear binding partners. We discuss the challenges involved in developing drug-like inhibitors that target the interactions of β-catenin and its nuclear binding partner into therapeutic agents.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
49
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
50
|
Kumar AR, L A, Nair B, Mathew B, Sugunan S, Nath LR. Decoding the Mechanism of Drugs of Heterocyclic Nature against Hepatocellular Carcinoma. Anticancer Agents Med Chem 2023; 23:882-893. [PMID: 35440316 DOI: 10.2174/1871520622666220418115310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and accounts for ~90% of cases, with an approximated incidence of >1 million cases by 2025. Currently, the backbone of HCC therapy is the oral multi-kinase inhibitor, Sorafenib, which consists of a Pyridine heterocycle ring system. This review highlights the introspective characteristics of seven anticancer drugs of heterocyclic nature against HCC along with their structural activity relationships and molecular targets. METHODS Literature collection was performed using PubMed, Google Scholar, SCOPUS, and Cross ref. Additional information was taken from the official website of the FDA and GLOBOCAN. Key findings/ Results: Based on the available literature, approved heterocyclic compounds show promising results against HCC, including Sorafenib (Pyridine), Regorafenib (Pyridine), Lenvatinib (Quinoline), Cabozantinib (Quinoline), Gemcitabine (Pyrimidine), 5-Fluorouracil (Pyrimidine)and Capecitabine (Pyrimidine), their mechanism of action and key aspects regarding its structural activity were included in the review. CONCLUSION Heterocyclic compounds represent almost two-thirds of the novel drugs approved by FDA between 2010 and 2020 against Cancer. This review summarizes the clinical relevance, mechanism of action, structural activity relationship, and challenges of the seven available anticancer drugs with heterocyclic ring systems against HCC.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Anitha L
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad Campus, Rudraram, Sangareddy, Telangana 502329, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Sinoy Sugunan
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad Campus, Rudraram, Sangareddy, Telangana 502329, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| |
Collapse
|