1
|
Fang Y, Meng H, Wang J. Mechanisms of LPS-induced toxicity in endothelial cells and the protective role of geniposidic acid. Food Chem Toxicol 2025; 201:115488. [PMID: 40288513 DOI: 10.1016/j.fct.2025.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Vascular inflammation and oxidative stress are critical pathogenic factors in cardiovascular diseases. Lipopolysaccharide (LPS)-induced endothelial cytotoxicity, driven by oxidative stress and inflammation, remains incompletely understood. This study highlights the molecular mechanisms underlying LPS toxicity, focusing on the ROS/JNK/NLRP3 signaling axis. LPS disrupts mitochondrial function, increases ROS accumulation, activates JNK phosphorylation, and induces NLRP3 inflammasome activation, culminating in pyroptosis through caspase-1-mediated GSDMD cleavage. Mechanistic studies with the JNK inhibitor SP600125 confirmed the critical role of the ROS/JNK/NLRP3 pathway in LPS-induced endothelial damage. Additionally, PGC-1α, a key regulator of mitochondrial homeostasis, was identified as a protective factor suppressed by LPS, exacerbating ROS overproduction and inflammasome activation. To validate these findings, geniposidic acid (GPA), a natural antioxidant and anti-inflammatory compound, was employed. GPA effectively reduced ROS levels, inhibited JNK activation, and suppressed pyroptosis, supporting its utility as a chemical tool to confirm the pivotal role of ROS/JNK/NLRP3 signaling. This study elucidates the intricate interplay between oxidative stress, mitochondrial dysfunction, and pyroptosis, providing a comprehensive framework for addressing inflammation-driven vascular damage.
Collapse
Affiliation(s)
- Yan Fang
- University of Science and Technology of China, Hefei, 230026, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - He Meng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jun Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
2
|
Ma MQ, Yang C, Jin SY, Yang Y, Pan YY, Lin XH. Eburicoic acid inhibits endothelial cell pyroptosis and retards the development of atherosclerosis through the Keap1/Nrf2/HO‑1/ROS pathway. Mol Med Rep 2025; 32:186. [PMID: 40314092 PMCID: PMC12076288 DOI: 10.3892/mmr.2025.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/12/2025] [Indexed: 05/03/2025] Open
Abstract
Atherosclerosis (AS)‑related coronary artery disease is the main cause of morbidity and mortality around the globe. Eburicoic acid, a triterpenoid compound from Antrodia camphorata, exerts anti‑inflammatory and anti‑hyperlipidemic effects, although its role in atherogenesis remains unknown. Endothelial cell pyroptosis‑caused chronic inflammatory response within vessel walls is a critical initial event in atherogenesis, making it a promising target to prevent AS. The present study was designed to investigate the effects of eburicoic acid on endothelial cell pyroptosis, AS progression and the underlying mechanisms. The results showed that with dose and time increased, treatment of human umbilical vascular endothelial cells (HUVECs) with eburicoic acid markedly decreased the expression of Kelch‑like ECH‑associated protein 1 (Keap1), NF‑E2‑related factor 2 (Nrf2), reactive oxygen species (ROS), NLR family pyrin domain‑containing protein 3 (NLRP3), cleaved caspase‑1, apoptosis‑associated speck‑like protein containing CARD (ASC), N‑terminal gasdermin‑D (GSDMD‑N), downregulated the secretion levels of pro‑inflammatory cytokines interleukin (IL) 1β, IL‑6 and IL‑18, inhibited caspase‑1 activity and lactate dehydrogenase release and improved plasma membrane integrity. By contrast, the expression of nuclear Nrf2, total Nrf2 and heme oxygenase‑1 (HO‑1) were increased by eburicoic acid treatment in HUVECs dose‑ and time‑dependently. Moreover, the inhibitory effects of eburicoic acid on HUVEC pyroptosis were mainly compromised by pre‑treatment with ROS agonist, HO‑1 small interfering (si)RNA, or Nrf2 siRNA. Finally, it was observed that administering high‑fat‑diet fed ApoE‑/‑ mice with eburicoic acid markedly increased Nrf2 and HO‑1 levels and reduced the expression of Keap1, NLRP3, cleaved caspase‑1, ASC and GSDMD‑N in aortas and ameliorated hyperlipidemia and inflammation in the serum, leading to smaller atherosclerotic plaques, less lipid accumulation and high content of collagen fiber within plaques. These findings identified eburicoic acid as a potent anti‑atherogenic natural product by suppressing endothelial cell pyroptosis via the Keap1/Nrf2/HO‑1/ROS pathway. Eburicoic acid may be considered an effective phytomedicine for treating AS.
Collapse
Affiliation(s)
- Meng-Qing Ma
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Chun Yang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Shi-Yu Jin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yan-Yan Pan
- Department of Cardiology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230022, P.R. China
| | - Xian-He Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
3
|
Duan WL, Gu LH, Guo A, Wang XJ, Ding YY, Zhang P, Zhang BG, Li Q, Yang LX. Molecular mechanisms of programmed cell death and potential targeted pharmacotherapy in ischemic stroke (Review). Int J Mol Med 2025; 56:103. [PMID: 40341937 PMCID: PMC12081036 DOI: 10.3892/ijmm.2025.5544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025] Open
Abstract
Stroke poses a threat to the elderly, being the second leading cause of death and the third leading cause of disability worldwide. Ischemic stroke (IS), resulting from arterial occlusion, accounts for ~85% of all strokes. The pathophysiological processes involved in IS are intricate and complex. Currently, tissue plasminogen activator (tPA) is the only Food and Drug Administration‑approved drug for the treatment of IS. However, due to its limited administration window and the risk of symptomatic hemorrhage, tPA is applicable to only ~10% of patients with stroke. Additionally, the reperfusion process associated with thrombolytic therapy can further exacerbate damage to brain tissue. Therefore, a thorough understanding of the molecular mechanisms underlying IS‑induced injury and the identification of potential protective agents is critical for effective IS treatment. Over the past few decades, advances have been made in exploring potential protective drugs for IS. The present review summarizes the specific mechanisms of various forms of programmed cell death (PCD) induced by IS and highlights potential protective drugs targeting different PCD pathways investigated over the last decade. The present review provides a theoretical foundation for basic research and insights for the development of pharmacotherapy for IS.
Collapse
Affiliation(s)
- Wan-Li Duan
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Li-Hui Gu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Ai Guo
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Yi-Yue Ding
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Peng Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Qin Li
- Rehabilitation Medicine and Health College, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Li-Xia Yang
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
4
|
Liu G, Qiu Y, You N, Yu M, Chen W, Sun T, Qin Z, Han M, Xue Z, Liang X, Mao B, Ling L, Wu Y, Xing W, Liu Q, Wang D. Pre-ischaemic empagliflozin treatment attenuates blood-brain barrier disruption via β-catenin mediated protection of cerebral endothelial cells. Cardiovasc Res 2025; 121:788-802. [PMID: 40173314 DOI: 10.1093/cvr/cvaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 04/04/2025] Open
Abstract
AIMS Microvascular endothelial cells dysfunction can significantly worsen ischaemic stroke outcomes by disrupting tight junctions and increasing the acquisition of adhesion molecules, accelerating blood-brain barrier (BBB) disruption and pro-inflammatory response. The identification of drugs that improve endothelial cell function may be crucial for ischaemic stroke. It has been validated that empagliflozin (EMPA), a novel antidiabetic drug, protects endothelial cells regardless of the diabetic status of the patient. However, the impact of EMPA on stroke outcomes is unclear. We hypothesized that EMPA would exert a beneficial effect on ischaemic stroke outcome by protecting microvascular endothelial cells against tight junction disruption and the increase of adhesion molecules. METHODS AND RESULTS Young adult male mice were administered with EMPA or vehicle (dimethyl sulfoxide) daily for 7 days before being subjected to transient middle cerebral artery occlusion (tMCAO). Neurological deficits were evaluated for up to 28 days post-tMCAO. Infarct volume, BBB disruption, and inflammatory status were assessed 1 day after tMCAO.bEnd.3 cells and primary brain microvascular endothelial cells were treated with EMPA or vehicle under oxygen and glucose deprivation/reperfusion (OGD/R), and the lactate dehydrogenase release, transendothelial electrical resistance, leakage of fluorescein isothiocyanate-dextran, and tight junction and adhesion molecules proteins were examined. Mechanistic studies probing the effect of EMPA on endothelial cells were conducted by RNA-seq. EMPA treatment before ischaemia markedly improved infarct volume, BBB disruption, and inflammation 1-day post-tMCAO, and further enhanced neurobehavioral function up to 28 days. Pre-treatment of EMPA attenuated endothelial cell dysfunction under OGD/R conditions. In mechanistic terms, RNA-seq data from isolated cerebral microvessels revealed that the Wnt/β-catenin signalling pathway was preserved in the EMPA group, in contrast to the vehicle group. Pre-treatment with EMPA inhibited β-catenin ubiquitination and promoted β-catenin translocation from the cytoplasm to the nucleus to improve endothelial cell function. Importantly, the β-catenin inhibitor XAV-939 eliminated this protective function of EMPA. CONCLUSION EMPA administration before tMCAO attenuated ischaemia/reperfusion-induced BBB disruption and inflammation via β-catenin-mediated protection of cerebral microvascular endothelial cells. Therefore, EMPA shows potential for improving stroke outcomes as an adjunctive preventive strategy.
Collapse
Affiliation(s)
- Guohao Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Nanlin You
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengchen Yu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenbo Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhen Qin
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengtao Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangjun Liang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bo Mao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lu Ling
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanzhao Wu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenchen Xing
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Quanmeng Liu
- Department of Surgery, Shandong Provincial Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250012, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 2530000, China
| |
Collapse
|
5
|
Lv Z, Xie X. LINC00265 Serves as a Diagnostic and Prognostic Marker for Acute Ischemic Stroke and INHIBITS Disease Progression Through the miR- 155 - 5p/TRIM32 Axis. Mol Neurobiol 2025:10.1007/s12035-025-04973-8. [PMID: 40317416 DOI: 10.1007/s12035-025-04973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Acute ischemic stroke (AIS) is a medical emergency stemming from a reduction in cerebral blood supply, leading to neuronal injury. LINC00265 may emerge as a highly promising biomarker for stroke. The aim of this investigation was to investigate the clinical and prognostic significance of LINC00265 in AIS, as well as to elucidate the molecular mechanisms through which LINC00265 influences AIS. Blood samples were collected from 131 AIS patients. qRT-PCR was employed to measure the expression levels of LINC00265. The diagnostic and prognostic value of LINC00265 were evaluated using ROC curve and Kaplan-Meier survival curves, respectively. To establish an in vitro model of AIS, HCMIEC/D3 cells were subjected to OGD/R treatment. Cell proliferation was assessed using CCK-8 assay. The concentrations of TNF-α, IL-6, IL-1β, IL-4, and IL-10 were measured using ELISA kit. The protein expression levels of VCAM-1 and ICAM-1 were detected by Western blot analysis. The expression of LINC00265 was found to be significantly downregulated in AIS patients and strongly correlated with disease severity. The reduced expression of LINC00265 exhibited considerable significance for both diagnosis and prognosis prediction of AIS. At the mechanistic level, LINC00265 mitigated OGD/R-induced cellular injury by modulating the miR-155-5p/TRIM32 axis. Therefore, overexpression of LINC00265 may potentially suppress disease progression in AIS by regulating miR-155-5p/TRIM32 axis.
Collapse
Affiliation(s)
- Zhicheng Lv
- Department of Neurosurgery, The First People's Hospital of Chenzhou, Chenzhou, 423000, China
| | - Xiaoming Xie
- Department of Neurosurgery Ward II, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No. 818, Renmin Road, Changde, 415000, China.
| |
Collapse
|
6
|
Li J, Liu M, Fan M, Tian Q, Wang J, Du Y, Yu J, Li X, Yang L, Zhao M, Gao Y, Sun T. Nuciferine ameliorates blood-brain barrier disruption post-ischemic stroke via inhibiting the JAK2/STAT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156829. [PMID: 40347924 DOI: 10.1016/j.phymed.2025.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Ischemic stroke frequently results in the compromise of the blood-brain barrier (BBB), a pathological occurrence strongly linked to the impairment of cerebral microvascular endothelial cells and the disintegration of tight junction (TJ) proteins. Nuciferine, a naturally occurring aporphine alkaloid extracted from the leaves of Nelumbo nucifera, exhibits favorable pharmacokinetic characteristics, including the capacity to traverse the BBB, and has demonstrated neuroprotective potential in IS models. Nevertheless, the specific mechanisms by which nuciferine modulates BBB integrity following ischemia, and the molecular pathways involved, remain inadequately understood. PURPOSE This study probed into the protective function of nuciferine against BBB disruption following IS and the molecular pathways involved in its therapeutic action. METHODS In vivo, a photothrombotic focal cerebral ischemia mouse model was established and evaluated through neurological scoring, blood flow measurement, and 2,3,5-triphenyltetrazolium chloride staining. BBB disruption was assessed utilizing Evans Blue dye and endogenous immunoglobulin G extravasation. nuciferine (10, 20, 40 mg/kg, intragastric administration, daily for 7 days) was administered post-ischemia. In vitro, oxygen-glucose deprivation (OGD, 2 h)-induced bEnd.3 cell model was employed and treated with nuciferine (10, 20, and 40 μM, 24 h) to uncover the related mechanisms. RESULTS Our findings revealed that nuciferine effectively preserved BBB integrity and prevented cerebral edema post-photothrombotic. Mechanistically, nuciferine restored the expression of ZO-1, occludin, and claudin-5, both in photothrombotic and OGD models. Meanwhile, it showed the protective effect on OGD-induced endothelial cells injury by inhibiting apoptosis and mitochondrial dysfunction. Importantly, nuciferine targeted Janus kinase 2 and suppressed p-JAK2 and p-STAT3 in IS model. CONCLUSIONS Our findings present novel evidence that nuciferine improves the BBB integrity following IS through blocking the JAK2/STAT3 pathway. Through demonstrating the targeted suppression of JAK2 activation by nuciferine, this work contributes to a more nuanced understanding of how this pathway influences endothelial barrier function in ischemic conditions. Our results offer a conceptual basis for the continued exploration of Nuciferine as a potential therapeutic agent to address BBB dysfunction in the post-stroke setting.
Collapse
Affiliation(s)
- Jiamin Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Miaomiao Liu
- Department of Respiratory and Critical Care Medicine, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Minglei Fan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Qinqin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jian Wang
- Department of Neurosurgery, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yaya Du
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
7
|
Peng S, Su P, Liu L, Li Z, Liu Y, Tian L, Bai M, Xu E, Li Y. Formononetin ameliorates depression-like behaviors through rebalancing microglia M1/M2 polarization and inhibiting NLRP3 inflammasome: involvement of activating PPARα-mediated autophagy. Mol Med 2025; 31:153. [PMID: 40275171 PMCID: PMC12023581 DOI: 10.1186/s10020-025-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND The dysregulation of neuroinflammation triggered by imbalance of microglia M1/M2 polarization is a key pathogenic factor and closely associated with occurrence of depression. Formononetin (FMN), a natural non-steroidal isoflavonoid, has been confirmed to exhibit remarkable anti-inflammatory efficacy, but the impact of FMN on depression and the underlying antidepressant mechanisms are still not fully understood. This study aimed to investigate whether the antidepressant effect of FMN is involved in modulating microglia polarization, and if so, what are the underlying mechanisms. METHODS Lipopolysaccharide (LPS)-induced depressive mice were used to study antidepressant mechanisms of FMN. Microglia cell line BV2 stimulated by LPS was employed to investigate pharmacological mechanisms of FMN. Effects of FMN on neuronal damage were detected by H&E, Nissl and Golgi staining. The efficacy of FMN were evaluated by immunostaining and western blots in vivo and vitro. In addition, molecular docking, luciferase reporter assay, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) were used to confirm the direct target of FMN. RESULTS Our results showed that FMN significantly reverses depression-like behaviors, alleviates neuroinflammation and neuronal damage, rebalances M1/M2 polarization, inhibits NLRP3 inflammasome and enhances microglial autophagy level in prefrontal cortex of LPS-induced depressive mice. In vitro assays, results unraveled that autophagy inhibitor chloroquine (CQ) blocks effects of FMN on inhibiting NLRP3 inflammasome and rebalancing M1/M2 polarization. Moreover, PPARα is identified as a direct target of FMN and FMN can activate PPARα-mediated autophagy. Furtherly, combination PPARα agonist (WY14643) with FMN had no significant additive effects on inhibiting NLRP3 inflammasome and rebalancing M1/M2 polarization, whereas PPARα antagonist (GW6471) abrogated these pharmacologic effects of FMN in BV2. Importantly, GW6471 exhibited similar pharmacologic effects to abolish antidepressant effect of FMN in LPS-induced depressive mice. CONCLUSION Our study firstly demonstrated that FMN can rebalance microglia M1/M2 polarization and inhibit NLRP3 inflammasome, with the involvement of activating PPARα-mediated autophagy to ameliorate depression-like behaviors, which provides a novel view to elucidate antidepressant mechanisms of FMN and also offers a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Shuaijun Peng
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
| | - Liming Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zibo Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Yuan Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Lei Tian
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
| |
Collapse
|
8
|
Zhang W, Yu X, Lin Y, Wu C, Zhu R, Jiang X, Tao J, Chen Z, He J, Zhang X, Xu J, Zhang M. Acetyl-CoA synthetase 2 alleviates brain injury following cardiac arrest by promoting autophagy in brain microvascular endothelial cells. Cell Mol Life Sci 2025; 82:160. [PMID: 40244361 PMCID: PMC12006639 DOI: 10.1007/s00018-025-05689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION Brain injury is a common sequela following cardiac arrest (CA), with up to 70% of hospitalized patients dying from it. Brain microvascular endothelial cells (BMVECs) play a crucial role in post-cardiac arrest brain injury (PCABI). However, the effects and mechanisms of targeting BMVEC energy metabolism to mitigate brain injury remain unclear. METHODS We established a mouse model of cardiac arrest by injecting potassium chloride into the right internal jugular vein. Mass spectrometry detected targeted changes in short-chain fatty acids and energy metabolism metabolites in the CA/CPR group compared to the sham group. Mice with overexpressed ACSS2 in BMVECs were created using an AAV-BR1 vector, and ACSS2 knockout mice were generated using the CRE-LOXP system. The oxygen glucose deprivation/re-oxygenation (OGD/R) model was established to investigate the role and mechanisms of ACSS2 in endothelial cells in vitro. RESULTS Metabolomics analysis revealed disrupted cerebral energy metabolism post-CA/CPR, with decreased acetyl-CoA and amino acids. Overexpression of ACSS2 in BMVECs increased acetyl-CoA levels and improved neurological function. Vascular endothelial cell-specific ACSS2 knockout mice exhibited reduced aortic sprouting in vitro. Overexpression of ACSS2 improved endothelial dysfunction following oxygen glucose deprivation/re-oxygenation (OGD/R) and influenced autophagy by interacting with transcription factor EB (TFEB) and modulating the AMP-activated protein kinase α (AMPKα) pathway. CONCLUSION Our study shows that ACSS2 modulates the biological functions of BMVECs by promoting autophagy. Enhancing energy metabolism via ACSS2 may target PCABI treatment development.
Collapse
Affiliation(s)
- Wenbin Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Xin Yu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Yao Lin
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Chenghao Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Ruojie Zhu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Ziwei Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiantao He
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Xiaodan Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China.
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou, China.
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Geng H, Tang J, Li Z, Zhang Y, Ye C, Zhang Y, Li X, Li Y, Wang Y, Wang Y, Lv X, Wang L. 14,15-EET Maintains Mitochondrial Homeostasis to Inhibit Neuronal Pyroptosis After Ischemic Stroke. Stroke 2025. [PMID: 40235438 DOI: 10.1161/strokeaha.124.049143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Neuronal pyroptosis is involved in neuronal cell death and neurological damage after cerebral ischemia-reperfusion. 14,15-Epoxyeicosatrienoic acid (14,15-EET) can reduce neuronal loss induced by cerebral ischemia-reperfusion by regulating mitochondrial biological processes. However, it remains unclear how 14,15-EET regulates mitochondrial homeostasis, inhibits neuronal pyroptosis, and promotes neurological functional recovery after cerebral ischemia-reperfusion. METHODS Mice with middle cerebral artery occlusion and reperfusion were used as an animal model to study the cerebral ischemia-reperfusion disease. The neurological function of mice was performed at 1, 3, and 5 days to test the therapeutic effects of 14,15-EET. Transmission electron microscope imaging and Nissl staining were used to analyze neuronal morphological structure, mitophagy, and neuronal pyroptosis. Western blot and transcriptome were used to detect the levels of mitophagy and neuronal pyroptosis signaling pathway-related molecules. HT22 cells were used in in vitro studies to detect the mechanism by which 14,15-EET reduces neuronal pyroptosis after oxygen-glucose deprivation/reoxygenation treatment. RESULTS 14,15-EET treatment reduced cerebral infarct volumes and improved neurological functional recovery in mice after cerebral ischemia-reperfusion. 14,15-EET treatment maintained the morphological structure of neurons in the ischemic penumbra area as well as the dendritic spine density in mice after cerebral ischemia-reperfusion. The upregulation of NLRP1 (NOD-like receptor thermal protein domain associated protein 1), IL (interleukin)-1β, caspase-1, and GSDMD (gasdermin D) induced by cerebral ischemia-reperfusion was inhibited, and the expression of mitophagy proteins Parkin and LC3B was increased by 14,15-EET treatment. Transcriptome profiling found that 14,15-EET exerts a neuroprotection role in promoting neural function recovery by activating the WNT (wingless-type MMTV integration site family) signaling pathway. We found that 14,15-EET upregulated the WNT pathway proteins such as WNT1, WNT3A, β-catenin, and p-GSK-3β (phosphorylation of glycogen synthase kinase 3β) in vivo and in vitro. The WNT signaling pathway inhibitor XAV-939 reduced the expression of mitophagy protein Parkin and upregulated the expression of caspase-1 and GSDMD in HT22 cells with oxygen-glucose deprivation/reoxygenation and 14,15-EET treatment. CONCLUSIONS 14,15-EET regulates mitochondrial homeostasis to inhibit neuronal pyroptosis, thereby promoting the recovery of neurological function in mice after cerebral ischemia-reperfusion. These results provide new ideas for maintaining mitochondrial homeostasis and inhibiting neuronal pyroptosis after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Huixia Geng
- School of Nursing and Health Sciences, Henan University, Kaifeng, China. (H.G.)
| | - Jing Tang
- The International Joint Laboratory of Neurological Diseases in Henan Province (L.W., J.T., Yanshuo Zhang)
| | - Zhen Li
- School of Physical Education and Sport, Henan Kaifeng College of Science Technology and Communication, China (Z.L.)
| | - Yanshuo Zhang
- The International Joint Laboratory of Neurological Diseases in Henan Province (L.W., J.T., Yanshuo Zhang)
| | - Congwei Ye
- The School of Life Sciences, Henan University, Kaifeng, China. (C.Y., Yibo Zhang)
| | - Yibo Zhang
- The School of Life Sciences, Henan University, Kaifeng, China. (C.Y., Yibo Zhang)
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, China. (X. Li, Y.L.)
| | - Yunxia Li
- Department of Neurology, The First Affiliated Hospital of Henan University, China. (X. Li, Y.L.)
| | - Yanming Wang
- Center for Clinical Research and Translational Medicine (Yanming Wang)
| | - Yi Wang
- School of Physical Education and Sport, Henan University, Kaifeng, China. (Yi Wang)
| | - Xinrui Lv
- Department of Kaifeng Key Laboratory for Infectious Diseases and Biosafety, The First Affiliated Hospital of Henan University, China. (X. Lv)
| | - Lai Wang
- The International Joint Laboratory of Neurological Diseases in Henan Province (L.W., J.T., Yanshuo Zhang)
| |
Collapse
|
10
|
Lei S, Wang M, Pan J, Wang D, Ge P, Zhang D. Association between peripheral blood serum phenylalanine to tyrosine ratio and the risk of moyamoya disease: a case-control study. Front Neurol 2025; 16:1554697. [PMID: 40248014 PMCID: PMC12003120 DOI: 10.3389/fneur.2025.1554697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 04/19/2025] Open
Abstract
Background and aims Phenylalanine (Phe) and its metabolite tyrosine (Tyr) have been shown to play an important role in the mechanisms and development of cardiovascular and cerebrovascular disease, and its ratio (Phe/Tyr) has been suggested to be an important indicator of inflammation. It was uncertain whether Phe/Tyr is associated with higher risk of MMD. Therefore, we conducted this study to evaluate the relationship between Phe/Tyr and the risk of MMD and its subtypes. Methods A total of 360 adult MMD patients and 89 age-matched healthy controls (HCs) were consecutively recruited for this prospective study. We measured peripheral blood serum Phe and Tyr levels in all participants to analyze the association between Phe/Tyr and the risk of MMD and its subtypes. Results Serum Phe/Tyr was significantly higher in MMD patients and their subtypes than in HCs (p < 0.01). After adjusting for traditional risk factors, Phe/Tyr was positively associated with the risk of MMD (OR: 14.035, 95%CI: 2.784-70.748, p = 0.001). When Phe/Tyr was assessed in quartile subgroups, the third quartile (Q3) and fourth quartile (Q4) subgroups of Phe/Tyr had a significantly increased risk of MMD compared to the first quartile (Q3, OR: 2.019, 95%CI: 1.066-3.824, p = 0.031; Q4, OR: 2.887, 95%CI: 1.446-5.765, p = 0.003). The risk of MMD subtypes also increased with elevated Phe/Tyr level. Meanwhile, the addition of Phe/Tyr to conventional risk factors could significantly improve the risk prediction for MMD. Conclusion In this study, the risk of MMD increased with elevated Phe/Tyr, suggesting that peripheral blood serum Phe/Tyr may be a valuable predictive biomarker of adult MMD.
Collapse
Affiliation(s)
- Shixiong Lei
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Mengnan Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jiali Pan
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Daming Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Cai L, Zhou Q, Tao N, Chen W. Lycium barbarum Polysaccharides Alleviate Ethanol-Induced Liver Injury by Activating PPAR-α and Inhibiting NLRP-3/Caspase-1-Mediated Pyroptosis. Food Sci Nutr 2025; 13:e70172. [PMID: 40255541 PMCID: PMC12006841 DOI: 10.1002/fsn3.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
This Research Aimed to Discuss the Protective Mechanism of Lycium barbarum Polysaccharides (LBPs) Against Ethanol (EtOH)-caused Hepatocellular Damage. Normal human hepatocytes (L-02 cells) were processed with 100 μg/mL EtOH to simulate liver injury, followed by treatment with LBPs at different concentrations (12, 24, 48 μg/mL) to determine the optimal dose. Cells were divided into the control, EtOH, EtOH+LBP-treated, and EtOH+LBP-treated with siRNA against PPAR-α groups. To evaluate treatment effects, the MTT assay was utilized for measuring cell viability, succeeded by the assessment of liver injury markers (ALT, AST, TG) and inflammatory cytokines (IL-1β, TNF-α, and IL-6). Besides, the GSDMD, NLRP-3, caspase-1, and PPAR-α protein levels were analyzed via western blotting. Relative to the Control group, EtOH exposure remarkably decreased cell viability, increased TG, AST, and ALT levels (p < 0.01), and induced cell damage and lipid accumulation. It also elevated inflammatory cytokine levels and triggered pyroptosis (p < 0.01). However, LBP treatment alleviated EtOH-induced damage, reduced lipid accumulation, inhibited pyroptosis-related protein expression, suppressed inflammatory responses, and upregulated PPAR-α protein expression (p < 0.01). LBPs can alleviate EtOH-induced L-02 cell injury, lipid accumulation, inflammatory response, and pyroptosis. The mechanism is possibly associated with inhibiting NLRP-3/caspase-1-mediated cell pyroptosis by activating PPAR-α expression, thus protecting hepatocytes from injury.
Collapse
Affiliation(s)
- Le‐bin Cai
- Department of Infectious Disease, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| | - Quan Zhou
- Department of Infectious Disease, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| | - Na Tao
- Department of Nursing, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| | - Wen‐zhong Chen
- Department of Cardiovascular Medicine, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| |
Collapse
|
12
|
Li Y, Zhang J, Lei Y, Chang M, Xu J, Tang S. Multi-omics approaches reveal the therapeutic mechanism of Naoxintong capsule against ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119435. [PMID: 39909118 DOI: 10.1016/j.jep.2025.119435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) is a leading cause of long-term disability and mortality worldwide. The Chinese Pharmacopeia 2020 lists Naoxintong Capsule (NXT), a traditional Chinese medicine prescription, as having demonstrated substantial therapeutic efficacy for IS. AIM OF THE STUDY Our study aimed to evaluate the mechanism by which NXT treats IS by integrating the microbiome, transcriptome, and metabolomics. MATERIALS AND METHODS In a middle cerebral artery occlusion (MCAO) mouse model, the infarction rate, neurological scores, lipopolysaccharide (LPS) levels, inflammatory factor levels (IL-1β, IL-17A, and IL-6), and intestinal permeability proteins (ZO-1, MUC2, and MUC4) were measured to confirm the effect of NXT on the brain and colon. 16S rRNA sequencing, transcriptomics analysis, and targeted amino acid (AA) metabolism were employed to evaluate the mechanism by which NXT treats IS. Furthermore, the neuroprotective effects of specific AAs, identified through targeted AA metabolism, were assessed in PC12 cells following oxygen-glucose deprivation (OGD) injury. In addition, the TLR4/NF-κB pathway was evaluated by Western blot (WB). RESULTS NXT administration substantially alleviated brain damage and colon injury by decreasing the infarction rate, neurological scores, LPS levels, and inflammatory factors, and increasing the expression of intestinal permeability protein. Transcriptomic analysis revealed that NXT regulated "inflammatory response," "Toll-like receptor signaling pathway,", and "NF-κB signaling pathway." Furthermore, WB confirmed that NXT inhibited the brain TLR4/NF-κB pathway. 16S rRNA sequencing indicated that NXT adjusted the intestinal microbiota composition and decreased the abundance of pathogenic bacteria, including Parasutterella_massiliensis and Ihubacter_excrementihominis. Targeted AA metabolism analysis demonstrated that NXT regulated the serum levels of serine, lysine, and proline in MCAO mice. Furthermore, serine, lysine, and proline inhibited the TLR4/NF-κB pathway to protect against OGD injury in PC12 cells. CONCLUSION Our study indicates that NXT reduces the abundance of Parasutterella_massiliensis and Ihubacter_excrementihominis, while increasing the levels of serine, lysine, and proline. These changes are significantly associated with neuroinflammation. Furthermore, NXT alleviates IS-induced neuroinflammation by inhibiting the TLR4/NF-κB pathway. Importantly, our study provides novel insights into the mechanisms underlying NXT's therapeutic effects on IS.
Collapse
Affiliation(s)
- Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China; State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| |
Collapse
|
13
|
Tang MB, Liu YX, Hu ZW, Luo HY, Zhang S, Shi CH, Xu YM. Study insights in the role of PGC-1α in neurological diseases: mechanisms and therapeutic potential. Front Aging Neurosci 2025; 16:1454735. [PMID: 40012862 PMCID: PMC11861300 DOI: 10.3389/fnagi.2024.1454735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which is highly expressed in the central nervous system, is known to be involved in the regulation of mitochondrial biosynthesis, metabolic regulation, neuroinflammation, autophagy, and oxidative stress. This knowledge indicates a potential role of PGC-1α in a wide range of functions associated with neurological diseases. There is emerging evidence indicating a protective role of PGC-1α in the pathogenesis of several neurological diseases. As such, a deeper and broader understanding of PGC-1α and its role in neurological diseases is urgently needed. The present review provides a relatively complete overview of the current knowledge on PGC-1α, including its functions in different types of neurons, basic structural characteristics, and its interacting transcription factors. Furthermore, we present the role of PGC-1α in the pathogenesis of various neurological diseases, such as intracerebral hemorrhage, ischemic stroke, Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, and other PolyQ diseases. Importantly, we discuss some compounds or drug-targeting strategies that have been studied to ameliorate the pathology of these neurological diseases and introduce the possible mechanistic pathways. Based on the available studies, we propose that targeting PGC-1α could serve as a promising novel therapeutic strategy for one or more neurological diseases.
Collapse
Affiliation(s)
- Mi-bo Tang
- Department of Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yi-xuan Liu
- Department of Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zheng-wei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hai-yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chang-he Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Lu Y, Shi M, Huang W, Li F, Liang H, Liu W, Huang T, Xu Z. Diosmin alleviates NLRP3 inflammasome-dependent cellular pyroptosis after stroke through RSK2/CREB pathway. Brain Res 2025; 1848:149336. [PMID: 39547499 DOI: 10.1016/j.brainres.2024.149336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
In the context of our previous analyses on the main active ingredients of Jieyudan, a classic formula targeting aphasia in stroke, we further delve into the function and mechanisms of its active ingredient, Diosmin (DM), which may exert neuroprotective effects, in ischemic stroke. Herein, bioinformatics analysis revealed targets of DM and their intersection with differentially expressed genes in ischemic stroke. Middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) cells were used to construct in vivo and in vitro models of ischemic stroke. The effects of DM on MCAO rats were assessed by Zea-Longa score, Morris water maze, TTC staining, Nissl staining, immunohistochemistry, and Western blot. At the cellular level, cell counting kit-8 assay and Western blot were carried out to verify the mechanism of DM in ischemic stroke. In vivo, DM decreased neurological deficit score, cerebral infarct volume and neuronal damage, and improved cognitive function in MCAO rats. In vitro, DM increased the viability of OGD-treated cells. In addition, DM down-regulated the expressions of NLR family pyrin domain containing 3 (NLRP3) and pyroptosis-associated proteins, while up-regulating ribosomal protein S6 kinase A3 (RSK2) level and activating cyclic-AMP response element-binding protein (CREB) signaling. Conversely, RSK2 inhibitor LJH685 reduced the viability and promoted pyroptosis-associated protein levels, which also partially reversed the effects of DM in vitro. Collectively, DM plays a therapeutic role in ischemic stroke by inhibiting NLRP3 inflammasome-mediated cellular pyroptosis via the RSK2/CREB pathway.
Collapse
Affiliation(s)
- Yanfei Lu
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Min Shi
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Wei Huang
- Department of Pharmacy, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincal Hospital of Traditional Chinese Medicine), China
| | - Fenfen Li
- College of Pharmacy, Zhejiang Chinese Medical University, China
| | - Haowei Liang
- Graduate School of Zhejiang Chinese Medical University, China
| | - Wenbing Liu
- Department of Cardiopulmonary Rehabilitation, the Third Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Tianyi Huang
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Zhen Xu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China.
| |
Collapse
|
15
|
Li Y, Hu Z, Xie L, Xiong T, Zhang Y, Bai Y, Ding H, Huang X, Liu X, Deng C. Buyang huanwu decoction inhibits the activation of the RhoA/Rock2 signaling pathway through the phenylalanine metabolism pathway, thereby reducing neuronal apoptosis following cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119246. [PMID: 39681201 DOI: 10.1016/j.jep.2024.119246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD) exerts its anti-cerebral ischemia effects through multiple pathways and targets, although its specific mechanisms remain unclear. AIM OF THE STUDY Ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) metabolomics and other methods were employed to investigate the role of BYHWD in inhibiting neuronal apoptosis following cerebral ischemia-reperfusion by modulating the RhoA/Rock2 pathway. METHODS A rat model of exhaustion swimming combined with middle cerebral artery occlusion (ES + I/R) was established to evaluate the intervention effects of Buyang Huanwu Decoction on cerebral ischemia-reperfusion. This was assessed using neurological function scores, Qi deficiency and blood stasis syndrome scores, HE staining, Nissl staining and TT staining. Differential metabolites and metabolic pathways associated with cerebral ischemia-reperfusion were identified using UPLC-QTOF-MS metabolomics, with key differential metabolites validated through ELISA. Molecular docking techniques were employed to predict interactions between the key differential metabolite, hippuric acid, and its primary downstream pathways. Finally, the levels of neurocellular apoptosis, as well as key molecules in the RhoA/Rock2 signaling pathway and the mitochondrial apoptosis pathway, were measured. RESULTS The results indicated that the primary differential metabolites associated with BYHWD's protective effects against ischemia-reperfusion injury were hippuric acid, lysophosphatidic acid, and lysophosphatidylethanolamine, with the main metabolic pathway being phenylalanine metabolism. Molecular docking studies demonstrated that malonic acid exhibited a strong affinity for proteins related to the RhoA/Rock2 signaling pathway and the mitochondrial apoptosis pathway.Furthermore, we found that BYHWD treatment significantly decreased the apoptosis rate of cells following cerebral ischemia-reperfusion and inhibited the expression of key molecules in both the RhoA/Rock2 signaling pathway and the mitochondrial apoptosis pathway in brain tissue. CONCLUSION BYHWD ameliorated brain tissue injury after cerebral ischemia/reperfusion in rats with qi deficiency and blood stasis. The underlying mechanism may involve BYHWD's inhibition of the RhoA/Rock2 signaling pathway activation through modulation of the phenylalanine metabolism pathway, thereby reducing neuronal apoptosis mediated by the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Yanling Li
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Zhongji Hu
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Linli Xie
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tingting Xiong
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Yanyan Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Yang Bai
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Huang Ding
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaoping Huang
- Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xiaodan Liu
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China.
| | - Changqing Deng
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China.
| |
Collapse
|
16
|
Pan Y, Nie L, Chen W, Guan D, Li Y, Yang C, Duan L, Wan T, Zhuang L, Lai J, Li W, Zhang Y, Wang Q. Buyang Huanwu Decoction prevents hemorrhagic transformation after delayed t-PA infusion via inhibiting NLRP3 inflammasome/pyroptosis associated with microglial PGC-1α. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119275. [PMID: 39710159 DOI: 10.1016/j.jep.2024.119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Delayed tissue-type plasminogen activator (t-PA) thrombolysis, which has a restrictive therapeutic time window within 4.5 h following ischemic stroke (IS), increases the risk of hemorrhagic transformation (HT) and subsequent neurotoxicity. Studies have shown that the NLRP3 inflammasome activation reversely regulated by the PGC-1α leads to microglial polarization and pyroptosis to cause damage to nerve cells and the blood-brain barrier. The effect of Buyang Huanwu Decoction (BHD), a traditional Chinese medicine prescription widely used in the recovery of IS, on HT injury after delayed t-PA treatment had been found with clinical studies, while the underlying mechanisms are reminded to be further clarified. AIM OF THE STUDY This study sought to investigate the therapeutic effect and the underlying mechanisms of BHD in ischemic rat brains with delayed t-PA treatment. MATERIALS AND METHODS The components of BHD extracts were identified by High Performance Liquid Chromatography (HPLC) and the effective components in the rat brains from BHD were analyzed by liquid chromatography-mass spectrometry (LC-MS). In vivo experiment was carried out by 5 h of middle cerebral artery occlusion (MCAO) following by t-PA infusion for 0.5 h plus reperfusion 19 h, while the in vitro BV2 cells were stimulated by lipopolysaccharide (LPS)-adenosine triphosphate (ATP) to activate microglia pyroptosis, of which the MCC950 (NLRP3 inhibitor) and NSA (GSDMD inhibitor) were adopted as reverse validation. PGC-1α siRNA was utilized to study the mechanisms of BHD against microglial polarization and pyroptosis in BV2 cells. RESULTS HPLC analysis demonstrated the fingerprint of BHD with six reference standards (Hydroxysafflor yellow A, Calycosin-7-glucoside, Paeoniflorin, Formononetin, Ferulic acid and Amygdalin), the last two of which can be found in rat brains by LC-MS analysis. In the following experiments, we found the major discoveries as follow: (1) BHD improved the neurological outcomes, the structural integrity of the blood-brain barrier and the neuronal structure in HT rats with MCAO following by delayed t-PA infusion; (2) the presence of t-PA promoted the suppression of PGC-1α and the activation of microglial NLRP3 inflammasome and pyroptosis in the HT rats; (3) BHD promoted the transformation of microglia from M1 to M2 type for inhibiting inflammatory response; (4) BHD restrained NLRP3 inflammasome/pyroptosis activation in microglia, prevented the translocations of NF-κB into the nucleus, as well as enhanced microglia-specific PGC-1α in ischemic rats following t-PA delayed thrombolysis; (5) BHD suppressed NLRP3 inflammasome assembly and increased PGC-1α expression in the LPS-ATP-induced BV2 cells; (6) PGC-1α silencing withdrew the protective role of BHD against NLRP3 inflammasome/pyroptosis. CONCLUSION Mechanistically, BHD existed the protective effect against HT injury after delayed t-PA treatment through up-regulating microglial PGC-1α to inhibit NLRP3 inflammasome and pyroptosis, and serves as a potential adjuvant therapy for HT injury.
Collapse
Affiliation(s)
- Yaru Pan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Nie
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Weitao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Danni Guan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yongyi Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Cong Yang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lining Duan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Ting Wan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Lixing Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jianbo Lai
- Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, Guangdong, 518100, China
| | - Weirong Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yifan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
17
|
Tian HY, Lei YX, Zhou JT, Liu LJ, Yang T, Zhou Y, Ge JW, Xu C, Mei ZG. Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke. Front Mol Neurosci 2025; 17:1482015. [PMID: 39846000 PMCID: PMC11751022 DOI: 10.3389/fnmol.2024.1482015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay. While mounting evidence hints at a crosstalk between these two processes in IS, the underlying mechanisms remain elusive. Therefore, this review delves into and dissects the intricate mechanisms that underpin the intersection of PANoptosis and autophagy in this devastating condition. In conclusion, the crosstalk between PANoptosis and autophagy in IS presents a promising target for the development of novel stroke therapies. Understanding the interplay between these two pathways offers a much-needed insight into the underlying mechanisms of IS and opens the possibility for new therapeutic strategies.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Yun-Xing Lei
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Jing-Tao Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Long-Jun Liu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Chen Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
18
|
Zhou W, Chen H, Chen X, Gao J, Ji W. Recent advances in research on common targets of neurological and sex hormonal influences on asthma. Clin Transl Allergy 2025; 15:e70022. [PMID: 39800672 PMCID: PMC11725405 DOI: 10.1002/clt2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Asthma is currently one of the most common of respiratory diseases, severely affecting the lives of patients. With the in-depth study of the role of the nervous system and sex hormones on the development of asthma, it has been found that the nervous system and sex hormones are related to each other in the pathway of asthma. OBJECTIVE To investigate the effects of sex hormones and the nervous system on the development of asthma. METHODS In this review, we searched for a large number of relevant literature to elucidate the unique mechanisms of sex hormones and the nervous system on asthma development, and summarized several common targets in the pathways of sex hormones and the nervous system on asthma. CONCLUSION We summarize several common important targets in the pathways of action of sex hormones and the nervous system in asthma, provide new directions and ideas for asthma treatment, and discuss current therapeutic limitations and future possibilities. Finally, the article predicts future applications of several important targets in asthma therapy.
Collapse
Affiliation(s)
- Wenting Zhou
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Huan Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xinyu Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Jing Gao
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Wenting Ji
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
19
|
Liu K, Wang L, Pang T. Research progress of small-molecule natural medicines for the treatment of ischemic stroke. Chin J Nat Med 2025; 23:21-30. [PMID: 39855828 DOI: 10.1016/s1875-5364(25)60801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 09/21/2024] [Indexed: 01/27/2025]
Abstract
Stroke is the second leading cause of disability and mortality worldwide, imposing a substantial socioeconomic burden on individuals and healthcare systems. Annually, approximately 14 million people experience stroke, with ischemic stroke comprising nearly 85% of cases, of which 10% to 20% involve large vessel occlusions. Currently, recombinant tissue plasminogen activator (tPA) remains the only approved pharmacological intervention. However, its utility is limited due to a narrow therapeutic window and low recanalization rates, making it applicable to only a minority of patients. Therefore, there is an urgent need for novel therapeutic strategies, including pharmacological advancements and combinatory treatments. Small-molecule natural medicines, particularly those derived from traditional Chinese herbs, have demonstrated significant therapeutic potential in ischemic stroke management. These compounds exert multiple neuroprotective effects, such as antioxidation, anti-inflammatory action, and inhibition of apoptosis, all of which are critical in mitigating stroke-induced cerebral damage. This review comprehensively examines the pathophysiology of acute ischemic stroke (AIS) and highlights the recent progress in the development of small-molecule natural medicines as promising therapeutic agents for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Feng M, An Y, Qin Q, Fong IH, Zhang K, Wang F, Song D, Li M, Yu M, Yeh CT, Chang J, Guo F. Sphk1/S1P pathway promotes blood-brain barrier breakdown after intracerebral hemorrhage through inducing Nlrp3-mediated endothelial cell pyroptosis. Cell Death Dis 2024; 15:926. [PMID: 39715736 DOI: 10.1038/s41419-024-07310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype with high mortality and limited therapeutic options. The blood-brain barrier (BBB) breakdown post-ICH exacerbates secondary brain injury, highlighting the need for targeted therapies to preserve the BBB integrity. We aim to investigate the role of the Sphk1/S1P pathway in BBB breakdown following ICH and to evaluate the therapeutic potential of Sphk1 inhibition in mitigating this breakdown. Using a combination of human patient samples, mouse models of ICH, and in vitro cellular assays, we assessed the expression levels of Sphk1/S1P after ICH and changes of the BBB after ICH. The Sphk1 inhibitor PF543 and siRNAs were utilized to explore the pathway's impact on BBB integrity and the underlying mechanisms. The results indicate significant upregulation of Sphk1/S1P in the peri-hematomal brain tissue after ICH, which correlates with increased BBB leakage. Pharmacological inhibition of Sphk1 with PF543 attenuates BBB leakage, reduces hematoma volume, and improves neurological outcomes in mice. At the molecular and ultrastructural level, Sphk1 inhibition protects the BBB integrity by preserving tight junction proteins and suppressing endothelial transcytosis. Furthermore, mechanistic studies reveal that Sphk1 promotes Nlrp3-mediated pyroptosis of brain endothelial cells through the ERK1/2 signaling pathway. Taken together, the Sphk1/S1P pathway plays a critical role in ICH-induced BBB breakdown, and its inhibition represents a promising therapeutic strategy for ICH management.
Collapse
Affiliation(s)
- Mengzhao Feng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Yuan An
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Qi Qin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Kaiyuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Fang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Mengyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Min Yu
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China.
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan.
| | - Junlei Chang
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China.
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China.
| |
Collapse
|
21
|
Wu W, Wei Z, Wu Z, Chen J, Liu J, Chen M, Yuan J, Zheng Z, Zhao Z, Lin Q, Liu N, Chen H. Exercise training alleviates neuronal apoptosis and re-establishes mitochondrial quality control after cerebral ischemia by increasing SIRT3 expression. Cell Biol Toxicol 2024; 41:10. [PMID: 39707047 PMCID: PMC11662049 DOI: 10.1007/s10565-024-09957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Existing evidence indicates that exercise training can enhance neural function by regulating mitochondrial quality control (MQC), which can be impaired by cerebral ischemia, and that sirtuin-3 (SIRT3), a protein localized in mitochondria, is crucial in maintaining mitochondrial functions. However, the relationship among exercise training, SIRT3, and MQC after cerebral ischemia remains obscure. This study attempted to elucidate the relationship among exercise training, SIRT3 and MQC after cerebral ischemia in rats. Male adult SD rats received tMCAO after the transfection of adeno-associated virus encoding either sirtuin-3 (AAV-SIRT3) or SIRT3 knockdown (AAV-sh-SIRT3) into the ipsilateral striata and cortex. Subsequently, the animals were randomly selected for exercise training. The index changes were measured by transmission electron microscopy, Western blot analysis, nuclear magnetic resonance imaging, TUNEL staining, and immunofluorescence staining, etc. The results revealed that after cerebral ischemia, exercise training increased SIRT3 expression, significantly improved neural function, alleviated infarct volume and neuronal apoptosis, maintained the mitochondrial structural integrity, and re-established MQC. The latter promoted mitochondrial biogenesis, balanced mitochondrial fission/fusion, and enhanced mitophagy. These favorable benefits were reversed after SIRT3 interference. In addition, a cellular OGD/R model showed that the increased SIRT3 expression alleviates neuronal apoptosis and re-establishes mitochondrial quality control by activating the β-catenin pathway. These findings suggest that exercise training may optimize mitochondrial quality control by increasing the expression of SIRT3, thereby improving neural functions after cerebral ischemia, which illuminates the mechanism underlying the exercise training-conferred neural benefits and indicates SIRT3 as a therapeutic strategy for brain ischemia.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zengyu Wei
- Emergency Department, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Afliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Jinjin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
22
|
Zhang T, Li L, Mo X, Xie S, Liu S, Zhao N, Zhang H, Chen S, Zeng X, Wang S, Deng W, Tang Q. Matairesinol blunts adverse cardiac remodeling and heart failure induced by pressure overload by regulating Prdx1 and PI3K/AKT/FOXO1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156054. [PMID: 39306883 DOI: 10.1016/j.phymed.2024.156054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pathological cardiac remodeling is a critical process leading to heart failure, characterized primarily by inflammation and apoptosis. Matairesinol (Mat), a key chemical component of Podocarpus macrophyllus resin, exhibits a wide range of pharmacological activities, including anti-hydatid, antioxidant, antitumor, and anti-inflammatory effects. PURPOSE This study aims to investigate whether Matairesinol alleviate cardiac hypertrophy and remodeling caused by pressure overload and to elucidate its mechanism of action. METHODS An in vitro pressure loading model was established using neonatal rat cardiomyocytes treated with angiotensin Ⅱ, while an in vivo model was created using C57 mice subjected to transverse aortic constriction (TAC). To activate the PI3K/Akt/FoxO1 pathway, Ys-49 was employed. Moreover, small interfering RNA (siRNA) and short hairpin RNA (shRNA) were utilized to silence Prdx1 expression both in vitro and in vivo. Various techniques, including echocardiography, wheat germ agglutinin (WGA) staining, HE staining, PSR staining, and Masson trichrome staining, were used to assess cardiac function, cardiomyocyte cross-sectional area, and fibrosis levels in rats. Apoptosis in myocardial tissue and in vitro was detected by TUNEL assay, while reactive oxygen species (ROS) content in tissues and cells was measured using DHE staining. Furthermore, the affinity of Prdx1 with Mat and PI3K was analyzed using computer-simulated molecular docking. Western blotting and RT-PCR were utilized to evaluate Prdx1 levels and proteins related to apoptosis and oxidative stress, as well as the mRNA levels of cardiac hypertrophy and fibrosis-related indicators. RESULTS Mat significantly alleviated cardiac hypertrophy and fibrosis induced by TAC, preserved cardiac function, and markedly reduced cardiomyocyte apoptosis and oxidative damage. In vitro, mat attenuated ang Ⅱ - induced hypertrophy of nrvms and activation of neonatal rat fibroblasts. Notably, activation of the PI3K/Akt/FoxO1 pathway and downregulation of Prdx1 expression were observed in TAC mice; however, these effects were reversed by Mat treatment. Furthermore, Prdx1 knockdown activated the PI3K/Akt/FoxO1 pathway, leading to exacerbation of the disease. Molecular docking indicated that Molecular docking indicated that Mat upregulated Prdx1 expression by binding to it, thereby inhibiting the PI3K/Akt/FoxO1 pathway and protecting the heart by restoring Prdx1 expression levels. CONCLUSION Matairesinol alleviates pressure overload-induced cardiac remodeling both in vivo and in vitro by upregulating Prdx1 expression and inhibiting the PI3K/Akt/FoxO1 pathway. This study highlights the therapeutic potential of Matairesinol in the treatment of cardiac hypertrophy and remodeling, providing a promising avenue for future research and clinical application.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- Abbreviations: MAT, matairesinol
- BNP, B-type natriuretic peptide
- Cardiac fibrosis
- Cardiac hypertrophy
- Cardiac remodeling
- LV, left ventricular
- LVEDd, left ventricular end-diastolic dimension
- LVEF, left ventricular ejection fraction
- Matairesinol
- NRCFS, neonatal rat cardiac fibroblasts
- PRDX 1
- PRDX1, peroxiredoxin 1
- ROS, reactive oxygen species
- Sh-RNA, short-hairpin RNA
- Si-RNA, small interfering RNA
- TAC, transverse aortic contraction
- β-MHC, Β-myosin heavy chain
Collapse
Affiliation(s)
- Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Xiaotong Mo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
23
|
Lu L, Pang M, Chen T, Hu Y, Chen L, Tao X, Chen S, Zhu J, Fang M, Guo X, Lin Z. Protopine Exerts Neuroprotective Effects on Neonatal Hypoxic-Ischemic Brain Damage in Rats via Activation of the AMPK/PGC1α Pathway. Drug Des Devel Ther 2024; 18:4975-4992. [PMID: 39525050 PMCID: PMC11549892 DOI: 10.2147/dddt.s484969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Neonatal hypoxic-ischemic encephalopathy (HIE), caused by perinatal asphyxia, is characterized by high morbidity and mortality, but there are still no effective therapeutic drugs. Mitochondrial biogenesis and apoptosis play key roles in the pathogenesis of HIE. Protopine (Pro), an isoquinoline alkaloid, has anti-apoptotic and neuro-protective effects. However, the protective roles of Pro on neonatal hypoxic-ischemic brain injury remain unclear. Methods In this study, we established a CoCl2-induced PC12 cell model in vitro and a neonatal rat hypoxic-ischemic (HI) brain damage model in vivo to explore the neuro-protective effects of Pro and try to elucidate the potential mechanisms. Results Our results showed that Pro significantly reduced cerebral infarct volume, alleviated brain edema, inhibited glia activation, improved mitochondrial biogenesis, relieved neuron cell loss, decreased cell apoptosis and reactive oxygen species (ROS) after HI damage. In addition, Pro intervention upregulated the levels of p-AMPK/AMPK and PGC1α as well as the downstream mitochondrial biogenesis related factors, such as nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), but the AMPK inhibitor compound c (CC) could significantly reverse these effects of Pro. Discussion Pro may exert neuroprotective effects on neonatal hypoxic-ischemic brain damage via activation of the AMPK/PGC1α pathway, suggesting that Pro may be a promising therapeutic candidate for HIE, and our study firstly demonstrate the neuro-protective roles of Pro in HIE models.
Collapse
Affiliation(s)
- Liying Lu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Tingting Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Likai Chen
- Elson S. Floyd College of Medicine at Washington State University, Spokane, WA, USA
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shangqin Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Mingchu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - XiaoLing Guo
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
24
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
25
|
Zhang X, Yang J, Lu Y, Liu Y, Wang T, Yu F. Human Urinary Kallidinogenase improves vascular endothelial injury by activating the Nrf2/HO-1 signaling pathway. Chem Biol Interact 2024; 403:111230. [PMID: 39244186 DOI: 10.1016/j.cbi.2024.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Vascular endothelial injury is closely related to the progression of various cardio-cerebrovascular diseases. Whether Human Urinary Kallidinogenase (HUK) has a protective effect on endothelial injury remains unclear. This study established an in vivo model of rat common carotid artery intima injury and an in vitro model of human umbilical vein endothelial cell (HUVECs) injury induced by hydrogen peroxide (H2O2). To explore the protective effect and mechanism of HUK on endothelial injury. In vivo, HUK can reduce the hyperplasia and lumen stenosis of rat common carotid artery after intimal injury, and promote the fluorescence expression of vWF in the common carotid artery. HUK also activated the Nrf2/HO-1 signaling pathway in rat common carotid artery tissue to reduce endothelial damage. In vitro, HUK can inhibit the H2O2-induced decline in HUVECs activity, improve the migration ability of HUVECs induced by H2O2, inhibit the apoptosis and necrosis of HUVECs and the generation of ROS, and regulate the expression of VEGFA, ET-1 and eNOS proteins related to endothelial function in cells. The Nrf2/HO-1 signaling pathway is activated, and the HO-1 specific inhibitor zinc porphyrin (ZnPP) can partially reverse the protective effect of HUK on H2O2-induced HUVECs injury in terms of cell migration, necrosis and oxidative stress. The Nrf2/HO-1 signaling pathway plays an important role in the regulation of migration, necrosis and oxidative stress of HUVECs cells. HUK has a protective effect on vascular endothelial injury. HUK can inhibit oxidative stress and apoptotic necrosis by activating Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210001, PR China
| | - Jiaying Yang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China
| | - Yini Lu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China
| | - Yi Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China
| | - Tianyin Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China
| | - Feng Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China.
| |
Collapse
|
26
|
Wu J, Zhong K, Yang H, Zhang P, Yu N, Chen W, Zhang N, Gui S, Han L, Peng D. A holistic visualization for quality of Chinese materia medica: Structural and metabolic visualization by magnetic resonance imaging. J Pharm Anal 2024; 14:101019. [PMID: 39759970 PMCID: PMC11696849 DOI: 10.1016/j.jpha.2024.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 01/07/2025] Open
Abstract
The quality of Chinese materia medica (CMM) is a challenging and focused topic in the modernization of traditional Chinese medicine (TCM). A profound comprehension of the morphology, structure, active constituents, and dynamic changes during the whole process of CMM growth is essential, which needs highly precise contemporary techniques for in-depth elucidation. Magnetic resonance imaging (MRI) is a cutting-edge tool integrating the benefits of both nuclear magnetic resonance (NMR) spectroscopy and imaging technology. With real-time, non-destructive, and in situ detection capabilities, MRI has been previously used for monitoring internal and external structures of plants alongside compounds during physiological processes in vivo. Here, factors involved in the holistic quality evaluation of CMMs were investigated. Given the applications of MRI in various plants, several representative CMMs were used as examples to demonstrate a methodology of quality visualization by MRI, embodying holistically monitoring the real-time macroscopic morphology, mesoscopic structure, and microscopic metabolites non-destructively in situ. Taken together, the review not only presents a pioneering application mode for utilizing MRI for CMM quality visualization but also holds promise for advancing the quality control and evaluation of CMMs.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Kai Zhong
- Department of Biomedical Engineering, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Hongyi Yang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230012, China
| | - Peiliang Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Na Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230012, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lan Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
27
|
Zhang G, Liang Z, Wang Y, Zhang Z, Hoi PM. Tetramethylpyrazine Analogue T-006 Protects Neuronal and Endothelial Cells Against Oxidative Stress via PI3K/AKT/mTOR and Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1272. [PMID: 39456524 PMCID: PMC11505549 DOI: 10.3390/antiox13101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND T-006, a novel neuroprotective derivative of tetramethylpyrazine (TMP), exhibits multifunctional neuroprotective properties. T-006 has been shown to improve neurological and behavioral functions in animal models of ischemic stroke and neurodegenerative diseases. The present study aims to further elucidate the mechanisms underlying the protective effects of T-006 against oxidative injuries induced by glutamate or hypoxia. METHODS Mouse hippocampal HT22 cells were used to evaluate the neuroprotective effects of T-006 against glutamate-induced injuries, while mouse brain endothelial bEnd.3 cells were used to evaluate the cerebrovascular protective effects of T-006 against oxygen-glucose deprivation followed by reperfusion (OGD/R)-induced injuries. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to measure cell viability and oxidative stress. Western blot and immunofluorescence analyses of protein expression were used to study cell signaling pathways. RESULTS T-006 exhibited significant protective effects in both oxidative injury models. In HT22 cells, T-006 reduced cell death and enhanced antioxidant capacity by upregulating mTOR and nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling. Similarly, in bEnd.3 cells, T-006 reduced oxidative injuries and preserved tight junction integrity through Nrf2/HO-1 upregulation. These effects were inhibited by LY294002, a Phosphoinositide 3-kinase (PI3K) inhibitor. CONCLUSIONS T-006 may exert its neuroprotective and cerebrovascular protective effects via the regulation of PI3K/AKT-mediated pathways, which facilitate downstream mTOR and Nrf2 signaling, leading to improved cell survival and antioxidant defenses.
Collapse
Affiliation(s)
- Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
28
|
Qin X, Liu X, Guo C, Huang L, Xu Q. Medioresinol from Eucommiae cortex improves myocardial infarction-induced heart failure through activation of the PI3K/AKT/mTOR pathway: A network analysis and experimental study. PLoS One 2024; 19:e0311143. [PMID: 39331625 PMCID: PMC11433142 DOI: 10.1371/journal.pone.0311143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVE This study aims to systematically analyze the potential active components of Eucommiae cortex in the treatment of post- myocardial infarction heart failure through network analysis and molecular docking methods. In vitro experiments were conducted to verify that medioresinol, a component of Eucommiae cortex, improves oxygen-glucose deprivation-induced cell failure through its anti-inflammatory and antioxidant capacities. METHODS Potential active components of Eucommiae cortex were screened using specific data. The targets of these components were predicted using Swiss Institute of Bioinformatics database and TargetNet, and key targets were identified by intersecting with the disease targets of myocardial infarction and heart failure. Protein-Protein Interaction analysis was performed on the key targets to screen for core targets. Genomics Institute of the Novartis Research Foundation and Human Protein Atlas were used to identify myocardial highly expressed targets. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Molecular docking was performed for the final components and target proteins. In vitro experiments were carried out using H9c2 cells subjected to oxygen and glucose deprivation conditions to validate the effects of the screened potential active components. RESULTS Network analysis revealed that Eucommiae cortex might exert its effects through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), hypoxia-inducible factor 1, and Janus kinase/signal transducer and activator of transcription pathways, which are crucial for myocardial contraction, vascular tone regulation, inflammatory response, and oxidative stress. Molecular docking indicated stable binding of the selected compounds to PI3K, AKT, and mTOR. Medioresinol was selected for further study and shown to significantly improve oxidative stress and inflammatory response in myocardial ischemia-hypoxia model cells by activating the PI3K/AKT/mTOR pathway. CONCLUSION This study confirms the role of the PI3K/AKT/mTOR pathway in the cardiovascular protective effects of Eucommiae cortex and provides evidence at the cellular level. Medioresinol demonstrated potential therapeutic effects on myocardial infarction induced heart failure by reducing oxidative stress and inflammatory responses. These findings offer a theoretical basis for the application of Eucommiae cortex in the treatment of heart failure and support the development of new therapeutic drugs for cardiovascular diseases. Future research should further validate these effects in animal models and explore the overall efficacy of Eucommiae cortex.
Collapse
Affiliation(s)
- Xueting Qin
- Nephrology, The Second People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Xuan Liu
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Can Guo
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Huang
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiyao Xu
- Nephrology, The Second People's Hospital of China Three Gorges University, Yichang, Hubei, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Chen W, Liu M, Tsou Y, Wu H, Lin H, Liang C, Wang C. Extensive Dysregulation of Phenylalanine Metabolism Is Associated With Stress Hyperphenylalaninemia and 30-Day Death in Critically Ill Patients With Acute Decompensated Heart Failure. J Am Heart Assoc 2024; 13:e035821. [PMID: 39258552 PMCID: PMC11935636 DOI: 10.1161/jaha.124.035821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Stress hyperphenylalaninemia predicts elevated mortality rates in patients with acute decompensated heart failure (ADHF). This study investigated the metabolic pathways underlying this association and identified a unique metabolic phenotype underlying the association between stress hyperphenylalaninemia and adverse outcomes in ADHF. METHODS AND RESULTS This was a retrospective cohort study. We enrolled 120 patients with ADHF in an intensive care unit (60 with a phenylalanine level ≥112 μM, 60 with a phenylalanine level <112 μM), and 30 controls. Plasma phenylalanine-derived metabolites were measured, and participants were evaluated for 30-day death. Patients with ADHF had extensive activations of the alternative pathways for metabolizing phenylalanine, leading to the levels of phenylalanine-derived downstream metabolites 1.5 to 6.1 times higher in patients with ADHF than in the controls (all P<0.001). Extensive dysregulation of these alternative pathways significantly increased phenylalanine levels and contributed to a distinct metabolic phenotype, characterized by increased phenylalanine, tyrosine, homogentisic acid, and succinylacetone levels but decreased benzoic acid and 3,4-dihydroxyphenylalanine levels. Throughout the 30-day follow-up period, 47 (39.2%) patients died. This distinct metabolic phenotype was associated with an increased mortality rate (odds ratio, 1.59 [95% CI, 1.27-1.99]; P<0.001). A multivariable analysis confirmed the independent association of this metabolic phenotype, in addition to phenylalanine and tyrosine levels, with 30-day death. CONCLUSIONS In patients with ADHF, extensive dysregulation of the alternative pathways for metabolizing phenylalanine was correlated with stress hyperphenylalaninemia and a distinct metabolic phenotype on the phenylalanine-tyrosine-homogentisic acid-succinylacetone axis. Both stress hyperphenylalaninemia and metabolic dysregulation on this axis were associated with poor outcomes.
Collapse
Affiliation(s)
- Wei‐Siang Chen
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Min‐Hui Liu
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Department of NursingChang Gung Memorial HospitalKeelungTaiwan
| | - Yi‐Liang Tsou
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Huang‐Ping Wu
- Division of Pulmonary, Critical Care and Sleep MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Hsuan‐Ching Lin
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Chung‐Yu Liang
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Chao‐Hung Wang
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Chang Gung University College of MedicineTaoyuanTaiwan
| |
Collapse
|
30
|
Zhang K, Wang ZC, Sun H, Long H, Wang Y. Esculentoside H reduces the PANoptosis and protects the blood-brain barrier after cerebral ischemia/reperfusion through the TLE1/PI3K/AKT signaling pathway. Exp Neurol 2024; 379:114850. [PMID: 38857750 DOI: 10.1016/j.expneurol.2024.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
AIMS Matrix metalloproteinases 9 (MMP9) plays a role in the destruction of blood-brain barrier (BBB) and cell death after cerebral ischemic/reperfusion (I/R). Esculentoside H (EH) is a saponin found in Phytolacca esculenta. It can block JNK1/2 and NF-κB signal mediated expression of MMP9. In this study, we determined whether EH can protect against cerebral I/R injury by inhibiting MMP9 and elucidated the underlying mechanism. MAIN METHODS Male SD rats were used to construct middle cerebral artery occlusion (MCAO) models. We determined the effect of EH on MMP9 inhibition, BBB destruction, neuronal death, PANoptosis, infarct volume, and the protective factor TLE1. Adeno-associated virus (AAV) infection was used to establish TLE1 gene overexpression and knockdown rats, which were used to determine the function. LY294002 was used to determine the role of PI3K/AKT signaling in TLE1 function. KEY FINDINGS After EH treatment, MMP9 expression, BBB destruction, neuronal death, and infarct volume decreased. We found that TLE1 expression decreased obviously after cerebral I/R. TLE1-overexpressing rats revealed distinct protective effects to cerebral I/R injury. After treatment with LY294002, the protective effect was inhibited. The curative effect of EH also decreased when TLE1 was knocked down. SIGNIFICANCE EH alleviates PANoptosis and protects BBB after cerebral I/R via the TLE1/PI3K/AKT signaling pathway. Our findings reveal a novel strategy and new target for treating cerebral I/R injury.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Urology, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, China; Department of Urology, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhi-Chao Wang
- Department of Urology, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Hongxue Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Huimin Long
- Department of Urology, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, China; Department of Urology, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China.
| | - Yingju Wang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
31
|
Xin Q, Xu F, Ma Z, Wu J. β-Caryophyllene mitigates ischemic stroke-induced white matter lesions by inhibiting pyroptosis. Exp Cell Res 2024; 442:114214. [PMID: 39159913 DOI: 10.1016/j.yexcr.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
β-Caryophyllene (BCP), a selective agonist for cannabinoid receptor 2 (CB2R), has demonstrated promising protective effects in various pathological conditions. However, the neuroprotective effects of BCP on white matter damage induced by ischemic stroke have not been elucidated previously. In this study, we find that BCP not only improves sensorimotor and cognitive function via CB2R but also mitigates white matter lesions in mice following ischemic stroke. Furthermore, BCP enhances the viability of MO3.13 oligodendrocytes after oxygen-glucose deprivation and reoxygenation (OGD/R), attenuating OGD/R-induced cellular damage and pyroptosis. Notably, these protective effects of BCP are partially enhanced by the NLRP3 inhibitor MCC950 and counteracted by the NLRP3 activator nigericin. In addition, nigericin significantly exacerbates neurological outcomes and increases white matter lesions following BCP treatment in middle cerebral artery occlusion (MCAO) mice. These results suggest that BCP may ameliorate neurological deficits and white matter damage induced by cerebral ischemia through inhibiting NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Qing Xin
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Neurobiology, Jining Medical University, Jining, 272000, China
| | - Fei Xu
- Department of Vascular Surgery, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Zegang Ma
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jie Wu
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
32
|
Urasheva ZU, Kabdrakhmanova GB, Yermagambetova AP, Utegenova AB, Seitmaganbetova NA, Aliyev OM, Kurmangaliyeva SS, Kenzhina NK, Kurmambayev YZ, Khamidulla AA. Bibliometric Analysis of the Role of Occludin in the Pathogenesis of Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:2121733. [PMID: 39119484 PMCID: PMC11309812 DOI: 10.1155/2024/2121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/16/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Over the past decade, there has been a notable surge in research dedicated to unraveling the intricate role of tight junction proteins in blood-brain barrier (BBB) damage associated with ischemic stroke. This bibliometric analysis explores the expansive landscape of occludin research, a key tight junction protein, during the years 2000-2023, shedding light on the global scientific contributions, collaborations, and emerging trends in this critical area of stroke pathogenesis. China and the United States emerge as significant contributors, underscoring their prominence in advancing our understanding of tight junction proteins. Occludin, identified as a linchpin in regulating BBB integrity, proves to be a pivotal player, with implications extending to the diagnosis of hemorrhagic transformation in ischemic stroke. This study identifies occludin as a potential biomarker, offering promise for early diagnosis and paving the way for novel diagnostic strategies. The analysis highlights the necessity for a more comprehensive exploration of tight junction proteins, including occludin and claudin-5, particularly in the context of acute cerebral ischemia. The unique healthcare landscape in Kazakhstan adds urgency to the call for further scientific research in this region, emphasizing the need for tailored investigations to address specific regional challenges. This comprehensive overview not only delineates the current state of occludin research but also signals the direction for future investigations. The identified knowledge gaps and emerging trends provide a roadmap for researchers and policymakers alike, with implications for both scientific discourse and clinical practice. Moving forward, a deeper understanding of tight junction proteins, informed by the insights gleaned from this study, holds the potential to shape targeted therapeutic interventions and diagnostic strategies, ultimately contributing to advancements in global stroke care.
Collapse
Affiliation(s)
- Zhanylsyn U. Urasheva
- Department of NeurologyWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | | | | | - Aigerim B. Utegenova
- Department of NeurologyWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nazgul A. Seitmaganbetova
- Department of Propaedeutics of Internal DiseasesWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Ondassyn M. Aliyev
- Department of Propaedeutics of Internal DiseasesWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Saulesh S. Kurmangaliyeva
- Department of Microbiology, Virology and ImmunologyWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nazym K. Kenzhina
- The Course of TherapyWest Kazakhstan High Medicine College, Uralsk, Kazakhstan
| | - Yergen Z. Kurmambayev
- Department of Internal Medicine 1West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Alima A. Khamidulla
- Department of NeurologyWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
33
|
Hou Z, Brenner JS. Developing targeted antioxidant nanomedicines for ischemic penumbra: Novel strategies in treating brain ischemia-reperfusion injury. Redox Biol 2024; 73:103185. [PMID: 38759419 PMCID: PMC11127604 DOI: 10.1016/j.redox.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
During cerebral ischemia-reperfusion conditions, the excessive reactive oxygen species in the ischemic penumbra region, resulting in neuronal oxidative stress, constitute the main pathological mechanism behind ischemia-reperfusion damage. Swiftly reinstating blood perfusion in the ischemic penumbra zone and suppressing neuronal oxidative injury are key to effective treatment. Presently, antioxidants in clinical use suffer from low bioavailability, a singular mechanism of action, and substantial side effects, severely restricting their therapeutic impact and widespread clinical usage. Recently, nanomedicines, owing to their controllable size and shape and surface modifiability, have demonstrated good application potential in biomedicine, potentially breaking through the bottleneck in developing neuroprotective drugs for ischemic strokes. This manuscript intends to clarify the mechanisms of cerebral ischemia-reperfusion injury and provides a comprehensive review of the design and synthesis of antioxidant nanomedicines, their action mechanisms and applications in reversing neuronal oxidative damage, thus presenting novel approaches for ischemic stroke prevention and treatment.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, 100700, China; The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin, 150010, Heilongjiang, China
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Zheng ZJ, Zhu LZ, Qiu H, Zheng WYX, You PT, Chen SH, Hu CL, Huang JR, Zhou YJ. Neferine inhibits BMECs pyroptosis and maintains blood-brain barrier integrity in ischemic stroke by triggering a cascade reaction of PGC-1α. Sci Rep 2024; 14:14438. [PMID: 38910141 PMCID: PMC11194274 DOI: 10.1038/s41598-024-64815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Blood-brain barrier disruption is a critical pathological event in the progression of ischemic stroke (IS). Most studies regarding the therapeutic potential of neferine (Nef) on IS have focused on neuroprotective effect. However, whether Nef attenuates BBB disruption during IS is unclear. We here used mice underwent transient middle cerebral artery occlusion (tMCAO) in vivo and bEnd.3 cells exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro to simulate cerebral ischemia. We showed that Nef reduced neurobehavioral dysfunction and protected brain microvascular endothelial cells and BBB integrity. Molecular docking, short interfering (Si) RNA and plasmid transfection results showed us that PGC-1α was the most binding affinity of biological activity protein for Nef. And verification experiments were showed that Nef upregulated PGC-1α expression to reduce mitochondrial oxidative stress and promote TJ proteins expression, further improves the integrity of BBB in mice. Intriguingly, our study showed that neferine is a natural PGC-1α activator and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated Nef reduced mitochondria oxidative damage and ameliorates endothelial inflammation by inhibiting pyroptosis to improve BBB permeability through triggering a cascade reaction of PGC-1α via regulation of PGC-1α/NLRP3/GSDMD signaling pathway to maintain the integrity of BBB in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- Department of Pharmacy, Gongan Hospital of Traditional Chinese Medicine, Jingzhou, 434300, China
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Li-Zhi Zhu
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Han Qiu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002 West Sungang Rd, Shenzhen, 518020, China
| | - Wu-Yin-Xiao Zheng
- Department of Pharmacy, Gongan Hospital of Traditional Chinese Medicine, Jingzhou, 434300, China
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Peng-Tao You
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Shu-He Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Chun-Ling Hu
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jun-Rong Huang
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Ya-Jun Zhou
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002 West Sungang Rd, Shenzhen, 518020, China.
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
- Hubei Shizhen Laboratory, Wuhan, 430061, China.
| |
Collapse
|
35
|
Wang Y, Gao Y, Shi H, Gao R, Yang J, Qu Y, Hu S, Zhang J, Wang J, Cao J, Zhang F, Ge J. CCL11 released by GSDMD-mediated macrophage pyroptosis regulates angiogenesis after hindlimb ischemia. Cell Death Discov 2024; 10:294. [PMID: 38906863 PMCID: PMC11192718 DOI: 10.1038/s41420-023-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 06/23/2024] Open
Abstract
Peripheral vascular disease (PVD) is an emerging public health burden with a high rate of disability and mortality. Gasdermin D (GSDMD) has been reported to exert pyroptosis and play a critical role in the pathophysiology of many cardiovascular diseases. We ought to determine the role of GSDMD in the regulation of perfusion recovery after hindlimb ischemia (HLI). Our study revealed that GSDMD-mediated pyroptosis occurred in HLI. GSDMD deletion aggravated perfusion recovery and angiogenesis in vitro and in vivo. However, how GSDMD regulates angiogenesis after ischemic injury remains unclear. We then found that GSDMD-mediated pyroptosis exerted the angiogenic capacity in macrophages rather than endothelial cells after HLI. GSDMD deletion led to a lower level of CCL11 in mice serum. GSDMD knockdown in macrophages downregulated the expression and decreased the releasing level of CCL11. Furthermore, recombinant CCL11 improved endothelial functions and angiogenesis, which was attenuated by CCL11 antibody. Taken together, these results demonstrate that GSDMD promotes angiogenesis by releasing CCL11, thereby improving blood flow perfusion recovery after hindlimb ischemic injury. Therefore, CCL11 may be a novel target for prevention and treatment of vascular ischemic diseases.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yang Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Huairui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Rifeng Gao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 200240, Shanghai, China
| | - Ji'e Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ya'nan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Shiyu Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jian Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jingpu Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jiatian Cao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, 200032, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, 200032, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, 200032, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
36
|
Guan X, Zhu S, Song J, Liu K, Liu M, Xie L, Wang Y, Wu J, Xu X, Pang T. Microglial CMPK2 promotes neuroinflammation and brain injury after ischemic stroke. Cell Rep Med 2024; 5:101522. [PMID: 38701781 PMCID: PMC11148565 DOI: 10.1016/j.xcrm.2024.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Sitong Zhu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jinqian Song
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Mei Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China.
| | - Xiaojun Xu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang Province 322000, P.R. China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China.
| |
Collapse
|
37
|
Wang Y, Tan Q, Pan M, Yu J, Wu S, Tu W, Li M, Jiang S. Minimally invasive vagus nerve stimulation modulates mast cell degranulation via the microbiota-gut-brain axis to ameliorate blood-brain barrier and intestinal barrier damage following ischemic stroke. Int Immunopharmacol 2024; 132:112030. [PMID: 38603861 DOI: 10.1016/j.intimp.2024.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Mast cells (MCs) play a significant role in various diseases, and their activation and degranulation can trigger inflammatory responses and barrier damage. Several studies have indicated that vagus nerve stimulation (VNS) exerts ameliorates neurological injury, and regulates gut MC degranulation. However, there is limited research on the modulatory effect of VNS on MCs in both the gut and brain in brain ischemia-reperfusion (I/R) injury in this process. We aim to develop a minimally invasive, targeted and convenient VNS approach to assess the impact of VNS and to clarify the relationship between VNS and MCs on the prognosis of acute ischemic stroke. We utilized middle cerebral artery occlusion/reperfusion (MCAO/r) to induce brain I/R injury. After the experiment, the motor function and neurofunctional impairments of the rats were detected, and the gastrointestinal function, blood-brain barrier (BBB) and intestinal barrier damage, and systemic and local inflammation were evaluated by Nissl, TTC staining, Evans blue, immunofluorescence staining, transmission electron microscopy, western blot assays, ELISA, and fecal 16S rRNA sequencing methods. Our research confirmed that our minimally invasive VNS method is a novel approach for stimulating the vagus nerve. VNS alleviated motor deficits and gastrointestinal dysfunction while also suppressing intestinal and neuroinflammation. Additionally, VNS ameliorated gut microbiota dysbiosis in rats. Furthermore, our analysis indicated that VNS reduces chymase secretion by modulating MCs degranulation and improves intestinal and BBB damage. Our results showed that VNS treatment can alleviate the damage of BBB and colonic barrier after cerebral I/R by modulating mast cell degranulation, and alleviates systemic inflammatory responses.
Collapse
Affiliation(s)
- Yanan Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Intelligent Rehabilitation Research Center, International Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, The Wenzhou Key Laboratory for Rehabilitation Research, China
| | - Qianqian Tan
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Intelligent Rehabilitation Research Center, International Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, The Wenzhou Key Laboratory for Rehabilitation Research, China
| | - Mingdong Pan
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiaying Yu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Intelligent Rehabilitation Research Center, International Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, The Wenzhou Key Laboratory for Rehabilitation Research, China
| | - Shaoqi Wu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Intelligent Rehabilitation Research Center, International Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, The Wenzhou Key Laboratory for Rehabilitation Research, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Intelligent Rehabilitation Research Center, International Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, The Wenzhou Key Laboratory for Rehabilitation Research, China
| | - Ming Li
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Intelligent Rehabilitation Research Center, International Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, The Wenzhou Key Laboratory for Rehabilitation Research, China.
| |
Collapse
|
38
|
Hu Q, Zhang R, Dong X, Yang D, Yu W, Du Q. Huperzine A ameliorates neurological deficits after spontaneous subarachnoid hemorrhage through endothelial cell pyroptosis inhibition. Acta Biochim Biophys Sin (Shanghai) 2024; 56:645-656. [PMID: 38529553 DOI: 10.3724/abbs.2024037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) is a kind of hemorrhagic stroke which causes neurological deficits in survivors. Huperzine A has a neuroprotective effect, but its role in SAH is unclear. Therefore, we explore the effect of Huperzine A on neurological deficits induced by SAH and the related mechanism. In this study, Evans blue assay, TUNEL staining, immunofluorescence, western blot analysis, and ELISA are conducted. We find that Huperzine A can improve neurological deficits and inhibit the apoptosis of nerve cells in SAH rats. Huperzine A treatment can improve the upregulation of brain water content, damage of blood-brain barrier, fibrinogen and matrix metalloprotein 9 expressions and the downregulation of ZO-1 and occludin expressions induced by SAH. Huperzine A inhibit the expressions of proteins involved in pyroptosis in endothelial cells in SAH rats. The increase in MDA content and decrease in SOD activity in SAH rats can be partly reversed by Huperzine A. The ROS inducer H 2O 2 can induce pyroptosis and inhibit the expressions of ZO-1 and occludin in endothelial cells, which can be blocked by Huperzine A. In addition, the increase in the entry of p65 into the nucleus in endothelial cells can be partly reversed by Huperzine A. Huperzine A may delay the damage of blood-brain barrier in SAH rats by inhibiting oxidative stress-mediated pyroptosis and tight junction protein expression downregulation through the NF-κB pathway. Overall, Huperzine A may have clinical value for treating SAH.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Rong Zhang
- Medical Examination Center, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Dingbo Yang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| |
Collapse
|
39
|
Wu P, Xiao Y, Qing L, Mi Y, Tang J, Cao Z, Huang C. Emodin activates autophagy to suppress oxidative stress and pyroptosis via mTOR-ULK1 signaling pathway and promotes multi-territory perforator flap survival. Biochem Biophys Res Commun 2024; 704:149688. [PMID: 38387327 DOI: 10.1016/j.bbrc.2024.149688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Multi-territory perforator flap reconstruction has been proven effective in treating large skin and soft tissue defects in clinical settings. However, in view of that the multi-territory perforator flap is prone to partial postoperative necrosis, increasing its survival is the key to the success of reconstruction. In this study, we aimed to clarify the effect of emodin on multi-territory perforator flap survival. METHODS Flap survival was assessed by viability area analysis, infrared laser imaging detector, HE staining, immunohistochemistry, and angiography. Western blotting, immunofluorescence assays, and real-time fluorescent quantitative PCR were performed to detect the indicators of oxidative stress, pyroptosis and autophagy. RESULTS After emodin treatment, the multi-territory perforator flap showed a significantly increased survival rate, which was shown to be closely related to the inhibition of oxidative stress and pyroptosis and enhanced autophagy. Meanwhile, the use of autophagy inhibitor 3 MA was found to reverse the inhibitory effects of emodin on oxidative stress and pyroptosis and weaken the improving effect of emodin on flap survival, suggesting that autophagy plays a critical role in emodin-treated flaps. Interestingly, our mechanistic investigations revealed that the positive effect of emodin on multi-territory perforator flap was attributed to the mTOR-ULK1 signaling pathway activation. CONCLUSIONS Emodin can inhibit oxidative stress and pyroptosis by activating autophagy via the mTOR-ULK1 pathway, thereby improving the multi-territory perforator flap survival.
Collapse
Affiliation(s)
- Panfeng Wu
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Xiao
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanan Mi
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheming Cao
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Chengxiong Huang
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
40
|
Wang B, Ren M, Iqbal N, Mu X, Yang B. Environmentally Friendly Synthesis of Highly Substituted Phenols Using Enallenoates and Grignard Reagents. Org Lett 2024. [PMID: 38625171 DOI: 10.1021/acs.orglett.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We developed an efficient and environmentally friendly methodology for selectively synthesizing highly substituted phenols using readily available enallenoates and Grignard reagents. This method consistently yields good to excellent results across over 60 examples, demonstrating the substrate scope and the exploration of phenol product derivatization, further extending the method's utility.
Collapse
Affiliation(s)
- Bolin Wang
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, People's Republic of China
| | - Mingzhe Ren
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, People's Republic of China
| | - Nasir Iqbal
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, People's Republic of China
| | - Xin Mu
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, People's Republic of China
| | - Bin Yang
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, People's Republic of China
| |
Collapse
|
41
|
Fattakhov N, Ngo A, Torices S, Joseph JA, Okoro A, Moore C, Naranjo O, Becker S, Toborek M. Cenicriviroc prevents dysregulation of astrocyte/endothelial cross talk induced by ischemia and HIV-1 via inhibiting the NLRP3 inflammasome and pyroptosis. Am J Physiol Cell Physiol 2024; 326:C487-C504. [PMID: 38145295 PMCID: PMC11192487 DOI: 10.1152/ajpcell.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Blood-brain barrier (BBB) breakdown is one of the pathophysiological characteristics of ischemic stroke, which may contribute to the progression of brain tissue damage and subsequent neurological impairment. Human immunodeficiency virus (HIV)-infected individuals are at greater risk for ischemic stroke due to diminished immune function and HIV-associated vasculopathy. Studies have shown that astrocytes are involved in maintaining BBB integrity and facilitating HIV-1 infection in the brain. The present study investigated whether targeting astrocyte-endothelial cell signaling with cenicriviroc (CVC), a dual chemokine receptor (CCR)2 and CCR5 antagonist, may protect against dysregulation of cross talk between these cells after oxygen-glucose deprivation/reoxygenation (OGD/R) combined with HIV-1 infection. Permeability assay with 10 kDa fluorescein isothiocyanate (FITC)-dextran demonstrated that CVC alleviated endothelial barrier disruption in noncontact coculture of human brain microvascular endothelial cells (HBMECs) with HIV-1-infected human astrocytes, and reversed downregulation of tight junction protein claudin-5 induced by OGD/R- and HIV-1. Moreover, CVC attenuated OGD/R- and HIV-1-triggered upregulation of the NOD-like receptor protein-3 (NLRP3) inflammasome and IL-1β secretion. Treatment with CVC also suppressed astrocyte pyroptosis by attenuating cleaved caspase-1 levels and the formation of cleaved N-terminal GSDMD (N-GSDMD). Secretome profiling revealed that CVC ameliorated secretion levels of chemokine CC chemokine ligand 17 (CCL17), adhesion molecule intercellular adhesion molecule-1 (ICAM-1), and T cell activation modulator T cell immunoglobulin and mucin domain 3 (TIM-3) by astrocytes synergistically induced by OGD/R and HIV-1. Overall, these results suggest that CVC contributes to restoring astrocyte-endothelial cross interactions in an astrocyte-dependent manner via protection against NLRP3 activation and pyroptosis.NEW & NOTEWORTHY The present study reveals the role of astrocytic NOD-like receptor protein-3 (NLRP3) inflammasome in dysfunctional astrocyte-endothelial cross interactions triggered in response to oxygen/glucose deprivation injury associated with human immunodeficiency virus type 1 (HIV-1) infection. Our results suggest that blocking NLRP3 inflammasome activation and pyroptosis-mediated inflammation with cenicriviroc (CVC) may constitute a potentially effective therapeutic strategy for blood-brain barrier (BBB) protection during HIV-1-associated ischemic stroke.
Collapse
Affiliation(s)
- Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alex Ngo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Joelle-Ann Joseph
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Adesuwa Okoro
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Cameron Moore
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sarah Becker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
42
|
Guan X, Wu J, Geng J, Ji D, Wei D, Ling Y, Zhang Y, Jiang G, Pang T, Huang Z. A Novel Hybrid of Telmisartan and Borneol Ameliorates Neuroinflammation and White Matter Injury in Ischemic Stroke Through ATF3/CH25H Axis. Transl Stroke Res 2024; 15:195-218. [PMID: 36577854 DOI: 10.1007/s12975-022-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Cerebral ischemic stroke causes substantial white matter injury, which is further aggravated by neuroinflammation mediated by microglia/astrocytes. Given the anti-neuroinflammatory action of telmisartan and the enhancing blood-brain barrier (BBB) permeability potential of resuscitation-inducing aromatic herbs, 13 hybrids (3a-m) of telmisartan (or its simplified analogues) with resuscitation-inducing aromatic agents were designed, synthesized, and biologically evaluated. Among them, the optimal compound 3a (the ester hybrid of telmisartan and (+)-borneol) potently inhibited neuroinflammation mediated by microglia/astrocytes and ameliorated ischemic stroke. Particularly, 3a significantly conferred protection for white matter integrity after cerebral ischemic stroke via decreasing abnormally dephosphorylated neurofilament protein, upregulating myelin basic protein, and attenuating oligodendrocyte damage. Further RNA-sequencing data revealed that 3a upregulated expression of transcriptional regulator ATF3 to reduce the expression of CH25H, prevented proinflammatory state of lipid-droplet-accumulating microglia/astrocytes to limit excessive inflammation, and eventually protected neighboring oligodendrocytes to prevent white matter injury. Taken with the desirable pharmacokinetics behavior and improved brain distribution, 3a may be a feasible therapeutic agent for ischemic stroke and other neurological disorders with white matter injury.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jiahui Geng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Guojun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, 311201, People's Republic of China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
43
|
Luan X, Li G, Ding Y, Sun J, Li X, Jiang W, Shi Y, He M, Guo J, Fan R, Zheng J, Li Y, Duan X, Zhang G. Serum apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a novel stroke biomarker. Clin Chim Acta 2024; 553:117734. [PMID: 38128818 DOI: 10.1016/j.cca.2023.117734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a promising stroke biomarker. However, a large study of human serum ASC has not yet to be reported; additionally, the diagnostic value of prehospital concentration and practicality of ASC remains unknown. METHODS We recruited 774 Chinese stroke patients, including 523 with ischemic stroke (IS) and 251 with hemorrhagic stroke (HS) within 14 days following symptom onset in the emergency department, alongside 481 healthy individuals and 64 cognitive impairment patients as controls. Serum ASC concentrations were determined using automated chemiluminescence immunoassay, exploring the relationship between serum ASC concentration and subtypes, severity, and sampling timepoints of stroke. RESULTS ASC concentrations were significantly higher in stroke patients compared with all controls (P < 0.001). HS patients had greater ASC concentrations than IS patients (P < 0.05). With increasing ASC concentration, the proportion of severe cases increased. The area under the receiver operating characteristic curve (AUC) for differentiating between healthy individuals and stroke patients in the hyperacute phase was 0.78; this markedly improved (0.90) when considering samples from healthy individuals and patients with subarachnoid hemorrhage (SAH) ≤ 3 h from last-known-well (LKW). CONCLUSIONS Serum ASC is a valuable biomarker for stroke differentiation and aids in the clinical diagnosis of stroke severity and subtypes.
Collapse
Affiliation(s)
- Xin Luan
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Guoge Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Yaowei Ding
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Jialu Sun
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Xiaotong Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Wencan Jiang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Yijun Shi
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Min He
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Jinghan Guo
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Rong Fan
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Jiageng Zheng
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Yubin Li
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Xuejun Duan
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China.
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China.
| |
Collapse
|
44
|
Xu Y, Fang X, Zhao Z, Wu H, Fan H, Zhang Y, Meng Q, Rong Q, Fukunaga K, Guo Q, Liu Q. GPR124 induces NLRP3 inflammasome-mediated pyroptosis in endothelial cells during ischemic injury. Eur J Pharmacol 2024; 962:176228. [PMID: 38042462 DOI: 10.1016/j.ejphar.2023.176228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE G protein-coupled receptor 124 (GPR124) regulates central nervous system angiogenesis and blood-brain barrier (BBB) integrity, and its deficiency aggravates BBB breakdown and hemorrhagic transformation in ischemic mice. However, excessive GPR124 expression promotes inflammation in atherosclerotic mice. In this study, we aimed to elucidate the role of GPR124 in hypoxia/ischemia-induced cerebrovascular endothelial cell injury. METHODS bEnd.3 cells were exposed to oxygen-glucose deprivation (OGD), and time-dependent changes in GPR124 mRNA and protein expression were evaluated using reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. The effects of GPR124 overexpression or knockdown on the expression of pyroptosis-related genes were assessed at the mRNA and protein levels. Tadehaginoside (TA) was screened as a potential small molecule targeting GPR124, and its effects on pyroptosis-related signaling pathways were investigated. Finally, the therapeutic efficacy of TA was evaluated using a rat model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R). RESULTS During OGD, the expression of GPR124 initially increased and then decreased over time, with the highest levels observed 1 h after OGD. The overexpression of GPR124 enhanced the OGD-induced expression of NLRP3, Caspase-1, and Gasdermin D (GSDMD) in bEnd.3 cells, whereas GPR124 knockdown reduced pyroptosis. Additionally, TA exhibited a high targeting ability to GPR124, significantly inhibiting its function and expression and suppressing the expression of pyroptosis-related proteins during OGD. Furthermore, TA treatment significantly reduced the cerebral infarct volume and pyroptotic signaling in tMCAO/R rats. CONCLUSIONS Our findings suggest that GPR124 mediates pyroptotic signaling in endothelial cells during the early stages of hypoxia/ischemia, thereby exacerbating ischemic injury.
Collapse
Affiliation(s)
- Yiqian Xu
- Department of Pharmacy & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Xingyue Fang
- Department of Pharmacy & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Zhenqiang Zhao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Haolin Wu
- Department of Pharmacy & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Haofei Fan
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Ya Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 571199, China
| | - Qingwen Meng
- Department of Pharmacology, School of Basic and Life Science, Hainan Medical University, Haikou 571199, China
| | - Qiongwen Rong
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Qingyun Guo
- Department of Pharmacology, School of Basic and Life Science, Hainan Medical University, Haikou 571199, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China.
| | - Qibing Liu
- Department of Pharmacy & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; Department of Pharmacology, School of Basic and Life Science, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
45
|
Liu L, Cai Y, Deng C. Identification of ANXA3 as a biomarker associated with pyroptosis in ischemic stroke. Eur J Med Res 2023; 28:596. [PMID: 38102696 PMCID: PMC10725036 DOI: 10.1186/s40001-023-01564-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Pyroptosis plays an important role in the pathological process of ischemic stroke (IS). However, the exact mechanism of pyroptosis remains unclear. This paper aims to reveal the key molecular markers associated with pyroptosis in IS. METHODS We used random forest learning, gene set variation analysis, and Pearson correlation analysis to screen for biomarkers associated with pyroptosis in IS. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen and glucose deprivation/reoxygenation (OGD/R) models were constructed in vitro and in vivo. Cells were transfected with an Annexin A3 silencing (si-ANXA3) plasmid to observe the effects of ANXA3 on OGD/R + lipopolysaccharides (LPS)-induced pyroptosis. qRT‒PCR and western blotting were used to detect the expression of potential biomarkers and pyroptotic pathways. RESULTS Samples from a total of 170 IS patients and 109 healthy individuals were obtained from 5 gene expression omnibus databases. Thirty important genes were analyzed by random forest learning from the differentially expressed genes. Then, we investigated the relationship between the above genes and the pyroptosis score, obtaining three potential biomarkers (ANXA3, ANKRD22, ADM). ANXA3 and ADM were upregulated in the MCAO/R model, and the fold difference in ANXA3 expression was greater. Pyroptosis-related factors (NLRP3, NLRC4, AIM2, GSDMD-N, caspase-8, pro-caspase-1, cleaved caspase-1, IL-1β, and IL-18) were upregulated in the MCAO/R model. Silencing ANXA3 alleviated the expression of pyroptosis-related factors (NLRC4, AIM2, GSDMD-N, caspase-8, pro-caspase-1, cleaved caspase-1, and IL-18) induced by OGD/R + LPS or MCAO/R. CONCLUSION This study identified ANXA3 as a possible pyroptosis-related gene marker in IS through bioinformatics and experiments. ANXA3 could inhibit pyroptosis through the NLRC4/AIM2 axis.
Collapse
Affiliation(s)
- Linquan Liu
- Chronic Disease Management Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yahong Cai
- Chronic Disease Management Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Changqing Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
46
|
Ren K, Pei J, Guo Y, Jiao Y, Xing H, Xie Y, Yang Y, Feng Q, Yang J. Regulated necrosis pathways: a potential target for ischemic stroke. BURNS & TRAUMA 2023; 11:tkad016. [PMID: 38026442 PMCID: PMC10656754 DOI: 10.1093/burnst/tkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Indexed: 12/01/2023]
Abstract
Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.
Collapse
Affiliation(s)
- Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yuxue Jiao
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, No. 1 Jianshe Dong Road, ErQi District, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
47
|
Sun X, Liu Z, Zhou L, Ma R, Zhang X, Wang T, Fu F, Wang Y. Escin avoids hemorrhagic transformation in ischemic stroke by protecting BBB through the AMPK/Cav-1/MMP-9 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155071. [PMID: 37716034 DOI: 10.1016/j.phymed.2023.155071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Hemorrhagic transformation (HT) seriously affects the clinical application of recombinant tissue plasminogen activator (rt-PA). The main strategy for combating HT is to keep the blood-brain barrier (BBB) stable. Escin is the active ingredient of Aesculus hippocastanum and a natural mixture of triterpene saponins, and may play a part in mitigation of HT. PURPOSE This study sought to investigate the effect of Escin in improving rt-PA-induced HT, explore possible mechanisms, and provide new ideas for the treatment of clinical HT. STUDY DESIGN AND METHODS In in vivo experiments, transient middle cerebral artery occlusion (tMCAO) was undertaken in 6-week-old and 12-month-old mice, and rt-PA was administered to induce HT injury. The inhibitory effect of Escin on HT and its protective effect on neurobehavior, the BBB, and cerebrovascular endothelial cells was determined. In in vitro experiments, bEnd.3 cells were injured by oxygen-glucose deprivation/reperfusion (OGD/R) and rt-PA. The protective effect of Escin was measured by the CCK8 assay, release of lactate dehydrogenase (LDH), and expression of tight junction (TJ) proteins. In mechanistic studies, the effect of Escin on the adenosine monophosphate-activated kinase / caveolin-1 / matrix metalloprotease-9 (AMPK/Cav-1/MMP-9) pathway was investigated by employing AMPK inhibitor and Cav-1 siRNA. RESULTS In mice suffering from ischemia, rt-PA caused HT as well as damage to the BBB and cerebrovascular endothelial cells. Escin reduced the infarct volume, cerebral hemorrhage, improved neurobehavioral deficits, and maintained BBB integrity in rt-PA-treated tMCAO mice while attenuating bEnd.3 cells damage caused by rt-PA and OGD/R injury. Under physiological and pathological conditions, Escin increased the expression of p-AMPK and Cav-1, leading to decreased expression of MMP-9, which further attenuated damage to cerebrovascular endothelial cells, and these effects were verified with AMPK inhibitor and Cav-1 siRNA. CONCLUSION We revealed important details of how Escin protects cerebrovascular endothelial cells from HT, these effects were associated with the AMPK/Cav-1/MMP-9 pathway. This study provides experimental foundation for the development of new drugs to mitigate rt-PA-induced HT and the discovery of new clinical application for Escin.
Collapse
Affiliation(s)
- Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Zhaofeng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Runchen Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Xiaofan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China.
| |
Collapse
|
48
|
Guan X, Wei D, Liang Z, Xie L, Wang Y, Huang Z, Wu J, Pang T. FDCA Attenuates Neuroinflammation and Brain Injury after Cerebral Ischemic Stroke. ACS Chem Neurosci 2023; 14:3839-3854. [PMID: 37768739 DOI: 10.1021/acschemneuro.3c00456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke is a deleterious cerebrovascular disease with few therapeutic options, and its functional recovery is highly associated with the integrity of the blood-brain barrier and neuroinflammation. The Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor fasudil (F) and the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) have been demonstrated to exhibit neuroprotection in a series of neurological disorders. Hence, we synthesized and biologically examined the new salt fasudil dichloroacetate (FDCA) and validated that FDCA was eligible for attenuating ischemic volume and neurological deficits in the rat transient middle cerebral artery occlusion (tMCAO) model. Additionally, FDCA exerted superior effects than fasudil and dichloroacetate alone or in combination in reducing cerebral ischemic injury. Particularly, FDCA could maintain the blood-brain barrier (BBB) integrity by inhibiting matrix metalloproteinase 9 (MMP-9) protein expression and the degradation of zonula occludens (ZO-1) and Occludin protein. Meanwhile, FDCA could mitigate the neuroinflammation induced by microglia. The in vivo and in vitro experiments further demonstrated that FDCA disrupted the phosphorylations of myosin phosphatase target subunit 1 (MYPT1), mitogen-activated protein kinase (MAPK) cascade, including p38 and c-Jun N-terminal kinase (JNK), and pyruvate dehydrogenase (PDH) and limited excessive lactic acid metabolites, resulting in inhibition of BBB disruption and neuroinflammation. In addition, FDCA potently mitigated inflammatory response in human monocytes isolated from ischemic stroke patients, which provides the possibilities of a clinical translation perspective. Overall, these findings provided a therapeutic potential for FDCA as a candidate agent for ischemic stroke and other neurological diseases associated with BBB disruption and neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
49
|
Guo P, Lu Q, Hu S, Yang Y, Wang X, Yang X, Wang X. Daucosterol confers protection against T-2 toxin induced blood-brain barrier toxicity through the PGC-1α-mediated defensive response in vitro and in vivo. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132262. [PMID: 37604032 DOI: 10.1016/j.jhazmat.2023.132262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
T-2 toxin is a common environmental pollutant and contaminant in food and animal feed that represents a great challenge to human and animal' health throughout the world. Using natural compounds to prevent the detrimental effects of T-2 toxin represents an attractive strategy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a critical regulator in various cellular processes. Recently, PGC-1α activation has been reported to confer protection against neurological injuries. We aimed to identify a potent PGC-1α activator from plants as a chemopreventive compound and to demonstrate the efficacy of the compound in attenuating T-2 toxin-induced blood-brain barrier (BBB) toxicity. We identified daucosterol, which binds directly to the 71-74 (-1100 to -1000 bp) position of the second promoter of human PGC-1α by hydrogen bonding. An in vitro and in vivo T-2 toxin induced BBB injury model revealed that this compound can protect against this injury by increasing transepithelial/transendothelial electrical resistance, reducing sodium fluorescein (NaF) infiltration and increasing the expression of tight junction-related proteins (zonula occludens-1 (ZO-1), occludin (OCLN), claudin-5 (CLDN5)) expression. In conclusion, we identified daucosterol as representing a novel of PGC-1α activators and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated the feasibility of using natural compounds targeting PGC-1α as a therapeutic approach to protect humans from environmental insults that may occur daily such as lipopolysaccharide.
Collapse
Affiliation(s)
- Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Siyi Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaqin Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinru Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430070, China.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
50
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|