1
|
Wang HT, Weng JY, Amadou I, Song J, Jiang MQ, Ci WJ, Zhu JJ. Ligninoformic acid improved DSS-induced chronic colitis in mice by regulating intestinal flora and intestinal barrier. Microb Pathog 2025; 205:107670. [PMID: 40339622 DOI: 10.1016/j.micpath.2025.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/23/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a complex intestinal disorder that typically triggers inflammatory responses, immune dysregulation, and gut microbiota imbalance. Lignoformic acid (LFA) is a lignin-derived compound containing benzene rings and hydroxyl functional groups. It has antioxidant properties and can regulate intestinal pH. This study aimed to investigate the improve effects of LFA on dextran sulfate sodium (DSS)-induced chronic colitis in mice. The results showed that LFA treatment significantly improved body weight and Disease Activity Index (DAI) in mice and alleviated colon damage. In terms of oxidative stress and anti-inflammatory effects, the expression of antioxidant enzymes such as Glutathione Peroxidase (GSH-PX) and Superoxide Dismutase (SOD) was dose-dependently enhanced in DSS-induced mice. LFA reduced the expression of Tumor Necrosis Factor-alpha (TNF-α) by modulating the TLR4/MyD88/NF-κB signaling pathway. Furthermore, LFA dose-dependently increased the abundance of beneficial bacteria, including Akkermansia and Lachnospiraceae, and promoted the production of short-chain fatty acids (SCFAs). These findings suggest that LFA could serve as a therapeutic agent for colitis by enhancing intestinal barrier integrity, regulating inflammation, and restoring gut microbiota balance.
Collapse
Affiliation(s)
- Hong-Tao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jia-Yi Weng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Issoufou Amadou
- Laboratory of Food Science and Technology, Faculty of Agriculture and Environment Sciences, Dan Dicko Dankoulodo University of Maradi, Niger
| | - Jie Song
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meng-Qi Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wen-Jia Ci
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian-Jin Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Fang Y, Min S, Wu Y, Xu F, Chen H, Li Y, Lu Y, Hu J, Zhu L, Shen H. Integration of Multi-Omics and Network Pharmacology Analysis Reveals the Mechanism of Qingchang Huashi Jianpi Bushen Formula in Repairing the Epithelial Barrier of Ulcerative Colitis. J Inflamm Res 2025; 18:6167-6189. [PMID: 40386180 PMCID: PMC12083493 DOI: 10.2147/jir.s510966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose Derivation of Qingchang Huashi formula, named Qingchang Huashi Jianpi Bushen (QCHS_JPBS) formula, has shown significant therapeutic effect on patients with ulcerative colitis (UC). In this study, the potential mechanism of QCHS_JPBS formula in repairing mucosal damage was explored from the perspective of intestinal stem cell (ISCs) differentiation, and potential targets of the QCHS_JPBS formula to improve UC were predicted using network pharmacology analysis. Methods The therapeutic efficacy of QCHS_JPBS formula was evaluated in a mouse model of 2.5% dextran sulfate sodium (DSS) induced colitis. The effect of this formula on the ISC differentiation was evaluated using tissue transmission electron microscopy, immunofluorescence, and RT-qPCR. The cecal contents were subjected to 16s RNA sequencing analysis and non-target metabolomics analysis using LC-MS/MS. The fecal microbiota transplantation method verified the essential role of gut microbiota in promoting ISC differentiation and repairing mucosal damage. Results The results indicated that QCHS_JPBS formula suppressed the inflammatory response and repaired the damaged intestinal epithelial barrier in DSS-induced colitis mice. QCHS_JPBS formula promoted ISC differentiation, particularly in the direction of goblet cells. QCHS_JPBS formula restored gut dysbiosis and regulated metabolic disorders in DSS-induced colitis mice. And then, the results of fecal microbiota transplantation indicated that QCHS_JPBS formula promoted differentiation of intestinal stem cells to repair mucosal damage through gut microbiota. Finally, a total of 79 active ingredients of QCHS_JPBS formula were identified based on LC-MS analysis and EGFR, STAT3, SRC, AKT1, and HSP90AA1 were considered as potential therapeutic UC targets of QCHS_JPBS formula based on network pharmacology analysis. Conclusion The present study demonstrated that QCHS_JPBS formula promoted the differentiation of ISCs through gut microbiota to repair the damaged intestinal epithelial barrier in UC mice.
Collapse
Affiliation(s)
- Yulai Fang
- Digestive Disease Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shichen Min
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yuguang Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Feng Xu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hongxin Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanan Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yizhou Lu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jingyi Hu
- Digestive Disease Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Lei Zhu
- Digestive Disease Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hong Shen
- Digestive Disease Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
McAuliffe T, Salwen-Deremer JK, Siegel CA. Disparities in Access and Treatment for Rural Patients With Inflammatory Bowel Disease: A Survey of Inflammatory Bowel Disease Patients and Providers. Inflamm Bowel Dis 2025:izaf090. [PMID: 40339064 DOI: 10.1093/ibd/izaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Indexed: 05/10/2025]
Abstract
BACKGROUND With the increasing complexity of inflammatory bowel disease (IBD) care, the integration of IBD specialist gastroenterologists and multidisciplinary teams (MDTs) is becoming more important. However, access to these services is not widely available. This study sought to evaluate the needs of rural and urban IBD patients and providers in the setting of complex IBD care. METHODS Questionnaires were administered to IBD patients, advanced practice providers (APPs), and gastroenterologists throughout the United States from September through November 2023 on topics including access to care, IBD specialists, and MDTs. Statistical analyses included t-tests, chi-square tests, analysis of variance tests, and regression. RESULTS The analysis included 100 rural and 100 urban patients, 20 rural and 50 urban APPs, and 35 rural and 50 urban gastroenterologists. Rural patients were more likely to be receiving no therapy for IBD and less likely to receive advanced therapies (P = .001, P < .001, respectively). Rural patients reported less use of IBD multidisciplinary care and providers identified reduced access to multidisciplinary providers for rural patients. All patients had high interest in maintaining relationships with their current IBD provider while receiving care through a consulting MDT. Providers expressed strong interest in MDTs, with rural gastroenterologists reporting greater interest than urban gastroenterologists (P = .004). CONCLUSIONS These results demonstrate disparities between rural and urban patients' treatments and access to specialty IBD care. Rural patients and providers are supportive of collaborating with IBD specialists and MDTs. These results can help guide the implementation of innovative IBD care models in the setting of an increasingly complex IBD landscape.
Collapse
Affiliation(s)
| | - Jessica K Salwen-Deremer
- Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Center for Digestive Health, Dartmouth Health, Lebanon, NH, USA
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Corey A Siegel
- Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Center for Digestive Health, Dartmouth Health, Lebanon, NH, USA
| |
Collapse
|
4
|
Wang S, Sun H, Wang Q, Xiao H. Efficacy and safety of IL-23 p19 inhibitors in the treatment for inflammatory bowel disease: a systematic review and meta-analysis. Front Pharmacol 2025; 16:1490667. [PMID: 40356994 PMCID: PMC12066446 DOI: 10.3389/fphar.2025.1490667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Background The treatment outcomes of inflammatory bowel disease (IBD) have been significantly improved by the advent of new biologics, including ulcerative colitis (UC) and Crohn's disease (CD), particularly for refractory cases. However, the growing number of therapeutic options has also complicated clinical decision-making regarding drug selection and switching. The overall performance of IL-23 p19 inhibitors for the treatment of IBD was evaluated by the systematic review and meta-analysis in this study. Objective The objective of this study was to combine the multiple indicators to accurately evaluate the efficacy and safety of IL-23 p19 inhibitors, aimed to offer an insight into the development of clinical physicians' medication. Methods A comprehensive literature review on PubMed, Embase, Web of Science, and Cochrane Library until June 2024 was conducted in this study, which mainly focused on the randomized controlled trials (RCTs) to evaluate the IL-23 p19 inhibitors within adult patients with UC or CD. Additionally, the clinical outcomes, endoscopic findings, histological assessments, and safety profiles were aggregated and subjected to analysis by a random-effects model. Results Twenty-five RCTs [15 CD, 10 UC] were involved in this study, and it was revealed that IL-23 p19 inhibitors showed significant effects on clinical remission (CR) in IBD, regardless of induction or maintenance treatment (CD, induction: risk ratio [RR] 1.95, 95% confidence interval [CI] 1.71-2.23; I2 = 0%, p = 0.68; UC, induction: RR 2.69, 95% CI 1.80-4.03; I2 = 50%, p = 0.09; CD, maintenance: RR 1.24, 95% CI 1.04-1.48; I2 = 0%, p = 0.57; UC, maintenance: RR 2.62, 95% CI 0.92-7.49; I2 = 42%, p = 0.19), and the risk of adverse events (AEs) was similar to that of placebo (CD, induction: RR 0.88, 95% CI 0.82-0.94; I2 = 2%, p = 0.41; UC, induction: RR 0.92, 95% CI 0.82-1.03; I2 = 0%, p = 0.54; CD, maintenance: RR 1.00, 95% CI 0.89-1.13; I2 = 29%, p = 0.25; UC, maintenance: RR 0.96, 95% CI 0.87-1.06; I2 = 0%, p = 0.44). Conclusion In IBD treatment, IL-23 p19 inhibitor therapy exhibited effective functions in the inducement and maintenance of clinical and endoscopic remissions, as well as in some histological cases. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024569807, identifier CRD42024569807.
Collapse
Affiliation(s)
| | - Hui Sun
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | | | | |
Collapse
|
5
|
Li TL, Zhou J, Gu JL, Zheng HW, Shen YX, Song MM. Oral pH- and inflammation-targeted delivery system with biodegradable multi-layer core-shell nanocapsules for the treatment of ulcerative colitis. NANOSCALE 2025; 17:10124-10141. [PMID: 40136045 DOI: 10.1039/d4nr04218b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Most biologics require administration via parenteral routes; however, the pain and local allergic reaction brought about by injection usually lead to poor compliance, especially for chronic patients. Meanwhile, the oral delivery of biologics faces great challenges due to the complex physiological environment of the gastrointestinal tract. Herein, we developed a new formulation of multilayer core-shell nanocapsules composed of hyaluronan-modified silica nanocapsules, chitosan and alginate layers for the oral delivery of biologics. The mesencephalic astrocyte-derived neurotrophic factor (MANF) was selected as the model biologic for the treatment of ulcerative colitis (UC). MANF-loaded biodegradable silica (MBS) nanocapsules were first obtained simultaneously with the preparation. Then, MBS nanocapsules were surface-modified with hyaluronan (MBSH) for oral targeted delivery to the inflamed region via CD44-mediated endocytosis. To survive in the harsh gastrointestinal environment, MBSH was further modified using chitosan and alginate via polyelectrolyte interactions. With this delivery system, i.e., MBSH@CA, the cumulative release of MANF protein in the simulated gastric fluid (SGF) and simulated intestine fluid (SIF) was <10% of the total amount in MBSH@CA. Bio-distribution studies showed that the MBSH@CA nanocapsules were mainly distributed in the colon after 24 h treatment. Ex vivo imaging of the colons revealed a preferential accumulation of the MBSH@CA nanocapsules in the inflamed colons compared with the healthy colons. According to in vivo anti-inflammatory analysis, the oral MBSH@CA nanocapsules were effective in reducing related inflammatory symptoms caused by DSS-induced colitis. All of the above results suggested that the multilayer silica MBSH@CA nanocapsules could be employed for targeted drug delivery against UC.
Collapse
Affiliation(s)
- Tian-Le Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China.
| | - Jie Zhou
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China.
| | - Jin-Long Gu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China.
| | - Han-Wen Zheng
- The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China.
| | - Meng-Meng Song
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China.
| |
Collapse
|
6
|
Ma Z, Wen X, Zhang Y, Ai Z, Zhao X, Dong N, Dou X, Shan A. Thymol Alleviates Colitis by Modulating Intestinal Barrier Damage, Gut Microbiota, and Amino Acid Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7211-7227. [PMID: 40077957 DOI: 10.1021/acs.jafc.4c10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Thymol (THY) is a phenolic monoterpene compound that has garnered attention due to its various biological properties, including antioxidant, anti-inflammatory, and immune-regulatory effects. The purpose of this study was to determine the therapeutic and protective effects of THY in colitic mice, with a particular focus on the mechanisms involving gut microbiota. The results showed that early intervention with THY (40 and 80 mg/kg) not only alleviated the clinical symptoms and colonic damage in mice with dextran sodium sulfate (DSS)-induced colitis but also suppressed the colonic production of inflammatory cytokines (IL-1β, IL-6, and IL-18) and enhanced the expression of mucins (MUC1 and MUC2) and trefoil factor family 3 (TFF3), thereby improving the integrity of the intestinal epithelial barrier. In addition, THY altered the composition of the gut microbiota in colitis mice by increasing the abundance of Bacteroides and reducing the abundance of Proteobacteria. Fecal microbial transplantation (FMT) results demonstrated that FM from THY donor mice significantly improved symptoms of inflammatory bowel disease (IBD), confirming the crucial role of the gut microbiota. Metagenomic and untargeted metabolomic studies found that the characteristic microbiota of THY is Prevotellaceae, and THY significantly upregulated the amino acid metabolic pathways related to arginine and proline metabolism, arginine biosynthesis, and glycerophospholipid metabolism. In summary, THY holds significant potential as a functional additive to enhance host intestinal activity.
Collapse
Affiliation(s)
- Ziwen Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Wen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yahan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zichun Ai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinyi Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
7
|
Xu M, Xin W, Xu J, Wang A, Ma S, Dai D, Wang Y, Yang D, Zhao L, Li H. Biosilicification-mimicking chiral nanostructures for targeted treatment of inflammatory bowel disease. Nat Commun 2025; 16:2551. [PMID: 40089457 PMCID: PMC11910640 DOI: 10.1038/s41467-025-57890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The cascade reaction of lipopolysaccharides (LPS), cell-free DNA (cfDNA), and reactive oxygen species (ROS), drives the development of inflammatory bowel disease (IBD). Herein, we construct polyethylenimide (PEI)-L/D-tartaric acid (L/D-TA) complexes templated mesoporous organosilica nanoparticles (MON) (PEI-L/D-TA@MON) by mimicking biosilicification under ambient conditions within seconds. The chiral nanomedicines include four functional moieties, wherein PEI electrostatically attracts cfDNA, tetrathulfide bonds reductively react with ROS, silanol groups adsorb LPS, and L/D-TA enables chiral recognition and inflammatory localization. Following oral administration, PEI-L-TA@MON exhibiting preferential conformation stereoscopically matches with mucosa and anchors onto inflammatory intestine for lesion targeting. PEI-L-TA@MON eliminates LPS, ROS, and cfDNA, alleviating oxidative stress, inhibiting inflammatory cascade, and maintaining immune homeostasis to achieve IBD therapy. In addition, the rapid synthesis, low cost, energy-free preparation, negligible toxicity, satisfactory therapeutic effect, and facile conversion on therapeutic modes of PEI-L-TA@MON will bring changes for IBD treatment, providing research values and translational clinical prospects.
Collapse
Affiliation(s)
- Miao Xu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Wei Xin
- The First Hospital of China Medical University, Shenyang, China
| | - Jiabin Xu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Anya Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Shuai Ma
- School of Pharmacy, China Medical University, Shenyang, China
| | - Di Dai
- The First Hospital of China Medical University, Shenyang, China
| | - Yidan Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Dongmei Yang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Zhao
- School of Pharmacy, China Medical University, Shenyang, China.
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Ye Y, Abulizi A, Zhang Y, Lu F, An Y, Ren C, Zhang H, Wang Y, Lin D, Lu D, Li M, Yang B. Ganoderic Acid Ameliorates Ulcerative Colitis by Improving Intestinal Barrier Function via Gut Microbiota Modulation. Int J Mol Sci 2025; 26:2466. [PMID: 40141109 PMCID: PMC11942431 DOI: 10.3390/ijms26062466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent gastrointestinal disease that affects millions of humans worldwide and imposes a huge social and economic burden. It is necessary to find safe and efficient drugs for preventing and treating UC. The aim of this study was to determine whether ganoderic acid (GA), the main bioactive components of Ganoderma lucidum, has preventive and therapeutic effect on UC in a dextran sulfate sodium (DSS)-induced UC mouse model. Our experimental results showed that GA significantly ameliorated the body weight loss and disease activity index (DAI) of UC mice. GA significantly restored 11% of the colon length and 69% of the spleen index compared to UC mice. GA significantly decreased the intestinal inflammatory response and improved the barrier function of the intestine by upregulating the tight junction proteins Zonula occludens-1 (ZO-1), occludin and claudin-1. A co-housing experiment showed that gut microbiota accounted for the therapeutic activity of GA on UC, which was confirmed by fecal microbiota transplantation from GA-treated mice to the UC mice. Furthermore, 16S rDNA high-throughput sequencing of fecal bacteria showed that GA significantly enriched the abundance of Lactobacillus, Oscillospira, Odoribacter and Ruminococcus, which were positively correlated with colon length. Furthermore, this study found the functional metabolites, including Indole-3-acetaldehyde (IAAld), Glutamine (Gln) and Glutathione (GSH), reduced barrier damage in the Caco-2 cell model. In conclusion, this study suggests that GA could ameliorate UC by improving intestinal barrier function via modulating gut microbiota and associated metabolites.
Collapse
Affiliation(s)
- Yuwei Ye
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Abudumijiti Abulizi
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Yukun Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Feng Lu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Yongpan An
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Chaoqun Ren
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Yiming Wang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Dongmei Lin
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China;
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (A.A.); (Y.Z.); (F.L.); (Y.A.); (C.R.); (H.Z.); (Y.W.)
| |
Collapse
|
9
|
Yang S, Fan L, Yin L, Zhao Y, Li W, Zhao R, Jia X, Dong F, Zheng Z, Zhao D, Wang J. Ginseng exosomes modulate M1/M2 polarisation by activating autophagy and target IKK/IкB/NF-кB to alleviate inflammatory bowel disease. J Nanobiotechnology 2025; 23:198. [PMID: 40065319 PMCID: PMC11895377 DOI: 10.1186/s12951-025-03292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Exosomes are involved in intercellular communication and regulation of the inflammatory microenvironment. In a previous study, we demonstrated that fresh ginseng exosomes (GEs) alleviated inflammatory bowel disease. However, the precise mechanism by which GEs activate the immune system and subsequently inhibit the formation of intestinal inflammatory microenvironment remains unknown. METHODS Herein, we investigated the effects of GEs on autophagy, macrophage polarisation, intestinal inflammation, and the epithelial barrier by means of transcriptome sequencing, network pharmacology, transmission electron microscopy, immunoblotting, flow cytometry and small molecule inhibitors. RESULTS GEs significantly activated autophagy and M2-like macrophage polarisation, which could be blocked by the autophagy inhibitor 3-methyladenine. In the co-culture system of macrophages and intestinal epithelial cells, macrophages treated with GEs secreted more interleukin-10 (IL-10) and significantly reduced Nitric oxide (NO) levels in intestinal epithelial cells in vitro. Furthermore, GEs acted directly on intestinal epithelial cells through the IKK/IкB/NF-кB signalling pathway to reduce inflammation and restore the intestinal barrier. Orally administered GEs could restore disrupted colonic barriers, alleviate inflammatory bowel responses, and regulate the polarisation of intestinal macrophages in vivo. CONCLUSION In summary, GEs may be a potential treatment for inflammatory bowel disease, and targeting autophagy and macrophage polarisation may help alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Song Yang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Liangliang Fan
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Lijia Yin
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Yueming Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Wenjing Li
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Ronghua Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Xuxia Jia
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Fusong Dong
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Ze Zheng
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China
| | - Jiawen Wang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin Province, China.
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
10
|
Li S, Zhuge A, Chen H, Han S, Shen J, Wang K, Xia J, Xia H, Jiang S, Wu Y, Li L. Sedanolide alleviates DSS-induced colitis by modulating the intestinal FXR-SMPD3 pathway in mice. J Adv Res 2025; 69:413-426. [PMID: 38582300 PMCID: PMC11954817 DOI: 10.1016/j.jare.2024.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a global disease with limited therapy. It is reported that sedanolide exerts anti-oxidative and anti-inflammatory effects as a natural phthalide, but its effects on IBD remain unclear. OBJECTIVES In this study, we investigated the impacts of sedanolide on dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The mice were administered sedanolide or vehicle followed by DSS administration, after which colitis symptoms, inflammation levels, and intestinal barrier function were evaluated. Transcriptome analysis, 16S rRNA sequencing, and targeted metabolomics analysis of bile acids and lipids were performed. RESULTS Sedanolide protected mice from DSS-induced colitis, suppressed the inflammation, restored the weakened epithelial barrier, and modified the gut microbiota by decreasing bile salt hydrolase (BSH)-expressing bacteria. The downregulation of BSH activity by sedanolide increased the ratio of conjugated/unconjugated bile acids (BAs), thereby inhibiting the intestinal farnesoid X receptor (FXR) pathway. The roles of the FXR pathway and gut microbiota were verified using an intestinal FXR-specific agonist (fexaramine) and germ-free mice, respectively. Furthermore, we identified the key effector ceramide, which is regulated by sphingomyelin phosphodiesterase 3 (SMPD3). The protective effects of ceramide (d18:1/16:0) against inflammation and the gut barrier were demonstrated in vitro using the human cell line Caco-2. CONCLUSION Sedanolide could reshape the intestinal flora and influence BA composition, thus inhibiting the FXR-SMPD3 pathway to stimulate the synthesis of ceramide, which ultimately alleviated DSS-induced colitis in mice. Overall, our research revealed the protective effects of sedanolide against DSS-induced colitis in mice, which indicated that sedanolide may be a clinical treatment for colitis. Additionally, the key lipid ceramide (d18:1/16:0) was shown to mediate the protective effects of sedanolide, providing new insight into the associations between colitis and lipid metabolites.
Collapse
Affiliation(s)
- Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China.
| |
Collapse
|
11
|
Yashima K, Kurumi H, Yamaguchi N, Isomoto H. Progressing advanced therapies for inflammatory bowel disease: Current status including dual biologic therapy and discontinuation of biologics. Expert Rev Gastroenterol Hepatol 2025:1-20. [PMID: 39968880 DOI: 10.1080/17474124.2025.2469832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Advanced therapies (ADT) that encompass biological agents and small molecules have been approved for the treatment of inflammatory bowel disease (IBD), broadening the spectrum of available treatment options. Nevertheless, a substantial proportion of patients fail to achieve satisfactory responses, necessitating surgical intervention. Treatment objectives have evolved beyond clinical remission, reduction of inflammation, and mucosal healing, shifting focus toward enhancing the quality of life, acknowledging the profound impact of IBD on physical and mental well-being. AREA COVERED This comprehensive review describes the current landscape of ADT for IBD, including dual biologic therapy (DBT), which involves the combination of two biologics or a single biologic with a small-molecule compound, as well as considerations surrounding the discontinuation of biologics. EXPERT OPINION ADT is the standard treatment for moderate to severe IBD, while DBT appears promising for specific subsets of patients, including those with refractory disease or extraintestinal manifestations. However, these approaches may increase the risk of adverse effects, including malignancy. To optimize individualized treatment strategies in patients with refractory IBD, further trials are needed to refine ADT's predictive value, establish DBT's safety and indications, define biologic discontinuation criteria, and evaluate emerging biomarkers, artificial intelligence, and bowel ultrasound in patient management.
Collapse
Affiliation(s)
- Kazuo Yashima
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
12
|
Deng L, Feng Z, Li X, Fan L, Wu X, Tavakoli S, Zhu Y, Ye H, Wu K. Exploring the potential mechanism of B-phycoerythrin on DSS-induced colitis and colitis-associated bone loss based on network pharmacology, molecular docking, and experimental validation. Sci Rep 2025; 15:5455. [PMID: 39953092 PMCID: PMC11828949 DOI: 10.1038/s41598-025-90011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
B-phycoerythrin (B-PE), a pigment protein, has found extensive applications in the food, pharmaceutical, and cosmetic industries. However, the effects and potential mechanisms of B-PE on colitis and colitis-associated bone loss remain unclear. Thus, the aim of this study was to investigate the pharmacological mechanisms of B-PE against colitis and colitis-associated bone loss using network pharmacology analysis, molecular docking, and experimental validation. Based on public databases, 99 common targets of B-PE against inflammatory bowel disease and osteoporosis were predicted. The protein-protein interaction network identified 16 core targets, including TNF, AKT1, EGFR, etc., as hub targets. Additionally, functional enrichment analyses and molecular docking results revealed that the PI3K/AKT signaling pathway may serve as a potential signaling pathway for B-PE in the treatment of colitis and colitis-associated bone loss. Furthermore, pharmacological experiments indicated that B-PE not only reversed the elevated expression of TNF-α, IL-1β, MMP9, and CXCL8a, and the reduced expression of ZO-1, E-cadherin, COL1A1, and RUNX2 in the DSS-induced colitis zebrafish model, but also enhanced the phosphorylation of PI3K and AKT, thereby mitigating inflammatory response and promoting osteogenesis. In conclusion, this study provides a theoretical basis for considering B-PE as a promising candidate for the treatment of colitis and colitis-associated bone loss.
Collapse
Affiliation(s)
- Luming Deng
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhenhui Feng
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Xingyan Li
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Lvhua Fan
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xia Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Samad Tavakoli
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuzhen Zhu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Hua Ye
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
- Zhanjiang Engineering Research Center for Algae High-value Utilization, Zhanjiang, 524023, China.
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
- Zhanjiang Engineering Research Center for Algae High-value Utilization, Zhanjiang, 524023, China.
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
13
|
Cao D, Hu M, Yang N, Qian K, Hong J, Tang J, Bian Y, Zhang C, Wang X, Wu G, Chen H, Zhang Y, Wang Z, Cui Z. Microbial and Transcriptomic Landscape Associated With Neutrophil Extracellular Traps in Perianal Fistulizing Crohn's Disease. Inflamm Bowel Dis 2025; 31:321-331. [PMID: 39438255 DOI: 10.1093/ibd/izae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Perianal fistulizing Crohn's disease (pfCD) poses significant healing challenges, closely associated with neutrophil extracellular traps (NETs). This study aimed to investigate the microbe-host interactions influencing NETs in pfCD. METHODS From January 2019 to July 2022, patients with pfCD were screened at Ren Ji Hospital. Patients in remission following comprehensive treatment were recruited. We documented clinical characteristics, medication regimens, healing outcomes, and infliximab levels in fistula tissues. NET positivity was confirmed by positive results in citrullinated histone H3 (CitH3) enzyme-linked immunosorbent assay (ELISA) and dual immunofluorescence staining for myeloperoxidase and CitH3. Microbial and transcriptomic profiles from fistula tissues, obtained during surgery, were analyzed using 16S rRNA gene sequencing and RNA sequencing. Differences in microbiome and transcriptomic profiles were evaluated, and their relationships were assessed using Mantel's and Spearman's coefficients. RESULTS Significant differences in microbial communities were found between groups (P = .007). Representatively differential microbes such as Prevotella bivia, Streptococcus gordonii, and Bacteroides dorei were enriched in NETs-positive fistulas (P < .05). Functional analysis of microbes revealed reduced ubiquinol biosynthesis and butanoate production in NETs-negative fistulas (P < .05). Transcriptomic analysis indicated increased neutrophil and monocyte infiltration in NETs-positive fistulas, associated with pathways involving bacterial response, neutrophil chemotaxis, secretory processes, and peptidase activity (P < .05). Species prevalent in NETs-positive fistulas correlated positively with immune responses and wound healing pathways, whereas bacteria in NETs-negative fistulas correlated negatively. NETs were negatively associated with tissue infliximab levels (P = .001) and healing outcomes (P = .025). CONCLUSIONS Our findings reveal unique microbial and transcriptomic signatures associated with NETs in pfCD, highlighting their profound influence on clinical outcomes.
Collapse
Affiliation(s)
- Dongxing Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of General Surgery, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Nailin Yang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Keyu Qian
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Jian Tang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuhai Bian
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Cheng Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaohui Wang
- Department of General Surgery, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Guangyu Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Ye Zhang
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of General Surgery, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Zhang P, Pei B, Yi C, Akanyibah FA, Mao F. The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167578. [PMID: 39571630 DOI: 10.1016/j.bbadis.2024.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC), as two of the major human intestinal diseases, provide challenges for the medical field. Suppressor of cytokine signaling 3 (SOCS3), a protein molecule that negatively regulates cytokine signaling through multiple pathways, is involved in the regulation of various inflammatory diseases and tumors. In IBD, SOCS3 acts on a variety of cells to repair mucosal damage and balance the immune response, including epithelial cells, macrophages, dendritic cells, neutrophils, and T cells. In CRC, SOCS3 is inextricably linked to tumor cell proliferation, invasion, metastasis, and drug resistance. Therefore, it is crucial to systematically investigate the pathogenic involvement of SOCS3 in IBD and CRC. This article reviews the mechanisms and pathways by which SOCS3 is involved in the inhibition of IBD and the mitigation of CRC, and details the therapeutic options for targeting SOCS3.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, PR China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, PR China
| | - Francis Atim Akanyibah
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China
| | - Fei Mao
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
15
|
Huang J, Li J, Geng Z, Yin L, Niu M, Li Q, Liu X, Cheng X, Zhang X, Song X, Wang Y, Wang L, Zuo L, Hu J. Cynaroside ameliorates TNBS-induced colitis by inhibiting intestinal epithelial cell apoptosis via the PI3K/AKT signalling pathway. Front Pharmacol 2025; 15:1496068. [PMID: 39902073 PMCID: PMC11788346 DOI: 10.3389/fphar.2024.1496068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Background and aims Patients with Crohn's disease (CD) exhibit excessive apoptosis of intestinal epithelial cells (IECs), which contributes to damage to the intestinal barrier structure and function, thereby playing a role in the progression of colitis. Preventing IEC apoptosis and protecting the intestinal barrier are critical to alleviating colitis. Natural plant monomers have been reported to possess multiple pharmacological properties, particularly with the potential to treat CD. This study focuses on Cynaroside (Cyn) to explore its effect on IEC apoptosis and evaluate its pharmacological impact on the intestinal barrier and colitis. Methods The 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis mice model was employed in this study. We assessed the therapeutic effect of Cyn on CD-like colitis by evaluating the disease activity index (DAI), body weight changes, intestinal tissue pathological damage, and inflammatory factor levels. Immunofluorescence and Western blotting were used to detect the expression and localization of tight junction (TJ) proteins, allowing us to analyze the intestinal barrier structure. The function of the intestinal barrier was examined using FITC-dextran (FD4), TEER values, and bacterial translocation. Network pharmacology enrichment analysis revealed that Cyn could inhibit cell apoptosis. We also explored the effect and underlying mechanism of Cyn in inhibiting IEC apoptosis on intestinal barrier function and colitis using both the TNF-α-induced colonic organoid model and the TNBS-induced mouse model. Results Our findings show that Cyn significantly alleviates TNBS-induced colitis symptoms in mice, as evidenced by reduced body weight loss, colon shortening, DAI score, colon histopathology score, and lower levels of inflammatory factors (IL-1β, TNF-α, and IL-6) compared to the model group. Additionally, the Cyn intervention group showed significant improvements in both the intestinal barrier structure (elevated tight junction protein levels and proper localization) and function (reduced serum FD4 levels, increased intestinal TEER, and decreased bacterial translocation rates in mesenteric lymph nodes [MLNs] and livers). Combining network pharmacology prediction analysis with our validation data from animal models and colonic organoids, we demonstrated that Cyn significantly inhibits IEC apoptosis, as indicated by a decrease in the proportion of TUNEL-positive cells and changes in apoptosis-related protein levels. KEGG enrichment analysis and signaling pathway intervention experiments confirmed that Cyn inhibits the activation of PI3K/AKT signaling. Conclusion Cyn inhibits IEC apoptosis by blocking the PI3K/AKT signaling pathway, which is the primary mechanism underlying its protective effects on the intestinal barrier and its ability to improve CD-like colitis. This study also supports the potential of the Chinese medicine monomer Cyn as a promising therapeutic agent for the treatment of CD.
Collapse
Affiliation(s)
- Ju Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lixia Yin
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Minzhu Niu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Qingqing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Clinical Laboratory, The Third the People’s Hospital of Bengbu, Bengbu, Anhui, China
| | - Xinyue Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xinke Cheng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
16
|
Wu W, Li X, Zhou Z, He H, Pang C, Ye S, Quan JH. METTL14 regulates inflammation in ulcerative colitis via the lncRNA DHRS4-AS1/miR-206/A3AR axis. Cell Biol Toxicol 2024; 40:95. [PMID: 39528760 PMCID: PMC11554827 DOI: 10.1007/s10565-024-09944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
As a chronic inflammatory bowel disease, the pathogenesis of ulcerative colitis (UC) has not been fully elucidated. N6-methyladenosine (m6A) modification, observed in various RNAs, is implicated in inflammatory bowel diseases. Methyltransferase-like 14 (METTL14) is the major subunit of the methyltransferase complex catalyzing m6A modifications. Here, we designated to examine the regulatory effects and mechanisms of METTL14 on long non-coding RNA (lncRNA) during UC progression. METTL14 knockdown decreased cell viability, promoted apoptosis, increased cleaved PARP and cleaved Caspase-3 levels, while reducing Bcl-2 levels. METTL14 knockdown also led to a significant increase in NF-κB pathway activation and inflammatory cytokine production in the Caco-2 cells treated with TNF-α. Moreover, the suppression of METTL14 aggravated colonic damage and inflammation in our dextran sulfate sodium (DSS)-induced murine colitis model. METTL14 silencing suppressed DHRS4-AS1 expression by reducing the m6A modification of DHRS4-AS1 transcripts. Furthermore, DHRS4-AS1 mitigated inflammatory injury by targeting the miR-206/adenosine A3 receptor (A3AR) axis. DHRS4-AS1 overexpression counteracted the enhancing impact of METTL14 knockdown on TNF-α-induced inflammatory injury in Caco-2 cells. In conclusion, our findings suggest that METTL14 protects against colonic inflammatory injury in UC via regulating the DHRS4-AS1/miR-206/A3AR axis, thus representing a potential therapeutic target for UC.
Collapse
Affiliation(s)
- Weiyun Wu
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Xiaowen Li
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Zhuliang Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Huanjin He
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Cheng Pang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Juan-Hua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
17
|
Long J, Liang X, Ao Z, Tang X, Li C, Yan K, Yu X, Wan Y, Li Y, Li C, Zhou M. Stimulus-responsive drug delivery nanoplatforms for inflammatory bowel disease therapy. Acta Biomater 2024; 188:27-47. [PMID: 39265673 DOI: 10.1016/j.actbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Inflammatory bowel disease (IBD) manifests as inflammation in the colon, rectum, and ileum, presenting a global health concern with increasing prevalence. Therefore, effective anti-inflammatory therapy stands as a promising strategy for the prevention and management of IBD. However, conventional nano drug delivery systems (NDDSs) for IBD face many challenges in targeting the intestine, such as physiological and pathological barriers, genetic variants, disease severity, and nutritional status, which often result in nonspecific tissue distribution and uncontrolled drug release. To address these limitations, stimulus-responsive NDDSs have received considerable attention in recent years due to their advantages in providing controlled release and enhanced targeting. This review provides an overview of the pathophysiological mechanisms underlying IBD and summarizes recent advancements in microenvironmental stimulus-responsive nanocarriers for IBD therapy. These carriers utilize physicochemical stimuli such as pH, reactive oxygen species, enzymes, and redox substances to deliver drugs for IBD treatment. Additionally, pivotal challenges in the future development and clinical translation of stimulus-responsive NDDSs are emphasized. By offering insights into the development and optimization of stimulus-responsive drug delivery nanoplatforms, this review aims to facilitate their application in treating IBD. STATEMENT OF SIGNIFICANCE: This review highlights recent advancements in stimulus-responsive nano drug delivery systems (NDDSs) for the treatment of inflammatory bowel disease (IBD). These innovative nanoplatforms respond to specific environmental triggers, such as pH reactive oxygen species, enzymes, and redox substances, to release drugs directly at the inflammation site. By summarizing the latest research, our work underscores the potential of these technologies to improve drug targeting and efficacy, offering new directions for IBD therapy. This review is significant as it provides a comprehensive overview for researchers and clinicians, facilitating the development of more effective treatments for IBD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jiang Long
- Department of Cardiology, Xuyong County People's Hospital, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuojin Ao
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao Tang
- College of Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chuang Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Science and Technology Department, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
18
|
Lv M, Wan X, Wang Y, Jiang H, Qin X, Wang Z, Yang C, Shuai J, Lu Q, Xu F, Liu Y. Combined gut microbiome and metabolomics to reveal the mechanism of proanthocyanidins from the roots of Ephedra sinica Stapf on the treatment of ulcerative colitis. J Pharm Biomed Anal 2024; 249:116351. [PMID: 39018720 DOI: 10.1016/j.jpba.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that primarily affects mucosa and submucosa of colon and rectum. Although the exact etiology of UC remains elusive, increasing evidence has demonstrated that the gut microbiome and its interaction with host metabolism plays an important role in UC development. The objective of this study was to investigate the therapeutic potential and mechanism of dimeric proanthocyanidins (PAC) enriched from ethyl acetate extract of Ephedra roots on UC from the perspective of gut microbiota and metabolic regulation. In this study, a bio-guided strategy integrating LC-MS analysis, DMAC assay, antioxidant screening, and antiinflammation activity screening was used to enrich dimeric PAC from Ephedra roots, then untargeted metabolomics combined with gut microbiota analysis was performed to investigate the therapeutic mechanism of PRE on UC. This is the first study that combines a bio-guided strategy to enrich dimeric PAC from Ephedra roots and a comprehensive analysis of their effects on gut microbiota and host metabolism. Oral administration of PRE was found to significantly relieve dextran sodium sulfate (DSS)-induced ulcerative colitis symptoms in mice, characterized by the reduced disease activity index (DAI), increased colon length and improved colon pathological damage, together with the down-regulation of colonic inflammatory and oxidative stress levels. In addition, 16 S rRNA sequencing combined with untargeted metabolomics was conducted to reveal the effects of PRE on gut microbiota composition and serum metabolites. PRE improved gut microbiota dysbiosis through increasing the relative abundance of beneficial bacteria Lachnospiraceae_NK4A136_group and decreasing the level of potentially pathogenic bacteria such as Escherichia-Shigella. Serum metabolomics showed that the disturbed tryptophan and glycerophospholipid metabolism in UC mice was restored after PRE treatment. Collectively, PRE was proved to be a promising anti-UC candidate, which deserves further investigation in future research.
Collapse
Affiliation(s)
- Mengying Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China.
| | - Xiayun Wan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Yang Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Houli Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xiaogang Qin
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu 226300, China
| | - Zheng Wang
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Changshui Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jinhao Shuai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Qianwen Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China.
| | - Yanqin Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China.
| |
Collapse
|
19
|
Li YY, Sun JW, Chen L, Lu YM, Wu QX, Yan C, Chen Y, Zhang M, Zhang WN. Structural characteristics of a polysaccharide from Armillariella tabescens and its protective effect on colitis mice via regulating gut microbiota and intestinal barrier function. Int J Biol Macromol 2024; 277:133719. [PMID: 38992544 DOI: 10.1016/j.ijbiomac.2024.133719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
A new polysaccharide fraction (ATP) was obtained from Armillariella tabescens mycelium. Structural analysis suggested that the backbone of ATP was →4)-α-D-Glcp(1 → 2)-α-D-Galp(1 → 2)-α-D-Glcp(1 → 4)-α-D-Glcp(1→, which branched at O-3 of →2)-α-D-Glcp(1 → and terminated with T-α-D-Glcp or T-α-D-Manp. Besides, ATP significantly alleviated ulcerative colitis (UC) symptoms and inhibited the production of pro-inflammation cytokines (IL-1β, IL-6). Meanwhile, ATP could improve colon tissue damage by elevating the expression of MUC2 and tight junction proteins (ZO-1, occludin and claudin-1) levels and enhance intestinal barrier function through inhibiting the activation of MMP12/MLCK/p-MLC2 signaling pathway. Further studies exhibited that ATP could increase the relative abundance of beneficial bacteria such as f. Muribaculacese, g. Muribaculaceae, and g. Alistips, and decrease the relative abundance of g. Desulfovibrio, g. Colidextribacter, g. Ruminococcaceae and g.Oscillibacter, and regulate the level of short-chain fatty acids. Importantly, FMT intervention with ATP-derived microbiome certified that gut microbiota was involved in the protective effects of ATP on UC. The results indicated that ATP was potential to be further developed into promising therapeutic agent for UC.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jing-Wen Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong-Ming Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Chao Yan
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Afliated Hospital of Anhui Medical University, Hefei, China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
20
|
Wen J, Yang Y, Li L, Xie J, Yang J, Zhang F, Duan L, Hao J, Tong Y, He Y. Magnoflorine alleviates dextran sulfate sodium-induced ulcerative colitis via inhibiting JAK2/STAT3 signaling pathway. Phytother Res 2024; 38:4592-4613. [PMID: 39079890 DOI: 10.1002/ptr.8271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 10/25/2024]
Abstract
Magnoflorine (Mag), a natural alkaloid component originating from the Ranunculaceae Juss. Family, has a various of pharmacological activities. This study aimed to investigate the therapeutic effects and potential mechanism of Mag on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) based on comprehensive approaches. Therapeutic effects of Mag on 3% DSS-induced UC mice were analyzed. UHPLC-Q-TOF/MS was performed to investigate the potential metabolites and signaling pathway of Mag on DSS-induced UC. Furthermore, the predicted mRNA and protein levels of JAK2/STAT3 signaling pathway in colon tissue were verified and assessed by qRT-PCR and Western Blotting, respectively. Therapeutic effects of Mag on UC mice were presented in down-regulation serum biochemical indices, alleviating histological damage of colon tissue. Serum untargeted metabolomics analysis showed that the potential mechanism of Mag on UC is mainly associated with the regulation of six biomarkers and 11 pathways, which may be responsible for the therapeutic efficacy of UC. The "component-metabolites-targets" interactive network indicated that Mag exerts its anti-UC effect by regulating PTGS1 and PTGS2, thereby regulating arachidonic acid. Moreover, the results of qRT-PCR showed that Mag could substantially decrease the relative mRNA expression level of Hub genes. In addition, it was found that Mag could inhibit the relative mRNA and protein expression of JAK2/STAT3 signaling pathway. The present results highlighted the role of Mag ameliorated colon injury in DSS-induced UC mice by inhibiting the JAK2/STAT3 signaling pathway. These results suggest that Mag may be an effective agent for the treatment of UC.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yi Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Lu Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Jiachen Xie
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Junjie Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Fangling Zhang
- School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liting Duan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Junjie Hao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuling Tong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Yuxin He
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| |
Collapse
|
21
|
Yuan M, Chang L, Gao P, Li J, Lu X, Hua M, Li X, Liu X, Lan Y. Synbiotics containing sea buckthorn polysaccharides ameliorate DSS-induced colitis in mice via regulating Th17/Treg homeostasis through intestinal microbiota and their production of BA metabolites and SCFAs. Int J Biol Macromol 2024; 276:133794. [PMID: 38992530 DOI: 10.1016/j.ijbiomac.2024.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic condition whose incidence has been rising globally. Synbiotic (SYN) is an effective means of preventing IBD. This study investigated the preventive effects and potential biological mechanisms of SYN (Bifidobacterium longum, Lactobacillus acidophilus, and sea buckthorn polysaccharides) on DSS-induced colitis in mice. The results indicated that dietary supplementation with SYN has a significant improvement effect on DSS mice. SYN ameliorated disease activity index (DAI), colon length, and intestinal barrier permeability in mice. In addition, RT-qPCR results indicated that after SYN intervention, the expression levels of pro-inflammatory factors (IL-6, IL-1β, TNF-α, and IL-17F) and transcription factor RORγt secreted by Th17 cells were significantly reduced, and the expression levels of anti-inflammatory factors (IL-10 and TGF-β) and transcription factor Foxp3 secreted by Treg cells were robustly increased. 16S rDNA sequencing analysis revealed that key intestinal microbiota related to Th17/Treg balance (Ligilactobacillus, Lactobacillus, Bacteroides, and Akkermansia) was significantly enriched. At the same time, a significant increase in microbial metabolites SCFAs and BAs was observed. We speculate that SYN may regulate the Th17/Treg balance by restructuring the structure and composition of the intestinal microbiota, thereby mitigating DSS-induced colitis.
Collapse
Affiliation(s)
- Mingyou Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lili Chang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Pan Gao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinyuan Lu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingfang Hua
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
22
|
Wei W, Lu Y, Zhang M, Guo J, Zhang H. Identifying polyamine related biomarkers in diagnosis and treatment of ulcerative colitis by integrating bulk and single-cell sequencing data. Sci Rep 2024; 14:18094. [PMID: 39103474 PMCID: PMC11300856 DOI: 10.1038/s41598-024-69322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, and its pathogenesis remains unclear. Polyamine metabolic enzymes play a crucial role in UC. In this study, we aimed to identify pivotal polyamine-related genes (PRGs) and explore the underlying mechanism between PRGs and the disease status and therapeutic response of UC. We analyzed mRNA-sequencing data and clinical information of UC patients from the GEO database and identified NNMT, PTGS2, TRIM22, TGM2, and PPARG as key PRGs associated with active UC using differential expression analysis and weighted gene co-expression network analysis (WCGNA). Receiver operator characteristic curve (ROC) analysis confirmed the accuracy of these key genes in UC and colitis-associated colon cancer (CAC) diagnosis, and we validated their relationship with therapeutic response in external verification sets. Additionally, single-cell analysis revealed that the key PRGs were specific to certain immune cell types, emphasizing the vital role of intestinal tissue stem cells in active UC. The results were validated in vitro and in vivo experiments, including the colitis mice model and CAC mice model. In conclusion, these key PRGs effectively predict the progression of UC patients and could serve as new pharmacological biomarkers for the therapeutic response of UC.
Collapse
Affiliation(s)
- Wanhui Wei
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Lu
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Mengjiao Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JinKun Guo
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Li W, Zhan M, Wen Y, Chen Y, Zhang Z, Wang S, Tian D, Tian S. Recent Progress of Oral Functional Nanomaterials for Intestinal Microbiota Regulation. Pharmaceutics 2024; 16:921. [PMID: 39065618 PMCID: PMC11280463 DOI: 10.3390/pharmaceutics16070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota is closely associated with human health, and alterations in gut microbiota can influence various physiological and pathological activities in the human body. Therefore, microbiota regulation has become an important strategy in current disease treatment, albeit facing numerous challenges. Nanomaterials, owing to their excellent protective properties, drug release capabilities, targeting abilities, and good biocompatibility, have been widely developed and utilized in pharmaceuticals and dietary fields. In recent years, significant progress has been made in research on utilizing nanomaterials to assist in regulating gut microbiota for disease intervention. This review explores the latest advancements in the application of nanomaterials for microbiota regulation and offers insights into the future development of nanomaterials in modulating gut microbiota.
Collapse
Affiliation(s)
- Wanneng Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Zhongchao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Liang L, Zhang J, Chen J, Tian Y, Li W, Shi M, Cheng S, Zheng Y, Wang C, Liu H, Yang X, Ye W. Bazedoxifene attenuates dextran sodium sulfate-induced colitis in mice through gut microbiota modulation and inhibition of STAT3 and NF-κB pathways. Eur J Pharmacol 2024; 974:176611. [PMID: 38663540 DOI: 10.1016/j.ejphar.2024.176611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract for which treatment options remain limited. In this study, we used a dual-luciferase-based screening of an FDA-approved drug library, identifying Bazedoxifene (BZA) as an inhibitor of the NF-κB pathway. We further investigated its therapeutic effects in a dextran sodium sulfate (DSS)-induced colitis model and explored its impact on gut microbiota regulation and the underlying molecular mechanisms. Our results showed that BZA significantly reduced DSS-induced colitis symptoms in mice, evidenced by decreased colon length shortening, lower histological scores, and increased expression of intestinal mucosal barrier-associated proteins, such as Claudin 1, Occludin, Zo-1, Mucin 2 (Muc2), and E-cadherin. Used independently, BZA showed therapeutic effects comparable to those of infliximab (IFX). In addition, BZA modulated the abundance of gut microbiota especially Bifidobacterium pseudolongum, and influenced microbial metabolite production. Crucially, BZA's alleviation of DSS-induced colitis in mice was linked to change in gut microbiota composition, as evidenced by in vivo gut microbiota depletion and fecal microbiota transplantation (FMT) mice model. Molecularly, BZA inhibited STAT3 and NF-κB activation in DSS-induced colitis in mice. In general, BZA significantly reduced DSS-induced colitis in mice through modulating the gut microbiota and inhibiting STAT3 and NF-κB activation, and its independent use demonstrated a therapeutic potential comparable to IFX. This study highlights gut microbiota's role in IBD drug development, offering insights for BZA's future development and its clinical applications.
Collapse
Affiliation(s)
- Liumei Liang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China
| | - Junxiong Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China
| | - Yu Tian
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China
| | - Weiqian Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China
| | - Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China; Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yinhai Zheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Chen Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510655, China.
| | - Weibiao Ye
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China.
| |
Collapse
|
25
|
Gu Y, Lou Y, Zhou Z, Zhao X, Ye X, Wu S, Li H, Ji Y. Resveratrol for inflammatory bowel disease in preclinical studies: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1411566. [PMID: 38948464 PMCID: PMC11211549 DOI: 10.3389/fphar.2024.1411566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic condition that can be managed with treatment, but it is challenging to get IBD cured. Resveratrol, a non-flavonoid polyphenolic organic compound derived from various plants, has a potential effect on IBD. The current research was set out to investigate the therapeutic effects of resveratrol on animal models of IBD. Methods: A comprehensive search of PubMed, Embase, Web of Science, and Chinese databases was performed. The literature search process was completed independently by two people and reviewed by a third person. The risk of bias in the included literature was assessed using the Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Stroke (CAMARADES) 10-point quality checklist. The meta-analysis utilized Review Manager 5.4 software to evaluate the efficacy of resveratrol, with histopathological index as the primary outcome measure. Subgroup analysis was conducted based on this indicator. Additionally, meta-analyses were carried out on different outcomes reported in the literature, including final disease activity index, final body weight change, colon length, splenic index, and inflammatory factors. Results: After conducting a thorough literature search and selection process, a total of 28 studies were ultimately included in the analysis. It was found that over half of the selected studies had more than five items with low risk of bias in the bias risk assessment. Relevant datas from included literature indicated that the histopathological index of the resveratrol group was significantly lower than that of the control group (WMD = -2.58 [-3.29, -1.87]). Subgroup analysis revealed that higher doses of resveratrol (>80 mg/kg) had a better efficacy (WMD = -3.47 [-4.97, -1.98]). Furthermore, The data summary and quantitative analysis results of SI and colon length also showed that resveratrol was effective in alleviating intestinal mucosal pathological injury of IBD. In terms of biochemical indicators, the summary analysis revealed that resveratrol affected interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), interferon-γ (IFN-γ), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and prostaglandin E2 (PGE2) significantly. These effects may be attributed to the mechanism of resveratrol in regulating immune response and inhibiting oxidative stress. Conclusion: This review suggests that resveratrol demonstrated a notable therapeutic impact in preclinical models of IBD, particularly at doses exceeding 80 mg/kg. This efficacy is attributed to the protective mechanisms targeting the intestinal mucosa involved in the pathogenesis of IBD through various pathways. As a result, resveratrol holds promising prospects for potential clinical use in the future.
Collapse
Affiliation(s)
- Yuting Gu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yijie Lou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhanyi Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolu Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwen Wu
- Department of Acupuncture and Moxibustion, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhenjiang, China
| | - Haitao Li
- Department of Digestive System, Jinhua Municipal Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Yunxi Ji
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
27
|
Wei S, Li M, Wang Q, Zhao Y, Du F, Chen Y, Deng S, Shen J, Wu K, Yang J, Sun Y, Gu L, Li X, Li W, Chen M, Ling X, Yu L, Xiao Z, Dong L, Wu X. Mesenchymal Stromal Cells: New Generation Treatment of Inflammatory Bowel Disease. J Inflamm Res 2024; 17:3307-3334. [PMID: 38800593 PMCID: PMC11128225 DOI: 10.2147/jir.s458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Qin Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| |
Collapse
|
28
|
Liao X, Xie H, Yu S. Calycosin prevents NLRP3-induced gut fibrosis by regulating IL-33/ST2 axis. Heliyon 2024; 10:e30240. [PMID: 38726105 PMCID: PMC11078877 DOI: 10.1016/j.heliyon.2024.e30240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Intestinal interstitial fibrosis is a core event of inflammatory bowel disease (IBD) development. Calycosin has been recognized to carry various therapeutic bioactivities. However, the role of calycosin in intestinal interstitial fibrosis remains to be illustrated. This aim of this study was to explore the effects of calycosin on intestinal interstitial fibrosis in IBD and the underlying mechanisms. The in vitro and in vivo models were established by using TNBS-induced mouse IBD model and co-culture of intestinal epithelial cells and intestinal interstitial cells; moreover, lentivirus-mediated knockdown of NLRP3 expression was applied. The results showed that calycosin significantly improved the intestinal interstitial fibrosis of TNBS-induced IBD. Mechanistically, calycosin downregulated NLRP3 expression and inhibited the activation of IL-33/ST2 signaling in intestinal epithelial cells, which subsequently impedes intestinal interstitial cell migration and activation by regulating the secretion of IL-33/ST2 signaling-induced fibrosis mediators. Notably, combination of calycosin and NLRP3 signaling blockade improved the intestinal interstitial fibrosis extent. Altogether, this study suggests calycosin can improve intestinal interstitial fibrosis by downregulating NLRP3-IL-33/ST2 signaling, reducing inflammation and decreasing pro-fibrotic factors' secretion, which provides a new perspective for therapeutic options of IBD.
Collapse
Affiliation(s)
- Xiujun Liao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Haiting Xie
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Saojun Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
29
|
Kurumi H, Yokoyama Y, Hirano T, Akita K, Hayashi Y, Kazama T, Isomoto H, Nakase H. Cytokine Profile in Predicting the Effectiveness of Advanced Therapy for Ulcerative Colitis: A Narrative Review. Biomedicines 2024; 12:952. [PMID: 38790914 PMCID: PMC11117845 DOI: 10.3390/biomedicines12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokine-targeted therapies have shown efficacy in treating patients with ulcerative colitis (UC), but responses to these advanced therapies can vary. This variability may be due to differences in cytokine profiles among patients with UC. While the etiology of UC is not fully understood, abnormalities of the cytokine profiles are deeply involved in its pathophysiology. Therefore, an approach focused on the cytokine profile of individual patients with UC is ideal. Recent studies have demonstrated that molecular analysis of cytokine profiles in UC can predict response to each advanced therapy. This narrative review summarizes the molecules involved in the efficacy of various advanced therapies for UC. Understanding these associations may be helpful in selecting optimal therapeutic agents.
Collapse
Affiliation(s)
- Hiroki Kurumi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Kotaro Akita
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Tomoe Kazama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| |
Collapse
|
30
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
31
|
Fang X, Feng J, Zhu X, Feng D, Zheng L. Plant-derived vesicle-like nanoparticles: A new tool for inflammatory bowel disease and colitis-associated cancer treatment. Mol Ther 2024; 32:890-909. [PMID: 38369751 PMCID: PMC11163223 DOI: 10.1016/j.ymthe.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.
Collapse
Affiliation(s)
- Xuechun Fang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingcheng Zhu
- Medical Laboratory Department, Second People's Hospital, Qujing 655000, China
| | - Dan Feng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
32
|
Cheng Z, Zhou Y, Xiong X, Li L, Chen Z, Wu F, Dong R, Liu Q, Zhao Y, Jiang S, Yu Q, Chen G. Traditional herbal pair Portulacae Herba and Granati Pericarpium alleviates DSS-induced colitis in mice through IL-6/STAT3/SOCS3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155283. [PMID: 38422652 DOI: 10.1016/j.phymed.2023.155283] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingli Li
- Department of Traditional Chinese Medicine, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Zekai Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shujun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
33
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
34
|
Gold MS, Loeza-Alcocer E. Experimental colitis-induced visceral hypersensitivity is attenuated by GABA treatment in mice. Am J Physiol Gastrointest Liver Physiol 2024; 326:G252-G263. [PMID: 38193198 PMCID: PMC11211035 DOI: 10.1152/ajpgi.00012.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Ulcerative colitis (UC) is linked with inflammation of the large intestine due to an overactive response of the colon-immune system. UC is associated with weight loss, rectal bleeding, diarrhea, and abdominal pain. Given that γ-amino butyric acid (GABA) suppresses immune cell activity and the excitability of colonic afferents, and that there is a decrease in colonic GABA during UC, we hypothesized that UC pain is due to a decrease in the inhibition of colonic afferents. Thus, restoring GABA in the colon will attenuate inflammatory hypersensitivity. We tested this hypothesis in a mouse model of colitis. Colon inflammation was induced with seven days of dextran sodium sulfate (DSS, 3%) in the drinking water. GABA (40 mg/kg) was administered orally for the same period as DSS, and body weight, colon length, colon permeability, clinical progression of colitis (disease activity index or DAI), and colon histological score (HS) were assessed to determine the effects of GABA on colitis. A day after the end of GABA treatment, visceral sensitivity was assessed with balloon distention (of the colon)-evoked visceromotor response and colon samples were collected for the measurement of GABA and cytokines. Treatment with GABA reduced the DSS-induced increase in the colon permeability, DAI, HS, and decrease in body weight and colon length. Furthermore, GABA inhibited the DSS-induced increase in the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-12 (IL-12), and increased the expression of the anti-inflammatory cytokine IL-10 in the colon tissue. Importantly, GABA reduced DSS-induced visceral hypersensitivity. These data suggest that increasing gastrointestinal levels of GABA may be useful for the treatment of colitis.NEW & NOTEWORTHY GABA treatment reduces the severity of colitis and inflammation and produces inhibition of visceral hypersensitivity in colon-inflamed mice. These results raise the promising possibility that GABA treatment may be an effective therapeutic strategy for the management of symptoms associated with colitis. However, clinical studies are required to corroborate whether this mouse-model data translates to human colon.
Collapse
Affiliation(s)
- Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
35
|
Tang X, Shang Y, Yang H, Song Y, Li S, Qin Y, Song J, Chen K, Liu Y, Zhang D, Chen L. Targeted delivery of Fc-fused PD-L1 for effective management of acute and chronic colitis. Nat Commun 2024; 15:1673. [PMID: 38396052 PMCID: PMC10891058 DOI: 10.1038/s41467-024-46025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The PD-1/PD-L1 pathway in mucosal immunity is currently actively explored and considered as a target for inflammatory bowel disease (IBD) treatment. However, systemic PD-L1 administration may cause unpredictable adverse effects due to immunosuppression. Here we show that reactive oxygen species (ROS)-responsive nanoparticles enhance the efficacy and safety of PD-L1 in a mouse colitis model. The nanoparticles control the accumulation and release of PD-L1 fused to Fc (PD-L1-Fc) at inflammatory sites in the colon. The nanotherapeutics shows superiority in alleviating inflammatory symptoms over systemic PD-L1-Fc administration and mitigates the adverse effects of PD-L1-Fc administration. The nanoparticles-formulated PD-L1-Fc affects production of proinflammatory and anti-inflammatory cytokines, attenuates the infiltration of macrophages, neutrophils, and dendritic cells, increases the frequencies of Treg, Th1 and Tfh cells, reshapes the gut microbiota composition; and increases short-chain fatty acid production. In summary, PD-L1-Fc-decorated nanoparticles may provide an effective and safe strategy for the targeted treatment of IBD.
Collapse
Affiliation(s)
- Xudong Tang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hong Yang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yalan Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shan Li
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yusi Qin
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jingyi Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kang Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Liu
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Lei Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
36
|
Ou Y, Yang Z, Zhou Y, Yue H, Hua L, Liu Z, Lin G, Cai H, Chen Y, Hu W, Sun P. Antagonizing interleukin-5 receptor ameliorates dextran sulfate sodium-induced experimental colitis in mice through reducing NLRP3 inflammasome activation. Eur J Pharmacol 2024; 965:176331. [PMID: 38220140 DOI: 10.1016/j.ejphar.2024.176331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a condition characterized by inflammation in the gastrointestinal tract. Reducing intestinal inflammation is a promising approach for treating IBD. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, a critical component of the innate immune system, is implicated in the pathogenesis of IBD. Therefore, inhibiting NLRP3 inflammasome activation is a potential therapeutic strategy for IBD. In this study, we investigated the effects of the interleukin-5 (IL-5) receptor antagonist YM-90709 on dextran sulfate sodium-induced experimental colitis in mice. We found that YM-90709 reduced the expressions of IL-1β and caspase-1 p20 in the colon and ameliorated colitis. Furthermore, we identified YM-90709 as an effective agent for inhibiting NLRP3 inflammasome activation. Knockdown of IL-5 receptor or using an inhibitor of STAT5, a key transcription factor downstream of the IL-5/IL-5 receptor signal pathway, also reduced NLRP3 inflammasome-dependent IL-1β release and ASC speck formation. Our study is the first to demonstrate that the NLRP3 inflammasome may be a downstream signal of IL-5/IL-5 receptor and that YM-90709 protects against IBD by inhibiting IL-5 receptor. These findings suggest a new strategy for regulating intestinal inflammation and managing IBD.
Collapse
Affiliation(s)
- Yitao Ou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongjin Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yinghua Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hu Yue
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lei Hua
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhuorong Liu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Geng Lin
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haowei Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanhong Chen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenhui Hu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ping Sun
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
37
|
Liu C, Qi X, Li D, Zhao L, Li Q, Mao K, Shen G, Ma Y, Wang R. Limosilactobacillus fermentum HF06-derived paraprobiotic and postbiotic alleviate intestinal barrier damage and gut microbiota disruption in mice with ulcerative colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1702-1712. [PMID: 37851615 DOI: 10.1002/jsfa.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Paraprobiotics and postbiotics have shown potential in the treatment of ulcerative colitis (UC). However, their in vivo application is still in its infancy and their mechanisms of action are not well understood. RESULTS Here, we investigated the mitigation effects of Limosilactobacillus fermentum HF06-derived paraprobiotic (6-PA) and postbiotic (6-PS) on dextran sulfate sodium induced UC and the potential mechanisms. Results indicated that the administration of 6-PA and 6-PS resulted in the inhibition of weight loss and colon shortening in mice with UC. Furthermore, they led to a significant reduction in both fecal moisture content and the levels of proinflammatory cytokines and oxidative stress in the intestine of the mice. 6-PA and 6-PS treatment strengthened the intestinal mucosal barrier by dramatically upregulating the levels of zonula occludens-1 and occludin proteins. In addition, 6-PA and 6-PS restored intestinal dysbiosis by regulating abundances of certain bacteria, such as Bifidobacterium, Faecalibaculum, Muribaculaceae, Corynebacterium, Escherichia-Shigella and Clostridium_sensu_stricto_1, and regulated the level of short-chain fatty acids. CONCLUSION These findings illustrated for the first time that L. fermentum HF06-derived paraprobiotic and postbiotic enhanced the intestinal barrier function, and restored gut microbiota alterations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunhong Liu
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xiaofen Qi
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Dan Li
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Le Zhao
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu, China
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Co. Ltd, Qidong, China
| | - Guiqi Shen
- Jiangsu HOWYOU Biotechnology Co. Ltd, Qidong, China
| | - Ying Ma
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
38
|
Ni Z, Zhu L, Li S, Zhang Y, Zhao R. Characteristics and associated factors of health information-seeking behaviour among patients with inflammatory bowel disease in the digital era: a scoping review. BMC Public Health 2024; 24:307. [PMID: 38279086 PMCID: PMC10821566 DOI: 10.1186/s12889-024-17758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Health Information-Seeking Behaviour (HISB) is necessary for self-management and medical decision-making among patients with inflammatory bowel disease (IBD). With the advancement of information technology, health information needs and seeking are reshaped among patients with IBD. This scoping review aims to gain a comprehensive understanding of HISB of people with IBD in the digital age. METHODS This scoping review adhered to Arksey and O'Malley's framework and Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews frameworks (PRISMA-ScR). A comprehensive literature search was conducted in PubMed, Embase, Web of Science, PsycINFO, CINAHL, and three Chinese databases from January 1, 2010 to April 10, 2023. Employing both deductive and inductive content analysis, we scrutinized studies using Wilson's model. RESULTS In total, 56 articles were selected. Within the information dimension of HISB among patients with IBD, treatment-related information, particularly medication-related information, was identified as the most critical information need. Other information requirements included basic IBD-related information, daily life and self-management, sexual and reproductive health, and other needs. In the sources dimension, of the eight common sources of information, the internet was the most frequently mentioned source of information, while face-to-face communication with healthcare professionals was the preferred source. Associated factors were categorized into six categories: demographic characteristics, psychological aspects, role-related or interpersonal traits, environmental aspects, source-related characteristics, and disease-related factors. Moreover, the results showed five types of HISB among people with IBD, including active searching, ongoing searching, passive attention, passive searching, and avoid seeking. Notably, active searching, especially social information seeking, appeared to be the predominant common type of HISB among people with IBD in the digital era. CONCLUSION Information needs and sources for patients with IBD exhibit variability, and their health information-seeking behaviour is influenced by a combination of diverse factors, including resource-related and individual factors. Future research should focus on the longitudinal changes in HISB among patients with IBD. Moreover, efforts should be made to develop information resources that are both convenient and provide credible information services, although the development of such resources requires further investigation and evaluation.
Collapse
Affiliation(s)
- Zijun Ni
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China
- Department of Nursing, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingli Zhu
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China
- Department of Nursing, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuyan Li
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China
| | - Yuping Zhang
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China
| | - Ruiyi Zhao
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
39
|
Han M, Lei W, Liang J, Li H, Hou M, Gao Z. The single-cell modification strategies for probiotics delivery in inflammatory bowel disease: A review. Carbohydr Polym 2024; 324:121472. [PMID: 37985038 DOI: 10.1016/j.carbpol.2023.121472] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Oral probiotic therapy has become an increasingly attractive method for treating various diseases, including intestinal barrier dysfunction, inflammatory bowel disease (IBD), and colorectal cancer due to its safety and convenience. However, only a few probiotics after oral gavage can survive the acidic and bile salt conditions of the gastrointestinal tract and colonize the colon to have a nutritional effect on the host. To address these challenges, encapsulation technology has been applied to protect probiotics from harsh gastrointestinal conditions, improve gut adhesion, and reduce immunogenicity. In addition, some of the functional polysaccharides are used to endow probiotics with exogenous functions as prebiotics. In this review, we systematically introduced the advancements of emerging single-cell modification strategies for probiotics in IBD applications. Additionally, we discussed the limitations and perspectives of single-cell modification strategies for probiotics. This review contributed to the development of probiotic delivery systems with higher therapeutic efficacy against colitis.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
40
|
Harwansh RK, Bhati H, Deshmukh R. Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis. Curr Pharm Des 2024; 30:420-439. [PMID: 38299405 DOI: 10.2174/0113816128295753240129074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
41
|
Hu S, Zhao R, Xu Y, Gu Z, Zhu B, Hu J. Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances. J Mater Chem B 2023; 12:13-38. [PMID: 38018424 DOI: 10.1039/d3tb02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and idiopathic condition that results in inflammation of the gastrointestinal tract, leading to conditions such as ulcerative colitis and Crohn's disease. Commonly used treatments for IBD include anti-inflammatory drugs, immunosuppressants, and antibiotics. Fecal microbiota transplantation is also being explored as a potential treatment method; however, these drugs may lead to systemic side effects. Oral administration is preferred for IBD treatment, but accurately locating the inflamed area in the colon is challenging due to multiple physiological barriers. Nanoparticle drug delivery systems possess unique physicochemical properties that enable precise delivery to the target site for IBD treatment, exploiting the increased permeability and retention effect of inflamed intestines. The first part of this review comprehensively introduces the pathophysiological environment of IBD, covering the gastrointestinal pH, various enzymes in the pathway, transport time, intestinal mucus, intestinal epithelium, intestinal immune cells, and intestinal microbiota. The second part focuses on the latest advances in the mechanism and strategies of targeted delivery using oral nanoparticle drug delivery systems for colitis-related fields. Finally, we present challenges and potential directions for future IBD treatment with the assistance of nanotechnology.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zelin Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
42
|
Yang L, Yuan L. Identification of novel N7-methylguanine-related gene signatures associated with ulcerative colitis and the association with biological therapy. Inflamm Res 2023; 72:2169-2180. [PMID: 37889323 DOI: 10.1007/s00011-023-01806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/23/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Ulcerative colitis (UC) is an inflammatory disease characterized by recurrent episodes of chronic intestinal inflammation. It is closely associated with immune dysregulation in the intestines. However, the mechanisms underlying the role of immune-related N7-methylguanosine (m7G) internal modification in UC remain unclear. METHODS We conducted a screening of differentially expressed genes (DEGs) associated with m7G and performed immune infiltration analysis. We then investigated the correlation between m7G-related DEGs and immune cells or pathways. To further explore the functional implications, we conducted functional enrichment analysis to identify gene modules that strongly correlated with hub gene expression. In addition, we constructed a miRNA regulatory network for the hub genes in UC. Furthermore, we examined the association between hub genes and disease remission in UC patients undergoing biologic therapy. RESULTS We obtained 13 m7G-related DEGs and conducted an in-depth analysis of immune infiltration. Among them, we identified five hub genes (NUDT7, NUDT12, POLR2H, QKI, and PRKCB) that showed diagnostic potential for UC. Through WGCNA and KEGG analysis, we found that gene modules strongly correlated with m7G hub gene expression were enriched in inflammation-related pathways. Furthermore, Kaplan-Meier survival analysis revealed a significant association between changes in hub gene expression levels and disease remission in UC patients undergoing biologic therapy. CONCLUSION The findings of this study demonstrate that five m7G-related DEGs, including the m7G-modified recognition protein QKI, play a key role in the occurrence and progression of UC intestinal inflammation, which is closely related to intestinal immunity. These results provide valuable insights into the mechanisms of m7G modification in UC development and offer new perspectives for exploring novel therapeutic targets for UC.
Collapse
Affiliation(s)
- Lichao Yang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lianwen Yuan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
43
|
Lei P, Yu H, Ma J, Du J, Fang Y, Yang Q, Zhang K, Luo L, Jin L, Wu W, Sun D. Cell membrane nanomaterials composed of phospholipids and glycoproteins for drug delivery in inflammatory bowel disease: A review. Int J Biol Macromol 2023; 249:126000. [PMID: 37532186 DOI: 10.1016/j.ijbiomac.2023.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic intestinal disorder with an increasing global incidence. However, current treatment strategies, such as anti-inflammatory drugs and probiotics, have limitations in terms of safety, stability, and effectiveness. The emergence of targeted nanoparticles has revolutionized IBD treatment by enhancing the biological properties of drugs and promoting efficiency and safety. Unlike synthetic nanoparticles, cell membrane nanomaterials (CMNs) consist primarily of biological macromolecules, including phospholipids, proteins, and sugars. CMNs include red blood cell membranes, macrophage membranes, and leukocyte membranes, which possess abundant glycoprotein receptors and ligands on their surfaces, allowing for the formation of cell-to-cell connections with other biological macromolecules. Consequently, they exhibit superior cell affinity, evade immune responses, and target inflammation effectively, making them ideal material for targeted delivery of IBD therapies. This review explores various CMNs delivery systems for IBD treatment. However, due to the complexity and harsh nature of the intestinal microenvironment, the lack of flexibility or loss of selectivity poses challenges in designing single CMNs delivery strategies. Therefore, we propose a hierarchically programmed delivery modality that combines CMNs with pH, charge, ROS and ligand-modified responsive nanoparticles. This approach significantly improves delivery efficiency and points the way for future research in this area.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Li Luo
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
44
|
Li J, Dou F, Hu S, Gao J. Involvement of adaptive immune responses in a model of subacute colitis induced with dextran sulfate sodium in C57BL/6 mice. Drug Discov Ther 2023; 17:294-298. [PMID: 37438111 DOI: 10.5582/ddt.2023.01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inflammatory bowel disease (IBD) is a non-specific chronic intestinal inflammatory disorder. Pharmacotherapy serves as the main treatment strategy for IBD; however, the current medications have certain limitations, such as inefficacy and a tendency to induce tolerance, thereby requiring the development of innovative drugs to fulfill therapeutic requirements. A model of acute colitis induced with a solution of approx. 3% dextran sulfate sodium (DSS) has been widely used in preclinical drug development. Nevertheless, this model has some drawbacks, including rapid disease progression leading to mortality in some mice and disparities between the inflammatory characteristics of mice and the pathological features of human IBD. The current study found that mice freely consuming a lower concentration of a DSS solution (1-1.5%) for 10-15 days exhibited milder colitis symptoms. Continued consumption of the DSS solution for 15-20 days resulted in chronic inflammation in colon tissue, accompanied by a significant increase in the proportion of Th1 cells, indicating the involvement of adaptive immune responses. Subsequently, mice were treated with mesalazine or Centella triterpenes while concurrently consuming the DSS solution for 10 days. The treated mice had significant improvements in body weight and colon length compared to the control group. The advantages of this subacute model include minimal mortality among experimental mice and the fact that intestinal mucosal inflammation in mice resembles the pathological features of human IBD, enabling the assessment of drug efficacy against IBD.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Fangzhou Dou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Shasha Hu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianjun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
45
|
Wang D, Wang W, Wang P, Wang C, Niu J, Liu Y, Chen Y. Research progress of colon-targeted oral hydrogel system based on natural polysaccharides. Int J Pharm 2023; 643:123222. [PMID: 37454829 DOI: 10.1016/j.ijpharm.2023.123222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The quality of life is significantly impacted by colon-related diseases. There have been a lot of interest in the oral colon-specific drug delivery system (OCDDS) as a potential carrier to decrease systemic side effects and protect drugs from degradation in the upper gastrointestinal tract (GIT). Hydrogels are effective oral colon-targeted drug delivery carriers due to their high biodegradability, substantial drug loading, and great biocompatibility. Natural polysaccharides give the hydrogel system unique structure and function to effectively respond to the complex environment of the GIT and deliver drugs to the colon. In this paper, the physiological factors of colonic drug delivery and the pathological characteristics of common colonic diseases are summarized, and the latest advances in the design, preparation and characterization of natural polysaccharide hydrogels are reviewed, which are expected to provide new references for colon-targeted oral hydrogel systems using natural polysaccharides as raw materials.
Collapse
Affiliation(s)
- Dingding Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weibo Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuang Wang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
46
|
Lai Y, Wang X, Sun X, Wu S, Chen X, Yang C, Zhang W, Yu X, Tong Y, Ma F, Zheng H, Zhang X, He S. Discovery of a novel RIPK2 inhibitor for the treatment of inflammatory bowel disease. Biochem Pharmacol 2023:115647. [PMID: 37315817 DOI: 10.1016/j.bcp.2023.115647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD 1/2) are important cytosolic pattern recognition receptors that initiate host immune response. The dysregulation of NOD signaling is highly associated with inflammatory bowel disease (IBD) that needs novel treatment options. Receptor-interacting protein kinase 2 (RIPK2) is a critical mediator of NOD signaling and considered a promising therapeutic target for IBD treatment. However, there are currently no RIPK2 inhibitors available for clinical use. Here, we report the discovery and characterization of Zharp2-1 as a novel and potent RIPK2 inhibitor that effectively blocks RIPK2 kinase function and NOD-mediated NF-κB/MAPK activation in both human and mouse cell lines. Zharp2-1 exhibits significantly superior solubility compared to the non-prodrug form of the advanced RIPK2 inhibitor prodrug GSK2983559. The improved solubility combined with favorable in vitro metabolic stability translated to excellent in vivo pharmacokinetic profiles for Zharp2-1. In addition, Zharp2-1 demonstrates better effects than GSK2983559 in inhibiting the muramyl dipeptide (MDP)-induced production of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) and MDP-induced peritonitis in mice. Furthermore, Zharp2-1 markedly reduces Listeria monocytogenes infection-induced cytokines release in both human and mouse cells. Importantly, Zharp2-1 significantly ameliorates DNBS-induced colitis in rats and suppressed pro-inflammatory cytokine release in intestinal specimens from IBD patients. Collectively, our findings indicate that Zharp2-1 is a promising RIPK2 inhibitor with the potential to be further developed for IBD therapy.
Collapse
Affiliation(s)
- Yujun Lai
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xinhui Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xue Sun
- The First Affiliated hospital of Soochow University, Suzhou, China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xin Chen
- The First Affiliated hospital of Soochow University, Suzhou, China
| | - Chengkui Yang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Wei Zhang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xiaoliang Yu
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Yushan Tong
- Xi'an jiaotong-Liverpool University, Suzhou, China
| | - Feng Ma
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Sudan He
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
47
|
Yuan SN, Wang MX, Han JL, Feng CY, Wang M, Wang M, Sun JY, Li NY, Simal-Gandara J, Liu C. Improved colonic inflammation by nervonic acid via inhibition of NF-κB signaling pathway of DSS-induced colitis mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154702. [PMID: 36764096 DOI: 10.1016/j.phymed.2023.154702] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/14/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nervonic acid (C24:1∆15, 24:1 ω-9, cis-tetracos-15-enoic acid; NA), a long-chain monounsaturated fatty acid, plays an essential role in prevention of metabolic diseases, and immune regulation, and has anti-inflammatory properties. As a chronic, immune-mediated inflammatory disease, ulcerative colitis (UC) can affect the large intestine. The influences of NA on UC are largely unknown. PURPOSE The present study aimed to decipher the anti-UC effect of NA in the mouse colitis model. Specifically, we wanted to explore whether NA can regulate the levels of inflammatory factors in RAW264.7 cells and mouse colitis model. METHODS To address the above issues, the RAW264.7 cell inflammation model was established by lipopolysaccharide (LPS), then the inflammatory factors tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β), and Interleukin-10 (IL-10) were detected by Enzyme-linked immunosorbent assay (ELISA). The therapeutic effects of NA for UC were evaluated using C57BL/6 mice gavaged dextran sodium sulfate (DSS). Hematoxylin and eosin (H&E) staining, Myeloperoxidase (MPO) kit assay, ELISA, immunofluorescence assay, and LC-MS/MS were used to assess histological changes, MPO levels, inflammatory factors release, expression and distribution of intestinal tight junction (TJ) protein ZO-1, and metabolic pathways, respectively. The levels of proteins involved in the nuclear factor kappa-B (NF-κB) pathway in the UC were investigated by western blotting and RT-qPCR. RESULTS In vitro experiments verified that NA could reduce inflammatory response and inhibit the activation of key signal pathways associated with inflammation in LPS-induced RAW264.7 cells. Further, results from the mouse colitis model suggested that NA could restore intestinal barrier function and suppress NF-κB signal pathways to ameliorate DSS-induced colitis. In addition, untargeted metabolomics analysis of NA protection against UC found that NA protected mice from colitis by regulating citrate cycle, amino acid metabolism, pyrimidine and purine metabolism. CONCLUSION These results suggested that NA could ameliorate the secretion of inflammatory factors, suppress the NF-κB signaling pathway, and protect the integrity of colon tissue, thereby having a novel role in prevention or treatment therapy for UC. This work for the first time indicated that NA might be a potential functional food ingredient for preventing and treating inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Sheng-Nan Yuan
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Mu-Xuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Jin-Long Han
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Cai-Yun Feng
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Meng Wang
- Shanxi Functional Food Engineering Center Co. Ltd, Xian 710000, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China; Shandong Huatai Nutrition and Health Industry Technology Research Institute Co. Ltd, Jinan 250100, China.
| | - Ning-Yang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E-32004 Ourense, Spain.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China; Shandong Huatai Nutrition and Health Industry Technology Research Institute Co. Ltd, Jinan 250100, China.
| |
Collapse
|
48
|
Roxadustat protect mice from DSS-induced colitis in vivo by up-regulation of TLR4. Genomics 2023; 115:110585. [PMID: 36801437 DOI: 10.1016/j.ygeno.2023.110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/22/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND The incidence of inflammatory bowel disease (IBD) is growing in the population. At present, the etiology of inflammatory bowel disease remains unclear, and there is no effective and low-toxic therapeutic drug. The role of the PHD-HIF pathway in relieving DSS-induced colitis is gradually being explored. METHODS Wild-type C57BL/6 mice were used as a model of DSS-induced colitis to explore the important role of Roxadustat in alleviating DSS-induced colitis. High-throughput RNA-Seq and qRT-PCR methods were used to screen and verify the key differential genes in the colon of mice between normal saline (NS) and Roxadustat groups. RESULTS Roxadustat could alleviate DSS-induced colitis. Compared with the mice in the NS group, TLR4 were significantly up-regulated in the Roxadustat group. TLR4 KO mice were used to verify the role of TLR4 in the alleviation of DSS-induced colitis by Roxadustat. CONCLUSION Roxadustat has a repairing effect on DSS-induced colitis, and may alleviate DSS-induced colitis by targeting the TLR4 pathway and promote intestinal stem cell proliferation.
Collapse
|
49
|
A mesoporous polydopamine-derived nanomedicine for targeted and synergistic treatment of inflammatory bowel disease by pH-Responsive drug release and ROS scavenging. Mater Today Bio 2023; 19:100610. [PMID: 37009068 PMCID: PMC10060173 DOI: 10.1016/j.mtbio.2023.100610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Repurposing clinically approved drugs to construct novel nanomedicines is currently a very attractive therapeutic approach. Selective enrichment of anti-inflammatory drugs and reactive oxygen species (ROS) scavenging at the region of inflammation by stimuli-responsive oral nanomedicine is an effective strategy for the treatment of inflammatory bowel disease (IBD). This study reports a novel nanomedicine, which is based on the excellent drug loading and free radical scavenging ability of mesoporous polydopamine nanoparticles (MPDA NPs). By initiating polyacrylic acid(PAA)polymerization on its surface, a "core-shell" structure nano-carrier with pH response is constructed. Then, under alkaline conditions, using the π-π stacking and hydrophobic interaction between the anti-inflammatory drug sulfasalazine (SAP) and MPDA, the nanomedicines (PAA@MPDA-SAP NPs) loaded efficiently (928 μ g mg-1) of SAP was successfully formed. Our results reveal that PAA@MPDA-SAP NPs can pass through the upper digestive tract smoothly and finally accumulate in the inflamed colon. Through the synergistic effect of anti-inflammation and antioxidation, it can effectively reduce the expression of pro-inflammatory factors and enhance the intestinal mucosal barrier, and finally significantly alleviate the symptoms of colitis in mice. Furthermore, we confirmed that PAA@MPDA-SAP NPs have good biocompatibility and anti-inflammatory repair ability under inflammation induction through human colonic organoids. In summary, this work provides a theoretical basis for the development of nanomedicines for IBD therapy.
Collapse
|
50
|
Feng Z, Kang G, Wang J, Gao X, Wang X, Ye Y, Liu L, Zhao J, Liu X, Huang H, Cao X. Breaking through the therapeutic ceiling of inflammatory bowel disease: Dual-targeted therapies. Biomed Pharmacother 2023; 158:114174. [PMID: 36587559 DOI: 10.1016/j.biopha.2022.114174] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Emerging biologics and small-molecule drugs have changed the clinical status quo of inflammatory bowel disease (IBD). However, current treatments remain at a standstill in terms of response and remission in many cases. Accumulating evidence indicates that dual-targeted therapy (DTT) could be promising in overcoming the existing ceiling of IBD treatment. However, data on the efficacy and safety of DTT on Crohn's disease and ulcerative colitis are still limited or insufficient. Moreover, there is a lack of studies delineating the mechanisms of DTT. Given that various targeted drugs have different targets among the extensive redundant inflammatory networks, DTT could result in various outcomes. In this review, we have summarized the current data on the safety, effectiveness, and clinical development status of novel targeted drugs related to refractory IBD, and have explored the mechanism of action of therapy. We have categorized therapeutic agents into "Therapeutic Agents Targeting Cellular Signaling Pathways" and "Therapeutic Agents Targeting Leukocyte Trafficking" based on the different therapeutic targets, and also by classifying therapeutic agents targeting the cellular signaling pathways into "JAK-dependent" and "JAK-independent," and placed the existing drug combinations into 3 categories based on their mechanisms, namely, overlapping, synergistic, and complementary effects. Lastly, we have proposed the possible mechanisms of DTT to conceive a theoretical framework for clinical decision-making and further drug development and research from an IBD standpoint.
Collapse
Affiliation(s)
- Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yulin Ye
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100016, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|