1
|
Ye D, Zhu J, Su S, Yu Y, Zhang J, Yin Y, Lin C, Xie X, Xiang Q, Yu R. Natural small molecules regulating the mitophagy pathway counteract the pathogenesis of diabetes and chronic complications. Front Pharmacol 2025; 16:1571767. [PMID: 40308774 PMCID: PMC12040946 DOI: 10.3389/fphar.2025.1571767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by sustained hyperglycemia. These disturbances contribute to extensive damage across various tissues and organs, giving rise to severe complications such as vision loss, kidney failure, amputations, and higher morbidity and mortality rates. Furthermore, DM imposes a substantial economic and emotional burden on patients, families, and healthcare systems. Mitophagy, a selective process that targets the clearance of damaged or dysfunctional mitochondria, is pivotal for sustaining cellular homeostasis through mitochondrial turnover and recycling. Emerging evidence indicates that dysfunctional mitophagy acts as a key pathogenic driver in the pathogenesis of DM and its associated complications. Natural small molecules are particularly attractive in this regard, offering advantages such as low toxicity, favorable pharmacokinetic profiles, excellent biocompatibility, and a broad range of biochemical activities. This review systematically evaluates the mechanistic roles of natural small molecules-including ginsenosides, resveratrol, and berberine-in enhancing mitophagy and restoring mitochondrial homeostasis via activation of core signaling pathways (e.g., PINK1/Parkin, BNIP3/NIX, and FUNDC1). These pathways collectively ameliorate pathological hallmarks of DM, such as oxidative stress, chronic inflammation, and insulin resistance. Furthermore, the integration of nanotechnology with these compounds optimizes their bioavailability and tissue-specific targeting, thereby establishing a transformative therapeutic platform for DM management. Current evidence demonstrates that mitophagy modulation by natural small molecules not only offers novel therapeutic strategies for DM and its chronic complications but also advances the mechanistic foundation for future drug development targeting metabolic disorders.
Collapse
Affiliation(s)
- Du Ye
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junping Zhu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siya Su
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Zhang
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuman Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chuanquan Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Xiang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Cao XC, Peng J, Qiu YB, Zhu W, Cao JG, Zou H, Yu ZZ, Wu D, Lu SS, Huang W, Yi H, Xiao ZQ. FVTF inhibits hepatocellular carcinoma stem properties via targeting DNMT1/miR-34a-5p/FoxM1 axis. Chin Med 2025; 20:32. [PMID: 40050970 PMCID: PMC11884036 DOI: 10.1186/s13020-025-01084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Fructus Viticis Total Flavonoids (FVTF) is a novel candidate preparation that possesses anticancer activity. However, the role and mechanism of FVTF-inhibiting human hepatocellular carcinoma (HCC) cell stem properties is unclear. METHODS Liquid chromatography (LC) in conjugation with mass spectrometer (MS) was used to identify the compounds of FVTF. Tumorsphere and soft agar colony formation ability, cancer stem marker expression levels, CD133+ cell percentage, and a xenograft model were utilized to investigate the impact of FVTF on HCC cells stemness. PCR array and qRT-PCR were conducted to identify differentially expressed cancer stem-related genes and miRNAs between FVTF-treated and untreated HCC cells, respectively. Pyrosequencing was conducted to assess the DNA methylation level of the miR-34a-5p promoter. A luciferase reporter assay was performed to verify whether FoxM1 serves as a direct target of miR-34a-5p. Additionally, immunohistochemistry of an HCC tissue microarray was carried out to assess the expression levels of DNMT1, FoxM1, and miR-34a-5p. RESULTS A total of 26 compounds, including 10 flavones, in FVTF were identified. FVTF significantly reduced the ability of tumorsphere and soft agar colony formation, the levels of CD44 protein and BMI1, OCT4 and SOX2 mRNAs in HCC cells, and in vivo tumor initiation ability of HCC cells. Mechanistically, FVTF inhibited HCC cell stem properties via targeting DNMT1/miR-34a-5p/FoxM1 axis. Clinically, DNMT1 expression was inversely correlated with miR-34a-5p expression, whereas a positive correlation was noted between DNMT1 and FoxM1 expression levels, and high DNMT1 levels, low miR-34a-5p levels, and high FoxM1 levels were associated with cancer recurrence. Furthermore, a combination of DNMT1, miR-34a-5p and FoxM1 served as an independent prognostic indicator influencing both DFS and OS in patients with HCC. CONCLUSIONS FVTF inhibits HCC cell stem properties by targeting DNMT1/miR-34a-5p/FoxM1 axis, which is associated with HCC recurrence and prognosis, and FVTF is a prospective treatment drug for human HCC.
Collapse
Affiliation(s)
- Xiao-Cheng Cao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ye-Bei Qiu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian-Guo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hui Zou
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Hermawan A, Ikawati M, Putri DDP, Fatimah N, Prasetio HH. Nobiletin Inhibits Breast Cancer Stem Cell by Regulating the Cell Cycle: A Comprehensive Bioinformatics Analysis and In Vitro Experiments. Nutr Cancer 2024; 76:638-655. [PMID: 38721626 DOI: 10.1080/01635581.2024.2348217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
Abstract
Inhibiting breast cancer stem cell (BCSC) signaling pathways is a strategic method for successfully treating breast cancer. Nobiletin (NOB) is a compound widely found in orange peel that exhibits a toxic effect on various types of cancer cells, and inhibits the signaling pathways that regulate the properties of BCSCs; however, the effects of NOB on BCSCs remain elusive. The purpose of this study was to determine the target genes of NOB for inhibiting BCSCs using in vitro three-dimensional breast cancer cell culture (mammospheres) and in silico approaches. We combined in vitro experiments to develop mammospheres and conducted cytotoxicity, next-generation sequencing, and bioinformatics analyses, such as gene ontology, the Reactome pathway enrichment, network topology, gene set enrichment analysis, hub genes selection, genetic alterations, prognostic value related to the mRNA expression, and mRNA and protein expression of potential NOB target genes that inhibit BCSCs. Here, we show that NOB inhibited BCSCs in mammospheres from MCF-7 cells. We also identified CDC6, CHEK1, BRCA1, UCHL5, TOP2A, MTMR4, and EXO1 as potential NOB targets inhibiting BCSCs. NOB decreased G0/G1, but increased the G2/M cell population. These findings showed that NOB is a potential therapeutic candidate for BCSCs treatment by regulating cell cycle.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Dyaningtyas Dewi Pamungkas Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Niu C, Zhang J, Okolo PI. Liver cancer wars: plant-derived polyphenols strike back. Med Oncol 2024; 41:116. [PMID: 38625672 DOI: 10.1007/s12032-024-02353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Liver cancer currently represents the leading cause of cancer-related death worldwide. The majority of liver cancer arises in the context of chronic inflammation and cirrhosis. Surgery, radiation therapy, and chemotherapy have been the guideline-recommended treatment options for decades. Despite enormous advances in the field of liver cancer therapy, an effective cure is yet to be found. Plant-derived polyphenols constitute a large family of phytochemicals, with pleiotropic effects and little toxicity. They can drive cellular events and modify multiple signaling pathways which involves initiation, progression and metastasis of liver cancer and play an important role in contributing to anti-liver cancer drug development. The potential of plant-derived polyphenols for treating liver cancer has gained attention from research clinicians and pharmaceutical scientists worldwide in the last decades. This review overviews hepatic carcinogenesis and briefly discusses anti-liver cancer mechanisms associated with plant-derived polyphenols, specifically involving cell proliferation, apoptosis, autophagy, angiogenesis, oxidative stress, inflammation, and metastasis. We focus on plant-derived polyphenols with experiment-based chemopreventive and chemotherapeutic properties against liver cancer and generalize their basic molecular mechanisms of action. We also discuss potential opportunities and challenges in translating plant-derived polyphenols from preclinical success into clinical applications.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
5
|
Cheng Y, Feng S, Sheng C, Yang C, Li Y. Nobiletin from citrus peel: a promising therapeutic agent for liver disease-pharmacological characteristics, mechanisms, and potential applications. Front Pharmacol 2024; 15:1354809. [PMID: 38487166 PMCID: PMC10938404 DOI: 10.3389/fphar.2024.1354809] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Nobiletin (NOB) is a flavonoid derived from citrus peel that has potential as an alternative treatment for liver disease. Liver disease is a primary health concern globally, and there is an urgent need for effective drugs. This review summarizes the pharmacological characteristics of NOB and current in vitro and in vivo studies investigating the preventive and therapeutic effects of NOB on liver diseases and its potential mechanisms. The findings suggest that NOB has promising therapeutic potential in liver diseases. It improves liver function, reduces inflammation and oxidative stress, remodels gut microflora, ameliorates hepatocellular necrosis, steatosis, and insulin resistance, and modulates biorhythms. Nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear transcription factor kappa (NF-κB), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α(PPAR-α), extracellular signal-regulated kinase (ERK), protein kinase B (AKT), toll-like receptor 4 (TLR4) and transcription factor EB (TFEB) signaling pathways are important molecular targets for NOB to ameliorate liver diseases. In conclusion, NOB may be a promising drug candidate for treating liver disease and can accelerate its application from the laboratory to the clinic. However, more high-quality clinical trials are required to validate its efficacy and identify its molecular mechanisms and targets.
Collapse
Affiliation(s)
- Yongkang Cheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sansan Feng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuqiao Sheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunfeng Yang
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Bozgeyik E, Bozgeyik I. Unveiling the therapeutic potential of natural-based anticancer compounds inducing non-canonical cell death mechanisms. Pathol Res Pract 2023; 248:154693. [PMID: 37516001 DOI: 10.1016/j.prp.2023.154693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
In the Mid-19th century, Rudolf Virchow considered necrosis to be a prominent form of cell death; since then, pathologists have recognized necrosis as both a cause and a consequence of disease. About a century later, the mechanism of apoptosis, another form of cell death, was discovered, and we now know that this process is regulated by several molecular mechanisms that "programme" the cell to die. However, discoveries on cell death mechanisms are not limited to these, and recent studies have allowed the identification of novel cell death pathways that can be molecularly distinguished from necrotic and apoptotic cell death mechanisms. Moreover, the main goal of current cancer therapy is to discover and develop drugs that target apoptosis. However, resistance to chemotherapeutic agents targeting apoptosis is mainly responsible for the failure of clinical therapy and adverse side effects of the chemotherapeutic agents currently in use pose a major threat to the well-being and lives of patients. Therefore, the development of natural-based anticancer drugs with low cellular and organismal side effects is of great interest. In this comprehensive review, we thoroughly examine and discuss natural anticancer compounds that specifically target non-canonical cell death mechanisms.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
7
|
Nobiletin is capable of regulating certain anti-cancer pathways in a colon cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:547-555. [PMID: 36454256 DOI: 10.1007/s00210-022-02354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Natural remedies have the potential to improve conventional cancer therapies and enhance patient outcomes. Citrus polymethoxyflavone nobiletin has been demonstrated to have anticancer effects on several cancer cell lines. In this study, the anti-cancer activity of nobiletin is investigated on Bax, Bcl-2, HO-1, VEGF, MMP-7, Akt, p70S6K, 4EBP1, tuberin, and hamartin. IC50 doses were 403.6 µM, 264 µM, and 40 µM, respectively, at 24, 48, and 72 h. Akt, Bax, Bcl-2, and p70S6K levels decreased at nobiletin concentrations greater than 100, 250, 500, and 1000 µM, respectively. Nobiletin decreased HO-1 and VEGF levels at concentrations greater than 100 µM. MMP-7 levels interestingly increased at 100 µM but decreased at doses greater than 250 µM. 4EBP1 levels increased, except from 2000 and 3000 µM nobiletin concentrations. Tuberin levels increased at 10, 50, and 3000 µM, decreased at 250 µM, and remained unchanged at the rest of the concentrations. Nobiletin decreased hamartin levels; however, this decrease was statistically significant only at 10, 100, 250, 500, and 3000 µM concentrations. Decreased Akt activity might be interpreted as nobiletin inhibiting mTORC1 activity and subsequently increased 4EBP1 and unchanged or decreased p70S6K protein levels. Akt activity can cause suppression of angiogenesis via decreased VEGF, MMP-7, and HO-1 levels at concentrations greater than 500 µM. These results are significant as a nobiletin therapy could prevent colon cancer progression by inhibiting Akt signaling and angiogenesis.
Collapse
|
8
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Yang W, Liang Y, Liu Y, Chen B, Wang K, Chen X, Yu Z, Yang D, Cai Y, Zheng G. The molecular mechanism for inhibiting the growth of nasopharyngeal carcinoma cells using polymethoxyflavonoids purified from pericarp of Citrus reticulata 'Chachi' via HSCCC. Front Pharmacol 2023; 14:1096001. [PMID: 37180721 PMCID: PMC10174288 DOI: 10.3389/fphar.2023.1096001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Polymethoxyflavonoids (PMFs), the main bioactive compounds naturally occurring in the pericarp of Citrus reticulata 'Chachi' (CRCP), possess significant antitumor action. However, the action of PMFs in nasopharyngeal carcinoma (NPC) is currently unknown. The present research study was conducted to investigate the inhibitory mechanisms of PMFs from CRCP on NPC growth in vivo and in vitro. In our research, we used high-speed counter-current chromatography (HSCCC) to separate four PMFs (nobiletin (NOB), 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), tangeretin (TGN), and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone (5-HPMF)) from CRCP. CCK-8 assay was used to preliminarily screen cell viability following exposure to the four PMFs. Colony formation, Hoechst-33258 staining, transwell, and wound scratch assays were performed to assess the anti-proliferation, invasion, migration, and apoptosis-inducing effects of HMF on NPC cells. NPC tumors in xenograft tumor transplantation experiments were also established to explore the effect of HMF (100 and 150 mg/kg/day) on NPC. The histopathological changes in the treated rats were observed by H&E staining and Ki-67 detection by immunohistochemical techniques. The expressions of P70S6K, p-P70S6K, S6, p-S6, COX-2, p53, and p-p53 were measured by Western blot. The four PMFs were obtained with high purity (>95.0%). The results of the preliminary screening by CCK-8 assay suggested that HMF had the strongest inhibitory effect on NPC cell growth. The results of the colony formation, Hoechst-33258 staining, transwell, and wound scratch assays indicated that HMF had significant anti-proliferation, invasion, migration, and apoptosis-inducing ability in NPC cells. Moreover, HMF suppressed NPC tumor growth in xenograft tumor transplantation experiments. Further investigation suggested that HMF regulated NPC cells proliferation, apoptosis, migration, and invasion by activating AMPK-dependent signaling pathways. In conclusion, HMF-induced AMPK activation inhibited NPC cell growth, invasion, and metastatic potency by downregulating the activation of the mTOR signaling pathway and COX-2 protein levels, as well as enhancing the p53 phosphorylation level. Our study provides a crucial experimental basis for the clinical treatment of NPC, as well as the development and utilization of PMFs from CRCP.
Collapse
Affiliation(s)
- Wanling Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yiyao Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yujie Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd., Jiangmen, China
| | - Kanghui Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiqian Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Guodong Zheng, ; Yi Cai, ; Depo Yang,
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guodong Zheng, ; Yi Cai, ; Depo Yang,
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guodong Zheng, ; Yi Cai, ; Depo Yang,
| |
Collapse
|
10
|
Yuan S, Ye Z, Li Y, Zou J, Wu M, Wang K, Liao W, Shen J. Hypoglycemic Effect of Nobiletin via Regulation of Islet β-Cell Mitophagy and Gut Microbiota Homeostasis in Streptozocin-Challenged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5805-5818. [PMID: 35522926 DOI: 10.1021/acs.jafc.2c00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nobiletin is a natural nutrient (or polymethoxyflavonoid) in orange peels exerting a preventive effect against metabolic diseases. However, there are very few reports on the hypoglycemic effect of nobiletin. In the present study, the hypoglycemic effect of nobiletin was investigated using NIT-1 cells and streptozocin (STZ)-challenged mouse models. Our results indicated that nobiletin could significantly suppress the high blood glucose in STZ-challenged mice. In addition, nobiletin could effectively activate the mitophagy and inhibit the inflammatory pathways in NIT-1 cells. The mitochondria membrane potential dysbiosis induced by glucotoxicity in NIT-1 cells was restored after treatment by nobiletin. Further investigation revealed that the hypoglycemic effect of nobiletin was mainly through regulation of gut microbiota dysbiosis, activation of mitophagy flux, inhibition of inflammasome expression, and restoration of islet morphological destruction in the pancreas of STZ-challenged mice. Our study revealed that nobiletin could be used as a functional food or drug candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Sijie Yuan
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Li
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Jiaxuan Zou
- School of Biological Science, University of California Irvine, Irvine, California 92697, United States
| | - Mengting Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ke Wang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jie Shen
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
11
|
Chen YY, Liang JJ, Wang DL, Chen JB, Cao JP, Wang Y, Sun CD. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:6309-6329. [PMID: 35089821 DOI: 10.1080/10408398.2022.2030297] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a leading cause of death, second only to heart disease, cancer has always been one of the burning topics in medical research. When targeting multiple signal pathways in tumorigenesis chemoprevention, using natural or synthetic anti-cancer drugs is a vital strategy to reduce cancer damage. However, toxic effects, multidrug resistance (MDR) as well as cancer stem cells (CSCs) all prominently limited the clinical application of conventional anticancer drugs. With low side effects, strong biological activity, unique mechanism, and wide range of targets, natural products derived from plants are considered significant sources for new drug development. Nobiletin is one of the most attractive compounds, a unique flavonoid primarily isolated from the peel of citrus fruits. Numerous studies in vitro and in vivo have suggested that nobiletin and its derivatives possess the eminent potential to become effective cancer chemoprevention agents through various cellular and molecular levels. This article aims to comprehensively review the anticancer efficacy and specific mechanisms of nobiletin, enhancing our understanding of its chemoprevention properties and providing the latest research findings. At the end of this review, we also give some discussion and future perspectives regarding the challenges and opportunities in nobiletin efficient exploitation.
Collapse
Affiliation(s)
- Yun-Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Deng-Liang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Bayoumi M, Arafa MG, Nasr M, Sammour OA. Nobiletin-loaded composite penetration enhancer vesicles restore the normal miRNA expression and the chief defence antioxidant levels in skin cancer. Sci Rep 2021; 11:20197. [PMID: 34642396 PMCID: PMC8511031 DOI: 10.1038/s41598-021-99756-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Skin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt.
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt
| |
Collapse
|
13
|
Cajas YN, Cañón-Beltrán K, Núñez-Puente C, Gutierrez-Adán A, González EM, Agirregoitia E, Rizos D. Nobiletin-induced partial abrogation of deleterious effects of AKT inhibition on preimplantation bovine embryo development in vitro. Biol Reprod 2021; 105:1427-1442. [PMID: 34617564 DOI: 10.1093/biolre/ioab184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
During preimplantational embryo development, PI3K/AKT regulates cell proliferation and differentiation and nobiletin modulates this pathway to promote cell survival. Therefore, we aimed to establish whether, when the AKT cascade is inhibited using inhibitors III and IV, nobiletin supplementation to in vitro culture media during the minor (2 to 8-cell stage, MNEGA) or major (8 to 16-cell stage, MJEGA) phases of EGA is able to modulate the development and quality of bovine embryos. In vitro zygotes were cultured during MNEGA or MJEGA phase in SOF + 5% FCS or supplemented with: 15 μM AKT-InhIII; 10 μM AKT-InhIV; 10 μM nobiletin; nobiletin+AKT-InhIII; nobiletin+AKT-InhIV; 0.03% DMSO. Embryo development was lower in treatments with AKT inhibitors, while combination of nobiletin with AKT inhibitors was able to recover their adverse developmental effect and also increase blastocyst cell number. The mRNA abundance of GPX1, NFE2L2, and POU5F1 was partially increased in 8- and 16-cell embryos from nobiletin with AKT inhibitors. Besides, nobiletin increased the p-rpS6 level whether or not AKT inhibitors were present. In conclusion, nobiletin promotes bovine embryo development and quality and partially recovers the adverse developmental effect of AKT inhibitors which infers that nobiletin probably uses another signalling cascade that PI3K/AKT during early embryo development in bovine.
Collapse
Affiliation(s)
- Yulia N Cajas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Carolina Núñez-Puente
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Alfonso Gutierrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| |
Collapse
|
14
|
Prakash O, Singh R, Singh N, Usmani S, Arif M, Kumar R, Ved A. Anticancer potential of Naringenin, Biosynthesis, Molecular target, and structural perspectives. Mini Rev Med Chem 2021; 22:758-769. [PMID: 34517796 DOI: 10.2174/1389557521666210913112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/27/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
Numerous novel medicinal agents isolated from plant sources were used as indigenous remedies for the management and treatment of various types of cancer diseases. Naringenin is a naturally occurring flavanone glycoside and aglycone (genin) moiety of naringin, predominantly found in citrus and grapefruits, has emerged as a potential therapeutic agent for the management of a variety of diseases. A huge number of scientific papers have been published on naringenin describing its detailed studies and its therapeutic application in different diseases. The current study highlights, a comprehensive study on naringenin concerning its biosynthesis, molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), and structure-activity relationships (SARs), and patents granted have been highlighted. Naringenin and its derivatives has remarkable anti-cancer activity due to their inhibitory potential against diverse targets namely ABCG2/P-gp/BCRP, 5a-reductase, 17-bhydroxysteroid dehydrogenase, aromatase, proteasome, HDAC/Situin-1, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, topoisomerase-II, cathepsin-K, Wnt, NF-kB, B-Raf and mTOR, etc. With the huge knowledge of molecular targets, structural intuition, and SARs, the current study may be beneficial to design more potent, safe, effective, and economic anti-cancer naringenin. This is concluded that naringenin is a promising natural product for the management and therapy of cancer. Further evolution for pharmacological importance, clinical research, and trials are required to manifest its therapeutic action on metabolic syndrome in the human community.
Collapse
Affiliation(s)
- Om Prakash
- Goel Institute of Pharmacy and Sciences, Faizabad Road, Lucknow, Uttar Pradesh. India
| | - Ruchi Singh
- Yash Raj Institute of Pharmacy, Baghamau, Gomti Nagar, Lucknow, Uttar Pradesh. India
| | - Namrata Singh
- Goel Institute of Pharmaceutical and Sciences, Faizabad Road, Lucknow, Uttar Pradesh. India
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh. India
| | - Mohd Arif
- Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh. India
| | - Rajesh Kumar
- Faculty of Pharmacy, Ashoka Institute of Technology & Management, Varanasi, Uttar Pradesh. India
| | - Akash Ved
- Goel Institute of Pharmaceutical and Sciences, Faizabad Road, Lucknow, Uttar Pradesh. India
| |
Collapse
|
15
|
Mechanistic Insights of Anti-Immune Evasion by Nobiletin through Regulating miR-197/STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer (NSCLC) Cells. Int J Mol Sci 2021; 22:ijms22189843. [PMID: 34576006 PMCID: PMC8468939 DOI: 10.3390/ijms22189843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor immune escape is a common process in the tumorigenesis of non-small cell lung cancer (NSCLC) cells where programmed death ligand-1 (PD-L1) expression, playing a vital role in immunosuppression activity. Additionally, epidermal growth factor receptor (EGFR) phosphorylation activates Janus kinase-2 (JAK2) and signal transduction, thus activating transcription 3 (STAT3) to results in the regulation of PD-L1 expression. Chemotherapy with commercially available drugs against NSCLC has struggled in the prospect of adverse effects. Nobiletin is a natural flavonoid isolated from the citrus peel that exhibits anti-cancer activity. Here, we demonstrated the role of nobiletin in evasion of immunosuppression in NSCLC cells by Western blotting and real-time polymerase chain reaction methods for molecular signaling analysis supported by gene silencing and specific inhibitors. From the results, we found that nobiletin inhibited PD-L1 expression through EGFR/JAK2/STAT3 signaling. We also demonstrated that nobiletin exhibited p53-independent PD-L1 suppression, and that miR-197 regulates the expression of STAT3 and PD-L1, thereby enhancing anti-tumor immunity. Further, we evaluated the combination ability of nobiletin with an anti-PD-1 monoclonal antibody in NSCLC co-culture with peripheral blood mononuclear cells. Similarly, we found that nobiletin assisted the induction of PD-1/PD-L1 blockade, which is a key factor for the immune escape mechanism. Altogether, we propose nobiletin as a modulator of tumor microenvironment for cancer immunotherapy.
Collapse
|
16
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
17
|
Nobiletin Decreases Inflammatory Mediator Expression in Tumor Necrosis Factor-Stimulated Human Periodontal Ligament Cells. Mediators Inflamm 2021; 2021:5535844. [PMID: 34335088 PMCID: PMC8289582 DOI: 10.1155/2021/5535844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Nobiletin, a biologically active substance in the skin of citrus fruits, has been reported to be an effective anti-inflammatory, anticancer, and antimicrobial agent. In this study, we aimed to examine the anti-inflammatory effects of nobiletin on tumor necrosis factor- (TNF-) stimulated human periodontal ligament cells (HPDLCs). Our results demonstrated that nobiletin treatment could decrease the expressions of inflammatory cytokines (C-X-C motif chemokine ligand (CXCL)10, C-C motif chemokine ligand (CCL)2, and interleukin- (IL-) 8), matrix metalloproteinases (MMPs) (MMP1 and MMP3), and prostaglandin-endoperoxide synthase 2 (PTGS2) in TNF-stimulated HPDLCs. Moreover, we revealed that nobiletin could inhibit the activation of nuclear factor- (NF-) κB and protein kinase B (AKT1) pathways in TNF-stimulated HPDLCs. Furthermore, nobiletin treatment enhanced nuclear factor, erythroid 2 like 2 (NFE2L2) and heme oxygenase 1 (HMOX1) expressions in TNF-stimulated HPDLCs. In conclusion, these findings suggest that nobiletin can inhibit inflammatory responses in TNF-stimulated HPDLCs by inhibiting NF-κB and AKT1 activations and upregulating the NFE2L2 and HMOX1 expression.
Collapse
|
18
|
Qin L, Chen H, Ding X, Guo M, Lang H, Liu J, Li L, Liao J, Liao J. Utilizing network pharmacology to explore potential mechanisms of YiSui NongJian formula in treating myelodysplastic syndrome. Bioengineered 2021; 12:2238-2252. [PMID: 34098848 PMCID: PMC8806438 DOI: 10.1080/21655979.2021.1933867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The study aims to explore potential mechanisms of YiSui NongJian formula (YSNJF) in treating myelodysplastic syndromes (MDS) by network pharmacology-based strategy. Active compounds and corresponding potential therapeutic targets of YSNJF were harvested by utilizing the database of TCMSP (Traditional Chinese Medicine Systems Pharmacology) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine). MDS targets were adopted from GeneCard, KEGG (Kyoto Encyclopedia of Genes and Genomes), TTD (Therapeutic Target Database), DrugBank, and DisGeNet. Then a network of YSNJF- compounds-target-MDS network was harvested. The protein–protein interaction (PPI) network was then generated by the Sting database and subjected to Cytoscape software to harvest major and core targets network by topological analysis. Genes from the core targets network were further subjected to Gene Ontology (GO) and KEGG enrichment analysis to figure out potential targeting pathways. Finally, a compounds-targets-pathways network was generated by Cytoscape. A total of 210 active compounds and 768 corresponding potential therapeutic targets were harvested from ingredients of YSNJF. MDS was shown to have 772 potential treating targets with 98 intersected targets corresponding to 98 active compounds in YSNJF. Topological analysis revealed that 15 targets formed the core PPI network. Further, GO and KEGG enrichment analysis revealed that those core targets were mainly enriched on cell cycle- and immune-related pathways. The present study revealed that therapeutic effects of YSNJF on MDS might be achieved through regulating cell cycle- and immune-related pathways.
Collapse
Affiliation(s)
- Lerong Qin
- Dongfang Hospital Affiliated, Beijing, China
| | - Haiyan Chen
- Department of Hematology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqing Ding
- Department of Hematology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Guo
- Department of Hematology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Lang
- Department of Hematology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junxia Liu
- Department of Hematology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Li
- Department of Hematology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liao
- Department of Hematology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junyao Liao
- Department of Hematology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Li J, Tan G, Cai Y, Liu R, Xiong X, Gu B, He W, Liu B, Ren Q, Wu J, Chi B, Zhang H, Zhao Y, Xu Y, Zou Z, Kang F, Xu K. A novel Apigenin derivative suppresses renal cell carcinoma via directly inhibiting wild-type and mutant MET. Biochem Pharmacol 2021; 190:114620. [PMID: 34043966 DOI: 10.1016/j.bcp.2021.114620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
MET, the receptor of hepatocyte growth factor (HGF), is a driving factor in renal cell carcinoma (RCC) and also a proven drug target for cancer treatment. To improve the activity and to investigate the mechanisms of action of Apigenin (APG), novel derivatives of APG with improved properties were synthesized and their activities against Caki-1 human renal cancer cell line were evaluated. It was found that compound 15e exhibited excellent potency against the growth of multiple RCC cell lines including Caki-1, Caki-2 and ACHN and is superior to APG and Crizotinib. Subsequent investigations demonstrated that compound 15e can inhibit Caki-1 cell proliferation, migration and invasion. Mechanistically, 15e directly targeted the MET kinase domain, decreased its auto-phosphorylation at Y1234/Y1235 and inhibited its kinase activity and downstream signaling. Importantly, 15e had inhibitory activity against mutant MET V1238I and Y1248H which were resistant to approved MET inhibitors Cabozantinib, Crizotinib or Capmatinib. In vivo tumor graft study confirmed that 15e repressed RCC growth through inhibition of MET activation. These results indicate that compound 15e has the potential to be developed as a treatment for RCC, and especially against drug-resistant MET mutations.
Collapse
Affiliation(s)
- Jing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Guishan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yabo Cai
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Ruihuan Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Zhuzhou Qianjin Pharmaceutical Co. Ltd, Zhuzhou, 412007, China
| | - Xiaolin Xiong
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Baohua Gu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Wei He
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Bing Liu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Qingyun Ren
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Jianping Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bo Chi
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Hang Zhang
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Yanzhong Zhao
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yangrui Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenxing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
20
|
Wu J, Ye X, Yang S, Yu H, Zhong L, Gong Q. Systems Pharmacology Study of the Anti-Liver Injury Mechanism of Citri Reticulatae Pericarpium. Front Pharmacol 2021; 12:618846. [PMID: 33912040 PMCID: PMC8072898 DOI: 10.3389/fphar.2021.618846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Liver diseases are mostly triggered by oxidative stress and inflammation, leading to extracellular matrix overproduction and prone to develop into liver fibrosis, cirrhosis and hepatocellular carcinoma. Liver injury (LI) refers to various pathogenic factors leading to the destruction of stem cells that then affect the liver's normal function, causing a series of symptoms and abnormal liver function indicators. Citri Reticulatae Pericarpium (CRP) is one of the most commonly used traditional Chinese medicines; it contains flavonoids including hesperidin, nobiletin, and tangeretin. CRP has antibacterial, antioxidant, and antitumor effects that reduce cholesterol, prevent atherosclerosis and decrease LI. Here we analyzed the components of CRP and their targets of action in LI treatment and assessed the relationships between them using a systems pharmacology approach. Twenty-five active ingredients against LI were selected based on ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry results and databases. The drug targets and disease-related targets were predicted. The 117 common targets were used to construct a protein-protein interaction network. We identified 1719 gene ontology items in LI treatment, including 1,525 biological processes, 55 cellular components, and 139 molecular functions. These correlated with 49 Kyoto Encyclopedia of Genes and Genomes pathways. These findings suggest that CRP may counteract LI by affecting apoptotic, inflammatory, and energy metabolism modules. In vitro experiments suggested that the mechanism may involve hesperidin and naringenin acting on CASP3, BAX, and BCL2 to affect the apoptosis pathway, attenuating liver fibrosis. Naringenin significantly inhibited AKT1 phosphorylation, which in turn mediated activation of the phosphoinositide 3-kinase-Akt signaling pathways against LI. This study provides a reference for systematically exploring the mechanism of CRP's anti-LI action and is also expands of the application of systems pharmacology in the study of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jianxiong Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xietao Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Songhong Yang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huan Yu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lingyun Zhong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
21
|
Wang JG, Jian WJ, Li Y, Zhang J. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. Kaohsiung J Med Sci 2021; 37:572-582. [PMID: 33728753 DOI: 10.1002/kjm2.12371] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/16/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Nobiletin is a polymethoxylated flavone present in citrus fruits, which has been reported to have inhibitory effects on tumorigenesis of cancers. However, the biological function of nobiletin in breast cancer (BC) is largely unknown. To investigate the effect of nobiletin on growth of BC cells, the cell viability of BC was measured by MTT assay. In addition, gene and protein expressions were detected by qRT-PCR and western blot, respectively. The apoptosis and pyroptosis of BC cells were tested by flow cytometry. Finally, the correlation between miR-200b and JAZF1 was detected by dual luciferase report. The data indicated that nobiletin inhibited the proliferation of BC cells in a dose-dependent manner. Moreover, miR-200b mimics-induced pyroptosis of BC cells was further increased by nobiletin. Meanwhile, JAZF1 was found to be the target of miR-200b. Moreover, nobiletin induced apoptosis and pyroptosis of BC cells via miR-200b/JAZF1/NF-κB axis. In conclusion, nobiletin inhibited the tumorigenesis of BC via regulation of miR-200b/JAZF1 axis. Thus, nobiletin might serve as a new agent for the treatment of BC.
Collapse
Affiliation(s)
- Ji-Guo Wang
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Wen-Jing Jian
- Department of Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Yang Li
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jing Zhang
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
22
|
Systematically Deciphering the Pharmacological Mechanism of Fructus Aurantii via Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6236135. [PMID: 33542744 PMCID: PMC7843179 DOI: 10.1155/2021/6236135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022]
Abstract
Fructus Aurantii (FA) is a traditional herbal medicine that has been widely used for thousands of years in China and possesses a variety of pharmacological effects. However, the active ingredients in FA and the potential mechanisms of its therapeutic effects have not been fully explored. Here, we applied a network pharmacology approach to explore the potential mechanisms of FA. We identified 5 active compounds from FA and a total of 209 potential targets to construct a protein-protein interaction (PPI) network. Prostaglandin G/H synthase 2 (PTGS2), heat shock protein 90 (HSP90), cell division protein kinase 6 (CDK6), caspase 3 (CASP3), apoptosis regulator Bcl-2 (Bcl-2), and matrix metalloproteinase-9 (MMP9) were identified as key targets of FA in the treatment of multiple diseases. Gene ontology (GO) enrichment demonstrated that FA was highly related to transcription initiation from RNA polymerase II promoter, DNA-templated transcription, positive regulation of transcription, regulation of apoptosis process, and regulation of cell proliferation. Various signaling pathways involved in the treatment of FA were identified, including pathways in cancer and pathways specifically related to prostate cancer, colorectal cancer, PI3K-Akt, apoptosis, and non-small-cell lung cancer. TP53, AKT1, caspase 3, MAPK3, PTGS2, and BAX/BCL2 were related key targets in the identified enriched pathways and the PPI network. In addition, our molecular docking results showed that the bioactive compounds in FA can tightly bind to most target proteins. This article reveals via network pharmacology research the possible mechanism(s) by which FA exerts its activities in the treatment of various diseases and lays a foundation for further experiments and the development of a rational clinical application of FA.
Collapse
|
23
|
Ozkan AD, Sarihan M, Kaleli S. Evaluation of the Effects of Nobiletin on Toll-Like Receptor 3 Signaling Pathways in Prostate Cancer In Vitro. Nutr Cancer 2020; 73:1138-1144. [PMID: 33121290 DOI: 10.1080/01635581.2020.1841247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nobiletin as a nontoxic dietary citrus flavonoid has anticancer effects in cancer. Toll-like receptor three has a role in prostate cancer progression. However the relationship among NOB and TLR3 signaling in PCa has not been elucidated, yet. Therefore, we aimed to evaluate the effects of NOB on the activation of TLR3 signaling pathways in PCa In Vitro. PC-3, LNCaP and HUVEC cells were used for comparison of NOB-mediated TLR3 signaling pathways. After treatment with NOB and Poly I:C alone and NOB + Poly I:C, RT-PCR, western blotting and ELISA assay were performed to evaluate changes in gene and protein expression level, as well as CASP8. NOB potentially induced TLR3/IRF3 signaling pathway and the activation of TLR3/IRF3 signaling pathway by both NOB and Poly I:C was more profound in LNCaP than PC-3 cells. However, the level of TRIF protein and CASP8 decreased after both NOB and Poly I:C incubation. NOB could mediate TLR3 signaling pathways. NOB + Poly I:C could improve the activation of TLR3/IRF3 signaling pathway. However, the activation of TRIF/RIPK1/FADD signaling pathway reduced. Therefore, the elucidation of molecular mechanisms of TLR3 signaling pathways and the combination effects of NOB + Poly I:C on apoptotic cell death are further studied.
Collapse
Affiliation(s)
- Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Mehmet Sarihan
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
24
|
Liu B, Deng Q, Zhang L, Zhu W. Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway. Mol Med Rep 2020; 22:4655-4662. [PMID: 33173956 PMCID: PMC7646848 DOI: 10.3892/mmr.2020.11554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated that nobiletin (NOB) displays anti-oxidative and anti-apoptotic efficacies against multiple pathological insults. However, the potential effects of NOB on the injury caused by ischemia and reperfusion (I/R) in the kidney remain undetermined. In the present study, I/R injury was elicited by right kidney removal and left renal pedicel clamping for 45 min, followed by reperfusion for 24 h. NOB was added at the start of reperfusion. Histological examination, detection of biomarkers in plasma, and measurement of apoptosis induced by endoplasmic reticulum stress (ERS) were used to evaluate renal injury. Additionally, the PI3K/AKT inhibitor LY294002 was also used in mechanistic experiments. NOB pre-treatment significantly reduced renal damage caused by I/R injury, as indicated by decreased serum levels of creatine, blood urea nitrogen and tubular injury scores. Furthermore, NOB inhibited elevated ERS-associated apoptosis, as evidenced by reduced apoptotic rates and ERS-related signaling molecules (such as, C/EBP homologous protein, caspase-12 and glucose-regulated protein of 78 kDa). NOB increased phosphorylation of proteins in the PI3K/AKT pathway. The inhibition of PI3K/AKT signaling with pharmacological inhibitors could reverse the beneficial effects of NOB during renal I/R insult. In conclusion, NOB pre-treatment may alleviate I/R injury in the kidney by inhibiting reactive oxygen species production and ERS-induced apoptosis, partly through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Quanhong Deng
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Lei Zhang
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Wen Zhu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
25
|
Ajji PK, Binder MJ, Walder K, Puri M. Recombinant Balsamin induces apoptosis in liver and breast cancer cells via cell cycle arrest and regulation of apoptotic pathways. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: promising phytomedicines for the treatment of liver diseases. Chin Med 2020; 15:89. [PMID: 32863858 PMCID: PMC7449045 DOI: 10.1186/s13020-020-00371-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver diseases and related complications are major sources of morbidity and mortality, which places a huge financial burden on patients and lead to nonnegligible social problems. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently required. Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF) are frequently used herbal medicines in traditional Chinese medicine (TCM) formulas for the treatment of diverse ailments. A variety of bioactive ingredients have been isolated and identified from AFI and AF, including alkaloids, flavonoids, coumarins and volatile oils. Main body Emerging evidence suggests that flavonoids, especially hesperidin (HD), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangeretin (TN), hesperetin (HT) and eriodictyol (ED) are major representative bioactive ingredients that alleviate diseases through multi-targeting mechanisms, including anti-oxidative stress, anti-cytotoxicity, anti-inflammation, anti-fibrosis and anti-tumor mechanisms. In the current review, we summarize the recent progress in the research of hepatoprotective effects of HD, NIN, NOB, NRG, TN, HT and ED and highlight the potential underlying molecular mechanisms. We also point out the limitations of the current studies and shed light on further in-depth pharmacological and pharmacokinetic studies of these bioactive flavonoids. Conclusion This review outlines the recent advances in the literature and highlights the potential of these flavonoids isolated from AFI and AF as therapeutic agents for the treatment of liver diseases. Further pharmacological studies will accelerate the development of natural products in AFI and AF and their derivatives as medicines with tantalizing prospects in the clinical application.
Collapse
|
27
|
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M, Garg M. Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines 2020; 8:biomedicines8050110. [PMID: 32380783 PMCID: PMC7277899 DOI: 10.3390/biomedicines8050110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon 7319846451, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715749, Iran;
| | - Ebrahim Rahmani Moghadam
- Student Research Committee, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
- Correspondence: (R.M.); (M.N.); (M.G.)
| |
Collapse
|
28
|
Yousef EH, El-Mesery ME, Habeeb MR, Eissa LA. Polo-like kinase 1 as a promising diagnostic biomarker and potential therapeutic target for hepatocellular carcinoma. Tumour Biol 2020; 42:1010428320914475. [PMID: 32252611 DOI: 10.1177/1010428320914475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma is a major cause of cancer mortality worldwide. The outcome of hepatocellular carcinoma depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Polo-like kinase 1 is a serine/threonine kinase that plays essential roles in cell cycle progression and deoxyribonucleic acid damage. Moreover, polo-like kinase 1 knockdown decreases the survival of hepatocellular carcinoma cells; therefore, polo-like kinase 1 is an attractive target for anticancer treatments. Nobiletin, a natural polymethoxy flavonoid, exhibits a potential antiproliferative effect against a wide variety of cancers. This study targets to identify a reliable diagnostic biomarker for hepatocellular carcinoma and provide a potential therapeutic target for its treatment. Polo-like kinase 1 levels were analyzed in 44 hepatocellular carcinoma patients, 33 non-hepatocellular carcinoma liver cirrhosis patients and 15 healthy controls using the enzyme-linked immunosorbent assay method. Receiver operating characteristics curve analysis was used to establish a predictive model for polo-like kinase 1 relative to α-fetoprotein in hepatocellular carcinoma diagnosis. Furthermore, in the in vitro study, gene expressions were assessed by quantitative polymerase chain reaction in two human hepatocellular carcinoma cell lines after treatment with doxorubicin and polo-like kinase 1 inhibitor volasertib (Vola) either alone or in combination with nobiletin. Cell viability was also determined using the crystal violet assay.: Serum polo-like kinase 1 levels in hepatocellular carcinoma patients were significantly higher than liver cirrhosis and control groups (p < 0.0001). Polo-like kinase 1 showed a reasonable sensitivity, specificity, positive predictive value, and negative predictive value in hepatocellular carcinoma diagnosis. Moreover, nobiletin improved inhibition of cell growth induced by Vola and doxorubicin. Regarding reverse transcription polymerase chain reaction results, nobiletin suppressed expressions of polo-like kinase 1 and proliferating cell nuclear antigen and elevated expressions of P53, poly (ADPribose) polymerase 1, and caspase-3. Nobiletin/doxorubicin and nobiletin/Vola showed a significant increase in caspase-3 activity indicating cell apoptosis. Polo-like kinase 1 may be a potential biomarker for hepatocellular carcinoma diagnosis and follow-up during treatment with chemotherapies. In addition, nobiletin synergistically potentiates the doxorubicin and Vola-mediated anticancer effect that may be attributed partly to suppression of polo-like kinase 1 and proliferating cell nuclear antigen expression and enhancement of chemotherapy-induced apoptosis.
Collapse
Affiliation(s)
- Eman H Yousef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Horus University - Egypt, Damietta, Egypt
| | - Mohamed E El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Maha R Habeeb
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
29
|
Wen Y, Cai X, Chen S, Fu W, Chai D, Zhang H, Zhang Y. 7-Methoxy-1-Tetralone Induces Apoptosis, Suppresses Cell Proliferation and Migration in Hepatocellular Carcinoma via Regulating c-Met, p-AKT, NF-κB, MMP2, and MMP9 Expression. Front Oncol 2020; 10:58. [PMID: 32117722 PMCID: PMC7020565 DOI: 10.3389/fonc.2020.00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022] Open
Abstract
This study aimed to determine the anti-proliferative and anti-migratory effects of 7-methoxy-1-tetralone (MT) in hepatocellular carcinoma (HCC) cells. MTT assay assessed HCC cell viability; cell apoptosis of HCC cells was determined by flow cytometry; wound healing assay evaluated HCC cell migratory ability; protein expression levels were assessed using western blot assay; the in vivo antitumor effects of MT were tested in BALB/c nude mice and the pathological changes within the tumor tissues were evaluated by immunohistochemistry. MT treatment significantly suppressed the cell proliferative and migratory potentials of HepG2 cells, and induced HepG2 cell apoptosis. The western blot assay showed that MT treatment caused a suppression on c-Met, phosphorylated AKT (p-AKT), NF-κB, matrix metallopeptidase 2 (MMP2)/MMP9 protein levels in HepG2 cells. Further in vivo animal studies deciphered that MT treatment suppressed tumor growth of HepG2 cells in the nude mice, but had no effect on the body weight and the organ index of liver and spleen. Further immunohistochemistry analysis of the dissected tumor tissues showed that MT treatment significantly suppressed the protein expression levels of NF-κB, MMP9, MMP2, and p-AKT. In summary, the present study demonstrated the anti-tumor effects of MT on the HCC, and MT suppressed HCC progression possibly via regulating proliferation- and migration-related mediators including c-Met, p-AKT, NF-κB, MMP2, and MMP9 in HepG2 cells.
Collapse
Affiliation(s)
- Ying Wen
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Cell Biology and Medical Genetics, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyan Cai
- Department of Cell Biology and Medical Genetics, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shaolian Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Fu
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Cell Biology and Medical Genetics, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dong Chai
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Cell Biology and Medical Genetics, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huainian Zhang
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Cell Biology and Medical Genetics, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongli Zhang
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Cell Biology and Medical Genetics, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
30
|
Ortega JT, Serrano ML, Suárez AI, Baptista J, Pujol FH, Cavallaro LV, Campos HR, Rangel HR. Antiviral activity of flavonoids present in aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes Simplex Virus in vitro. EXCLI JOURNAL 2019; 18:1037-1048. [PMID: 31762727 PMCID: PMC6868923 DOI: 10.17179/excli2019-1837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022]
Abstract
Marcetia taxifolia is a neotropical plant present in South America and it has been evaluated in several biological models due to the presence of active metabolites. Nevertheless, there is a limited quantity of studies related to the antiviral activity of the compounds present in this genus. In our work, the antiviral effect of the compounds isolated from the aerial parts of Marcetia taxifolia was evaluated against Hepatitis B virus (HBV), Herpes Simplex Virus type 1 (HSV-1), and Poliovirus type 1 (PV-1). The cytopathic effect and viral quantification by qPCR were determined as indicative of antiviral activity. Our data show that myricetin rhamnoside (MyrG), myricetin-3-α-O-ramnosil (1→6)-α-galactoside (MyrGG), 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (PMF), 5-hydroxy-3,6,7,3',4'pentamethoxyflavone (PMF-OH) had antiviral activity without cytotoxic effects. The methoxyflavones PMF and PMF-OH were the most active compounds, showing an antiviral effect against all the evaluated viruses. Computational studies showed that these compounds could interact with the Reverse Transcriptase. Altogether, these results suggest that the flavonoids (related to myricetin and methoxyflavones) are the main antiviral compounds present in the aerial parts of Marcetia taxifolia. Furthermore, our results showed that the methoxyflavones have a broad antiviral activity, which represents an opportunity to evaluate these flavonoids as lead molecules to develop new antiviral compounds.
Collapse
Affiliation(s)
- Joseph Thomas Ortega
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María Luisa Serrano
- Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Alírica Isabel Suárez
- Laboratorio de Productos Naturales, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Jani Baptista
- Laboratorio de Productos Naturales, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Lucía Vicenta Cavallaro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Héctor Rodolfo Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Héctor Rafael Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| |
Collapse
|
31
|
Wei D, Zhang G, Zhu Z, Zheng Y, Yan F, Pan C, Wang Z, Li X, Wang F, Meng P, Zheng W, Yan Z, Zhai D, Lu Z, Yuan J. Nobiletin Inhibits Cell Viability via the SRC/AKT/STAT3/YY1AP1 Pathway in Human Renal Carcinoma Cells. Front Pharmacol 2019; 10:690. [PMID: 31354472 PMCID: PMC6635658 DOI: 10.3389/fphar.2019.00690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nobiletin is a polymethoxy flavonoid isolated from Citrus depressa and Citrus reticulata. It has been reported that nobiletin can suppress tumors. We primarily explored the antitumor effects of nobiletin and the associated potential mechanisms in ACHN and Caki-2 renal carcinoma cells. A CCK-8 assay and cloning experiments were used to assess cell viability, and a transwell assay and scratch test were used to assess metastatic ability. The cell cycle was analyzed by flow cytometry, whereas apoptosis was analyzed using flow cytometry and a terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. Protein expression was examined by Western blot and immunofluorescence. Renal cancer cells were subcutaneously transplanted into nude mice for in vivo studies. The data showed that nobiletin administration significantly dose- and time-dependently suppressed renal cancer cell proliferation; moreover, nobiletin treatment induced cell cycle arrest in the G0/G1 phase and promoted apoptosis. Immunofluorescence analysis indicated that nobiletin decreased the nuclear localization of signal transducer and activator of transcription 3 (STAT3) and YY1-associated protein 1 (YY1AP1). Western blot showed that the levels of phosphorylated SRC, phosphorylated AKT serine/threonine kinase (AKT), and phosphorylated STAT3 were decreased, whereas that of phosphorylated YY1AP1 was increased. The results further showed that application of insulin-like growth factor 1 (IGF1) was able to reverse the nobiletin-induced changes in the levels of phosphorylated AKT, phosphorylated STAT3, and phosphorylated YY1AP1, and could also reverse the antitumor effects of nobiletin. The results of in vivo experiments showed that, compared to the control, tumor volume and weight were both reduced following nobiletin treatment. In conclusion, our study demonstrated that nobiletin can inhibit renal carcinoma cell viability and provides a novel therapeutic approach for the treatment of kidney cancer.
Collapse
Affiliation(s)
- Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Yan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chongxian Pan
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Zhiyong Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xian Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Meng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhao Yan
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongsheng Zhai
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Güney Eskiler G, Deveci Özkan A, Kaleli S. Metastatik Prostat Kanserinde Nobiletinin Sitotoksik ve Apoptotik Etkisinin Belirlenmesi. ACTA ACUST UNITED AC 2018. [DOI: 10.31832/smj.485666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Liu J, Wang S, Tian S, He Y, Lou H, Yang Z, Kong Y, Cao X. Nobiletin inhibits breast cancer via p38 mitogen-activated protein kinase, nuclear transcription factor-κB, and nuclear factor erythroid 2-related factor 2 pathways in MCF-7 cells. Food Nutr Res 2018; 62:1323. [PMID: 30574046 PMCID: PMC6294833 DOI: 10.29219/fnr.v62.1323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Breast cancer is one of the most commonly diagnosed cancers in women, with a high mortality rate. OBJECTIVE In the present study, we evaluated the anticancer effect of nobiletin, a flavone glycoside, on the breast cancer cell line MCF-7. RESULT Cell viability and proliferation decreased and cell morphology changed from diamond to round after being treated with nobiletin. Nobiletin induced apoptosis of breast cancer MCF-7 cells via regulating the protein expression of Bax, Bcl-2, cleaved caspase-3, and p53. The expression of Bcl-2 decreased, while the expression of Bax and p53 increased in MCF-7 cells treated with nobiletin. Meanwhile, nobiletin inhibited cell migration by downregulating the protein expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Moreover, phosphorylation of p38 was increased, and the translocation of p65 and nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus was decreased, which suggested that the anticancer effects of nobiletin might at least partially rely on mediating the p38 mitogen-activated protein kinase, nuclear transcription factor-κB, and Nrf2 pathways in MCF-7 breast cancer cells. CONCLUSION AND RECOMMENDATION Our data showed that nobiletin was a potential antitumor drug, and it provided some experimental basis for the clinical application of tumor therapy.
Collapse
Affiliation(s)
- Jianli Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Shuai Wang
- School of Life Science, Liaoning University, Shenyang, China
| | - Siqi Tian
- School of Life Science, Liaoning University, Shenyang, China
| | - Yin He
- School of Life Science, Liaoning University, Shenyang, China
| | - Hong Lou
- School of Life Science, Liaoning University, Shenyang, China
| | - Zhijun Yang
- School of Life Science, Liaoning University, Shenyang, China
| | - Yuchi Kong
- School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
34
|
Li ZR, Yang L, Zhen J, Zhao Y, Lu ZN. Nobiletin protects PC12 cells from ERS-induced apoptosis in OGD/R injury via activation of the PI3K/AKT pathway. Exp Ther Med 2018; 16:1470-1476. [PMID: 30116396 DOI: 10.3892/etm.2018.6330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nobiletin (NOB) possesses multiple pharmacological effects, but its anti-apoptotic property has acquired a great deal of attention. Endoplasmic reticulum (ER) stress (ERS)-induced apoptosis acts as the pivotal aetiology in neuronal oxygen-glucose deprivation and reoxygenation (OGD/R) injury. The aim of this study focused on whether NOB exerts neuro-protective effects on OGD/R injury by repressing ERS-induced apoptosis. The PC12 neuronal cell line was subjected to 4 h OGD and 24 h reoxygenation following NOB treatment. A PI3K/AKT inhibitor (LY294002) was added during the mechanistic experiments. Cell viability, lactate dehydrogenase (LDH) release and apoptosis were determined. Western blotting was used to measure protein expression levels. The results showed that OGD/R caused neuronal damageas exhibited by the increase in LDH release and the reduction of cellular viability. Moreover, ERS-induced apoptosis was markedly stimulated by OGD/R in PC12 cells, as evidenced by the elevation in the apoptotic rate and protein levels of C/EBP homologous protein/glucose-regulated protein-78. However, NOB administration significantly reversed neuronal damage and the ERS-induced apoptosis in response to OGD/R injury. Mechanistic detections showed that the neuron-favorable and ERS-repressing contributions of NOB were, in part, a result of the activation of the PI3K/AKT pathway, which was validated by a specific PI3K/AKT inhibitor (LY294002). Therefore, NOB protects PC12 cells from ERS-induced apoptosis in OGD/R injury mainly through enhancement of the PI3K/AKT pathway, which may provide a novel therapeutic avenue for the prevention of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zi-Ru Li
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Yang
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Zhen
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zhao
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zu-Neng Lu
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
35
|
Sp N, Kang DY, Kim DH, Park JH, Lee HG, Kim HJ, Darvin P, Park YM, Yang YM. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis. Nutrients 2018; 10:nu10060772. [PMID: 29914089 PMCID: PMC6024609 DOI: 10.3390/nu10060772] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36) is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1), and then interacting with transforming growth factor beta 1 (TGFβ1). CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin's anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3) rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS) element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), suggesting that nobiletin also acts through the CD36/ (STAT3)/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Doh Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Inha University College of Medicine, 27 Inhang-Ro, Jung Gu, Incheon 400-103, Korea.
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Korea.
| | - Hye Jee Kim
- King's College London GKT School of Medical Education, London SE1 1UL, UK.
| | - Pramod Darvin
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825 Doha, Qatar.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
36
|
Shu Z, He W, Shahen M, Guo Z, Shu J, Wu T, Bian X, Shar AH, Farag MR, Alagawany M, Liu C. Clarifying of the potential mechanism of Sinisan formula for treatment of chronic hepatitis by systems pharmacology method. Biomed Pharmacother 2018; 100:532-550. [PMID: 29482047 DOI: 10.1016/j.biopha.2018.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic hepatitis is a general designation class of diseases, which results in different degrees of liver necrosis and inflammatory reaction, followed by liver fibrosis, may eventually develop into cirrhosis. However, the molecular pathogenesis of chronic hepatitis is too complex to elucidate. Herbal medicines, featured with multiple targets and compounds, have long displayed therapeutic effect in treating chronic hepatitis, though their molecular mechanisms of contribution remain indistinct. This research utilized the network pharmacology to confirm the molecular pathogenesis of chronic hepatitis through providing a comprehensive analysis of active chemicals, drug targets and pathways' interaction of Sinisan formula for treating chronic hepatitis. The outcomes showed that 80 active ingredients of Sinisan formula interacting with 91 therapeutic proteins were authenticated. Sinisan formula potentially participates in immune modulation, anti-inflammatory and antiviral activities, even has regulating effects on lipid metabolism. These mechanisms directly or indirectly are involved in curing chronic hepatitis by an interaction way. The network pharmacology based analysis demonstrated that Sinisan has multi-scale curative activity in regulating chronic hepatitis related biological processes, which provides a new potential way for modern medicine in the treatment of chronic diseases.
Collapse
Affiliation(s)
- Zhiming Shu
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Wang He
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Mohamed Shahen
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China; Zoology Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt
| | - Zihu Guo
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Jia Shu
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Tiantian Wu
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Xiaoyu Bian
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Akhtar Hussain Shar
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Mayada Ragab Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Chaobin Liu
- College of Forestry, Northwest A&F University, Shaanxi Yangling, 712100, China.
| |
Collapse
|
37
|
Matsumoto S, Tominari T, Matsumoto C, Yoshinouchi S, Ichimaru R, Watanabe K, Hirata M, Grundler FMW, Miyaura C, Inada M. Effects of Polymethoxyflavonoids on Bone Loss Induced by Estrogen Deficiency and by LPS-Dependent Inflammation in Mice. Pharmaceuticals (Basel) 2018; 11:ph11010007. [PMID: 29361674 PMCID: PMC5874703 DOI: 10.3390/ph11010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 01/12/2023] Open
Abstract
Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.
Collapse
Affiliation(s)
- Shigeru Matsumoto
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Shosei Yoshinouchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Ryota Ichimaru
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Kenta Watanabe
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Florian M W Grundler
- Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| | - Chisato Miyaura
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Masaki Inada
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
38
|
Cheng HL, Hsieh MJ, Yang JS, Lin CW, Lue KH, Lu KH, Yang SF. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression. Oncotarget 2018; 7:35208-23. [PMID: 27144433 PMCID: PMC5085222 DOI: 10.18632/oncotarget.9106] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ko-Haung Lue
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ko-Hsiu Lu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
39
|
Tang XL, Yan L, Zhu L, Jiao DM, Chen J, Chen QY. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway. J Pharmacol Sci 2017; 135:1-7. [DOI: 10.1016/j.jphs.2017.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
|
40
|
Identification of Phytochemicals Targeting c-Met Kinase Domain using Consensus Docking and Molecular Dynamics Simulation Studies. Cell Biochem Biophys 2017; 76:135-145. [PMID: 28852971 PMCID: PMC7090793 DOI: 10.1007/s12013-017-0821-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/02/2017] [Indexed: 11/08/2022]
Abstract
c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as “fourth generation inhibitors” constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound–Activity–Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein–ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson–Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.
Collapse
|
41
|
Li S, Li H, Xu Y, Lv X. Identification of candidate biomarkers for epithelial ovarian cancer metastasis using microarray data. Oncol Lett 2017; 14:3967-3974. [PMID: 28943904 DOI: 10.3892/ol.2017.6707] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/08/2017] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a common cancer in women worldwide. The present study assessed effective biomarkers for the prognosis of EOC metastasis. The GSE30587 dataset, containing 9 EOC primary tumor samples and 9 matched omental metastasis samples, was analyzed. Following normalization, the differentially expressed genes (DEGs) between these samples were identified using the limma package for R. Subsequently, pathway enrichment analysis was performed using ClueGO, and a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes database. The microRNA (mRNA/miR)-target network was established using the multiMiR package. A set of 272 DEGs was identified in metastatic EOC samples, including 189 upregulated and 83 downregulated genes. Collagen type I α 1 chain (COL1A1), COL1A2, collagen type XI α 1 chain (COL11A1) and thrombospondin (THBS)1 were enriched in the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), focal adhesion and extracellular matrix (ECM)-receptor interaction signaling pathways. THBS1 and tissue inhibitor of metalloproteinase (TIMP)3 were two dominant nodes in the PPI network and were key in the miRNA-target network, being targeted by hsa-miR-1. Multiple DEGs and miRNAs were identified as potential biomarkers for the prognosis of EOC metastasis in the present study, which likely affected metastasis by regulating the PI3K/Akt, ECM-receptor interaction and cell adhesion signaling pathways. In addition, THBS1 and TIMP3 were identified as potential targets of hsa-miR-1.
Collapse
Affiliation(s)
- Su Li
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hua Li
- Department of Obstetrics and Gynecology, The People's Hospital of Zhangqiu, Zhangqiu, Shandong 250014, P.R. China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Shandong Coal Taishan Sanatorium, Taian, Shandong 271000, P.R. China
| | - Xiaomei Lv
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
42
|
Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK, Song KD, Park YM, Yang YM. Nobiletin Inhibits Angiogenesis by Regulating Src/FAK/STAT3-Mediated Signaling through PXN in ER⁺ Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18050935. [PMID: 28468300 PMCID: PMC5454848 DOI: 10.3390/ijms18050935] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor angiogenesis is one of the major hallmarks of tumor progression. Nobiletin is a natural flavonoid isolated from citrus peel that has anti-angiogenic activity. Steroid receptor coactivator (Src) is an intracellular tyrosine kinase so that focal adhesion kinase (FAK) binds to Src to play a role in tumor angiogenesis. Signal transducer and activator of transcription 3 (STAT3) is a marker for tumor angiogenesis which interacts with Src. Paxillin (PXN) acts as a downstream target for both FAK and STAT3. The main goal of this study was to assess inhibition of tumor angiogenesis by nobiletin in estrogen receptor positive (ER+) breast cancer cells via Src, FAK, and STAT3-mediated signaling through PXN. Treatment with nobiletin in MCF-7 and T47D breast cancer cells inhibited angiogenesis markers, based on western blotting and RT-PCR. Validation of in vitro angiogenesis in the human umbilical vein endothelial cells (HUVEC) endothelial cell line proved the anti-angiogenic activity of nobiletin. Electrophoretic mobility shift assay and the ChIP assay showed that nobiletin inhibits STAT3/DNA binding activity and STAT3 binding to a novel binding site of the PXN gene promoter. We also investigated the migration and invasive ability of nobiletin in ER+ cells. Nobiletin inhibited tumor angiogenesis by regulating Src, FAK, and STAT3 signaling through PXN in ER+ breast cancer cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Wan Seop Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
43
|
Zhang X, Zheng K, Li C, Zhao Y, Li H, Liu X, Long Y, Yao J. Nobiletin inhibits invasion via inhibiting AKT/GSK3β/β-catenin signaling pathway in Slug-expressing glioma cells. Oncol Rep 2017; 37:2847-2856. [PMID: 28339056 DOI: 10.3892/or.2017.5522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a pivotal event in tumor progression during which cancer cells undergo dramatic changes acquiring highly invasive properties. In this study, we found that nobiletin, a polymethoxylated flavone, suppressed migration and invasion in both U87 and U251 glioma cells. Expression of epithelial markers (E-cadherin and occludin) was upregulated; mesenchymal markers (N-cadherin, fibronectin) and the transcriptional factor Slug were downregulated after nobiletin treatment. Transforming growth factor β (TGF-β) was applied to stimulate EMT and the results showed that nobiletin not only influenced basal level cell migration but also prevented TGF-β-triggered migration and EMT, with the AKT/GSK3β/β-catenin signaling pathway greatly involved. Furthermore, nobiletin remarkably diminished TGF-β-induced β-catenin nuclear translocation and the binding to the Slug promoter. It is worth noting that nobiletin almost blocked invasion in Slug-expressing U87 and U251 cells, and only exhibiting faint effect on non-Slug-expressing U343 glioma cells. Reinforced Slug expression in U343 cells by transfecting Slug plasmid was significantly attenuated by nobiletin, demonstrating the essential role of Slug in the anti-metastasis effect of nobiletin. Nobiletin repressed tumor growth in vivo and abrogated EMT in nude mice bearing U87-Luc xenografts, as demonstrated by Xenogen IVIS imaging and immunohistochemistry assay. Our findings suggested that nobiletin might have a great potential for treating glioblastoma.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yonghui Zhao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Heyang Li
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Xuguang Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yinbo Long
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Junchao Yao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
44
|
Hong GE, Lee HJ, Kim JA, Yumnam S, Raha S, Saralamma VVG, Heo JD, Lee SJ, Kim EH, Won CK, Kim GS. Korean Byungkyul - Citrus platymamma Hort.et Tanaka flavonoids induces cell cycle arrest and apoptosis, regulating MMP protein expression in Hep3B hepatocellular carcinoma cells. Int J Oncol 2016; 50:575-586. [DOI: 10.3892/ijo.2016.3816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/13/2016] [Indexed: 11/05/2022] Open
|
45
|
Sharikadze N, Jojua N, Sepashvili M, Zhuravliova E, Mikeladze DG. Mitochondrial Target of Nobiletin's Action. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nobiletin is an O-methylated flavonoid found in citrus peels that have anticancer, antiviral, neuroprotective, anti-inflammatory activities and depending on the cell types exhibits both pro- or anti-apoptotic properties. We have found that nobiletin decreases oxygen consumption by bovine brain isolated mitochondria in the presence of glutamate and malate and increases in the presence of succinate. In parallel, nobiletin increases NADH oxidation, a-ketoglutarate dehydrogenase activities and through matrix substrate-level phosphorylation elevates the a-ketoglutarate-dependent production of ATP. In addition, nobiletin reduces the production of peroxides in the presence of complex I substrates and slightly enhances succinate-driven H2O2 formation. Besides, nobiletin induces transient elevation of membrane potential followed by mild depolarization. Affinity purified nobiletin binding proteins revealed one major anti-NDUFV1 positive protein with 52kD and NADH: ubiquinone oxidoreductase activity. This fraction can produce peroxide that is inhibited by nobiletin. We propose that nobiletin may act as a mild “uncoupler”, which through activation of a-ketoglutarate dehydrogenase (a-KGDH)-complex and acceleration of matrix substrate-level phosphorylation maintains membrane potential at an abnormal level. This switch in mitochondrial metabolism could elevate succinate-driven oxygen consumption that may underlay in both pro- and anti-apoptotic effects of nobiletin.
Collapse
Affiliation(s)
- Nino Sharikadze
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Natia Jojua
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Maia Sepashvili
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Elene Zhuravliova
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia
| | - David G Mikeladze
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia
| |
Collapse
|
46
|
Lu Y, Chen J, Ren D, Yang X, Zhao Y. Hepatoprotective effects of phloretin against CCl4-induced liver injury in mice. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1258546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Jinwen Chen
- School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Yan Zhao
- School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
47
|
Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells. Sci Rep 2015; 5:18789. [PMID: 26689156 PMCID: PMC4686932 DOI: 10.1038/srep18789] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023] Open
Abstract
Multidrug resistance (MDR) is the major obstacle to the successful chemotherapy treatment of many cancers. Here we found that nobiletin, a citrus methoxyflavone, significantly sensitized ABCB1 overexpressing cells A2780/T and A549/T to chemotherapeutic agents such as paclitaxel (a 433-fold reversal of MDR to PTX at 9 μM), doxorubicin (DOX), docetaxel and dounorubicin. Nobiletin profoundly inhibited ABCB1 transporter activity since it significantly increased the intracellular accumulation of DOX and Flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the mRNA and protein expression of ABCB1. Moreover, nobiletin stimulated ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, molecular docking analysis also identified favorable binding of nobiletin with the transmemberane region site 1 of homology modeled human ABCB1 transporter. Moreover, the Nrf2 protein expression and phosphorylation levels of AKT/ERK were suppressed by co-treated with nobiletin and PTX at the reversal concentrations, suggesting that inhibition of the AKT/ERK/Nrf2 pathway was associated with the sensitizing effect of nobiletin. These findings encourage further animal and clinical MDR studies with the combination therapy of nobiletin and chemotherapeutic drugs.
Collapse
|
48
|
Lien LM, Wang MJ, Chen RJ, Chiu HC, Wu JL, Shen MY, Chou DS, Sheu JR, Lin KH, Lu WJ. Nobiletin, a Polymethoxylated Flavone, Inhibits Glioma Cell Growth and Migration via Arresting Cell Cycle and Suppressing MAPK and Akt Pathways. Phytother Res 2015; 30:214-21. [PMID: 26560814 DOI: 10.1002/ptr.5517] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
Abstract
Nobiletin, a bioactive polymethoxylated flavone (5,6,7,8,3(') ,4(') -hexamethoxyflavone), is abundant in citrus fruit peel. Although nobiletin exhibits antitumor activity against various cancer cells, the effect of nobiletin on glioma cells remains unclear. The aim of this study was to determine the effects of nobiletin on the human U87 and Hs683 glioma cell lines. Treating glioma cells with nobiletin (20-100 µm) reduced cell viability and arrested the cell cycle in the G0/G1 phase, as detected using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide (PI) staining, respectively; however, nobiletin did not induce cell apoptosis according to PI-annexin V double staining. Data from western blotting showed that nobiletin significantly attenuated the expression of cyclin D1, cyclin-dependent kinase 2, cyclin-dependent kinase 4, and E2 promoter-binding factor 1 (E2F1) and the phosphorylation of Akt/protein kinase B and mitogen-activated protein kinases, including p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Our data also showed that nobiletin inhibited glioma cell migration, as detected by both functional wound healing and transwell migration assays. Altogether, the present results suggest that nobiletin inhibits mitogen-activated protein kinase and Akt/protein kinase B pathways and downregulates positive regulators of the cell cycle, leading to subsequent suppression of glioma cell proliferation and migration. Our findings evidence that nobiletin may have potential for treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Li-Ming Lien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ray-Jade Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hou-Chang Chiu
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Jia-Lun Wu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Yi Shen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Duen-Suey Chou
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.,Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Wan-Jung Lu
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
49
|
Wang ZM, Song N, Ren YL. Anti-proliferative and cytoskeleton-disruptive effects of icariin on HepG2 cells. Mol Med Rep 2015; 12:6815-20. [PMID: 26329131 DOI: 10.3892/mmr.2015.4282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
Abstract
Several biological properties of icariin have been identified, including its anticancer effect. However, the potential mechanisms underlying the effect of icariin on HepG2 hepatocellular carcinoma cells remain to be elucidated. The aim of the present study was to examine the effects of icariin on the proliferation and cytoskeleton of HepG2 cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5 diphenyltetrazolium bromide assay was used to assess the antiproliferative effects of icariin and to determine the optimal concentration and treatment schedule of icariin on the HepG2 cells. Cell cycle analysis was performed using fluorescence activated cell sorting, the protein expression of B‑cell lymphoma (Bcl)‑2 was determined using immunohistochemical and western blot analyses, and F‑actin in the cells was examined using confocal microscopy. The chemotherapeutic drug, oxaliplatin, was used as a positive control. The results demonstrated that the optimal concentration of icarrin to produce an antiproliferative effect on HepG2 cells was 10‑5 mol/l, and the optimal treatment duration was 72 h. The icariin group had a significantly higher proportion of cells in the G0/G1 phase, compared with the control group, treated with high glucose Dulbecco's modified Eagles medium with 10% fetal bovine serum (P<0.05). The proportion of HepG2 cells in the S phase was significantly lower in the oxaliplatin (24.19%; P<0.05) and icariin (21.07%; P<0.01) groups, compared with the control group (28.62%). Icariin markedly decreased the expression of Bcl‑2, compared with the control (P<0.01), and disrupted the polymerization of F‑actin filaments in the HepG2 cells. Therefore, the present study demonstrated that, at an optimum concentration of 10‑5 mol/l, icariin inhibited the proliferation of the HepG2 cells, promoted apoptosis by decreasing the expression of Bcl‑2, and disrupted the actin cytoskeleton.
Collapse
Affiliation(s)
- Zhi-Min Wang
- The First Clinical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Nan Song
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Yan-Ling Ren
- School of Chinese Medical Formulae, College of Basic Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| |
Collapse
|
50
|
Raha S, Yumnam S, Hong GE, Lee HJ, Saralamma VVG, Park HS, Heo JD, Lee SJ, Kim EH, Kim JA, Kim GS. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int J Oncol 2015. [PMID: 26201693 DOI: 10.3892/ijo.2015.3095] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naringin, one of the major bioflavonoid of Citrus, has been demonstrated as potential anticancer agent. However, the underlying anticancer mechanism still needs to be explored further. This study investigated the inhibitory effect of Naringin on human AGS cancer cells. AGS cell proliferation was inhibited by Naringin in a dose- and time-dependent manner. Naringin did not induce apoptotic cell death, determined by no DNA fragmentation and the reduced Bax/Bcl-xL ratio. Growth inhibitory role of Naringin was observed by western blot analysis demonstrating downregulation of PI3K/Akt/mTOR cascade with an upregulated p21CIPI/WAFI. Formation of cytoplasmic vacuoles and autophagosomes were observed in Naringin-treated AGS cells, further confirmed by the activation of autophagic proteins Beclin 1 and LC3B with a significant phosphorylation of mitogen activated protein kinases (MAPKs). Collectively, our observed results determined that anti-proliferative activity of Naringin in AGS cancer cells is due to suppression of PI3K/Akt/mTOR cascade via induction of autophagy with activated MAPKs. Thus, the present finding suggests that Naringin induced autophagy- mediated growth inhibition shows potential as an alternative therapeutic agent for human gastric carcinoma.
Collapse
Affiliation(s)
- Suchismita Raha
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Silvia Yumnam
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Gyeong Eun Hong
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Ho Jeong Lee
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Hyeon-Soo Park
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju 666-844, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju 666-844, Republic of Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Moonsan, Jinju 660-759, Republic of Korea
| | - Jin-A Kim
- Department of Physical Therapy, International University of Korea, Moonsan, Jinju 660-759, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| |
Collapse
|