1
|
Dutton-Regester KJ, Roser A, Meer H, Hill A, Pyne M, Al-Najjar A, Whaites T, Fenelon JC, Buchanan KL, Keeley T, Renfree MB, Johnston SD. Body fat and circulating leptin levels in the captive short-beaked echidna (Tachyglossus aculeatus). J Comp Physiol B 2024; 194:457-471. [PMID: 38748188 PMCID: PMC11316712 DOI: 10.1007/s00360-024-01559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 08/12/2024]
Abstract
It is possible that the reproductive strategy of the short-beaked echidna is related to seasonal changes in fat deposition and energy availability, regulated by seasonal changes in endocrine function. We predicted that circulating leptin levels would be directly proportional to adiposity during most of the year, but that a change in this relationship would occur during the pre-breeding season to allow increased fat deposition. To test this hypothesis, we made use of a captive colony of echidnas to describe and quantify changes in fat distribution and the adipostatic hormone leptin. First we assessed seasonal changes in circulating leptin levels, body mass and adiposity for three male and three female adult echidnas maintained on a standard diet. Second, we explored the relationship between circulating leptin levels and increased caloric intake for an additional five adult female echidnas that were provided with supplemented nutrition. Third we visualised fat distribution in male and female adult echidnas using magnetic resonance imaging (MRI) before and after the breeding season, to determine where fat is deposited in this species. For echidnas maintained on the standard diet, there were no seasonal changes in body mass, body fat or plasma leptin levels. However, female echidnas provided with supplemented nutrition had significantly elevated plasma leptin levels during the breeding season, compared to the pre-and post- breeding periods. MRI showed substantial subcutaneous fat depots extending dorso-laterally from the base of the skull to the base of the tail, in both sexes. Pre-breeding season, both sexes had considerable fat deposition in the pelvic/rump region, whilst the female echidna accumulated most fat in the abdominal region. This study shows that male and female echidnas accumulate body fat in the pelvic/rump and the abdominal regions, respectively and that circulating leptin may promote fattening in female echidnas during the breeding season by means of leptin resistance. However, further research is required to evaluate the precise relationship between seasonal changes in leptin and adiposity.
Collapse
Affiliation(s)
- Kate J Dutton-Regester
- School of the Environment, The University of Queensland, Gatton, 4343, Australia.
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia.
| | - Alice Roser
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Haley Meer
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Andrew Hill
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Michael Pyne
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Aiman Al-Najjar
- Centre for Advanced Imaging, The University of Queensland, Brisbane, 4067, Australia
| | - Tim Whaites
- Queensland X-ray, South Port, QLD, 4215, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Tamara Keeley
- School of the Environment, The University of Queensland, Gatton, 4343, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stephen D Johnston
- School of the Environment, The University of Queensland, Gatton, 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia
| |
Collapse
|
2
|
Volyanskaya AR, Akberdin IR, Kulyashov MA, Yevshin IS, Romanov MN, Shagimardanova EI, Gusev OA, Kolpakov FA. A bird's-eye overview of molecular mechanisms regulating feed intake in chickens-with mammalian comparisons. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:61-74. [PMID: 38737579 PMCID: PMC11087724 DOI: 10.1016/j.aninu.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, a lot of research has been conducted to explore poultry feeding behavior. However, up to now, the processes behind poultry feeding behavior remain poorly understood. The review generalizes modern expertise about the hormonal regulation of feeding behavior in chickens, focusing on signaling pathways mediated by insulin, leptin, and ghrelin and regulatory pathways with a cross-reference to mammals. This overview also summarizes state-of-the-art research devoted to hypothalamic neuropeptides that control feed intake and are prime candidates for predictors of feeding efficiency. Comparative analysis of the signaling pathways that mediate the feed intake regulation allowed us to conclude that there are major differences in the processes by which hormones influence specific neuropeptides and their contrasting roles in feed intake control between two vertebrate clades.
Collapse
Affiliation(s)
- Anastasiia R. Volyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Mikhail A. Kulyashov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Ivan S. Yevshin
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury, UK
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Russia
| | - Elena I. Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Oleg A. Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement By Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Fedor A. Kolpakov
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| |
Collapse
|
3
|
Saneyasu T. Recent Research on Mechanisms of Feeding Regulation in Chicks. J Poult Sci 2024; 61:2024012. [PMID: 38681189 PMCID: PMC11039390 DOI: 10.2141/jpsa.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Food intake affects poultry productivity. A complete understanding of these regulatory mechanisms provides new strategies to improve productivity. Food intake is regulated by complex mechanisms involving many factors, including the central nervous system, gastrointestinal tract, hormones, and nutrients. Although several studies have been conducted to elucidate regulatory mechanisms in chickens, the mechanisms remain unclear. To update the current knowledge on feeding regulation in chickens, this review focuses on recent findings that have not been summarized in previous reviews, including spexins, adipokines, neurosecretory proteins GL and GM, and central intracellular signaling factors.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501,
Japan
| |
Collapse
|
4
|
Rossi GS, Welch KC. Leptin Resistance Does Not Facilitate Migratory Fattening in Ruby-Throated Hummingbirds (Archilochus Colubris). Integr Comp Biol 2023; 63:1075-1086. [PMID: 37248054 DOI: 10.1093/icb/icad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
In mammals, leptin is an important energy homeostasis hormone produced by adipose tissue. Circulating leptin concentrations correlate positively with fat mass and act in a negative feedback fashion to inhibit food intake and increase energy expenditure, thereby preventing fat gain. For some species, leptin resistance is advantageous during times of year where fat gain is necessary (e.g., prior to hibernation). While the function of leptin in birds remains controversial, seasonal leptin resistance may similarly benefit migratory species. Here, we used the ruby-throated hummingbird (Archilochus colubris) to test the hypothesis that leptin resistance promotes fattening prior to migration. We predicted that during the migratory fattening period, leptin levels should correlate positively with fat mass but should not inhibit food intake or increase energy expenditure, resulting in fattening. We tracked the body (fat) mass, the concentration of leptin-like protein in the urine, and the food intake of 12 captive hummingbirds from August 2021 to January 2022. In a subset of hummingbirds, we also quantified voluntary physical activity as a proxy for energy expenditure. We found remarkable age-related variation in fattening strategies, with juveniles doubling their body fat by mid-September and adults exhibiting only a 50% increase. Changes in fat mass were strongly associated with increased food intake and reduced voluntary activity. However, we found no correlation between leptin-like protein concentration and fat mass, food intake, or voluntary activity. Since increased torpor use has been shown to accelerate migratory fattening in ruby-throated hummingbirds, we also hypothesized that leptin is a mediator of torpor use. In an experimental manipulation of circulating leptin, however, we found no change in torpor use, body fat, or food intake. Overall, our findings suggest that leptin may not act as an adipostat in hummingbirds, nor does leptin resistance regulate how hummingbirds fatten prior to migration.
Collapse
Affiliation(s)
- Giulia S Rossi
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Kenneth C Welch
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
5
|
Zhu Q, Cai Y, Xiao C, Kong L, Pan X, Song B, Song Z. RNA sequencing transcriptomics and metabolomics in three poultry breeds. Sci Data 2023; 10:594. [PMID: 37679362 PMCID: PMC10484955 DOI: 10.1038/s41597-023-02505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Chickens are remarkably versatile animals that are used as model organisms for biomedical research. Here, we performed metabolomic and RNA sequencing (RNA-Seq) transcriptomic analyses of the hypothalamus, liver tissue and serum of poultry with different genetic backgrounds, providing detailed information for hypothalamus and liver tissue at the transcriptional level and for liver tissue and serum at the metabolite level. We present two datasets generated from 36 samples from three poultry breeds using high-throughput RNA-Seq and liquid chromatography coupled with mass spectrometry acquisition (LC/MS). The transcriptomic and metabolomic data obtained for poultry of different genetic backgrounds will be a valuable resource for further studies on this model organism.
Collapse
Affiliation(s)
- Qidong Zhu
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, Shandong, 250200, China
| | - Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Linglian Kong
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
6
|
Murugesan S, Nidamanuri AL. Role of leptin and ghrelin in regulation of physiological functions of chicken. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Churchman E, MacDougall-Shackleton SA. Leptin administration does not influence migratory behaviour in white-throated sparrows ( Zonotrichia albicollis). PeerJ 2022; 10:e13584. [PMID: 35726262 PMCID: PMC9206435 DOI: 10.7717/peerj.13584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Migratory flights by birds are among the most energetically demanding forms of animal movement, and are primarily fueled by fat as an energy source. Leptin is a critical fat-regulation hormone associated with energy balance in non-avian species but its function in birds is highly controversial. Prior research indicated the effects of leptin differed between birds in migratory condition or not, but no research has assessed the effect of leptin on migratory behaviour itself. In this study, our objective was to determine if leptin affects migratory restlessness and fat deposition in migratory songbirds. We used photoperiod manipulation to induce spring migratory condition, and measured migratory restlessness in leptin-injected and saline-injected white-throated sparrows (Zonotrichia albicollis). Leptin treatment had no effect on migratory restlessness nor fat deposition, providing evidence that leptin does not influence avian migratory motivation or behaviour. Our results also further support the idea that birds in a hyperphagic migratory condition may be insensitive to leptin.
Collapse
Affiliation(s)
- Emma Churchman
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Scott A. MacDougall-Shackleton
- Department of Biology, University of Western Ontario, London, Ontario, Canada,Department of Psychology, University of Western Ontario, London, Ontario, Canada,Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Cao C, Siegel PB, Gilbert ER, Cline MA. Epigenetic modifiers identified as regulators of food intake in a unique hypophagic chicken model. Animal 2022; 16:100549. [PMID: 35679817 DOI: 10.1016/j.animal.2022.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
DNA methylation is an epigenetic modification that influences gene transcription; however, the effects of methylation-influencing chemicals on appetite are unknown. We evaluated the effects of single administration of a methyl donor, S-Adenosylmethionine (SAM), or methylation inhibitor, 5-Azacytidine (AZA), on immediate and later-age food intake in an anorexic chick model. The doses of intracerebroventricularly-injected SAM were 0 (vehicle), 0.1, 1, and 10 μg, and of AZA were 0 (vehicle), 1, 5, and 25 μg. When injected on day 5 posthatch, there was no effect of SAM on food intake in either fed or fasted chicks, whereas AZA increased food consumption in the fasted state but decreased it in fed chicks. We then performed a single injection (same doses) at hatch and measured food intake on day 5 in response to neuropeptide Y (NPY; 0.2 μg) injection. Irrespective of NPY, chicks injected with 1 μg of SAM ate more than others on day 5. In contrast, chicks injected with AZA (5 and 25 μg doses) consumed less on day 5. In conclusion, we identified DNA methylation-regulating chemicals as regulators of food intake. AZA but not SAM affected food intake in the short-term, feeding state dependently. Later, both chemicals injected on the day of hatch were associated with food intake changes at a later age, suggesting that feeding pathways might be altered through changes in methylation.
Collapse
Affiliation(s)
- C Cao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
9
|
Dadousis C, Somavilla A, Ilska JJ, Johnsson M, Batista L, Mellanby RJ, Headon D, Gottardo P, Whalen A, Wilson D, Dunn IC, Gorjanc G, Kranis A, Hickey JM. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens. Genet Sel Evol 2021; 53:70. [PMID: 34496773 PMCID: PMC8424881 DOI: 10.1186/s12711-021-00663-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Body weight (BW) is an economically important trait in the broiler (meat-type chickens) industry. Under the assumption of polygenicity, a "large" number of genes with "small" effects is expected to control BW. To detect such effects, a large sample size is required in genome-wide association studies (GWAS). Our objective was to conduct a GWAS for BW measured at 35 days of age with a large sample size. METHODS The GWAS included 137,343 broilers spanning 15 pedigree generations and 392,295 imputed single nucleotide polymorphisms (SNPs). A false discovery rate of 1% was adopted to account for multiple testing when declaring significant SNPs. A Bayesian ridge regression model was implemented, using AlphaBayes, to estimate the contribution to the total genetic variance of each region harbouring significant SNPs (1 Mb up/downstream) and the combined regions harbouring non-significant SNPs. RESULTS GWAS revealed 25 genomic regions harbouring 96 significant SNPs on 13 Gallus gallus autosomes (GGA1 to 4, 8, 10 to 15, 19 and 27), with the strongest associations on GGA4 at 65.67-66.31 Mb (Galgal4 assembly). The association of these regions points to several strong candidate genes including: (i) growth factors (GGA1, 4, 8, 13 and 14); (ii) leptin receptor overlapping transcript (LEPROT)/leptin receptor (LEPR) locus (GGA8), and the STAT3/STAT5B locus (GGA27), in connection with the JAK/STAT signalling pathway; (iii) T-box gene (TBX3/TBX5) on GGA15 and CHST11 (GGA1), which are both related to heart/skeleton development); and (iv) PLAG1 (GGA2). Combined together, these 25 genomic regions explained ~ 30% of the total genetic variance. The region harbouring significant SNPs that explained the largest portion of the total genetic variance (4.37%) was on GGA4 (~ 65.67-66.31 Mb). CONCLUSIONS To the best of our knowledge, this is the largest GWAS that has been conducted for BW in chicken to date. In spite of the identified regions, which showed a strong association with BW, the high proportion of genetic variance attributed to regions harbouring non-significant SNPs supports the hypothesis that the genetic architecture of BW35 is polygenic and complex. Our results also suggest that a large sample size will be required for future GWAS of BW35.
Collapse
Affiliation(s)
| | | | - Joanna J. Ilska
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Martin Johnsson
- The Roslin Institute, University of Edinburgh, Midlothian, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lorena Batista
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Denis Headon
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Paolo Gottardo
- Italian Brown Breeders Association, Loc. Ferlina 204, 37012 Bussolengo, Italy
| | - Andrew Whalen
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - David Wilson
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Ian C. Dunn
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Gregor Gorjanc
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Andreas Kranis
- The Roslin Institute, University of Edinburgh, Midlothian, UK
- Aviagen Ltd, Midlothian, UK
| | - John M. Hickey
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
10
|
Flees J, Greene E, Ganguly B, Dridi S. Phytogenic feed- and water-additives improve feed efficiency in broilers via modulation of (an)orexigenic hypothalamic neuropeptide expression. Neuropeptides 2020; 81:102005. [PMID: 31926603 DOI: 10.1016/j.npep.2020.102005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Fueled by consumer preference for natural and antibiotic-free products, phytogenics have become the fastest growing segment of the animal feed additives. Yet, their modes of action are not fully understood. This study was undertaken to determine the effect of 5 phytogenics (3 feed- and 2 water-supplements) on the growth performance of commercial broilers, and their potential underlying molecular mechanisms. Day-old male Cobb 500 chicks (n = 576) were randomly assigned into 48 pens consisting of 6 treatments (Control; AVHGP; SCP; BHGP; AVSSL; SG) in a complete randomized design (12 birds/pen, 8 pens/treatment, 96 birds/treatment). Chicks had ad libitum access to feed and water. Individual body weight (BW) was recorded weekly and feed intake was measured daily. Core body temperatures were continuously recorded using thermo-loggers. At d 35, hypothalamic tissues were excised from the thermo-logger-equipped chickens (n = 8 birds/treatment) to determine the expression of feeding-related neuropeptides. Both feed (AVHGP, SCP, BHGP) and water-supplemented (AVSSL, SG) phytogenics significantly improved feed efficiency (FE) compared to the control birds. This higher FE was achieved via a reduction in core body temperature and improvement of market BW, without changes in feed intake in broilers supplemented with phytogenic water additives as compared to the control group. Broilers fed dietary phytogenics, however, attained higher feed efficiency via a reduction in feed intake while maintaining similar BW as the control group. At the molecular levels, the effects of the phytogenic water additives seemed to be mediated by the activation of the hypothalamic AgRP-ORX-mTOR-S6k1 and inhibition of CRH pathways. The effect of the phytogenic feed additives appeared to be exerted through the activation of AdipoQ, STAT3, AMPK, and MC1R pathways. This is the first report describing the likely central mechanisms through which phytogenic additives improve the growth performance and feed efficiency in broilers.
Collapse
Affiliation(s)
- Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Bhaskar Ganguly
- Clinical Research, Ayurvet Limited, Baddi, Himachal Pradesh 173205, India
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
11
|
Zendehdel M, Khodadadi M, Vosoughi A, Mokhtarpouriani K, Baghbanzadeh A. β2 adrenergic receptors and leptin interplay to decrease food intake in chicken. Br Poult Sci 2020; 61:156-163. [PMID: 31846591 DOI: 10.1080/00071668.2019.1704687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The present study was designed to examine the effects of intracerebroventricular (ICV) injection of different α and [Formula: see text] adrenergic receptor antagonists on leptin-induced hypophagia in broiler chickens.2. The study consisted of six experiments. In all experiments, chickens were deprived of feed for 3 h prior to the ICV injections and thereafter were returned immediately to the individual cages and cumulative feed intake, based on the percentage of body weight, was measured at 30, 60 and 120 min post-injection.3. In experiment 1, leptin (2.5, 5 or 10 µg) were injected in birds. In experiment 2, groups received either control solution, prazosin (10 nmol), leptin (10 µg) or a co-injection of prazosin (10 nmol) and leptin (10 µg). The other experiments were conducted as experiment 2, but instead of prazosine (10 nmol), yohimbine (13 nmol) was used in experiment 3, metoprolol (24 nmol) in experiment 4, ICI 118,551 (5 nmol) in experiment 5 and SR 59230R (5 nmol) in experiment 6 were injected either in a group or in combination with leptin (10 µg).4. The results of this study revealed a dose-dependent hypophagic effect of leptin and, in experiment 5, ICV co-injection of ICI118, 551 (5 nmol) and leptin (10 µg) significantly attenuated this effect (P˂0.5). These results suggest that the hypophagic effect of leptin is probably mediated by β2 adrenergic receptors in chickens.
Collapse
Affiliation(s)
- M Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Khodadadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - A Vosoughi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - K Mokhtarpouriani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - A Baghbanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Implications of changes to commercial broiler and broiler breeder body weight targets over the past 30 years. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933907001572] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Lei MM, Wei CK, Chen Z, Yosefi S, Zhu HX, Shi ZD. Anti-leptin receptor antibodies strengthen leptin biofunction in growing chickens. Gen Comp Endocrinol 2018; 259:223-230. [PMID: 29247679 DOI: 10.1016/j.ygcen.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Antibodies against the extracellular domains of the chicken leptin receptor were used to study the biological function of leptin in growing chickens. Both polyclonal and monoclonal anti-LEPR antibodies were administered intramuscularly to 30-d-old Chinese indigenous Gushi pullets. Both antibody preparations increased feed intake for 6 h after injection and reduced plasma concentrations of glucose, triglycerides, and both high- and low-density lipoproteins. The antibody treatments also upregulated agouti-related peptide and neuropeptide Y in the hypothalamus and downregulated proopiomelanocortin, melanocortin 4 receptor, and leptin receptor. The treatments also upregulated leptin receptor, acetyl CoA carboxylase beta, and acyl-CoA oxidase in the liver, abdominal fat, and breast muscle and downregulated sterol regulatory element-binding protein-1 and fatty acid synthase. Furthermore, even though the anti-leptin receptor antibodies failed to affect leptin receptor signaling transduction when administered alone, they did augment the induction of leptin receptor signaling transduction by leptin. These results demonstrate that antibodies against the extracellular domains of leptin-specific receptor enhance, but do not mimic, the ability of leptin to activate receptors. Furthermore, the enhanced leptin bioactivity observed after the intramuscular injection of anti-LEPR antibodies confirmed the occurrence of de novo leptin in the peripheral tissues and blood of treated chickens.
Collapse
Affiliation(s)
- M M Lei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - C K Wei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Z Chen
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - S Yosefi
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel.
| | - H X Zhu
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Z D Shi
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
14
|
Yi J, Yuan J, Gilbert ER, Siegel PB, Cline MA. Differential expression of appetite-regulating genes in avian models of anorexia and obesity. J Neuroendocrinol 2017; 29. [PMID: 28727208 DOI: 10.1111/jne.12510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus. The lateral hypothalamus (LHA), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial nucleus (DMN) and arcuate nucleus (ARC) were collected from 5 day-old chicks that were fasted for 180 minutes or provided with continuous access to food. Fasting increased neuropeptide Y receptor subtype 1 (NPYR1) mRNA in the LHA and c-Fos in the VMH, at the same time as decreasing c-Fos in the LHA, neuropeptide Y receptor subtype 5 and ghrelin in the PVN, and neuropeptide Y receptor subtype 2 in the ARC. Fasting increased melanocortin receptor subtype 3 (MC3R) expression in the DMN and NPY in the ARC of LWS but not HWS chicks. Expression of NPY was greater in LWS than HWS in the DMN. neuropeptide Y receptor subtype 5 mRNA was greater in LWS than HWS in the LHA, PVN and ARC. Expression of orexin was greater in LWS than HWS in the LHA. There was greater expression of NPYR1, melanocortin receptor subtype 4 and cocaine- and amphetamine-regulated transcript in HWS than LWS and mesotocin in LWS than HWS in the PVN. In the ARC, agouti-related peptide and MC3R were greater in LWS than HWS and, in the VMH, orexin receptor 2 and leptin receptor were greater in LWS than HWS. Greater mesotocin in the PVN, orexin in the LHA and ORXR2 in the VMH of LWS may contribute to their increased sympathetic tone and anorexic phenotype. The results of the present study also suggest that an increased hypothalamic anorexigenic tone in the LWS over-rides orexigenic factors such as NPY and AgRP that were more highly expressed in LWS than HWS in several nuclei.
Collapse
Affiliation(s)
- J Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J Yuan
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
15
|
Sims W, Yi J, Cline MA, Gilbert ER. Central injection of a synthetic chicken partial leptin peptide does not affect food intake in chicks. Neurosci Lett 2017; 656:165-168. [PMID: 28751205 DOI: 10.1016/j.neulet.2017.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 11/29/2022]
Abstract
Leptin is an adipose tissue-derived hormone in mammals that plays an important role in whole body energy balance via its inhibitory effects on food intake mediated through the hypothalamus. Chicken leptin has a low sequence homology to mammalian leptin and its role in appetite regulation is not reported; hence the objective of this study was to determine effects of central injection of chicken leptin on food and water intake and associated behaviors in chicks. Chicks were intracerebroventricularly injected with 0 (vehicle), 0.3, 1.0, or 3.0 nmol of a synthetic chicken leptin partial peptide and food and water intake were monitored. There were no effects observed and a second experiment was conducted to evaluate food and water intake at higher doses; after injection of 0, 2.5, 5.0, or 10.0 nmol leptin. Again, there were no effects on food or water intake. In the third experiment, behaviors were analyzed during the first 30 min post-injection of vehicle or 10 nmol leptin. At 5 min post-injection, vehicle-injected chicks spent more time sitting than leptin-injected chicks. A wide dose range was evaluated however, the absence of an effect on food intake or behavior suggests that the chicken leptin peptide that was tested does not mediate effects on appetite in the brain and that chicken leptin likely has a different physiological role in birds than in mammals.
Collapse
Affiliation(s)
- Wil Sims
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jiaqing Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Influence of leptin and GABA B-receptor agonist and antagonist on neurons of the hypothalamic infundibular nucleus in the chicken. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:291-299. [PMID: 28361168 DOI: 10.1007/s00359-017-1168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 02/27/2017] [Accepted: 03/19/2017] [Indexed: 12/24/2022]
Abstract
In birds and mammals, the neuroendocrine regulation of energy balance is conserved in many aspects. Despite significant similarities between the two groups, differences in the regulatory mechanisms were detected. The present study was performed to carry out investigations of the influence of human leptin and GABAB-receptor agonist and antagonist on the firing rate of neurons of the Nucleus infundibuli hypothalami in brain slices from juvenile chickens. For the first time, we demonstrated a clear, dose-related change in the firing rate of hypothalamic neurons in juvenile chickens after the acute application of recombinant human leptin (1, 10, and 100 nM). All investigated neurons increased their subsequent firing rate. Application of GABAB-receptor agonist baclofen (1 µM) blocked, while antagonist CGP 35348 (10 µM) increased the spontaneous neuronal activity. Simultaneous application of baclofen and leptin reduced the effect observed from single leptin application. This was not found after simultaneously application of leptin and CGP. Altogether, our results indicate that in bird brain slices, and exemplarily in those of the chicken, hypothalamic neurons show mammalian-like responsiveness after acute leptin and GABA application. GABAB-mechanisms involved in GABA release play a likely important role in the leptin-mediated effects on NI neurons via functional leptin receptors.
Collapse
|
17
|
McConn BR, Cline MA, Gilbert ER. Dietary macronutrient composition and central neuropeptide Y injection affect dietary preference and hypothalamic gene expression in chicks. Nutr Neurosci 2017; 21:403-413. [PMID: 28279130 DOI: 10.1080/1028415x.2017.1296606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine the influence of dietary macronutrient composition on central NPY's orexigenic effect in chicks. METHODS Day-of-hatch chicks were fed one of three diets (3000 kcal ME/kg) ad libitum from hatch: high carbohydrate (HC), high fat (HF; 30% ME derived from soybean oil), and high protein (HP; 25 vs. 22% CP). In Experiment 1, chicks received intracerebroventricular injections of 0 (vehicle), 0.2, or 2.0 nmol NPY on day 4 and food intake was recorded for 6 hours. In Experiment 2, chicks were given all three diets before and after injection. In Experiment 3, hypothalamus was collected at 1-hour post-injection for gene expression analysis. RESULTS The HC diet-fed chicks responded with a greater increase, while the chicks fed the HF diet had a lower threshold response in food intake to NPY. Neuropeptide Y dose-dependently increased food intake in chicks fed the HC and HP diets. Chicks administered 0.2 nmol NPY preferred the HC and HP diets over the HF diet. Relative quantities of hypothalamic NPYR1 and MC4R mRNA were reduced by NPY in chicks that consumed the HP and HC diets, respectively. DISCUSSION Consumption of the HC diet was associated with the most robust NPY-induced increase in food intake. Injection of NPY accentuated differences among dietary groups in hypothalamic gene expression of several appetite-associated factors, results suggesting that the NPY/agouti-related peptide and melanocortin pathways are associated with some of the diet- and NPY-induced differences observed in this study.
Collapse
Affiliation(s)
- Betty R McConn
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Mark A Cline
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Elizabeth R Gilbert
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
18
|
Ghrelin affects stopover decisions and food intake in a long-distance migrant. Proc Natl Acad Sci U S A 2017; 114:1946-1951. [PMID: 28167792 DOI: 10.1073/pnas.1619565114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Billions of birds migrate long distances to either reach breeding areas or to spend the winter at more benign places. On migration, most passerines frequently stop over to rest and replenish their fuel reserves. To date, we know little regarding how they decide that they are ready to continue their journey. What physiological signals tell a bird's brain that its fuel reserves are sufficient to resume migration? A network of hormones regulates food intake and body mass in vertebrates, including the recently discovered peptide hormone, ghrelin. Here, we show that ghrelin reflects body condition and influences migratory behavior of wild birds. We measured ghrelin levels of wild garden warblers (Sylvia borin) captured at a stopover site. Further, we manipulated blood concentrations of ghrelin to test its effects on food intake and migratory restlessness. We found that acylated ghrelin concentrations of garden warblers with larger fat scores were higher than those of birds without fat stores. Further, injections of unacylated ghrelin decreased food intake and increased migratory restlessness. These results represent experimental evidence that appetite-regulating hormones control migratory behavior. Our study lays a milestone in migration physiology because it provides the missing link between ecologically dependent factors such as condition and timing of migration. In addition, it offers insights in the regulation of the hormonal system controlling food intake and energy stores in vertebrates, whose disruption causes eating disorders and obesity.
Collapse
|
19
|
Londraville RL, Prokop JW, Duff RJ, Liu Q, Tuttle M. On the Molecular Evolution of Leptin, Leptin Receptor, and Endospanin. Front Endocrinol (Lausanne) 2017; 8:58. [PMID: 28443063 PMCID: PMC5385356 DOI: 10.3389/fendo.2017.00058] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
Over a decade passed between Friedman's discovery of the mammalian leptin gene (1) and its cloning in fish (2) and amphibians (3). Since 2005, the concept of gene synteny conservation (vs. gene sequence homology) was instrumental in identifying leptin genes in dozens of species, and we now have leptin genes from all major classes of vertebrates. This database of LEP (leptin), LEPR (leptin receptor), and LEPROT (endospanin) genes has allowed protein structure modeling, stoichiometry predictions, and even functional predictions of leptin function for most vertebrate classes. Here, we apply functional genomics to model hundreds of LEP, LEPR, and LEPROT proteins from both vertebrates and invertebrates. We identify conserved structural motifs in each of the three leptin signaling proteins and demonstrate Drosophila Dome protein's conservation with vertebrate leptin receptors. We model endospanin structure for the first time and identify endospanin paralogs in invertebrate genomes. Finally, we argue that leptin is not an adipostat in fishes and discuss emerging knockout models in fishes.
Collapse
Affiliation(s)
- Richard Lyle Londraville
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
- *Correspondence: Richard Lyle Londraville,
| | | | - Robert Joel Duff
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Qin Liu
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Matthew Tuttle
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| |
Collapse
|
20
|
Procaccini C, La Rocca C, Carbone F, De Rosa V, Galgani M, Matarese G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:120-129. [PMID: 27288847 DOI: 10.1016/j.dci.2016.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Unità di NeuroImmunologia, Fondazione Santa Lucia, 00143 Roma, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
21
|
Farkašová H, Hron T, Pačes J, Pajer P, Elleder D. Identification of a GC-rich leptin gene in chicken. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
McConn BR, Yi J, Gilbert ER, Siegel PB, Chowdhury VS, Furuse M, Cline MA. Stimulation of food intake after central administration of gonadotropin-inhibitory hormone is similar in genetically selected low and high body weight lines of chickens. Gen Comp Endocrinol 2016; 232:96-100. [PMID: 26764213 DOI: 10.1016/j.ygcen.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH), first isolated from the brain of the Japanese quail (Coturnix japonica), when centrally administered exerts orexigenic effects in birds. However, the precise mechanisms mediating this effect are poorly understood and limited information is available on this effect in models of body weight dysfunction. Thus, the purpose of the present study was to investigate appetite-associated effects of GnIH in chicks from lines that have been selected for either low or high body weight, and are anorexic or become obese, respectively. Central GnIH injection increased food intake in both lines with a similar magnitude of response. There was no effect on water intake. Hypothalamic GnIH mRNA was greater in the low than high weight lines and was greater in the fasted than fed chicks. GnIH receptor mRNA was similarly expressed in both lines, and was greater in fed than fasted chicks. Thus, although selection for body weight did not alter the effect of GnIH on feeding, fasting increased GnIH mRNA in both lines implying that it is an innate hunger factor.
Collapse
Affiliation(s)
- Betty R McConn
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Jiaqing Yi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuhiro Furuse
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
23
|
Buzala M, Janicki B. Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poult Sci 2016; 95:2151-9. [PMID: 27194733 DOI: 10.3382/ps/pew173] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
Genetic selection that has been carried out for several dozen years has led to significant progress in poultry production by improving productive traits and increasing the profitability of broiler breeder and layer hen production. After hatching, broilers and layers differ mainly in feed intake, growth rate, efficiency of nutrient utilization, and development of muscles and adipose tissue. A key role can be played by hormonal mechanisms of appetite control in broilers and layers. The paper discusses the consequences of different growth rates resulting from long-term genetic selection on feed intake, efficiency of nutrient utilization, and development of muscles and adipose tissue, with particular consideration of the hormonal mechanisms of appetite control in broilers and layers. The information presented in this review paper shows that it would be worth comparing these issues in a meta-analysis.
Collapse
Affiliation(s)
- M Buzala
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - B Janicki
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
24
|
Yi J, Delp MS, Gilbert ER, Siegel PB, Cline MA. Anorexia is Associated with Stress-Dependent Orexigenic Responses to Exogenous Neuropeptide Y. J Neuroendocrinol 2016; 28. [PMID: 26924179 DOI: 10.1111/jne.12378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Abstract
Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post-hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite-associated factors was measured at 1 h post-injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti-related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin-releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia such as human anorexia nervosa.
Collapse
Affiliation(s)
- J Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M S Delp
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
25
|
Wang D, Xu C, Wang T, Li H, Li Y, Ren J, Tian Y, Li Z, Jiao Y, Kang X, Liu X. Discovery and functional characterization of leptin and its receptors in Japanese quail (Coturnix japonica). Gen Comp Endocrinol 2016; 225:1-12. [PMID: 26342967 DOI: 10.1016/j.ygcen.2015.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
Abstract
Leptin is an important endocrine regulation factor of food intake and energy homeostasis in mammals; however, the existence of a poultry leptin gene (LEP) is still debated. Here, for the first time, we report the cloning of a partial exon 3 sequence of LEP (qLEP) and four different leptin receptor splicing variants, including a long receptor (qLEPRl) and three soluble receptors (qLEPR-a, qLEPR-b and qLEPR-c) in Japanese quail (Coturnix japonica). The qLEP gene had high GC content (64%), which is similar to other reported avian leptin genes. The encoded qLEP protein possessed the conserved pair of cysteine residues that are required to form a lasso knot for full biological activity, but shared relatively low identities with LEPs of other vertebrates. The translated qLEPRl protein contained 1143 amino acids and shared high amino acid sequence identity with a chicken homolog (89% identity). qLEPRl also contained all the motifs, domains, and basic tyrosine residues that are conserved in the LEPRl proteins of other vertebrates. qRT-PCR analysis showed that LEP and the four LEPR variants were expressed extensively in all tissues examined; the expression levels of LEP were relatively high in hypothalamus, skeletal muscle, and pancreas, while the expression levels of the LEPRs were highest in the pituitary. Compared with the expression levels of juvenile qLEP and total qLEPR (including all LEPR variants), the expression levels of mature qLEP and total qLEPR were up-regulated in the hypothalamus and pituitary, and down-regulated in the ovary. The expressions of LEP/LEPR increased when fasting and decreased when refeeding in the brain and peripheral tissues of juvenile quail, which suggested that the LEP/LEPR system modulated food intake and energy expenditure, although, unlike in mammals, LEP may actually act to inhibit food intake during fasting, at least in juvenile quail. The results indicate that qLEP and qLEPR have unique expression patterns and that the encoded proteins play important roles in the regulation of reproduction and energy status in Japanese quail.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunlin Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Taian Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Junxiao Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuping Jiao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
26
|
Delayed access of low body weight-selected chicks to food at hatch is associated with up-regulated pancreatic glucagon and glucose transporter gene expression. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:124-9. [DOI: 10.1016/j.cbpa.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 08/02/2015] [Indexed: 11/19/2022]
|
27
|
Fed and fasted chicks from lines divergently selected for low or high body weight have differential hypothalamic appetite-associated factor mRNA expression profiles. Behav Brain Res 2015; 286:58-63. [DOI: 10.1016/j.bbr.2015.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/31/2023]
|
28
|
Hypothalamic differences in expression of genes involved in monoamine synthesis and signaling pathways after insulin injection in chickens from lines selected for high and low body weight. Neurogenetics 2015; 16:133-44. [PMID: 25582322 DOI: 10.1007/s10048-014-0435-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Long-term selection for juvenile body weight from a common founder population resulted in two divergent chicken lines (low-weight selected line (LWS), high-weight selected line (HWS)) that display distinct food intake and blood glucose responses to exogenous neuropeptides and insulin. The objective of this study was to elucidate putative targets affecting food intake and energy homeostasis by sequencing hypothalamic RNA from LWS and HWS chickens after insulin injection. Ninety-day-old female LWS and HWS chickens were injected with either vehicle or insulin and hypothalamus collected at 1 h postinjection. Through RNA sequencing, a total of 361 differentially expressed genes (DEGs) were identified. There was greater expression of genes, mainly tyrosine hydroxylase (TH), L-aromatic amino acid decarboxylase (DDC), and vesicular monoamine transporter (VMAT), involved in serotonin and dopamine biosynthesis and signaling in LWS than in HWS vehicle-injected chickens. In contrast, after insulin injection, these genes were more highly expressed in HWS than in LWS. We identified 90 single nucleotide polymorphisms (SNPs) existing only in the HWS and 121 SNPs specific to LWS and 5119 SNPs close to fixation (with absolute frequency difference ≥0.9). Four were located in genes encoding enzymes associated with serotonergic and dopaminergic pathways, such as DDC, TH, and solute carrier family 18, member 2 (VMAT). These data implicate differences in biogenic amines such as serotonin and dopamine in hypothalamic physiology between the chicken lines, and these differences might be associated with polymorphisms during long-term selection. Changes in serotonergic and dopaminergic signaling pathways in response to insulin injection suggest a role in whole-body energy homeostasis.
Collapse
|
29
|
Ohkubo T, Hirota K, Murase D, Adachi H, Nozawa-Takeda T, Sugita S. Avian blood induced intranuclear translocation of STAT3 via the chicken leptin receptor. Comp Biochem Physiol B Biochem Mol Biol 2014; 174:9-14. [DOI: 10.1016/j.cbpb.2014.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 11/29/2022]
|
30
|
Londraville RL, Macotela Y, Duff RJ, Easterling MR, Liu Q, Crespi EJ. Comparative endocrinology of leptin: assessing function in a phylogenetic context. Gen Comp Endocrinol 2014; 203:146-57. [PMID: 24525452 PMCID: PMC4128956 DOI: 10.1016/j.ygcen.2014.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans.
Collapse
Affiliation(s)
- Richard L Londraville
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA.
| | - Yazmin Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Robert J Duff
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Marietta R Easterling
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Qin Liu
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Erica J Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
31
|
|
32
|
Zhang W, Sumners LH, Siegel PB, Cline MA, Gilbert ER. Quantity of glucose transporter and appetite-associated factor mRNA in various tissues after insulin injection in chickens selected for low or high body weight. Physiol Genomics 2013; 45:1084-94. [DOI: 10.1152/physiolgenomics.00102.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chickens from lines selected for low (LWS) or high (HWS) body weight differ by 10-fold in body weight at 56 days old with differences in food intake, glucose regulation, and body composition. To evaluate if there are differences in appetite-regulatory factor and glucose transporter ( GLUT) mRNA that are accentuated by hypoglycemia, blood glucose was measured, and hypothalamus, liver, pectoralis major, and abdominal fat collected at 90 days of age from female HWS and LWS chickens, and reciprocal crosses, HL and LH, at 60 min after intraperitoneal injection of insulin. Neuropeptide Y ( NPY) and receptor ( NPYR) subtypes 1 and 5 mRNA were greater in LWS compared with HWS hypothalamus ( P < 0.05), but greater in HWS than LWS in fat ( P < 0.05). Expression of NPYR2 was greater in LWS than HWS in pectoralis major ( P < 0.05). There was greater expression in HWS than LWS for GLUT1 in hypothalamus and liver ( P < 0.05), GLUT2 in fat and liver ( P < 0.05), and GLUT9 in liver ( P < 0.05). Insulin was associated with reduced blood glucose in all populations ( P < 0.05) and reduced mRNA of insulin receptor ( IR) and GLUT 2 and 3 in liver ( P < 0.05). There was heterosis for mRNA, most notably NPYR1 (−78%) and NPYR5 (−81%) in fat and GLUT2 (−70%) in liver. Results suggest that NPY and GLUTs are associated with differences in energy homeostasis in LWS and HWS. Reduced GLUT and IR mRNA after insulin injection suggest a compensatory mechanism to prevent further hypoglycemia.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Lindsay H. Sumners
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Paul B. Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Mark A. Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
33
|
Hagen CJ, Newmyer BA, Webster RI, Gilbert ER, Siegel PB, Tachibana T, Cline MA. Stimulation of food intake after central galanin is associated with arcuate nucleus activation and does not differ between genetically selected low and high body weight lines of chickens. Neuropeptides 2013; 47:281-5. [PMID: 23369300 DOI: 10.1016/j.npep.2012.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 12/20/2022]
Abstract
Galanin, a 29 residue peptide found in the hypothalamus, causes orexigenic effects in a variety of species. In the present study, we investigated appetite-associated effects of galanin in chicks from lines which have been selected from a common founder population for either low or high body weight. The low line consists of some anorexic individuals and there are obese individuals in the high line. Central galanin caused increased food intake in both lines with the magnitude of response similar in both lines. We also quantified the number of c-Fos immunoreactive cells in several hypothalamic nuclei that are associated with appetite. Only the arcuate nucleus had an increase in the number of reactive cells, a response that was similar for both lines. From these results we concluded that selection for body weight likely did not affect galanin function on induction of feeding in either lines, and that the effect of galanin is associated with arcuate nucleus activation in chicks.
Collapse
|
34
|
Navara KJ. The role of steroid hormones in the adjustment of primary sex ratio in birds: compiling the pieces of the puzzle. Integr Comp Biol 2013; 53:923-37. [PMID: 23900275 DOI: 10.1093/icb/ict083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is ample evidence that birds have the ability to adjust their offsprings' sex ratios before fertilization occurs. Recent work has focused on pinpointing when during the process of oocyte maturation adjustment of sex ratio takes place. Additionally, there is growing support for the idea that there is hormonal control over the process of adjustment of sex ratio in birds. Whether steroid hormones represent direct mediators of the process, however, remains unclear. This review outlines the precise points during maturation of ovarian follicles during which adjustment of primary sex ratios could potentially occur, compiles the evidence for hormonal involvement in the process of primary adjustment of sex ratio, and discusses potential hormonal targets during maturation and fertilization of oocytes where hormones may trigger adjustment of sex ratio in birds.
Collapse
Affiliation(s)
- Kristen J Navara
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
35
|
Ka S, Markljung E, Ring H, Albert FW, Harun-Or-Rashid M, Wahlberg P, Garcia-Roves PM, Zierath JR, Denbow DM, Pääbo S, Siegel PB, Andersson L, Hallböök F. Expression of carnitine palmitoyl-CoA transferase-1B is influenced by a cis-acting eQTL in two chicken lines selected for high and low body weight. Physiol Genomics 2013; 45:367-76. [PMID: 23512741 DOI: 10.1152/physiolgenomics.00078.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carnitine palmitoyl-CoA transferase-1B is a mitochondrial enzyme in the fatty acid oxidation pathway. In a previous study, CPT1B was identified as differentially expressed in the hypothalamus of two lines of chickens established by long-term selection for high (HWS) or low (LWS) body weight. Mammals have three paralogs (CPT1a, b and c) while nonmammalian vertebrates only have two (CPT1A, B). CPT1A is expressed in liver and CPT1B in muscle. CPT1c is expressed in hypothalamus, where it regulates feeding and energy expenditure. We identified an intronic length polymorphism, fixed for different alleles in the two populations, and mapped the hitherto missing CPT1B locus in the chicken genome assembly, to the distal tip of chromosome 1p. Based on molecular phylogeny and gene synteny we suggest that chicken CPT1B is pro-orthologous of the mammalian CPT1c. Chicken CPT1B was differentially expressed in both muscle and hypothalamus but in opposite directions: higher levels in hypothalamus but lower levels in muscle in the HWS than in the LWS line. Using an advanced intercross population of the lines, we found CPT1B expression to be influenced by a cis-acting expression quantitative trait locus in muscle. The increased expression in hypothalamus and reduced expression in muscle is consistent with an increased food intake in the HWS line and at the same time reduced fatty acid oxidation in muscle yielding a net accumulation of energy intake and storage. The altered expression of CPT1B in hypothalamus and peripheral tissue is likely to be a mechanism contributing to the remarkable difference between lines.
Collapse
Affiliation(s)
- Sojeong Ka
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Inhibitory Mechanism of Signal Transduction through Chicken Leptin Receptor by Suppressor of Cytokine Signaling 3 (SOCS3). J Poult Sci 2013. [DOI: 10.2141/jpsa.0120166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Abstract
Fat affects meat quality, value and production efficiency as well as providing energy reserves for pregnancy and lactation in farm livestock. Leptin, the adipocyte product of the obese (ob) gene, was quickly seen as a predictor of body fat content in animals approaching slaughter and an aid to assessing reproductive readiness in females. Its participation in inflammation and immune responses that help animals survive infection and trauma has clear additional relevance to meat and milk production. Furthermore, almost a decade of discoveries of nucleotide polymorphisms in the leptin and leptin receptor genes has suggested useful applications relating to feed intake regulation, the efficiency of feed use, the composition of growth, the timing of puberty, mammogenesis and mammary gland function and fertility in cattle, pigs and poultry. The current review attempts to summarise where research has taken us in each of these aspects and speculates on where future research might lead.
Collapse
|
38
|
te Marvelde L, Visser ME. Manipulation of life-history decisions using leptin in a wild passerine. PLoS One 2012; 7:e34090. [PMID: 22448288 PMCID: PMC3309012 DOI: 10.1371/journal.pone.0034090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/21/2012] [Indexed: 11/18/2022] Open
Abstract
Seasonal timing of reproduction and the number of clutches produced per season are two key avian life-history traits with major fitness consequences. Female condition may play an important role in these decisions. In mammals, body condition and leptin levels are correlated. In birds, the role of leptin remains unclear. We did two experiments where we implanted female great tits with a pellet releasing leptin evenly for 14 days, to manipulate their perceived body condition, or a placebo pellet. In the first experiment where females were implanted when feeding their first brood offspring we found, surprisingly, that placebo treated females were more likely to initiate a second brood compared to leptin treated females. Only one second brood fledged two chicks while five were deserted late in the incubation stage or when the first egg hatched. No difference was found in female or male return rate or in recruitment rate of fledglings of the first brood, possibly due to the desertion of the second broods. In our study population, where there is selection for early egg laying, earlier timing of reproduction might be hampered by food availability and thus nutritional state of the female before egg laying. We therefore implanted similar leptin pellets three weeks before the expected start of egg laying in an attempt to manipulate the laying dates of first clutches. However, leptin treated females did not initiate egg laying earlier compared to placebo treated females, suggesting that other variables than the perceived body condition play a major role in the timing of reproduction. Also, leptin treatment did not affect body mass, basal metabolic rate or feeding rates in captive females. Manipulating life history decisions using experimental protocols which do not alter individuals' energy balance are crucial in understanding the trade-off between costs and benefits of life history decisions.
Collapse
Affiliation(s)
- Luc te Marvelde
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | | |
Collapse
|
39
|
Cerasale DJ, Zajac DM, Guglielmo CG. Behavioral and physiological effects of photoperiod-induced migratory state and leptin on a migratory bird, Zonotrichia albicollis: I. Anorectic effects of leptin administration. Gen Comp Endocrinol 2011; 174:276-86. [PMID: 21925179 DOI: 10.1016/j.ygcen.2011.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 11/23/2022]
Abstract
The hormone leptin is involved in the regulation of energy balance in mammals, mainly by reducing food intake and body adiposity and increasing energy expenditure. During energetically demanding periods, leptin's action is often altered to facilitate fat deposition and maintain high rates of food intake. Despite the present controversy over the existence of an avian leptin, there is evidence that a leptin receptor exists in birds and its activation influences energy intake and metabolism. However, it is unknown whether the effects of the activation of leptin receptor on energy balance are modulated during migration. We manipulated photoperiod to induce migratory behavior in captive white-throated sparrows (Zonotrichia albicollis) and injected migratory and wintering sparrows with either murine leptin or PBS for 7 days. We measured food intake, changes in body composition and foraging behavior to test if leptin's effects are altered during migratory state. Leptin decreased foraging behavior, food intake and fat mass in wintering sparrows, but had no effect on foraging behavior or food intake in migratory sparrows. Migratory sparrows injected with leptin maintained fat better than sparrows injected with PBS. Thus, sparrows' responses to leptin changed with migratory state, possibly to aid in the increase and maintenance of rates of food intake and fat deposition. We also found that long-form leptin receptor and SOCS3 were expressed in tissues of sparrows, including the hypothalamus, but their expression did not change with migratory state. Further study of the leptin receptor system and other regulators of energy balance in migratory birds will increase our understanding of the physiological mechanisms that are responsible for their ability to complete energetically demanding journeys.
Collapse
Affiliation(s)
- David J Cerasale
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
40
|
Cabrera CP, Dunn IC, Fell M, Wilson PW, Burt DW, Waddington D, Talbot R, Hocking PM, Law A, Knott S, Haley CS, de Koning DJ. Complex traits analysis of chicken growth using targeted genetical genomics. Anim Genet 2011; 43:163-71. [PMID: 22404352 DOI: 10.1111/j.1365-2052.2011.02223.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dissecting the genetic control of complex trait variation remains very challenging, despite many advances in technology. The aim of this study was to use a major growth quantitative trait locus (QTL) in chickens mapped to chromosome 4 as a model for a targeted approach to dissect the QTL. We applied a variant of the genetical genomics approach to investigate genome-wide gene expression differences between two contrasting genotypes of a marked QTL. This targeted approach allows the direct quantification of the link between the genotypes and the genetic responses, thus narrowing the QTL-phenotype gap using fewer samples (i.e. microarrays) compared with the genome-wide genetical genomics studies. Four differentially expressed genes were localized under the region of the QTL. One of these genes is a potential positional candidate gene (AADAT) that affects lysine and tryptophan metabolism and has alternative splicing variants between the two genotypes. In addition, the lysine and glycolysis metabolism pathways were significantly enriched for differentially expressed genes across the genome. The targeted approach provided a complementary route to fine mapping of QTL by characterizing the local and the global downstream effects of the QTL and thus generating further hypotheses about the action of that QTL.
Collapse
Affiliation(s)
- C P Cabrera
- Medical Research Council, Human Genetics Unit, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
French SS, Dearing MD, Demas GE. Leptin as a physiological mediator of energetic trade-offs in ecoimmunology: implications for disease. Integr Comp Biol 2011; 51:505-13. [PMID: 21940777 DOI: 10.1093/icb/icr019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Organisms must distribute sufficient energy among different and often competing physiological systems. This task can become challenging, however, as resources are often limiting, resulting in energetic trade-offs. For example, energetically based trade-offs between the reproductive and immune systems are common across taxa, yet the regulatory mechanisms underlying these trade-offs remain unclear. The adipose tissue hormone leptin is an ideal candidate for the modulation of energetic trade-offs between different physiological systems as this hormone serves as a gage of fat reserves and also modulates a range of physiological activities including the reproductive and immune processes. This article presents a review of the evidence for the role of leptin as a modulator of energetic trade-offs with the immune system and suggests its importance in disease ecology. In addition, we provide a case study of the ornate tree lizard (Urosaurus ornatus), testing whether leptin is involved in mediating a well-documented influence of energy state on the trade-off between reproductive activity and immune function. Overall, the combined results suggest that leptin serves as a proximate endocrine signal of available energy to the immune system, and therefore likely to affect susceptibility to diseases.
Collapse
Affiliation(s)
- Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA.
| | | | | |
Collapse
|
42
|
The threshold of amylin-induced anorexia is lower in chicks selected for low compared to high juvenile body weight. Behav Brain Res 2010; 208:650-4. [DOI: 10.1016/j.bbr.2009.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
|
43
|
Kordonowy LL, McMurtry JP, Williams TD. Variation in plasma leptin-like immunoreactivity in free-living European starlings (Sturnus vulgaris). Gen Comp Endocrinol 2010; 166:47-53. [PMID: 19796643 DOI: 10.1016/j.ygcen.2009.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 09/04/2009] [Accepted: 09/05/2009] [Indexed: 11/27/2022]
Abstract
Leptin, a protein hormone secreted by fat cells, is best known for its role as an adiposity signal; however, leptin has diverse physiological roles ranging from regulation of feeding behavior and body weight, to effects on reproduction and immune function. Although leptin has been extensively studied in mammals, the identification and function of leptin in birds remains controversial, and studies have focused on captive or domesticated species. Here, we describe changes in plasma leptin-like immunoreactivity during the reproductive and non-reproductive seasons in free-living female European starlings (Sturnus vulgaris). Plasma leptin-like immunoreactivity was high during egg-laying (27.8+/-2.4 ng/mL) and clutch completion (23.8+/-1.6 ng/mL), decreased during incubation (13.0+/-1.6 ng/mL) and chick-rearing (12.0+/-1.3 ng/mL), but was elevated again in non-breeders in November (23.7+/-1.1 ng/mL). Although there was marked and consistent variation in total body mass and body composition with breeding stage and season in this population, plasma leptin-like immunoreactivity did not parallel changes in body mass or body composition. These data suggest that the strong positive relationship between plasma leptin-like immunoreactivity and body mass reported for captive birds and mammals does not hold for free-living birds. Rather, among free-living female European starlings, variation in plasma leptin-like immunoreactivity is associated with breeding stage or seasonal variation per se, and we discuss possible mechanisms underlying this variation, focusing on ovarian function and egg production.
Collapse
Affiliation(s)
- Lauren L Kordonowy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | | | |
Collapse
|
44
|
Ka S, Kerje S, Bornold L, Liljegren U, Siegel PB, Andersson L, Hallböök F. Proviral integrations and expression of endogenous avian leucosis virus during long term selection for high and low body weight in two chicken lines. Retrovirology 2009; 6:68. [PMID: 19604406 PMCID: PMC2717048 DOI: 10.1186/1742-4690-6-68] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Long-term selection (> 45 generations) for low or high juvenile body weight from a common founder population of White Plymouth Rock chickens has generated two extremely divergent lines, the LWS and HWS lines. In addition to a > 9-fold difference between lines for the selected trait, large behavioural and metabolic differences between the two lines evolved during the course of the selection. We recently compared gene expression in brain tissue from birds representing these lines using a global cDNA array analysis and the results showed multiple but small expression differences in protein coding genes. The main differentially expressed transcripts were endogenous retroviral sequences identified as avian leucosis virus subgroup-E (ALVE). Results In this work we confirm the differential ALVE expression and analysed expression and number of proviral integrations in the two parental lines as well as in F9 individuals from an advanced intercross of the lines. Correlation analysis between expression, proviral integrations and body weight showed that high ALVE levels in the LWS line were inherited and that more ALVE integrations were detected in LWS than HWS birds. Conclusion We conclude that only a few of the integrations contribute to the high expression levels seen in the LWS line and that high ALVE expression was significantly correlated with lower body weights for the females but not males. The conserved correlation between high expression and low body weight in females after 9 generations of intercrosses, indicated that ALVE loci conferring high expression directly affects growth or are very closely linked to loci regulating growth.
Collapse
Affiliation(s)
- Sojeong Ka
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Quillfeldt P, Everaert N, Buyse J, Masello JF, Dridi S. Relationship between plasma leptin-like protein levels, begging and provisioning in nestling thin-billed prions Pachyptila belcheri. Gen Comp Endocrinol 2009; 161:171-8. [PMID: 19136001 DOI: 10.1016/j.ygcen.2008.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 01/21/2023]
Abstract
While there have been many studies in various species examining the physiological role of leptin, there are so far no data in free-living seabirds. In the present study, we assess whether leptin is expressed in thin-billed prions (Pachyptila belcheri) and we investigate its relationship with feeding-related parameters including body condition, begging intensities and provisioning rates. We showed by Western Blot analysis using leptin-specific antibody that leptin-like protein (14-16kDa) is expressed in adipose tissue and liver of nestling thin-billed prions. Plasma leptin-like protein levels, determined by RIA, were in the same range (1-3ng/ml) as in other avian species and increased with age. In two breeding seasons, the plasma leptin-like protein levels were negatively correlated with provisioning rates (R=-0.67 and -0.35 in 2003 and 2004, respectively, P<0.05) indicating that endogenous leptin may be an anorexigenic hormone in wild birds. Plasma leptin-like protein levels were positively correlated with begging intensities (R=0.43 and 0.37 in 2003 and 2004, respectively, P<0.05), and this may be because hungry nestling seabird chicks with low body conditions increased their begging intensities. Plasma leptin-like protein levels did not correlate either with plasma triglyceride or glucose levels in thin-billed prions. Overall, these findings show the presence of leptin-like protein in free-living seabirds and provide new insights into its function and its possible role in feeding-associated behaviours.
Collapse
Affiliation(s)
- Petra Quillfeldt
- Max-Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany.
| | | | | | | | | |
Collapse
|
46
|
Ka S, Lindberg J, Strömstedt L, Fitzsimmons C, Lindqvist N, Lundeberg J, Siegel PB, Andersson L, Hallböök F. Extremely different behaviours in high and low body weight lines of chicken are associated with differential expression of genes involved in neuronal plasticity. J Neuroendocrinol 2009; 21:208-16. [PMID: 19207828 DOI: 10.1111/j.1365-2826.2009.01819.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Long-term selection (> 45 generations) for low or high body weight from the same founder population has generated two extremely divergent lines of chickens, the low (LWS) and high weight (HWS) lines, which at the age of selection (56 days) differs by more than nine-fold in body weight. The HWS line chickens are compulsive feeders, whereas, in the LWS line, some individuals are anorexic and others have very low appetites. The involvement of the central nervous system in these behavioural differences has been experimentally supported. We compared a brain region at 0 and 56 days of age containing the major metabolic regulatory regions, including the hypothalamus and brainstem, using a global cDNA array expression analysis. The results obtained show that the long-term selection has produced minor but multiple expression differences. Genes that regulate neuronal plasticity, such as actin filament polymerisation and brain-derived neurotrophic factor, were identified as being differentially expressed. Genes involved in lipid metabolism were over-represented among differentially expressed genes. The expression data confirm that neural systems regulating feeding behaviours in these lines are different. The results suggest that the lines are set in separate developmental trajectories equipped with slightly different nervous systems. We suggest that the lines adapt behaviourally different to changing situations post hatch, such as the transition from dependence on yolk to feeding, in order to obtain energy. The present study has identified and exemplifies the kind of changes that may underlie the extreme differences in such behaviours.
Collapse
Affiliation(s)
- S Ka
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Saadoun A, Cabrera MC. Hypophagic and dipsogenic effect of the 5-HT1A receptor agonist 8-OH-DPAT in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2009; 92:597-604. [PMID: 19012604 DOI: 10.1111/j.1439-0396.2007.00754.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of the 5-HT(1A) receptor agonist 8-OH-DPAT on food and water intake in male broiler chickens were investigated. The injection of 25 or 50 microg/kg of 8-OH-DPAT 15 min before refeeding in fasted animals produced a decrease in food intake. No effect was observed in drinking. The injection of 25 or 50 microg/kg of the 8-OH-DPAT 60 min after the start of refeeding did not produce any significant modification in food intake. No effect on drinking was recorded. The agonist 8-OH-DPAT injected 15 min before water presentation in water-deprived chickens, produced an increased drinking 60 min after the presentation of water. No effect on food intake was observed. The results show that the effect on food intake of the agonist 8-OH-DPAT in fasted-refed broiler chickens was similar to those observed in mammals and layer-strain chickens. However, the agonist did not alter significantly the food intake when the broilers were fed 60 min before the injection. These results are contrary to the observed effects in mammals and in layer-strain chickens. Probably, the selection for rapid growth rate in broilers causes modifications in the feeding control pattern. The comparison between broilers and layers strain may be a useful tool to elucidate the complex mechanisms involved in food and water intake regulation in chickens.
Collapse
Affiliation(s)
- A Saadoun
- Sección Fisiología y Nutrición, Departamento Básico de Medicina, Facultad de Ciencias & Unidad Asociada, Hospital de Clínicas, Montevideo, Uruguay.
| | | |
Collapse
|
48
|
Cline MA, Kuo AY, Smith ML, Nandar W, Prall BC, Siegel PB, Denbow DM. Differential feed intake responses to central corticotrophin releasing factor in lines of chickens divergently selected for low or high body weight. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:130-4. [DOI: 10.1016/j.cbpa.2008.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
|
49
|
Scanes C. Absolute and Relative Standards—The Case of Leptin in Poultry: First Do No Harm. Poult Sci 2008; 87:1927-8. [DOI: 10.3382/ps.2008-87-10-1927] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Cline MA, Nandar W, Bowden C, Hein PP, Denbow DM, Siegel PB. Differential feeding responses to central alpha-melanocyte stimulating hormone in genetically low and high body weight selected lines of chickens. Life Sci 2008; 83:208-13. [DOI: 10.1016/j.lfs.2008.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/10/2008] [Accepted: 06/06/2008] [Indexed: 11/16/2022]
|