1
|
Liu W, Weng S, Chen Y, Cao C, Peng D. Age-adjusted visceral adiposity index (VAI) is superior to VAI for predicting mortality among US adults: an analysis of the NHANES 2011-2014. Aging Clin Exp Res 2024; 36:24. [PMID: 38321181 PMCID: PMC10847207 DOI: 10.1007/s40520-023-02660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The association of visceral adiposity with mortality in older adults is conflicting. Whether age influences the predicting ability of visceral adiposity (VAI) for mortality remains unknown. This study uncovered the relationship between age-adjusted visceral adiposity index and mortality through the data of NHANES 2011-2014. METHODS This study obtained data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. The age-adjusted visceral adiposity index (AVAI) scores were expressed as quartiles. Receiver operating characteristics (ROC) curve analysis was also applied to compare the predictive ability for mortality. Multivariate weighted Cox regression models were constructed to explore the association between AVAI and mortality. Kaplan-Meier survival curves were conducted for survival analyses. Smooth curve fittings and two-piecewise linear models were applied to explore the relationships between AVAI and mortality. RESULTS This study recruited 4281 subjects aged ≥ 18 years from the NHANES 2011-2014. The AUCs of AVAI were 0.82 (0.79, 0.86) and 0.89 (0.85, 0.92) for predicting all-cause mortality and cardiovascular mortality, which were superior to BMI, WC and VAI (all p < 0.05). AVAI is still an independent predictor for mortality adjusted for confounders. The associations of AVAI with all-cause and cardiovascular mortalities were dose-responsive, with higher AVAI scores indicating higher mortality risks. CONCLUSION Age significantly improves the ability of VAI for predicting all-cause and cardiovascular mortality. Age-adjusted VAI is independently associated with mortality risk, and thus could be considered a reliable parameter for assessing mortality risk.
Collapse
Affiliation(s)
- Wenwu Liu
- Department of Cardiovascular Medicine, Research Institute of Blood Lipids and Atherosclerosis, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Shuwei Weng
- Department of Cardiovascular Medicine, Research Institute of Blood Lipids and Atherosclerosis, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yang Chen
- Department of Cardiovascular Medicine, Research Institute of Blood Lipids and Atherosclerosis, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Chenghui Cao
- Department of Cardiovascular Medicine, Research Institute of Blood Lipids and Atherosclerosis, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, Research Institute of Blood Lipids and Atherosclerosis, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
3
|
Cui J, Yang Z, Wang J, Yin S, Xiao Y, Bai Y, Wang J. A cross-sectional analysis of association between visceral adiposity index and serum anti-aging protein Klotho in adults. Front Endocrinol (Lausanne) 2023; 14:1082504. [PMID: 36814582 PMCID: PMC9939517 DOI: 10.3389/fendo.2023.1082504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The visceral adiposity index (VAI) is regarded as a reliable indicator to assess body fat distribution and dysfunction. Klotho protein is a hormone with anti-aging biological functions. However, the relationship between them has not been researched. OBJECTS This study aimed to evaluate the association between VAI and serum anti-aging protein klotho in American adults. METHODS A cross-sectional study of participants was conducted based on the National Health and Nutrition Examination Surveys (NHANES) 2007-2016. Visceral adiposity was determined using the VAI score, while the klotho protein concentration was measured by ELISA kit. After adjusting some possible confounding variables, multivariate regression model was conducted to estimate the relationship between VAI and klotho protein. Furthermore, the smooth curve fitting and the segmented regression model were applied to examine the threshold effect and to calculate the inflection point. RESULT In total, 6 252 adults were eligible, with a mean VAI of 2.04 ± 0.03 and a mean klotho protein concentration of 848.79 ± 6.98 pg/ml. Multivariate regression analysis indicated that serum klotho protein concentration was lower in participants with high VAI score. When VAI was divided into quartiles, participants in the fourth quartiles of higher VAI had lower klotho protein levels (Q4: -32.25 pg/ml) than participants in the lowest quartile (Q1) after full adjustment (P < 0.05). Segmented regression suggested that the turning point value of VAI was 3.21. A 1-unit increase in VAI was significantly associated with lower klotho protein levels by -18.61 pg/ml (95% CI: -28.87, -8.35; P < 0.05) when VAI ranged from 0.29 to 3.21(accounting for 83.7% of the participants), however, the association was not significant when VAI ranged from 3.21 to 11.81 (P = 0.77). CONCLUSION There was a nonlinear correlation between VAI score and the serum anti-aging protein klotho concentrations, showing a saturation effect. When VAI was less than 3.21, they were negatively correlated, and when VAI was greater than 3.21, they had no obvious correlation.
Collapse
Affiliation(s)
- Jianwei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Yang
- Department of Clinical Laboratory, Nanchong Central Hospital, Nanchong, China
| | - Jiahao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yunfei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yunjin Bai, n; Jia Wang,
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yunjin Bai, n; Jia Wang,
| |
Collapse
|
4
|
Davis S, Hocking S, Watt MJ, Gunton JE. Metabolic effects of lipectomy and of adipose tissue transplantation. Obesity (Silver Spring) 2023; 31:7-19. [PMID: 36479639 PMCID: PMC10946570 DOI: 10.1002/oby.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The goal of this study was to review the metabolic effects of fat transplantation. METHODS Fat (adipose tissue [AT]) transplantation has been performed extensively for many years in the cosmetic reconstruction industry. However, not all fats are equal. White, brown, and beige AT differ in energy storage and use. Brown and beige AT consume glucose and lipids for thermogenesis and, theoretically, may provide greater metabolic benefit in transplantation. Here, the authors review the metabolic effects of AT transplantation. RESULTS Removal of subcutaneous human AT does not have beneficial metabolic effects. Most studies find no benefit from visceral AT transplantation and some studies report harmful effects. In contrast, transplantation of inguinal or subcutaneous AT in mice has positive effects. Brown AT transplant studies have variable results depending on the model but most show benefit. CONCLUSIONS Many technical improvements have optimized fat grafting and transplantation in cosmetic surgery. Transplantation of subcutaneous AT has the potential for significant metabolic benefits, although there are few studies in humans or using human AT. Brown AT transplantation is beneficial but not readily feasible in humans thus ex vivo "beiging" may be a useful strategy. AT transplantation may provide clinical benefits in metabolic disorders, especially in the setting of lipodystrophy.
Collapse
Affiliation(s)
- Sarah Davis
- Centre for Diabetes, Obesity and Endocrinology ResearchThe Westmead Institute for Medical Research, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Samantha Hocking
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Matthew J. Watt
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology ResearchThe Westmead Institute for Medical Research, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Diabetes and EndocrinologyWestmead HospitalSydneyNew South WalesAustralia
| |
Collapse
|
5
|
El-Kafoury B, Mohamed F, Bahgat N, El Samad AA, Shawky M, Abdel-Hady EA. Failure of subcutaneous lipectomy to combat metabolic dysregulations in ovariectomy-induced obesity in young female rats. Hormones (Athens) 2022; 21:421-436. [PMID: 35486321 PMCID: PMC9464754 DOI: 10.1007/s42000-022-00371-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The deleterious effect of visceral adipose tissue accumulation is well known. However, the recent trend in liposuction is mal-directed toward easily accessible subcutaneous fat for the purpose of body shaping. The aim of the present study is to probe the metabolic effects of subcutaneous abdominal adipose tissue lipectomy in ovariectomized obese rats as well as the role of adipokines in these changes. METHODS The study was conducted on young female rats randomized into two main groups according to the duration of the experiment, namely, 5-week and 10-week. Both groups were subdivided as follows: sham-operated, ovariectomized, and ovariectomized lipectomized rat groups. The rats underwent measurement of body weight (BW) and determination of body mass index (BMI). Fasting blood glucose, lipid profile, liver function, plasma malondialdehyde, leptin, and adiponectin were estimated, and the content of both blood and hepatic tissue of reduced glutathione was assessed. In addition, histological study of the liver, aorta, and perirenal fat of all rat groups was performed. RESULTS Ovariectomy-induced obesity is marked by a significant increase in BW and BMI. Following subcutaneous lipectomy, the rats exhibited significant weight gain accompanied by fasting hyperglycemia, dyslipidemia, deterioration of synthetic function of the liver, and disturbed oxidant/antioxidant status. Histological examination revealed fatty infiltration of aortic and hepatic tissues. CONCLUSION Despite the immediate positive effect of subcutaneous lipectomy for weight loss and/or body shaping, multiple delayed hazards follow the procedure, which should be carefully considered.
Collapse
Affiliation(s)
- Bataa El-Kafoury
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nehal Bahgat
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer Abd El Samad
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona Shawky
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A Abdel-Hady
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
Morales-Ferra DL, Zavala-Sánchez MÁ, Jiménez-Ferrer E, González-Cortazar M, Zamilpa A. Effect of Tecoma stans (L.) Juss. ex Kunth in a Murine Model of Metabolic Syndrome. PLANTS 2022; 11:plants11141794. [PMID: 35890428 PMCID: PMC9324241 DOI: 10.3390/plants11141794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Metabolic syndrome is a constellation of abnormalities related to insulin resistance with an unfortunately high prevalence worldwide. Tecoma stans (L.) Juss. Ex Kunth. is a well-known medicinal plant that has been studied in several biological models related to diabetes mellitus. The aim of this study was to evaluate the effects of T. stans on a hypercaloric diet-induced metabolic syndrome model. An organic fraction obtained using liquid–liquid separation from the hydroalcoholic extract of T. stans and four subfractions of this organic fraction were administered for ten weeks to C57BL6J male mice previously fed with a hypercaloric diet. The hypercaloric diet caused changes in glucose levels (from 65.3 to 221.5 mg/dL), body weight (31.3 to 42.2 g), triglycerides (91.4 to 177.7 mg/dL), systolic (89.9 to 110.3 mmHg) and diastolic (61.6 to 73.7 mg/dL) blood pressure, and insulin resistance (4.47 to 5.16). Treatment with T. stans resulted in improvements in triglycerides (83.4–125.0 mg/dL), systolic blood pressure (75.1–91.8 mmHg), and insulin resistance (4.72–4.93). However, the organic fraction and hydroalcoholic extract produced a better response in diastolic blood pressure (52.8–56.4 mmHg). Luteolin, apigenin, and chrysoeriol were the major constituents in the most active subfractions. Treatment with T. stans, particularly a luteolin-rich organic fraction, achieved an improvement in metabolic syndrome alterations.
Collapse
Affiliation(s)
- Dulce Lourdes Morales-Ferra
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), México City 04960, Mexico;
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Miguel Ángel Zavala-Sánchez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), México City 04960, Mexico
- Correspondence: (M.Á.Z.-S.); (A.Z.); Tel.: +52-551-320-7614 (M.Á.Z.-S.); +52-777-361-2155 (A.Z.)
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
- Correspondence: (M.Á.Z.-S.); (A.Z.); Tel.: +52-551-320-7614 (M.Á.Z.-S.); +52-777-361-2155 (A.Z.)
| |
Collapse
|
7
|
Viraragavan A, Willmer T, Patel O, Basson A, Johnson R, Pheiffer C. Cafeteria diet induces global and Slc27a3-specific hypomethylation in male Wistar rats. Adipocyte 2021; 10:108-118. [PMID: 33570456 PMCID: PMC7889207 DOI: 10.1080/21623945.2021.1886697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increased visceral adipose tissue (VAT) is associated with metabolic dysfunction, while subcutaneous adipose tissue (SAT) is considered protective. The mechanisms underlying these differences are not fully elucidated. This study aimed to investigate molecular differences in VAT and SAT of male Wistar rats fed a cafeteria diet (CD) or a standard rodent diet (STD) for three months. The expression of fatty acid metabolism genes was analysed by quantitative real-time PCR. Global and gene-specific DNA methylation was quantified using the Imprint® Methylated DNA Quantification Kit and pyrosequencing, respectively. Bodyweight, retroperitoneal fat mass, insulin resistance, leptin and triglyceride concentrations and adipocyte hypertrophy were higher in CD- compared to STD-fed rats. The expression of solute carrier family 27 member 3 (Slc27a3), a fatty acid transporter, was 9.6-fold higher in VAT and 6.3-fold lower in SAT of CD- versus STD-fed rats. Taqman probes confirmed increased Slc27a3 expression, while pyrosequencing showed Slc27a3 hypomethylation in VAT of CD- compared to STD-fed rats. The CD decreased global methylation in both VAT and SAT, although no depot differences were observed. Dysregulated fatty acid influx in VAT, in response to a CD, provides insight into the mechanisms underlying depot-differences in adipose tissue expansion during obesity and metabolic disease. Abbreviations: CD: cafeteria diet; E2F1: E2F Transcription Factor 1; EMSA: electrophoretic mobility shift assay; EGFR: epidermal growth factor receptor; GCF: GC-Rich Sequence DNA-Binding Factor; HOMA-IR: Homeostasis model for insulin resistance; NKX2-1: NK2 homeobox 1; PCR: Polymerase chain reaction; qRT-PCR: quantitative real-time PCR; RF: retroperitoneal fat; SAT: subcutaneous adipose tissue; Slc27a3: solute carrier family 27 member 3; STD: standard diet; TNFα: tumour necrosis factor alpha; TTS: transcriptional start site; T2D: Type 2 Diabetes; VAT: visceral adipose tissue; WT1 I: Wilms’ tumour protein 1
Collapse
Affiliation(s)
- Amsha Viraragavan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Oelfah Patel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Albertus Basson
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
8
|
Keirns BH, Sciarrillo CM, Koemel NA, Emerson SR. Fasting, non-fasting and postprandial triglycerides for screening cardiometabolic risk. J Nutr Sci 2021; 10:e75. [PMID: 34589207 PMCID: PMC8453457 DOI: 10.1017/jns.2021.73] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Fasting triacylglycerols have long been associated with cardiovascular disease (CVD) and other cardiometabolic conditions. Evidence suggests that non-fasting triglycerides (i.e. measured within 8 h of eating) better predict CVD than fasting triglycerides, which has led several organisations to recommend non-fasting lipid panels as the new clinical standard. However, unstandardised assessment protocols associated with non-fasting triglyceride measurement may lead to misclassification, with at-risk individuals being overlooked. A third type of triglyceride assessment, postprandial testing, is more controlled, yet historically has been difficult to implement due to the time and effort required to execute it. Here, we review differences in assessment, the underlying physiology and the pathophysiological relevance of elevated fasting, non-fasting and postprandial triglycerides. We also present data suggesting that there may be a distinct advantage of postprandial triglycerides, even over non-fasting triglycerides, for early detection of CVD risk and offer suggestions to make postprandial protocols more clinically feasible.
Collapse
Affiliation(s)
- Bryant H. Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK74075, USA
| | | | - Nicholas A. Koemel
- Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, The University of Sydney, Sydney, NSW2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW2006, Australia
| | - Sam R. Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK74075, USA
| |
Collapse
|
9
|
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192:114723. [PMID: 34364887 DOI: 10.1016/j.bcp.2021.114723] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Both obesity and aging are associated with the development of metabolic diseases such as type 2 diabetes and cardiovascular disease. Chronic low-grade inflammation of adipose tissue is one of the mechanisms implicated in the progression of these diseases. Obesity and aging trigger adipose tissue alterations that ultimately lead to a pro-inflammatory phenotype of the adipose tissue-resident immune cells. Obesity and aging also share other features such as a higher visceral vs. subcutaneous adipose tissue ratio and a decreased lifespan. Here, we review the common characteristics of obesity and aging and the alterations in white adipose tissue and resident immune cells. We focus on the adipose tissue metabolic derangements in obesity and aging such as inflammation and adipose tissue remodeling.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Julia Fos-Domenech
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain; Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), E-28922 Madrid, Spain.
| |
Collapse
|
10
|
Matsuzawa T, Morita M, Shimane A, Otsuka R, Mei Y, Irie F, Yamaguchi Y, Yanai K, Yoshikawa T. Heparan sulfate promotes differentiation of white adipocytes to maintain insulin sensitivity and glucose homeostasis. J Biol Chem 2021; 297:101006. [PMID: 34310946 PMCID: PMC8379462 DOI: 10.1016/j.jbc.2021.101006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
Heparan sulfate (HS), a highly sulfated linear polysaccharide, is involved in diverse biological functions in various tissues. Although previous studies have suggested a possible contribution of HS to the differentiation of white adipocytes, there has been no direct evidence supporting this. Here, we inhibited the synthesis of HS chains in 3T3-L1 cells using CRISPR–Cas9 technology, resulting in impaired differentiation of adipocytes with attenuated bone morphogenetic protein 4 (BMP4)–fibroblast growth factor 1 (FGF1) signaling pathways. HS reduction resulted in reduced glucose uptake and decreased insulin-dependent intracellular signaling. We then made heterozygous mutant mice for the Ext1 gene, which encodes an enzyme essential for the HS biosynthesis, specifically in the visceral white adipose tissue (Fabp4-Cre+::Ext1flox/WT mice, hereafter called Ext1Δ/WT) to confirm the importance of HS in vivo. The expression levels of transcription factors that control adipocyte differentiation, such as peroxisome proliferator–activated receptor gamma, were reduced in Ext1Δ/WT adipocytes, which contained smaller, unilocular lipid droplets, reduced levels of enzymes involved in lipid synthesis, and altered expression of BMP4–FGF1 signaling molecules. Furthermore, we examined the impact of HS reduction in visceral white adipose tissue on systemic glucose homeostasis. We observed that Ext1Δ/WT mice showed glucose intolerance because of insulin resistance. Our results demonstrate that HS plays a crucial role in the differentiation of white adipocytes through BMP4–FGF1 signaling pathways, thereby contributing to insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
- Takuro Matsuzawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ai Shimane
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rina Otsuka
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Mei
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Irie
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
11
|
Franczyk MP, He M, Yoshino J. Removal of Epididymal Visceral Adipose Tissue Prevents Obesity-Induced Multi-organ Insulin Resistance in Male Mice. J Endocr Soc 2021; 5:bvab024. [PMID: 33869980 PMCID: PMC8041347 DOI: 10.1210/jendso/bvab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is associated with insulin resistance, an important risk factor of type 2 diabetes, atherogenic dyslipidemia, and nonalcoholic fatty liver disease. The major purpose of this study was to test hypothesize that prophylactic removal of epididymal visceral adipose tissue (VAT) prevents obesity-induced multi-organ (liver, skeletal muscle, adipose tissue) insulin resistance. Accordingly, we surgically removed epididymal VAT pads from adult C57BL/6J mice and evaluated in vivo and cellular metabolic pathways involved in glucose and lipid metabolism following chronic high-fat diet (HFD) feeding. We found that VAT removal decreases HFD-induced body weight gain while increasing subcutaneous adipose tissue (SAT) mass. Strikingly, VAT removal prevents obesity-induced insulin resistance and hyperinsulinemia and markedly enhances insulin-stimulated AKT-phosphorylation at serine-473 (Ser473) and threonine-308 (Thr308) sites in SAT, liver, and skeletal muscle. VAT removal leads to decreases in plasma lipid concentrations and hepatic triglyceride (TG) content. In addition, VAT removal increases circulating adiponectin, a key insulin-sensitizing adipokine, whereas it decreases circulating interleukin 6, a pro-inflammatory adipokine. Consistent with these findings, VAT removal increases adenosine monophosphate-activated protein kinase C phosphorylation, a major downstream target of adiponectin signaling. Data obtained from RNA sequencing suggest that VAT removal prevents obesity-induced oxidative stress and inflammation in liver and SAT, respectively. Taken together, these findings highlight the metabolic benefits and possible action mechanisms of prophylactic VAT removal on obesity-induced insulin resistance and hepatosteatosis. Our results also provide important insight into understanding the extraordinary capability of adipose tissue to influence whole-body glucose and lipid metabolism as an active endocrine organ.
Collapse
Affiliation(s)
- Michael P Franczyk
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Mai He
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Liu L, Liang CX, Wang XW, Pei KX, Ma XD, Zhang CX, Dong JH, Gao MM, Liao JW. Preliminary adipose removal did not prevent diet-induced metabolic disorders in mice. Chin Med J (Engl) 2021; 134:716-724. [PMID: 33410621 PMCID: PMC7989994 DOI: 10.1097/cm9.0000000000001334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Obesity is a fundamental factor in metabolic disorders such as hyperlipidemia, insulin resistance, fatty liver, and atherosclerosis. However, effective preventive measures are still lacking. This study aimed to investigate different surgical protocols for removing partial adipose tissue before the onset of obesity and determine whether, and by which protocol, preliminary adipose removal could exert potent preventive effects against diet-induced metabolic disorders. METHODS Male low-density lipoprotein receptor (LDL-R) knockout (KO) mice were randomly divided into four groups and subjected to epididymal fat removal (Epi-FR) surgery, subcutaneous fat removal (suQ-FR) surgery, both subcutaneous and epididymal fat removal (Epi + suQ-FR) surgery, or sham-operation. After 1 week of recovery, all mice were given a high-fat diet (HFD) for 10 weeks to induce metabolic disorders. RESULTS In the Epi-FR group and the sham-operated group, the mean numbers of the residual subcutaneous fat were 28.59 mg/g and 18.56 mg/g, respectively. The expression of relative genes such as Pparg, Cebpa, Dgat2, Fabp4 and Cd36 in the residual subcutaneous fat increased 2.62, 3.90, 3.11, 2.06, 1.78 times in the Epi-FR group compared with that in the sham-operated group. Whereas in the other fat-removal groups, the residual fat depots had no significant change in either size or gene expression, as compared with those of the sham-operated group. Plasma lipid and glucose levels and insulin sensitivity, as detected by the glucose tolerance test, were not significantly alleviated in the three fat removal groups. Liver mass or lipid content was not attenuated in any of the three fat removal groups. The atherosclerosis burdens in the entire inner aorta and aortic root did not decrease in any of the three fat removal groups. CONCLUSIONS Our data suggest that removal of epididymal adipose or subcutaneous adipose alone or in combination before the onset of obesity did not protect against hyperlipidemia, insulin resistance, fatty liver, or atherosclerosis in LDL-R KO mice fed with a HFD. Hence, adipose removal possibly does not represent a potential approach in preventing obesity-related metabolic disorders in the obesity-susceptible population.
Collapse
Affiliation(s)
- Lin Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Chen-Xi Liang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiao-Wei Wang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ke-Xin Pei
- Department of Cardiology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Xin-Di Ma
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chun-Xi Zhang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jing-Hui Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ming-Ming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jia-Wei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
13
|
Jiang L, Sun W, Zhang M, Wang Y, Tian Y, Li P, Lu Y, Xu T, Qiu M, Yang Y, Jia X, Kong X. Omental Adipose Removal Decreases High Blood Pressure in Hypertensive Patients Independent of Body Mass Index. Diabetes Metab Syndr Obes 2021; 14:4921-4930. [PMID: 35002265 PMCID: PMC8721438 DOI: 10.2147/dmso.s272879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
AIM Several studies have demonstrated that increased omental adipose is a risk factor for obesity and metabolic syndrome. It remains unclear whether it is responsible for hypertension as an independent risk. This study was designed to assess the impact of omental adipose removal by surgery on blood pressure in cancer patients with or without hypertension. METHODS AND RESULTS In this prospective observational study, 133 patients with gastric or gynecological cancer were divided into 3 groups: non-hypertensive and omentum removed (NH&OR), hypertensive and omentum removed (H&OR), and hypertensive and omentum present (H&OP). Patients were followed up with systolic and diastolic blood pressure (SBP and DBP), changes in related body mass index and metabolic indices. The time points of the 2 follow-up visits were 1 month ± 7 days after the operation before the start of chemotherapy and the endpoint of 8 ± 1 month. Omental adipose tissues from both non-hypertensive and hypertensive patients in surgery were collected. We included 133 patients (84.2% female, 20.3% malignant gastric cancer and 79.7% malignant gynecological cancer, 78.2% omentum removal, 48.9% hypertensive), and all completed follow-up. H&OR group showed significant reductions in systolic and diastolic blood pressure compared with the baseline at 1-m (-16.94/-10.50 mmHg, both P < 0.001) and 8-m end point (-16.00/-5.50 mmHg, P < 0.001 and P = 0.004). Little reductions were observed with the body mass index of patients in 3 groups till the endpoint of study (H&OR group: 24.60 kg/m2 to 23.57 kg/m2, NH&OR group: 23.45 kg/m2 to 23.25 kg/m2, H&OP group: 25.74 kg/m2 to 25.24 kg/m2, all P > 0.05). No correlation was found between the baseline body mass index and 8-m change of systolic and diastolic blood pressure in omentum removed groups. In both groups, triglyceride levels were significantly increased at 4 ± 1 week after surgery (NH&OR 0.32 mmol/L, P = 0.006; H&OR 0.40 mmol/L, P = 0.010). CONCLUSION Resection of omental adipose tissue represents an effective strategy for reducing systolic and diastolic blood pressure at 8 months in hypertensive patients, even in the non-obese hypertensive population.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mi Zhang
- Department of Gynecological Tumor, Nanjing Maternity and Child Health Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Yaqing Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yunfan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ming Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yun Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xuemei Jia
- Department of Gynecological Tumor, Nanjing Maternity and Child Health Hospital, Nanjing, Jiangsu, People’s Republic of China
- Xuemei Jia The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Hospital), 123 Tianfeixiang, Mochou Road, Nanjing, Jiangsu Province, 210004, People’s Republic of ChinaTel/Fax +86 25 84460507 Email
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Xiangqing Kong The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province, 210029, People’s Republic of ChinaTel +86 25 83718836Fax +86 25 83724440 Email
| |
Collapse
|
14
|
Abstract
Adipose, or fat, tissue (AT) was once considered an inert tissue that primarily existed to store lipids, and was not historically recognized as an important organ in the regulation and maintenance of health. With the rise of obesity and more rigorous research, AT is now recognized as a highly complex metabolic organ involved in a host of important physiological functions, including glucose homeostasis and a multitude of endocrine capabilities. AT dysfunction has been implicated in several disease states, most notably obesity, metabolic syndrome and type 2 diabetes. The study of AT has provided useful insight in developing strategies to combat these highly prevalent metabolic diseases. This review highlights the major functions of adipose tissue and the consequences that can occur when disruption of these functions leads to systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
15
|
Pereira SC, Crisóstomo L, Sousa M, Oliveira PF, Alves MG. Metabolic diseases affect male reproduction and induce signatures in gametes that may compromise the offspring health. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa019. [PMID: 33324496 PMCID: PMC7722800 DOI: 10.1093/eep/dvaa019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 05/30/2023]
Abstract
The most prevalent diseases worldwide are non-communicable such as obesity and type 2 diabetes. Noteworthy, the prevalence of obesity and type 2 diabetes is expected to steadily increase in the next decades, mostly fueled by bad feeding habits, stress, and sedentarism. The reproductive function of individuals is severely affected by abnormal metabolic environments, both at mechanical and biochemical levels. Along with mechanical dysfunctions, and decreased sperm quality (promoted both directly and indirectly by metabolic abnormalities), several studies have already reported the potentially harmful effects of metabolic disorders in the genetic and epigenetic cargo of spermatozoa, and the epigenetic inheritance of molecular signatures induced by metabolic profile (paternal diet, obesity, and diabetes). The inheritance of epigenetic factors towards the development of metabolic abnormalities means that more people in reproductive age can potentially suffer from these disorders and for longer periods. In its turn, these individuals can also transmit this (epi)genetic information to future generations, creating a vicious cycle. In this review, we collect the reported harmful effects related to acquired metabolic disorders and diet in sperm parameters and male reproductive potential. Besides, we will discuss the novel findings regarding paternal epigenetic inheritance, particularly the ones induced by paternal diet rich in fats, obesity, and type 2 diabetes. We analyze the data attained with in vitro and animal models as well as in long-term transgenerational population studies. Although the findings on this topic are very recent, epigenetic inheritance of metabolic disease has a huge societal impact, which may be crucial to tackle the 'fat epidemic' efficiently.
Collapse
Affiliation(s)
- Sara C Pereira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Luís Crisóstomo
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Mário Sousa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Hwang I, Kim JB. Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors. Diabetes Metab J 2019; 43:752-762. [PMID: 31902145 PMCID: PMC6943255 DOI: 10.4093/dmj.2019.0174] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/28/2019] [Indexed: 12/25/2022] Open
Abstract
Chronic energy surplus increases body fat, leading to obesity. Since obesity is closely associated with most metabolic complications, pathophysiological roles of adipose tissue in obesity have been intensively studied. White adipose tissue is largely divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). These two white adipose tissues are similar in their appearance and lipid storage functions. Nonetheless, emerging evidence has suggested that SAT and VAT have different characteristics and functional roles in metabolic regulation. It is likely that there are intrinsic differences between VAT and SAT. In diet-induced obese animal models, it has been reported that adipogenic progenitors in VAT rapidly proliferate and differentiate into adipocytes. In obesity, VAT exhibits elevated inflammatory responses, which are less prevalent in SAT. On the other hand, SAT has metabolically beneficial effects. In this review, we introduce recent studies that focus on cellular and molecular components modulating adipogenesis and immune responses in SAT and VAT. Given that these two fat depots show different functions and characteristics depending on the nutritional status, it is feasible to postulate that SAT and VAT have different developmental origins with distinct adipogenic progenitors, which would be a key determining factor for the response and accommodation to metabolic input for energy homeostasis.
Collapse
Affiliation(s)
- Injae Hwang
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
17
|
Guo F, Si R, He J, Yuan L, Hai L, Ming L, Yi L, Ji R. Comprehensive transcriptome analysis of adipose tissue in the Bactrian camel reveals fore hump has more specific physiological functions in immune and endocrine systems. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
López-Fontana CM, Pennacchio G, Zyla LE, Toneatto J, Bruna FA, Ortiz N, Sassi PL, Santiano FE, García S, Sasso CV, Pietrobon EO, Jahn GA, Pistone Creydt V, Soaje M, Carón RW. Effects of hypothyroidism on the mesenteric and omental adipose tissue in rats. Mol Cell Endocrinol 2019; 490:88-99. [PMID: 31004687 DOI: 10.1016/j.mce.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
To characterize the influence of hypothyroidism on the endocrine activity of mesenteric and omental adipose tissue (MOAT) and the peripheral regulation of energy balance (EB) in rats, we analyzed food intake (FI); basal metabolic rate (BMR); locomotor activity; body weight (BW); serum hormone concentrations and the expression of their receptors in MOAT. We evaluated the morphology and differentiation of adipocytes. Hypothyroidism decreased FI, BMR and BW. The percentage of visceral white adipose tissue (WAT) depots and the morphology of adipocytes were similar to euthyroid rats. Serum leptin and adiponectin expression in MOAT were altered by hypothyroidism. The expression of Perilipin 1, HSL, UCP1 and PRDM16 was significantly lower in MOAT of hypothyroid animals. Hypothyroidism in rats leads to a compensated EB by inducing a white adipocyte dysfunction and a decrease in BW, BMR, FI and adipokine secretions without changing the percentage of WAT depots and the morphology of the MOAT.
Collapse
Affiliation(s)
- C M López-Fontana
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - G Pennacchio
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - L E Zyla
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - J Toneatto
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.
| | - F A Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - N Ortiz
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - P L Sassi
- Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA), CONICET, CCT-Mendoza, Argentina.
| | - F E Santiano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - S García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - C V Sasso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - E O Pietrobon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - G A Jahn
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - V Pistone Creydt
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - M Soaje
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - R W Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| |
Collapse
|
19
|
Inhibition of pyruvate dehydrogenase kinase-4 by l-glutamine protects pregnant rats against fructose-induced obesity and hepatic lipid accumulation. Biomed Pharmacother 2019; 110:59-67. [DOI: 10.1016/j.biopha.2018.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/29/2018] [Accepted: 11/10/2018] [Indexed: 12/13/2022] Open
|
20
|
Jasbi P, Baker O, Shi X, Gonzalez LA, Wang S, Anderson S, Xi B, Gu H, Johnston CS. Daily red wine vinegar ingestion for eight weeks improves glucose homeostasis and affects the metabolome but does not reduce adiposity in adults. Food Funct 2019; 10:7343-7355. [DOI: 10.1039/c9fo01082c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This is the first study to investigate the effects of vinegar on adiposity and glycemia using both anthropometrics and metabolomics.
Collapse
Affiliation(s)
- Paniz Jasbi
- College of Health Solutions
- Arizona State University
- Phoenix
- USA
| | - Olivia Baker
- College of Health Solutions
- Arizona State University
- Phoenix
- USA
| | - Xiaojian Shi
- College of Health Solutions
- Arizona State University
- Phoenix
- USA
| | | | - Shuai Wang
- College of Health Solutions
- Arizona State University
- Phoenix
- USA
| | - Summer Anderson
- College of Health Solutions
- Arizona State University
- Phoenix
- USA
| | - Bowei Xi
- Department of Statistics
- Purdue University
- West Lafayette
- USA
| | - Haiwei Gu
- College of Health Solutions
- Arizona State University
- Phoenix
- USA
| | | |
Collapse
|
21
|
Wu Z, Tan J, Chi Y, Zhang F, Xu J, Song Y, Cong X, Wu N, Liu Y. Mesenteric adipose tissue contributes to intestinal barrier integrity and protects against nonalcoholic fatty liver disease in mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G659-G670. [PMID: 29902065 DOI: 10.1152/ajpgi.00079.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral adipose tissue (VAT) is related to nonalcoholic fatty liver disease (NAFLD). However, the role of mesenteric adipose tissue (MAT), part of the VAT, in NAFLD is unclear. In the present study, we monitored the liver and four depots of the VAT in high-fat diet (HFD)-feeding mice at multiple time points (4, 8, and 12 wk). The MAT had become inflamed by the eighth week of HFD feeding, earlier than other depots of VAT. Furthermore, MAT removal after 8 wk of HFD resulted in more severe steatosis and more foci of inflammation infiltration, as well as higher NAFLD activity scores. Consistent with these findings, the mRNA expression of proinflammatory cytokines and lipid anabolism genes was increased in the livers of inflamed MAT-removal mice. MAT removal also injured the intestinal barrier and promoted intestinal inflammation. The bacterial load translocated to the liver and circulating levels of lipopolysaccharide were also evaluated in inflamed MAT-removal mice. In a coculture experiment involving adipocytes and intestinal epithelial cells, mRNA expression of zonula occludens-1 (ZO-1), and occludin in CT-26 cells was upregulated and permeability of monolayer Caco-2 cells was elevated under stimulation from adipocytes or inflamed adipocytes. Taken together, these results demonstrated that MAT removal damaged the intestinal barrier and aggravated NAFLD and that MAT inflammation may be a compensatory response to protect the liver by maintaining the intestinal barrier. NEW & NOTEWORTHY The mesenteric adipose tissue (MAT) lies between the gut and liver and plays a critical role in hepatic metabolic diseases. In the present study, we found that the MAT was prone to inflammation in high-fat diet-fed mice. Removal of the inflamed MAT resulted in more hepatic inflammation, lipid accumulation, and decreased glucose tolerance. Furthermore, we showed that the MAT contributed to intestinal barrier integrity, thus clarifying why MAT removal aggravated nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Jiang Tan
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Yujing Chi
- Central Laboratory & Institute of Clinical Molecular Biology Peking University People's Hospital , Beijing , People's Republic of China
| | - Feng Zhang
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Yang Song
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Xu Cong
- Hepatology Institute, Peking University People's Hospital, Beijing, People's Republic of China
| | - Na Wu
- Central Laboratory & Institute of Clinical Molecular Biology Peking University People's Hospital , Beijing , People's Republic of China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| |
Collapse
|
22
|
Hill JH, Solt C, Foster MT. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Investig 2018; 33:/j/hmbci.ahead-of-print/hmbci-2018-0012/hmbci-2018-0012.xml. [PMID: 29547393 DOI: 10.1515/hmbci-2018-0012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/09/2018] [Indexed: 02/07/2023]
Abstract
Obesity and associated metabolic co-morbidities are a worldwide public health problem. Negative health outcomes associated with obesity, however, do not arise from excessive adiposity alone. Rather, deleterious outcomes of adipose tissue accumulation are a result of how adipocytes are distributed to individual regions in the body. Due to our increased understanding of the dynamic relationship that exists between specific adipose depots and disease risk, an accurate characterization of total body adiposity as well as location is required to properly evaluate a population's disease risk. Specifically, distinctive tissue depots within the body include the lower body, upper body and abdominal (deep and superficial) subcutaneous regions, as well as visceral (mesenteric and omental) regions. Upper body and visceral adipose tissues are highly associated with metabolic dysfunction and chronic disease development, whereas lower body gluteofemoral subcutaneous adipose tissue imparts protection against diet-induced metabolic derangement. Each adipose depot functions distinctly as an endocrine organ hence it has a different level of impact on health outcomes. Effluent from adipose tissue can modulate the functions of other tissues, whilst receiving differential communication from the rest of the body via central nervous system innervation, metabolites and other signaling molecules. More so, adipose depots contain a diverse reservoir of tissue-resident immune cells that play an integral part in both maintaining tissue homeostasis, as well as propagating metabolically-induced inflammation. Overall, the conceptualization of obesity and associated risks needs updating to reflect the complexities of obesity. We review adipose tissue characteristics that are linked to deleterious or beneficial adipose tissue distributions.
Collapse
Affiliation(s)
- Jessica H Hill
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Claudia Solt
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Michelle T Foster
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO 80523, USA, Phone: +(970) 491-6189, Fax: +(970) 491-3875
| |
Collapse
|
23
|
Soares AF, Paz-Montoya J, Lei H, Moniatte M, Gruetter R. Sexual dimorphism in hepatic lipids is associated with the evolution of metabolic status in mice. NMR IN BIOMEDICINE 2017; 30:e3761. [PMID: 28661066 DOI: 10.1002/nbm.3761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 05/28/2023]
Abstract
Ectopic lipid accumulation in the liver is implicated in metabolic disease in an age- and sex-dependent manner. The role of hepatic lipids has been well established within the scope of metabolic insults in mice, but has been insufficiently characterized under standard housing conditions, where age-related metabolic alterations are known to occur. We studied a total of 10 male and 10 female mice longitudinally. At 3, 7 and 11 months of age, non-invasive 1 H-magnetic resonance spectroscopy (1 H-MRS) was used to monitor hepatic lipid content (HLC) and fatty acid composition in vivo, and glucose homeostasis was assessed with glucose and insulin challenges. At the end of the study, hepatic lipids were comprehensively characterized by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometric analyses of liver tissue samples. In males, HLC increased from 1.4 ± 0.1% at 3 months to 2.9 ± 0.3% at 7 months (p < 0.01) and 2.7 ± 0.3% at 11 months (p < 0.05), in correlation with fasting insulin levels (p < 0.01, r = 0.51) and parameters from the insulin tolerance test (ITT; p < 0.001, r = -0.69 versus area under the curve; p < 0.01, r = -0.57 versus blood glucose drop at 1 h post-ITT; p < 0.01, r = 0.55 versus blood glucose at 3 h post-ITT). The metabolic performance of females remained the same throughout the study, and HLC was higher than that of males at 3 months (2.7 ± 0.2%, p < 0.01), but comparable at 7 months (2.2 ± 0.2%) and 11 months (2.2 ± 0.1%). Strong sexual dimorphism in bioactive lipid species, including diacylglycerols (higher in males, p < 0.0001), phosphatidylinositols (higher in females, p < 0.001) and omega-3 polyunsaturated fatty acids (higher in females, p < 0.01), was found to be in good correlation with metabolic scores at 11 months. Therefore, in mice housed under standard conditions, sex-specific composition of bioactive lipids is associated with metabolic protection in females, whose metabolic performance was independent of hepatic cytosolic lipid content.
Collapse
Affiliation(s)
- Ana Francisca Soares
- École Polytechnique Fédérale de Lausanne, Laboratory for Functional and Metabolic Imaging (LIFMET), Lausanne, VD, Switzerland
| | - Jonathan Paz-Montoya
- École Polytechnique Fédérale de Lausanne, Proteomics Core Facility (PCF), Lausanne, VD, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging (CIBM), Lausanne VD, Switzerland and University of Geneva, Department of Radiology, Geneva, Switzerland
| | - Marc Moniatte
- École Polytechnique Fédérale de Lausanne, Proteomics Core Facility (PCF), Lausanne, VD, Switzerland
| | - Rolf Gruetter
- École Polytechnique Fédérale de Lausanne, Laboratory for Functional and Metabolic Imaging (LIFMET), Lausanne, VD, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne VD, Switzerland and University of Geneva, Department of Radiology, Geneva, Switzerland
| |
Collapse
|
24
|
Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:161-196. [PMID: 28585199 DOI: 10.1007/978-3-319-48382-5_7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis and it is constituted of three different types of adipocytes : white, beige and brown which are integrated with vascular, immune, neural and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concert action of the three type of adipocytes/tissues has been reported to ensure an optimal metabolic status in rodents. However, when one or multiple of these adipose depots become dysfunctional as a consequence of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity counteracts obesity and its associated lipotoxic metabolic effects. The development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition and expandability capacity as well as molecular and metabolic signatures in both physiological and pathophysiological conditions.
Collapse
|
25
|
Gaborit B, Sengenes C, Ancel P, Jacquier A, Dutour A. Role of Epicardial Adipose Tissue in Health and Disease: A Matter of Fat? Compr Physiol 2017. [PMID: 28640452 DOI: 10.1002/cphy.c160034] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epicardial adipose tissue (EAT) is a small but very biologically active ectopic fat depot that surrounds the heart. Given its rapid metabolism, thermogenic capacity, unique transcriptome, secretory profile, and simply measurability, epicardial fat has drawn increasing attention among researchers attempting to elucidate its putative role in health and cardiovascular diseases. The cellular crosstalk between epicardial adipocytes and cells of the vascular wall or myocytes is high and suggests a local role for this tissue. The balance between protective and proinflammatory/profibrotic cytokines, chemokines, and adipokines released by EAT seem to be a key element in atherogenesis and could represent a future therapeutic target. EAT amount has been found to predict clinical coronary outcomes. EAT can also modulate cardiac structure and function. Its amount has been associated with atrial fibrillation, coronary artery disease, and sleep apnea syndrome. Conversely, a beiging fat profile of EAT has been identified. In this review, we describe the current state of knowledge regarding the anatomy, physiology and pathophysiological role of EAT, and the factors more globally leading to ectopic fat development. We will also highlight the most recent findings on the origin of this ectopic tissue, and its association with cardiac diseases. © 2017 American Physiological Society. Compr Physiol 7:1051-1082, 2017.
Collapse
Affiliation(s)
- Bénédicte Gaborit
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,Endocrinology Metabolic Diseases, and Nutrition Department, Pole ENDO, APHM, Aix-Marseille Univ, Marseille, France
| | - Coralie Sengenes
- STROMALab, Université de Toulouse, EFS, ENVT, Inserm U1031, ERL CNRS 5311, CHU Rangueil, Toulouse, France
| | - Patricia Ancel
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Alexis Jacquier
- CNRS UMR 7339, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Marseille, France.,Radiology department, CHU La Timone, Marseille, France
| | - Anne Dutour
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,Endocrinology Metabolic Diseases, and Nutrition Department, Pole ENDO, APHM, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
26
|
Booth AD, Magnuson AM, Cox-York KA, Wei Y, Wang D, Pagliassotti MJ, Foster MT. Inhibition of adipose tissue PPARγ prevents increased adipocyte expansion after lipectomy and exacerbates a glucose-intolerant phenotype. Cell Prolif 2016; 50. [PMID: 27976431 DOI: 10.1111/cpr.12325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/05/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Adipose tissue plays a fundamental role in glucose homeostasis. For example, fat removal (lipectomy, LipX) in lean mice, resulting in a compensatory 50% increase in total fat mass, is associated with significant improvement in glucose tolerance. This study was designed to further examine the link between fat removal, adipose tissue compensation and glucose homeostasis using a peroxisome proliferator-activated receptor γ (PPAR γ; activator of adipogenesis) knockout mouse. MATERIAL AND METHODS The study involved PPARγ knockout (FKOγ) or control mice (CON), subdivided into groups that received LipX or Sham surgery. We reasoned that as the ability of adipose tissue to expand in response to LipX would be compromised in FKOγ mice, so would improvements in glucose homeostasis. RESULTS In CON mice, LipX increased total adipose depot mass (~60%), adipocyte number (~45%) and changed adipocyte distribution to smaller cells. Glucose tolerance was improved (~30%) in LipX CON mice compared to Shams. In FKOγ mice, LipX did not result in any significant changes in adipose depot mass, adipocyte number or distribution. LipX FKOγ mice were also characterized by reduction of glucose tolerance (~30%) compared to shams. CONCLUSIONS Inhibition of adipose tissue PPARγ prevented LipX-induced increases in adipocyte expansion and produced a glucose-intolerant phenotype. These data support the notion that adipose tissue expansion is critical to maintain and/or improvement in glucose homeostasis.
Collapse
Affiliation(s)
- A D Booth
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - A M Magnuson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - K A Cox-York
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Y Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - D Wang
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - M J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - M T Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
27
|
Abstract
Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.
Collapse
Affiliation(s)
- Liping Luo
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center,
Albuquerque, New Mexico, USA
| |
Collapse
|
28
|
Jeffery E, Wing A, Holtrup B, Sebo Z, Kaplan JL, Saavedra-Peña R, Church CD, Colman L, Berry R, Rodeheffer MS. The Adipose Tissue Microenvironment Regulates Depot-Specific Adipogenesis in Obesity. Cell Metab 2016; 24:142-50. [PMID: 27320063 PMCID: PMC4945385 DOI: 10.1016/j.cmet.2016.05.012] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/15/2016] [Accepted: 05/25/2016] [Indexed: 01/03/2023]
Abstract
The sexually dimorphic distribution of adipose tissue influences the development of obesity-associated pathologies. The accumulation of visceral white adipose tissue (VWAT) that occurs in males is detrimental to metabolic health, while accumulation of subcutaneous adipose tissue (SWAT) seen in females may be protective. Here, we show that adipocyte hyperplasia contributes directly to the differential fat distribution between the sexes. In male mice, high-fat diet (HFD) induces adipogenesis specifically in VWAT, while in females HFD induces adipogenesis in both VWAT and SWAT in a sex hormone-dependent manner. We also show that the activation of adipocyte precursors (APs), which drives adipocyte hyperplasia in obesity, is regulated by the adipose depot microenvironment and not by cell-intrinsic mechanisms. These findings indicate that APs are plastic cells, which respond to both local and systemic signals that influence their differentiation potential independent of depot origin. Therefore, depot-specific AP niches coordinate adipose tissue growth and distribution.
Collapse
Affiliation(s)
- Elise Jeffery
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Allison Wing
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Brandon Holtrup
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zachary Sebo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Jennifer L Kaplan
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rocio Saavedra-Peña
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Christopher D Church
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura Colman
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan Berry
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 2016; 59:1075-88. [PMID: 27039901 PMCID: PMC4861754 DOI: 10.1007/s00125-016-3933-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises its functionality, contributing to increased risk of type 2 diabetes and cardiovascular diseases. Conversely, brown adipose tissue (BAT) and browning of WAT represent potential therapeutic approaches, since dysfunctional white adipocyte-induced lipid overspill can be halted by BAT/browning-mediated oxidative anti-lipotoxic effects. Better understanding of the cellular and molecular pathophysiological mechanisms regulating adipocyte size, number and depot-dependent expansion has become a focus of interest over recent decades. Here, we summarise the mechanisms contributing to adipose tissue (AT) plasticity and function including characteristics and cellular complexity of the various adipose depots and we discuss recent insights into AT origins, identification of adipose precursors, pathophysiological regulation of adipogenesis and its relation to WAT/BAT expandability in obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
30
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
31
|
Donner DG, Elliott GE, Beck BR, Bulmer AC, Lam AK, Headrick JP, Du Toit EF. Trenbolone Improves Cardiometabolic Risk Factors and Myocardial Tolerance to Ischemia-Reperfusion in Male Rats With Testosterone-Deficient Metabolic Syndrome. Endocrinology 2016; 157:368-81. [PMID: 26584015 DOI: 10.1210/en.2015-1603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The increasing prevalence of obesity adds another dimension to the pathophysiology of testosterone (TEST) deficiency (TD) and potentially impairs the therapeutic efficacy of classical TEST replacement therapy. We investigated the therapeutic effects of selective androgen receptor modulation with trenbolone (TREN) in a model of TD with the metabolic syndrome (MetS). Male Wistar rats (n=50) were fed either a control standard rat chow (CTRL) or a high-fat/high-sucrose (HF/HS) diet. After 8 weeks of feeding, rats underwent sham surgery or an orchiectomy (ORX). Alzet miniosmotic pumps containing either vehicle, 2-mg/kg·d TEST or 2-mg/kg·d TREN were implanted in HF/HS+ORX rats. Body composition, fat distribution, lipid profile, and insulin sensitivity were assessed. Infarct size was quantified to assess myocardial damage after in vivo ischaemia reperfusion, before cardiac and prostate histology was performed. The HF/HS+ORX animals had increased sc and visceral adiposity; circulating triglycerides, cholesterol, and insulin; and myocardial damage, with low circulating TEST compared with CTRLs. Both TEST and TREN protected HF/HS+ORX animals against sc fat accumulation, hypercholesterolaemia, and myocardial damage. However, only TREN protected against visceral fat accumulation, hypertriglyceridaemia, and hyperinsulinaemia and reduced myocardial damage relative to CTRLs. TEST caused widespread cardiac fibrosis and prostate hyperplasia, which were less pronounced with TREN. We propose that TEST replacement therapy may have contraindications for males with TD and obesity-related MetS. TREN treatment may be more effective in restoring androgen status and reducing cardiovascular risk in males with TD and MetS.
Collapse
Affiliation(s)
- Daniel G Donner
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Grace E Elliott
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Belinda R Beck
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Andrew C Bulmer
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Alfred K Lam
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - John P Headrick
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Eugene F Du Toit
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
32
|
Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal 2015; 2015:549352. [PMID: 26618193 PMCID: PMC4651788 DOI: 10.1155/2015/549352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022] Open
Abstract
Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue.
Collapse
|
33
|
von Düring ME, Jenssen T, Bollerslev J, Åsberg A, Godang K, Eide IA, Dahle DO, Hartmann A. Visceral fat is better related to impaired glucose metabolism than body mass index after kidney transplantation. Transpl Int 2015; 28:1162-71. [PMID: 25970153 DOI: 10.1111/tri.12606] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
The role of visceral adipose tissue (VAT) in post-transplant hyperglycaemia is not known. We evaluated 167 patients without diabetes 8-10 weeks after kidney transplantation, performing oral glucose tolerance tests and measuring VAT content from dual-energy X-ray absorptiometry scans. Median VAT weight in normal glucose tolerance patients was 0.9 kg, impaired fasting glucose patients 1.0 kg, impaired glucose tolerance patients 1.3 kg and patients with post-transplant diabetes (PTDM) 2.1 kg (P = 0.004, indicating a difference between groups). Percentage VAT of total body fat was associated with fasting (R(2) = 0.094, P < 0.001) and 2-h glucose concentration (R(2) = 0.062, P = 0.001), while BMI was only associated with 2-h glucose concentration (R(2) = 0.029, P = 0.028). An association between BMI and 2-h glucose concentration was lost in adjusted models, as opposed to the associations between VAT as percentage of total body fat and glucose concentrations (R(2) = 0.132, P < 0.001 and R(2) = 0.097, P = 0.001, respectively for fasting and 2-h glucose concentration). In conclusion, VAT is more closely related to impaired glucose metabolism than BMI after kidney transplantation. The association with central obesity should encourage additional studies on lifestyle interventions to prevent PTDM.
Collapse
Affiliation(s)
- Marit Elizabeth von Düring
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond Jenssen
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jens Bollerslev
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Endocrinology, Section of Specialized Endocrinology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,School of Pharmacy, University of Oslo, Oslo, Norway
| | - Kristin Godang
- Department of Endocrinology, Section of Specialized Endocrinology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ivar Anders Eide
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Olav Dahle
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Hartmann
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Abreu AR, de Abreu AR, Santos LT, de Souza AA, da Silva LG, Chianca DA, de Menezes RC. Blunted GABA-mediated inhibition within the dorsomedial hypothalamus potentiates the cardiovascular response to emotional stress in rats fed a high-fat diet. Neuroscience 2014; 262:21-30. [PMID: 24397951 DOI: 10.1016/j.neuroscience.2013.12.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 11/25/2022]
Abstract
Rats fed a high-fat diet (HFD) present an exaggerated endocrine response to stress conditions, which, like obesity, show a high correlation with cardiovascular diseases. Meanwhile the GABAergic neurotransmission within the dorsomedial hypothalamus (DMH) is involved in the regulation of the physiological responses during emotional stress. Here we evaluated the influence of obesity, induced by a HFD, on the cardiovascular responses induced by air jet stress in rats, and the role of the GABAergic tonus within the DMH in these changes. Our results showed that consumption of a HFD (45% w/w fat) for 9 weeks induced obesity and increases in baseline mean arterial pressure (MAP) and heart rate (HR). Moreover, obesity potentiated stress responsiveness, evidenced by the greater changes in MAP and HR induced by stress in obese rats. The injection of muscimol into the DMH reduced the maximal increases in HR and MAP induced by stress in both groups; however, the reduction in the maximal increases in MAP in the HFD group was less pronounced. Moreover, the injection of muscimol into the DMH of obese rats was less effective in reducing the stress-induced tachycardia, since the HR attained the same levels at the end of the stress paradigm as after the vehicle injection. Injection of bicuculline into DMH induced increases in MAP and HR in both groups. Nevertheless, obesity shortened the tachycardic response to bicuculline injection. These data show that obesity potentiates the cardiovascular response to stress in rats due to an inefficient GABAA-mediated inhibition within the DMH.
Collapse
Affiliation(s)
- A R Abreu
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - A R de Abreu
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - L T Santos
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - A A de Souza
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - L G da Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - D A Chianca
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - R C de Menezes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
35
|
Finelli C, Sommella L, Gioia S, La Sala N, Tarantino G. Should visceral fat be reduced to increase longevity? Ageing Res Rev 2013; 12:996-1004. [PMID: 23764746 DOI: 10.1016/j.arr.2013.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
Several epidemiologic studies have implicated visceral fat as a major risk factor for insulin resistance, type 2 diabetes mellitus, cardiovascular disease, stroke, metabolic syndrome and death. Utilizing novel models of visceral obesity, numerous studies have demonstrated that the relationship between visceral fat and longevity is causal while the accrual of subcutaneous fat does not appear to play an important role in the etiology of disease risk. Specific recommended intake levels vary based on a number of factors, including current weight, activity levels, and weight loss goals. It is discussed the need of reducing the visceral fat as a potential treatment strategy to prevent or delay age-related diseases and to increase longevity.
Collapse
Affiliation(s)
- Carmine Finelli
- Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Chiaromonte, Potenza, Italy.
| | | | | | | | | |
Collapse
|
36
|
Foster MT, Softic S, Caldwell J, Kohli R, de Kloet AD, Seeley RJ. Subcutaneous Adipose Tissue Transplantation in Diet-Induced Obese Mice Attenuates Metabolic Dysregulation While Removal Exacerbates It. Physiol Rep 2013; 1. [PMID: 23914298 PMCID: PMC3728904 DOI: 10.1002/phy2.15] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2, mice received control surgery, subcutaneous fat removal, or heterotransplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks postsurgery. Adipose mass and portal adipokines, cytokines, lipids, and insulin were measured from samples collected at 5 weeks postsurgery. Auto- and heterotransplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration, and reduced portal lipids and hepatic triglycerides compared with HFD controls. Heterotransplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in adipose tissue, however, altered hepatic lipid regulation may play a contributory role.
Collapse
Affiliation(s)
- M T Foster
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, OH
| | | | | | | | | | | |
Collapse
|
37
|
Finelli C, Tarantino G. Should visceral fat, strictly linked to hepatic steatosis, be depleted to improve survival? Hepatol Int 2013; 7:413-428. [PMID: 26201775 DOI: 10.1007/s12072-012-9406-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023]
Abstract
Numerous epidemiologic studies have implicated abdominal obesity as a major risk factor for insulin resistance, type 2 diabetes mellitus, cardiovascular disease, stroke, metabolic syndrome and its further expression, i.e., nonalcoholic fatty liver disease and death. Using novel models of visceral obesity, several studies have demonstrated that the relationship between visceral fat and longevity is causal, while the accrual of subcutaneous fat does not appear to play an important role in the etiology of disease risk. The need of reducing the visceral fat to improve survival, mainly taking into account the strict link between nonalcoholic fatty liver disease and the coronary artery disease is discussed.
Collapse
Affiliation(s)
- Carmine Finelli
- Center of Obesity and Eating Disorder, Stella Maris Mediterraneo Foundation Chiaromonte, Potenza, Italy
| | - Giovanni Tarantino
- Department of Clinical and Experimental Medicine, Federico II University Medical School of Naples, Naples, Italy.
| |
Collapse
|
38
|
Gesing A, Masternak MM, Lewinski A, Karbownik-Lewinska M, Kopchick JJ, Bartke A. Decreased levels of proapoptotic factors and increased key regulators of mitochondrial biogenesis constitute new potential beneficial features of long-lived growth hormone receptor gene-disrupted mice. J Gerontol A Biol Sci Med Sci 2013; 68:639-51. [PMID: 23197187 PMCID: PMC3708518 DOI: 10.1093/gerona/gls231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/19/2012] [Indexed: 01/06/2023] Open
Abstract
Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results suggest new features of GHRKO mice that may positively affect longevity-decreased levels of proapoptotic factors and increased levels of key regulators of mitochondrial biogenesis. The alterations in levels of the proapoptotic factors and key regulators of mitochondrial biogenesis were not further improved by two other potential life-extending interventions-calorie restriction and visceral fat removal. This may attribute the primary role to GH resistance in the regulation of apoptosis and mitochondrial biogenesis in GHRKO mice in terms of increased life span.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
39
|
Ludwig T, Worsch S, Heikenwalder M, Daniel H, Hauner H, Bader BL. Metabolic and immunomodulatory effects of n-3 fatty acids are different in mesenteric and epididymal adipose tissue of diet-induced obese mice. Am J Physiol Endocrinol Metab 2013; 304:E1140-56. [PMID: 23482450 DOI: 10.1152/ajpendo.00171.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In studies emphasizing antiobesogenic and anti-inflammatory effects of long-chain n-3 polyunsaturated fatty acids (LC-n-3 PUFA), diets with very high fat content, not well-defined fat quality, and extreme n-6/n-3 PUFA ratios have been applied frequently. Additionally, comparative analyses of visceral adipose tissues (VAT) were neglected. Considering the link of visceral obesity to insulin resistance or inflammatory bowel diseases, we hypothesized that VAT, especially mesenteric adipose tissue (MAT), may exhibit differential responsiveness to diets through modulation of metabolic and inflammatory processes. Here, we aimed to assess dietary LC-n-3 PUFA effects on MAT and epididymal adipose tissue (EAT) and on MAT-adjacent liver and intestine in diet-induced obese mice fed defined soybean/palm oil-based diets. High-fat (HF) and LC-n-3 PUFA-enriched high-fat diet (HF/n-3) contained moderately high fat with unbalanced and balanced n-6/n-3 PUFA ratios, respectively. Body composition/organ analyses, glucose tolerance test, measurements of insulin, lipids, mRNA and protein expression, and immunohistochemistry were applied. Compared with HF, HF/n-3 mice showed reduced fat mass, smaller adipocytes in MAT than EAT, improved insulin level, and lower hepatic triacylglycerol and plasma NEFA levels, consistent with liver and brown fat gene expression. Gene expression arrays pointed to immune cell activation in MAT and alleviation of intestinal endothelial cell activation. Validations demonstrated simultaneously upregulated pro- (TNFα, MCP-1) and anti-inflammatory (IL-10) cytokines and M1/M2-macrophage markers in VAT and reduced CD4/CD8α expression in MAT and spleen. Our data revealed differential responsiveness to diets for VAT through preferentially metabolic alterations in MAT and inflammatory processes in EAT. LC-n-3 PUFA effects were pro- and anti-inflammatory and disclose T cell-immunosuppressive potential.
Collapse
Affiliation(s)
- Tobias Ludwig
- Clinical Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Abdominal (central) obesity strongly correlates with (hepatic) insulin resistance and type 2 diabetes. Among several hypotheses that have been formulated, the 'portal theory' proposes that the liver is directly exposed to increasing amounts of free fatty acids and pro-inflammatory factors released from visceral fat into the portal vein of obese patients, promoting the development of hepatic insulin resistance and liver steatosis. Thus, visceral obesity may be particularly hazardous in the pathogenesis of insulin resistance and type 2 diabetes. Herein, we will critically review existing evidence for a potential contribution of portally drained free fatty acids and/or cytokines to the development of hepatic insulin resistance.
Collapse
Affiliation(s)
- F Item
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Steinwiesstrasse 75,Zurich, Switzerland
| | | |
Collapse
|
41
|
Fang P, Yu M, Shi M, Zhang Z, Sui Y, Guo L, Bo P. Galanin peptide family as a modulating target for contribution to metabolic syndrome. Gen Comp Endocrinol 2012; 179:115-120. [PMID: 22909974 DOI: 10.1016/j.ygcen.2012.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) is defined as abdominal central obesity, atherogenic dyslipidemia, insulin resistance, glucose intolerance and hypertension. The rapid increasing prevalence of MetS and the consequent diseases, such as type 2 diabetes mellitus and cardiovascular disorder, are becoming a global epidemic health problem. Despite considerable research into the etiology of this complex disease, the precise mechanism underlying MetS and the association of this complex disease with the development of type 2 diabetes mellitus and increased cardiovascular disease remains elusive. Therefore, researchers continue to actively search for new MetS treatments. Recent animal studies have indicated that the galanin peptide family of peptides may increase food intake, glucose intolerance, fat preference and the risk for obesity and dyslipidemia while decreasing insulin resistance and blood pressure, which diminishes the probability of type 2 diabetes mellitus and hypertension. To date, however, few papers have summarized the role of the galanin peptide family in modulating MetS. Through a summary of available papers and our recent studies, this study reviews the updated evidences of the effect that the galanin peptide family has on the clustering of MetS components, including obesity, dyslipidemia, insulin resistance and hypertension. This line of research will further deepen our understanding of the relationship between the galanin peptide family and the mechanisms underlying MetS, which will help develop new therapeutic strategies for this complex disease.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Foster MT, Pagliassotti MJ. Metabolic alterations following visceral fat removal and expansion: Beyond anatomic location. Adipocyte 2012; 1:192-199. [PMID: 23700533 PMCID: PMC3609102 DOI: 10.4161/adip.21756] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased visceral adiposity is a risk factor for metabolic disorders such as dyslipidemia, hypertension, insulin resistance and type 2 diabetes, whereas peripheral (subcutaneous) obesity is not. Though the specific mechanisms which contribute to these adipose depot differences are unknown, visceral fat accumulation is proposed to result in metabolic dysregulation because of increased effluent, e.g., fatty acids and/or adipokines/cytokines, to the liver via the hepatic portal vein. Pathological significance of visceral fat accumulation is also attributed to adipose depot/adipocyte-specific characteristics, specifically differences in structural, physiologic and metabolic characteristics compared with subcutaneous fat. Fat manipulations, such as removal or transplantation, have been utilized to identify location dependent or independent factors that play a role in metabolic dysregulation. Obesity-induced alterations in adipose tissue function/intrinsic characteristics, but not mass, appear to be responsible for obesity-induced metabolic dysregulation, thus “quality” is more important than “quantity.” This review summarizes the implications of obesity-induced metabolic dysfunction as it relates to anatomic site and inherent adipocyte characteristics.
Collapse
|