1
|
Guerreiro ADS, de Aguiar G, Bertacini C, Godoi FGAD, Branco GS, Honji RM, Caminhas L, Rath S, Moreira RG. Multi-biomarker approach to assess the toxicity of carbamazepine, a neuropharmaceutical, in the female fish Astyanax lacustris (Teleostei: Characidae). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104653. [PMID: 39947269 DOI: 10.1016/j.etap.2025.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Carbamazepine (CBZ) is a pharmaceutical commonly used in the treatment of epilepsy and bipolar disorder and has been detected in different aquatic ecosystems worldwide. Considering its possible role in altering nervous system and reproduction, this study aimed to evaluate the effects of CBZ on molecular and cellular biomarkers of the teleost Astyanax lacustris. Results demonstrated that CBZ, in environmentally relevant concentrations (500 ng L-1) increases fshβ gene expression levels, decreases muscle protein content and hepatic LPO (500 ng L-1 and 1250 ng L-1 of CBZ). Nonetheless, no effects were observed towards enzymatic activities, steroid plasma levels and/or lipid content. Considering that A. lacustris inhabits clean and polluted environments, it is possible to suggest that animals possess a level of tolerance to stressors, allowing them to maintain reproductive functions regardless of environmental challenges.
Collapse
Affiliation(s)
| | - Guilherme de Aguiar
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Cecilia Bertacini
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| | | | - Giovana Souza Branco
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Renato Massaaki Honji
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Larissa Caminhas
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Susanne Rath
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Renata Guimarães Moreira
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Santos N, Reis S, Domingues I, Oliveira M. Does Personality Modulate the Sensitivity to Contaminants? A Case Study with Cadmium and Caffeine. TOXICS 2025; 13:147. [PMID: 40137473 PMCID: PMC11946569 DOI: 10.3390/toxics13030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Personality has been reported to influence fish response to stress. This study aimed to assess whether shy and bold fish display different sensitivities to two environmental contaminants: caffeine (CAF) and cadmium (Cd). Thus, the sensitivity to Cd was compared based on lethal concentrations (LCs). The potential different response to CAF, known to alter the social behavior and locomotor activity of zebrafish, was studied using behavioral parameters. Overall, different LC values were found for each group: 48 h LC50 values of 4.79 (shy fish) and 8.20 mg·L-1 (bold fish); and 96 h LC50 values of 3.79 (shy fish) and 9.79 mg·L-1 (bold fish). In terms of response to CAF, a significant interaction between CAF and personality traits (bold and shy) was found in the locomotion activities (distance travelled, and medium and rapid movements), in the mirror test (frequency of contact and entries into the contact, approach, and distant zones), and in social tests (swimming distance in zones 2 and 3; time spent in zones 1, 2, and 3; and number of entries into zones 1 and 2). Shy fish exposed to 300 μg·L-1 of CAF presented hypoactivity, reduced aggressive behavior, and reduced sociability. Conversely, CAF did not influence the behavior of bold fish. In general, shy fish were more sensitive to Cd and exhibited anxious behavior when exposed to CAF, which appears to be the factor responsible for changes in their social behavior. Our results highlight the importance of taking personality traits into account in future studies, as variations in behavioral responses between bold and shy individuals can mask the toxicological effects of different chemicals.
Collapse
Affiliation(s)
- Niedja Santos
- Department of Biology & CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
3
|
Dhakshinamoorthy V, Vishali SPR, Elumalai S, Perumal E. Acute exposure to environmentally relevant concentrations of pharmaceutical pollutants induces neurobehavioral toxicity in zebrafish ( Danio rerio). Drug Chem Toxicol 2025; 48:37-50. [PMID: 39072487 DOI: 10.1080/01480545.2024.2382451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Pharmaceutical waste from point and non-point sources enters, persists, or disseminates in the environment and is known as environmentally persistent pharmaceutical pollutants. Understanding the impacts of pharmaceutical pollutants on the environment and health is essential. This study investigates the behavioral impacts of pharmaceutical pollutants on aquatic organisms and delineates the possible nexus of oxidative stress. The male zebrafish were exposed to four major representative pharmaceutical pollutants, viz., acetaminophen, carbamazepine, metformin, and trimethoprim at environmentally relevant concentrations individually as well as in a mixture for seven days. Substantial alterations in social interaction, aggressive nature, novel tank exploration, and light and dark zone preferences were recorded and the degree varied to different pharmaceutical pollutants. The activity of oxidative stress markers, superoxide dismutase, glutathione-S-transferase, and catalase, was found to be suppressed to 66-20%, 42-25%, and 59-20% respectively with the elevated malondialdehyde generation (180-260%) compared to control. The activity level of acetylcholine esterase was found to be increased to 200-500% across all treatment groups. Despite the synergistic impacts of pharmaceutical pollutants on the whole system that could not be ascertained, this comprehensive study highlights their toxicity nature to induce neurobehavioral toxicity in zebrafish through oxidative stress mechanisms and altered cholinergic systems.
Collapse
Affiliation(s)
- Vasanth Dhakshinamoorthy
- Department of Nanobiotechnology, Molecular Environmental Toxicology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - S P R Vishali
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - Sriramakrishnan Elumalai
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - Ekambaram Perumal
- Department of Biotechnology, Molecular Toxicology Laboratory, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Liu W, Li Z, Li F, Zhang Y, Ding S. Bioaccumulation and behavioral response patterns of crucian carp (Carassius carassius) after carbamazepine exposure and elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175519. [PMID: 39168342 DOI: 10.1016/j.scitotenv.2024.175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The antiepileptic drug carbamazepine (CBZ) has been widely detected in freshwater, yet its toxic actions in fish at multiple endpoints and the subsequent recovery patterns of the impacted are less discussed. This study investigated the bioaccumulation, physiological and behavioral changes of crucian carp (Carassius carassius) following CBZ exposure (G1 = 6.15 μg/L, G2 = 61.5 μg/L, G3 = 615 μg/L, G4 = 6150 μg/L) and subsequent recovery. Our results showed that CBZ was more likely to accumulate in the liver and brain than in the gills. A concentration-dependent phenomenon was observed; however, the residual CBZ decreased to similar levels after recovery. The behavioral indicators (i.e. feeding, social and spontaneous swimming) were significantly inhibited after 7-days of CBZ exposure, and only recovered at low concentration treatment (G1) after 7-days recovery in CBZ-free water. The acetylcholinesterase (AChE) activity in the brain and superoxide dismutase (SOD) activity in the liver and gills were induced after CBZ exposure and returned to normal levels after 7-days of recovery. In contrast, the inhibition of catalase (CAT) activity caused by CBZ exposure persisted in the high concentration treatment (G4) after recovery. Furthermore, correlation analysis indicated that changes in feeding behavior were closely related to the variation of CBZ concentrations in tissues, and the persistence of abnormal swimming and social behavior was closely related to gill CAT activity. These findings contribute to explore the toxic mechanisms of CBZ and highlight the recovery process and connections between various endpoints.
Collapse
Affiliation(s)
- Wei Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Chang Jiang Ecology (Hubei) Technology Development Co. Ltd., Wuhan 430071, China
| | - Zhao Li
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sen Ding
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Porras-Rivera G, Górski K, Colin N. Behavioral biomarkers in fishes: A non-lethal approach to assess the effects of chemical pollution on freshwater ecosystems. ENVIRONMENTAL RESEARCH 2024; 260:119607. [PMID: 39002628 DOI: 10.1016/j.envres.2024.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.
Collapse
Affiliation(s)
- Geraldine Porras-Rivera
- Doctorado en Ciencias Mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, 4030000, Chile
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, 5090000, Chile.
| |
Collapse
|
6
|
Zhang W, Tian D, Yu Y, Tong D, Zhou W, Yu Y, Lu L, Li W, Liu G, Shi W. Micro/nanoplastics impair the feeding of goldfish by disrupting the complicated peripheral and central regulation of appetite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174112. [PMID: 38908581 DOI: 10.1016/j.scitotenv.2024.174112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The ubiquitous presence of plastic particles in water bodies poses a potential threat to aquatic species. Although numerous adverse effects of microplastics (MPs) and nanoplastics (NPs) have been documented, their effects on fish feeding, one of the most important behaviors of animals, are far from being fully understood. In this study, the effects of MPs and NPs (at environmentally realistic levels) on fish food consumption and feeding behavior were assessed using goldfish (Carassius auratus) and polystyrene (PS) particles as representatives. In addition, to reveal the potential mechanisms, the effects of MPs and NPs on peripheral and central regulation of appetite were evaluated by examining appetite-regulation related intestinal, serous, and hypothalamic parameters. The results obtained indicated that the 28-day MP- and NP-exposure significantly impaired goldfish feeding by disrupting peripheral and central appetite regulation. Based on differences observed in their effects on the abovementioned behavioral, histological, and physiological parameters, MPs and NPs may interfere with appetite regulation in a size-dependent manner. Blocking the gastrointestinal tract and causing histopathological and functional damage to inner organs may be the main routes through which MPs and NPs disrupt appetite regulation. Our findings suggested that plastic particles exposure may have far-reaching effects on fish species through impaired feeding, which warrants further attention.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Dang W, Zhang JH, Cao ZC, Yang JM, Lu HL. Environmentally Relevant Levels of Antiepileptic Carbamazepine Altered Intestinal Microbial Composition and Metabolites in Amphibian Larvae. Int J Mol Sci 2024; 25:6950. [PMID: 39000059 PMCID: PMC11241184 DOI: 10.3390/ijms25136950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles of the black-spotted pond frog (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of CBZ (0.3 and 3.0 μg/L) for 30 days, and their growth, intestinal microbial composition, and metabolites were investigated to assess the potential toxic effects of CBZ in non-targeted aquatic organisms. Some tadpoles died during exposure, but there was no significant among-group difference in the survival and growth rates. CBZ exposure significantly altered the composition of tadpole intestinal microbiota. Relative abundances of some bacterial genera (e.g., Blautia, Prevotella, Bacillus, Microbacterium, etc.) decreased, while others (e.g., Paucibacter, etc.) increased in CBZ-exposed tadpoles. Interestingly, CBZ-induced alterations in some bacteria might not necessarily lead to adverse outcomes for animals. Meanwhile, small molecular intestinal metabolites related to energy metabolism, and antioxidant and anti-inflammatory activities were also altered after exposure. Taken together, environmentally relevant levels of CBZ might alter the metabolic and immune performances of amphibian larvae by modifying the abundance of some specific bacteria and the level of metabolites in their intestines, thereby potentially causing a long-term effect on their fitness.
Collapse
Affiliation(s)
- Wei Dang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Hui Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Chun Cao
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Meng Yang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Chen H, Gu X, Mao Z, Zeng Q, Jin M, Wang W, Martyniuk CJ. Molecular, behavioral, and growth responses of juvenile yellow catfish (Tachysurus fulvidraco) exposed to carbamazepine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106929. [PMID: 38663201 DOI: 10.1016/j.aquatox.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Carbamazepine (CBZ) is an anticonvulsant medication used to treat epilepsy and bipolar disorder. Due to its persistence and low removal rate in wastewater treatment plants, it is frequently detected in the environment, raising concerns regarding its potential adverse effects on aquatic organisms and ecosystems. In this study, we aimed to assess the impact of CBZ on the behavior and growth of juvenile yellow catfish Tachysurus fulvidraco, a native and economically important species in China. Fish were exposed to CBZ at three concentrations of 1, 10, or 100 µg/L for 14 days. The fish exposed to 10 and 100 μg/L of CBZ exhibited decreased feeding, and a significant increase in cannibalistic tendencies was observed in fish exposed to 100 μg/L CBZ. Acetylcholinesterase activity was increased in the brain of fish exposed to 100 μg/L CBZ. CBZ also inhibited the growth of yellow catfish. To better elucidate mechanisms of toxicity, transcriptomics was conducted in both the brain and liver. In the brain, gene networks associated with neurotransmitter dysfunction were altered by CBZ, as well as networks associated with mitochondrial dysfunction and metabolism. In the liver, gene networks associated with the immune system were altered by CBZ. The current study improves comprehension of the sub-lethal effects of CBZ and reveals novel insight into molecular and biochemical pathways disrupted by CBZ, identifying putative key events associated with reduced growth and altered behavior. This study emphasizes the necessity for improved comprehension of the effects of pharmaceutical contaminants on fish at environmentally relevant levels.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenxia Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Linyi University, Linyi 276000, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 United States
| |
Collapse
|
9
|
Chen J, Zhou J, Li M, Zhang K, Dai J, Zhao Y. Systematic analysis of circadian disrupting substances with a high-throughput zebrafish circadian behavior screening approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167037. [PMID: 37709093 DOI: 10.1016/j.scitotenv.2023.167037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Circadian rhythm aligns numerous biological functions in majority of animals. Aside from well-known external factors such as the light-dark cycle and temperature, circadian rhythm can also be regulated by rarely explored factors such as synthetic substances. Here, we established a circadian behavior screening approach utilizing zebrafish larvae model, which integrated high-throughput capabilities with automated batch processing. With this approach, we systematically analyzed the circadian disruptive effects of >60 synthetic substances commonly detected in aquatic environment by assessing both the circadian period length and amplitude of circadian behavior, with an exposure concentration set at 100 μg/L. Among tested substances, a series of circadian disrupting compounds (circadian disruptors) were identified. Several categories of the hit compounds can be recognized, such as phthalate (diisopentyl phthalate (DIPP), with 10.1 % and 49.6 % increases for circadian period length and amplitude, respectively), neuroactive substance (mirtazapine, with 10.6 % and 63.1 % increases, respectively), and biocides (thiamethoxam, with 100.3 % increase for amplitude). Among these compounds, DIPP increased circadian period length and amplitude with a high degree. Aside from DIPP, we further examined eleven other phthalates and demonstrated that benzyl butyl phthalate, diisobutyl phthalate and diisohexyl phthalate could also significantly increase the zebrafish circadian period length by 7.9 %, 3.7 % and 8.5 %, respectively. Collectively, the present findings substantiated the feasibility of this high throughput screening strategy for circadian disruptor's discovery and provided novel insights into understanding of the potential risks of synthetic substances.
Collapse
Affiliation(s)
- Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minjia Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
10
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
11
|
Yang W, Bao Y, Hao J, Hu X, Xu T, Yin D. Effects of carbamazepine on the central nervous system of zebrafish at human therapeutic plasma levels. iScience 2023; 26:107688. [PMID: 37701572 PMCID: PMC10494213 DOI: 10.1016/j.isci.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
The fish plasma model (FPM) facilitated the environmental risk assessment of human drugs by using existing data on human therapeutic plasma concentrations (HTPCs) and predicted fish plasma concentrations (FPCs). However, studies on carbamazepine (CMZ) with both the mode of action (MOA) based biological effects at molecular level (such as neurotransmitter and gene level) and measured FPCs are lacking. Bioconcentration of CMZ in adult zebrafish demonstrated that the FPM underestimated the bioconcentration factors (BCFs) in plasma at environmental CMZ exposure concentrations (1-100 μg/L). CMZ significantly increased Glu and GABA, decreased ACh and AChE as well as inhibited the transcription levels of gabra1, grin1b, grin2b, gad1b, and abat when the actual FPCs were in the ranges of 1/1000 HTPC to HTPC. It is the first read-across study of CMZ integrating MOA-based biological effects at molecular level and FPCs. This study facilitates model performance against a range of different drug classes.
Collapse
Affiliation(s)
- Weiwei Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifan Bao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaoyang Hao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
12
|
Marcoli R, Symonds JE, Walker SP, Battershill CN, Bird S. Characterising the Physiological Responses of Chinook Salmon ( Oncorhynchus tshawytscha) Subjected to Heat and Oxygen Stress. BIOLOGY 2023; 12:1342. [PMID: 37887052 PMCID: PMC10604766 DOI: 10.3390/biology12101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
In New Zealand, during the hottest periods of the year, some salmon farms in the Marlborough Sounds reach water temperatures above the optimal range for Chinook salmon. High levels of mortality are recorded during these periods, emphasising the importance of understanding thermal stress in this species. In this study, the responses of Chinook salmon (Oncorhynchus tshawytscha) to chronic, long-term changes in temperature and dissolved oxygen were investigated. This is a unique investigation due to the duration of the stress events the fish were exposed to. Health and haematological parameters were analysed alongside gene expression results to determine the effects of thermal stress on Chinook salmon. Six copies of heat shock protein 90 (HSP90) were discovered and characterised: HSP90AA1.1a, HSP90AA1.2a, HSP90AA1.1b, HSP90AA1.2b, HSP90AB1a and HSP90AB1b, as well as two copies of SOD1, named SOD1a and SOD1b. The amino acid sequences contained features similar to those found in other vertebrate HSP90 and SOD1 sequences, and the phylogenetic tree and synteny analysis provided conclusive evidence of their relationship to other vertebrate HSP90 and SOD1 genes. Primers were designed for qPCR to enable the expression of all copies of HSP90 and SOD1 to be analysed. The expression studies showed that HSP90 and SOD1 were downregulated in the liver and spleen in response to longer term exposure to high temperatures and lower dissolved oxygen. HSP90 was also downregulated in the gill; however, the results for SOD1 expression in the gill were not conclusive. This study provides important insights into the physiological and genetic responses of Chinook salmon to temperature and oxygen stress, which are critical for developing sustainable fish aquaculture in an era of changing global climates.
Collapse
Affiliation(s)
- Roberta Marcoli
- Centre for Sustainable Tropical Fisheries, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Jane E. Symonds
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | - Seumas P. Walker
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | | | - Steve Bird
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
13
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
14
|
Santariová M, Zadinová K, Vostrá-Vydrová H, Kolářová MF, Kurhan S, Chaloupková H. Effect of Environmental Concentration of Carbamazepine on the Behaviour and Gene Expression of Laboratory Rats. Animals (Basel) 2023; 13:2097. [PMID: 37443892 DOI: 10.3390/ani13132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Carbamazepine (CBZ), an effective drug for epilepsy and other neurological diseases, and its metabolites are one of the most frequently detected substances in the aquatic environment. Although these are doses of very low concentrations, chronic exposure to them can affect the physiological processes of living organisms. This experiment may clarify if carbamazepine, under an environmental and a therapeutic concentration, can affect the behaviour of higher vertebrates, especially mammals, and gene expressions of Ugt1a6 and Ugt1a7 in the brain compared to the control group without exposure to CBZ. Three groups of thirteen rats were randomly formed, and each group was treated either with carbamazepine 12 mg/kg (therapeutic), carbamazepine 0.1 mg/kg (environmental), or by 10% DMSO solution (control). The memory, anxiety, and social behaviour of the rats were assessed by the test Elevated Plus Maze, the novel object recognition test, and the social chamber paradigm. After testing, they were euthanised and brain tissue samples were collected and analysed for mRNA expression of Ugt1a6 and Ugt1a7 genes. The tests did not show significant differences in the behaviour of the rats between the groups. However, there were significant changes at the gene expression level of Ugt1a7.
Collapse
Affiliation(s)
- Milena Santariová
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Kateřina Zadinová
- Department of Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Hana Vostrá-Vydrová
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Martina Frühauf Kolářová
- Department of Veterinary Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Sebnem Kurhan
- Department of Food Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Helena Chaloupková
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
15
|
Prato E, Biandolino F, Grattagliano A, Ruscito A, Lofrano G, Libralato G, Trifuoggi M, Albarano L, Parlapiano I. Individual and combined effects of amoxicillin and carbamazepine to the marine copepod Tigriopus fulvus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61672-61681. [PMID: 36933130 PMCID: PMC10167106 DOI: 10.1007/s11356-023-26498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Pharmaceuticals can be considered a global threat to aquatic ecosystems due to their pseudo-persistence and their potential toxicity towards non-target species. Amoxicillin (AMX) and carbamazepine (CBZ) and their mixture (1:1) were investigated on the marine copepod Tigriopus fulvus (Fischer, 1860) considering both acute and chronic endpoints. While acute and chronic exposure did not directly affect survival, reproductive endpoints were affected like the mean egg hatching time that was significantly longer than the negative control for treatments with AMX (0.789 ± 0.079 μg/L), CBZ (8.88 ± 0.89 μg/L), and AMX and CMZ as a mixture (1.03 ± 0.10 μg/L and 0.941 ± 0.094 μg/L), in that order.
Collapse
Affiliation(s)
- Ermelinda Prato
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy
| | - Francesca Biandolino
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy
| | - Asia Grattagliano
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 1 - 00133, Rome, Italy
| | - Andrea Ruscito
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 1 - 00133, Rome, Italy
| | - Giusy Lofrano
- Università degli Studi di Roma Foro Italico, Piazza Lauro De Bosis, 15, 00135, Rome, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Luisa Albarano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Isabella Parlapiano
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy
| |
Collapse
|
16
|
Santos N, Picolo V, Domingues I, Perillo V, Villacis RAR, Grisolia CK, Oliveira M. Effects of environmental concentrations of caffeine on adult zebrafish behaviour: a short-term exposure scenario. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63776-63787. [PMID: 37058238 PMCID: PMC10172215 DOI: 10.1007/s11356-023-26799-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Caffeine (CAF) has been considered an emerging environmental contaminant and its presence indicator of anthropogenic contamination. This study evaluated the effects of environmental concentrations of CAF (0, 0.5, 1.5, and 300 μg. L-1) on the behaviour of adult zebrafish (Danio rerio) after 7 days of exposure. The components of feeding, locomotion, boldness (new tank test), sociability (schooling test), and aggression (mirror test) were analysed. Growth rate and weight were investigated as complementary measures. CAF (0.5, 1.5, and 300 μg. L-1) reduced exploratory behaviour in zebrafish, increased feeding latency time (1.5, and 300 μg. L-1), and decreased growth rate and fish weight (300 μg. L-1). CAF also induced aggressive behaviour (0.5, 1.5, and 300 μg. L-1) and decreased appetence to the shoal (sociability) (0.5, and 1.5 μg. L-1). This study showed that low doses of CAF can induce behavioural effects in zebrafish that may have significant long-term impacts on vital ecological functions.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Victor Picolo
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, University Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
- Graduate Program in Molecular Pathology, Faculty of Health Sciences, University of Brasilia, University Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vitória Perillo
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Rolando A R Villacis
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Cesar Koppe Grisolia
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
17
|
Salahinejad A, Meuthen D, Attaran A, Chivers DP, Ferrari MCO. Effects of common antiepileptic drugs on teleost fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161324. [PMID: 36608821 DOI: 10.1016/j.scitotenv.2022.161324] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antiepileptic drugs (AEDs) are globally prescribed to treat epilepsy and many other psychiatric disorders in humans. Their high consumption, low metabolic rate in the human body and low efficiency of wastewater treatment plants (WWTPs) in eliminating these chemicals results in the frequent occurrence of these pharmaceutical drugs in aquatic systems. Therefore, aquatic organisms, including ecologically and economically important teleost fishes, may be inadvertently exposed to these chemicals. Due to their physiological similarity with humans, fishes may be particularly vulnerable to AEDs. Almost all AED drugs are detectable in natural aquatic ecosystems, but diazepam (DZP) and carbamazepine (CBZ) are among the most widely detected AEDs to date. Recent studies suggest that these drugs have a substantial capacity to induce neurotoxicity and behavioral abnormality in fishes. Here we review the current state of knowledge regarding the potential mode of action of DZP and CBZ as well as that of some other AEDs on teleosts and put observable behavioral effects into a mechanistic context. We find that following their intended mode of action in humans, AEDs also disrupt the GABAergic, glutamatergic and serotonergic systems as well as parasympathetic neurotransmitters in fishes. Moreover, AEDs have non-specific modes of action in teleosts ranging from estrogenic activity to oxidative stress. These physiological changes are often accompanied by dose-dependent disruptions of anxiety, locomotor activity, social behaviors, food uptake, and learning and memory, but DZP and CBZ consistently induced anxiolytic effects. Thereby, AED exposure severely compromises individual fitness across teleost fish species, which may lead to population and ecosystem impairment. We also showcase promising avenues for future research by highlighting where we lack data when it comes to effects of certain AEDs, AED concentrations and behavioral endpoints.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
18
|
Brunelle LD, Huang IJ, Angeles LF, Running LS, Sirotkin HI, McElroy AE, Aga DS. Comprehensive assessment of chemical residues in surface and wastewater using passive sampling, chemical, biological, and fish behavioral assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154176. [PMID: 35245556 DOI: 10.1016/j.scitotenv.2022.154176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Effluents from ten full-scale municipal wastewater treatment plants (WWTPs) that discharge into the Hudson River, surface waters, and wild-caught fish samples were analyzed using liquid chromatography with tandem mass spectrometry (LC/MS/MS) to examine the influence of wastewater discharge on the concentrations of contaminants of emerging concern (CECs) and their ecological impacts on fish. Analysis was based on targeted detection of 41 pharmaceuticals, and non-targeted analysis (suspect screening) of CECs. Biological effects of treated WWTP effluents were assessed using a larval zebrafish (Danio rerio) swimming behavior assay. Concentrations of residues in surface waters were determined in grab samples and polar organic chemical integrative samplers (POCIS). In addition, vitellogenin peptides, used as biomarkers of endocrine disruption, were quantified using LC/MS/MS in the wild-caught fish plasma samples. Overall, 94 chemical residues were identified, including 63 pharmaceuticals, 10 industrial chemicals, and 21 pesticides. Eight targeted pharmaceuticals were detected in 100% of effluent samples with median detections of: bupropion (194 ng/L), carbamazepine (91 ng/L), ciprofloxacin (190 ng/L), citalopram (172 ng/L), desvenlafaxine (667 ng/L), iopamidol (3790 ng/L), primidone (86 ng/L), and venlafaxine (231 ng/L). Over 30 chemical residues were detected in wild-caught fish tissues. Notably, zebrafish larvae exposed to chemical extracts of effluents from 9 of 10 WWTPs, in at least one season, were significantly hyperactive. Vitellogenin expression in male or immature fish occurred 2.8 times more frequently in fish collected from the Hudson River as compared to a reference site receiving no direct effluent input. Due to the low concentrations of pharmaceuticals detected in effluents, it is likely that chemicals other than pharmaceuticals measured are responsible for the behavioral changes observed. The combined use of POCIS and non-target analysis demonstrated significant increase in the chemical coverage for CEC detection, providing a better insight on the impacts of WWTP effluents and agricultural practices on surface water quality.
Collapse
Affiliation(s)
- Laura D Brunelle
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Irvin J Huang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Luisa F Angeles
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Logan S Running
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
19
|
Mauro M, Lazzara V, Arizza V, Luparello C, Ferrantelli V, Cammilleri G, Inguglia L, Vazzana M. Human Drug Pollution in the Aquatic System: The Biochemical Responses of Danio rerio Adults. BIOLOGY 2021; 10:biology10101064. [PMID: 34681162 PMCID: PMC8533377 DOI: 10.3390/biology10101064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary The release of medicinal products for human use in the aquatic environment is now a serious problem, and can be fatal for the organisms that live there. Danio rerio is a freshwater fish that provides the possibility to study the effects of these pollutants on the health of aquatic organisms. The results of the various existing scientific studies are scarce and conflicting. Here, we review the scientific studies that have analyzed these effects, highlighting that the impacts of drugs are evident in the biochemical responses of these animals. Abstract To date, drug pollution in aquatic systems is an urgent issue, and Danio rerio is a model organism to study the toxicological effects of environmental pollutants. The scientific literature has analyzed the effect of human drug pollution on the biochemical responses in the tissues of D. rerio adults. However, the information is still scarce and conflicting, making it difficult to understand its real impact. The scientific studies are not consistent with each other and, until now, no one has grouped their results to create a baseline of knowledge of the possible impacts. In this review, the analysis of literature data highlights that the effects of drugs on adult zebrafishes depend on various factors, such as the tissue analyzed, the drug concentration and the sex of the individuals. Furthermore, the most influenced biochemical responses concern enzymes (e.g., antioxidants and hydrolase enzymes) and total protein and hormonal levels. Pinpointing the situation to date would improve the understanding of the chronic effects of human drug pollution, helping both to reduce it in the aquatic systems and then to draw up regulations to control this type of pollution.
Collapse
Affiliation(s)
- Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
- Correspondence: (M.M.); (V.F.)
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
- Correspondence: (M.M.); (V.F.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
| | - Luigi Inguglia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| |
Collapse
|
20
|
Atzei A, Jense I, Zwart EP, Legradi J, Venhuis BJ, van der Ven LT, Heusinkveld HJ, Hessel EV. Developmental Neurotoxicity of Environmentally Relevant Pharmaceuticals and Mixtures Thereof in a Zebrafish Embryo Behavioural Test. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136717. [PMID: 34206423 PMCID: PMC8297305 DOI: 10.3390/ijerph18136717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.
Collapse
Affiliation(s)
- Alessandro Atzei
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Ingrid Jense
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Edwin P. Zwart
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Jessica Legradi
- Environment & Health, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Bastiaan J. Venhuis
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Leo T.M. van der Ven
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Harm J. Heusinkveld
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
- Correspondence:
| | - Ellen V.S. Hessel
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| |
Collapse
|
21
|
Sánchez JAA, Barros DM, de Los Angeles Bistoni M, Ballesteros ML, Roggio MA, Martins CDGM. Glyphosate-based herbicides affect behavioural patterns of the livebearer Jenynsia multidentata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29958-29970. [PMID: 33576960 DOI: 10.1007/s11356-020-11958-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Roundup® is one of the most widely marketed glyphosate-based herbicides in the world. There are many different formulations of this brand that differ from each other in glyphosate concentration, salts and adjuvants, including surfactants, which are labelled as "inert" compounds. Several studies have shown that these formulations are highly toxic to fish, even compared with pure glyphosate. However, mechanisms underlying this toxicity are not fully understood. In this context, this study evaluated the effects of exposure to Roundup Original® (RO), Roundup Transorb® (RT), and Roundup WG® (RWG) on the behavioural patterns of the livebearer Jenynsia multidentata. This fish naturally inhabits agricultural areas in southern Brazil and Argentina where glyphosate is used extensively. In the experiment, animals were exposed to the herbicides for 96 h, at the environmentally relevant concentration of 0.5 mg/L of glyphosate. Swimming performance, anxiety, aggressiveness, long-term memory and male sexual activity were recorded. The formulation RWG negatively affected swimming performance, thigmotaxia and long-term memory consolidation. Conversely, RT reduced the sexual performance of males. These results confirm that Roundup® formulations are extremely harmful and also that they have different targets of toxicity, affecting behaviours that are essential for fish survival.
Collapse
Affiliation(s)
- Jessica Andrea Albañil Sánchez
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Daniela Marti Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Maria de Los Angeles Bistoni
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - Maria Laura Ballesteros
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - María Angelina Roggio
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - Camila De Gaspar Martinez Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
22
|
Bai Z, Jia K, Chen G, Liao X, Cao Z, Zhao Y, Zhang C, Lu H. Carbamazepine induces hepatotoxicity in zebrafish by inhibition of the Wnt/β-catenin signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116688. [PMID: 33611196 DOI: 10.1016/j.envpol.2021.116688] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
As drug abuse has become increasingly serious, carbamazepine (CBZ) is discharged into the aquatic environment with municipal sewage, causing potential harm to aquatic organisms. Here, we utilized zebrafish, an aquatic vertebrate model, to comprehensively evaluate the hepatotoxicity of CBZ. The larvae were exposed to 0.07, 0.13, and 0.26 mmol/L CBZ from 72 hpf to 144 hpf, and the adults were exposed to 0.025, 0.05, and 0.1 mmol/L CBZ for 28 days. The substantial changes were observed in the size and histopathology of livers, indicating that CBZ induced severe hepatoxicity in the larvae and adults. Oil red O staining demonstrated CBZ exposure caused severe lipid accumulation in the livers of both larvae and adults. Furthermore, CBZ exposure facilitated hepatocyte apoptosis through TUNEL staining, which was caused by rising ROS content. Subsequently, down-regulation of genes related to the Wnt pathway in exposure groups indicated that CBZ inhibited the development of liver via the Wnt/β-catenin signaling pathway. In conclusion, CBZ induced severe hepatotoxicity by promoting lipid accumulation, generating excessive ROS production, and inhibiting the Wnt/β-catenin signaling pathway in zebrafish. The results reveal the occurrence of CBZ-induced hepatotoxicity in zebrafish and clarify its mechanism of action, which potentially illustrate environmental concerns associated with CBZ exposure.
Collapse
Affiliation(s)
- Zhonghui Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Kun Jia
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Guilan Chen
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yangqi Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chunping Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Huiqiang Lu
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
23
|
Yan S, Chen R, Wang M, Zha J. Carbamazepine at environmentally relevant concentrations caused DNA damage and apoptosis in the liver of Chinese rare minnows (Gobiocypris rarus) by the Ras/Raf/ERK/p53 signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116245. [PMID: 33359871 DOI: 10.1016/j.envpol.2020.116245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 05/13/2023]
Abstract
To assess genetoxicity and the underlying mechanisms of carbamazepine (CBZ) toxicity in fish, adult Chinese rare minnows (Gobiocypris rarus) were exposed to 1, 10, and 100 μg/L CBZ for 28 d. Comet assays indicated that hepatic DNA damage was significantly increased in groups of minnows exposed to CBZ at all concentrations in a dose-dependent manner compared to those of the control groups (p < 0.05). Liver levels of 8-hydroxydeoxyguanosine (8-OHdG) were significantly increased at 10 and 100 μg/L CBZ (p < 0.05). TUNEL assays indicated that the average apoptotic rates of the livers of female and male minnows were significantly increased following exposure to CBZ at all concentrations for 28 d (p < 0.05). Significant increases in caspase 3 and 9 activities after CBZ exposure at all concentrations and caspase 8 at 10 and 100 μg/L CBZ exposure reflected the presence of mitochondrial apoptosis (p < 0.05). The mRNA levels of gadd45a, mdm2, casp3 and casp9 in female and male minnows exposed to CBZ at all concentrations were significantly increased compared with those in the control groups (p < 0.05). Significant increases in the levels of p21 in female minnows exposed to 1 and 100 μg/L CBZ, p53 in female minnows at all CBZ treatments and bcl2 in male minnows exposed to 1 and 100 μg/L CBZ were observed, indicating p53 pathway activation. The inhibition of ras levels in females and males exposed to CBZ at all concentrations and increased levels of raf1 in males exposed to CBZ at all concentrations indicated Ras/Raf1/MAPK (ERK) activation. Therefore, the present study demonstrates that CBZ at environmentally relevant levels induces DNA damage and apoptosis in Chinese rare minnows by the Ras/Raf/ERK/p53 signaling pathway.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Miao Wang
- China Machinery International Engineering Design and Research Institute, Changsha, 410000, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
24
|
Spirina E, Romanova E, Shadyeva L, Romanov V. Effectiveness of the Use of the Adaptogen Trekrezan in the Cultivation of African Catfish. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Growing fish in closed water supply installations with a high planting density leads to accumulation of waste products, turning the habitat into toxic. Growing fish in such an environment leads to stress and increases the stress on their liver, which provides the body with detoxification of metabolites. To reduce stress, adaptogens are used, which increase endurance and survival, increase adaptive plasticity, and strengthen the immunity of fish. We used an adaptogen called Trekrezan. The work aim was to study the morphofunctional changes in liver and its microarchitectonics in African catfish grown using Trekrezan. The analysis of morphofunctional changes in liver allows us to judge the general physiological state of fish body. The liver index of African catfish grown without the use of Trekrezan is significantly higher in both males and females, compared to African catfish grown with Trekrezan, which indicates an intensification of metabolism. Analysis of histological structure of African catfish liver (Clarias gariepinus), grown without the use of the Ttrekrezan, revealed abnormalities of the parenchymal layer of liver with signs of fatty dystrophy, signs of necrotic changes in liver cells, hemorrhages in vascular region, a violation of polarity in the structure of hepatocytes. In species raised in an environment with Trekrezan, these abnormalities are absent, since Trekrezan, due to the activation of cellular and humoral immunity, leads to decrease in intoxication, provides strengthening of immunity, and increases the body's resistance to unfavorable factors of medium.
Collapse
|
25
|
Poopal RK, Zhang J, Zhao R, Ramesh M, Ren Z. Biochemical and behavior effects induced by diheptyl phthalate (DHpP) and Diisodecyl phthalate (DIDP) exposed to zebrafish. CHEMOSPHERE 2020; 252:126498. [PMID: 32197170 DOI: 10.1016/j.chemosphere.2020.126498] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 05/22/2023]
Abstract
Both Diheptyl-phthalate (DHpP) and Diisodecyl-phthalate (DIDP) were used extensively as plasticizers. Recently, their occurrence in the environmental matrices and human body fluids have been reported. Unfortunately, these phthalate congeners are without basic toxicity profiles. Hence, we studied the toxic effects of both DHpP and DIDP in the median lethal concentration (LC50 96-h) on zebrafish (Danio rerio). We assessed swimming behavior strength and tissues biomarker responses including total antioxidants capacity (TAOC), transaminases, and acetylcholinesterase (AChE) enzyme. Fish exposed to phthalate congeners (Treatment-I and-II) for 15-days showed alterations on fish swimming behavior and circadian rhythm. At the end of the exposure period, both liver and heart tissue transaminases activities were found to be accelerated in DHpP and DIDP treated fish, when compared to control group. TAOC and AChE activities were found to be decreased in brain, gills, intestine, and muscle tissues of phthalate congeners treated fish than the control group. Alterations observed in the studied biomarkers were concentration-based response. Among treatment groups DHpP showed higher effects. Comparative studies on swimming behavior and biochemical activities were reasonable to know the swimming responses are mediated due to external stress or internal stress. More studies on molecular and biomarkers assessments are warranted on toxicity of emerging contaminants.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Jingxuan Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China.
| |
Collapse
|
26
|
Fraz S, Lee AH, Pollard S, Srinivasan K, Vermani A, David E, Wilson JY. Paternal Exposure to Carbamazepine Impacts Zebrafish Offspring Reproduction Over Multiple Generations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12734-12743. [PMID: 31393713 DOI: 10.1021/acs.est.9b03393] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic low-concentration chemical exposures may have both direct health outcomes on adults and indirect effects on their offspring. Using zebrafish, we examined the impacts of chronic, low-concentration carbamazepine (CBZ) exposure on a suite of male reproductive endpoints in the parents and four generations of offspring reared in clean water. CBZ is one of the most frequently detected pharmaceutical residues in water, is a histone deacetylase inhibitor in mammals, and is reported to lower androgens in mammals and fish. Exposure of adult zebrafish to 10 μg/L CBZ for 6 weeks decreased reproductive output, courtship and aggressive behaviors, 11-ketotestosterone (11KT), and sperm morphology but did not impact milt volume or sperm swimming speed. Pairwise breeding generated lineages of offspring with both parents exposed and two lineages where only one parent was exposed; the control lineage had unexposed parents. Reproductive output and male reproductive indices were assessed in F1-F4 offspring to determine whether parental CBZ exposure had transgenerational impacts. The offspring of CBZ-exposed males had lower 11KT, reproductive output, altered courtship, aggression, and sperm morphology compared to the lineage from unexposed parents. Our results indicate that parental carbamazepine exposure history impacts the unexposed progeny up to the F4 generations and that paternal, but not maternal, exposure is most important for the reproductive health of male offspring.
Collapse
Affiliation(s)
- Shamaila Fraz
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Abigail H Lee
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Simon Pollard
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Krishna Srinivasan
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Abhilasha Vermani
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Ephraim David
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Joanna Y Wilson
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| |
Collapse
|
27
|
Correia D, Almeida AR, Santos J, Machado AL, Koba Ucun O, Žlábek V, Oliveira M, Domingues I. Behavioral effects in adult zebrafish after developmental exposure to carbaryl. CHEMOSPHERE 2019; 235:1022-1029. [PMID: 31561291 DOI: 10.1016/j.chemosphere.2019.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Chemical exposure during the early life stages of development may have long lasting effects on organisms that are rarely studied. The present work intended to evaluate the effect of embryonic exposure to the pesticide carbaryl on adult fish behavior. Zebrafish (Danio rerio) embryos were exposed, for 4 days, to sublethal concentrations of carbaryl (0.01, 0.1 and 1.0 mg/L) plus a control and then kept in standard cultivation conditions until adulthood. A battery of behavioral tests was then performed to assess anxiety-like behavior (locomotor activity, thigmotaxis and novel tank diving test), social behavior, and feeding. Developmental exposure of zebrafish to sublethal concentrations of carbaryl produced important behavioral alterations in the adulthood. Main effects included decreased locomotion/hypoactivity (increase in slow movements and decrease of medium and rapid movements), especially in the light periods. Moreover, spatial pattern also changed: while during dark periods control fish increased activity in the outer zone of the tank, this was not observed in exposed fish. Overall, this demonstrated the importance of life stage exposure, clearly demonstrating long lasting effects of a (chemical) stress event at embryonic stages. This data supports the need of considering this scenario in environmental risk evaluations. Further work should focus on the mechanistic effects of developmental disruption responsible for the effects observed.
Collapse
Affiliation(s)
- Daniela Correia
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Rita Almeida
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Joana Santos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Luísa Machado
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Olga Koba Ucun
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, 389 25, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, 389 25, Czech Republic
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
28
|
Huang IJ, Sirotkin HI, McElroy AE. Varying the exposure period and duration of neuroactive pharmaceuticals and their metabolites modulates effects on the visual motor response in zebrafish (Danio rerio) larvae. Neurotoxicol Teratol 2019; 72:39-48. [PMID: 30711622 DOI: 10.1016/j.ntt.2019.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/21/2023]
Abstract
Pharmaceuticals and personal care products are emerging contaminants that are increasingly detected in surface waters around the world. Despite the rise in environmental detections, measured concentrations are still typically low, raising the importance of environmental risk assessments that focus on ecologically relevant sublethal endpoints, such as altered behavior. Neuroactive pharmaceuticals, like mental health medications, pain killers, etc., may be particularly potent in this regard as they are specifically designed to cause behavioral changes without causing physiologic impairment in mammalian systems. We screened 15 different popular neuroactive pharmaceuticals, ranging from antidepressants (including 3 major antidepressant metabolites), anxiety medications, and pain killers, under three different exposure scenarios (repeated, late acute and early transient exposure) to look for behavioral effects in larval zebrafish using the visual motor response (VMR). Drugs were screened at 0, 1, 10, and 100 μg/L in the repeated exposure scenario, and at 0 and 100 μg/L in the late acute and early transient exposure scenarios. Eight of the 15 compounds tested, specifically the antidepressants amitriptyline, fluoxetine, nor-fluoxetine, paroxetine, sertraline, nor-sertraline, venlafaxine, and the antipsychotic drug haloperidol decreased swimming activity by 25% to 40% under repeated exposure conditions. Five of the compounds (amitriptyline, fluoxetine, nor-fluoxetine, paroxetine, and sertraline) also significantly decreased activity by 17% to 31% in the late acute exposure paradigm. Three compounds (fluoxetine, paroxetine and venlafaxine) significantly altered swimming activity with early transient exposure, however creating a hyperactive response and increasing activity from 24% to 28%, while haloperidol significantly decreased activity by 31%. This paper is, to our knowledge, the first to screen so many neuroactive pharmaceuticals, including major metabolites, in parallel under multiple exposure conditions. We show that antidepressants most consistently alter VMR swimming activity. Additionally, we show that major antidepressant metabolites can potentially alter behavior as much as their parent compounds. Furthermore, we show that the magnitude and direction of behavioral effect is dependent on the exposure duration and period, indicating that a more diverse experimental approach might be needed to more accurately assess the risk these compounds pose to the environment.
Collapse
Affiliation(s)
- Irvin J Huang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States of America
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America.
| |
Collapse
|
29
|
Yan S, Wang M, Liang X, Martyniuk CJ, Zha J, Wang Z. Environmentally relevant concentrations of carbamazepine induce liver histopathological changes and a gender-specific response in hepatic proteome of Chinese rare minnows (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:480-491. [PMID: 30216880 DOI: 10.1016/j.envpol.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/02/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
To assess hepatotoxicity and to determine the underlying mechanisms of carbamazepine (CBZ) toxicity in fish, histopathology and the liver proteome were examined after Chinese rare minnow (Gobiocypris rarus) were exposed to 1, 10, and 100 μg/L CBZ for 28 days. Histopathological changes included disruption of spatial structure, pyknotic nuclei, cellular vacuolization and deformation of cell nuclei, in addition to marked swelling of hepatocytes in all treatment groups. Protein analysis revealed that there were gender-specific responses in rare minnow following exposure, and there were 47 proteins in females and 22 proteins in males identified as differentially abundant following CBZ treatments. Pathway analysis revealed that cellular processes affected by CBZ included apoptosis, cell differentiation, cell proliferation, and the respiratory chain, indicating impaired energy homeostasis. Noteworthy was that 15 proteins identified as different in abundance were associated with carcinogenicity. Relative mRNA levels for select transcripts were consistent with the changes of proteins N-myc downstream regulated gene (NDRG), Tropomyosin 2-Beta (TPM2) and annexin A4 (ANXA4). Protein pyruvate kinase, liver and RBC (PKLR) were increased at 1 and 100 μg/L CBZ without significant difference in transcript levels. These findings characterize molecular responses and histological changes in the liver that generate new insights into CBZ hepatotoxicity in Chinese rare minnow.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuefang Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
30
|
da Silva Santos N, Oliveira R, Lisboa CA, Mona E Pinto J, Sousa-Moura D, Camargo NS, Perillo V, Oliveira M, Grisolia CK, Domingues I. Chronic effects of carbamazepine on zebrafish: Behavioral, reproductive and biochemical endpoints. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:297-304. [PMID: 30125776 DOI: 10.1016/j.ecoenv.2018.08.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Carbamazepine (Cbz), one of the most prescribed pharmaceuticals in the world is often detected in surface waters and sediments. However, few studies addressed its chronic effects in fish. In the present study, Danio rerio adults were exposed for 63 days to Cbz (0 - control, 10 μg L-1 - concentration found in effluents, and 10,000 μg L-1 - 5% of LC50 at 72 h). Assessed endpoints were: feeding behavior, growth rate, number of eggs produced and their viability, histological alterations in female gonads, and biochemical biomarkers associated with antioxidant defenses (catalase - CAT, and glutathione S-transferase - GST activities), neurotransmission (acetylcholinesterase activity - AChE) and metabolism (lactate dehydrogenase - LDH). Cbz exposure increased the total time for food intake but did not affect D. rerio growth. Although the total number of eggs was not affected by Cbz exposure, the eggs viability was significantly impaired. Exposure to Cbz caused alterations in the female gonads follicular stages. In terms of biochemical endpoints, CAT activity in liver and gills, was sensitive to the pharmaceutical exposure presenting a decreased activity. AChE activity was induced in the head (both concentrations) and muscle (10,000 μg L-1). GST activity was increased in gills (both concentrations) but inhibited in the intestine. Concerning LDH, enzymatic activity was increased in the liver and decreased in muscle and gills. Several of the above-mentioned effects can be directly linked with effects at population level (e.g. feeding behavior) and occurred at environmental concentrations (the lowest concentration tested), thus serious concerns regarding risks posed by Cbz residues to fish populations arise with this study.
Collapse
Affiliation(s)
- Niedja da Silva Santos
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rhaul Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil; Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, 13484-332 Limeira, São Paulo, Brazil; Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, FCF - USP, 05508-000 São Paulo, Brazil
| | - Carolina Almeida Lisboa
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Joana Mona E Pinto
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Diego Sousa-Moura
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Níchollas Serafim Camargo
- Laboratório de Nanobiotecnologia, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, AsaNorte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Vitória Perillo
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Miguel Oliveira
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Inês Domingues
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
31
|
Moniruzzaman M, Mukherjee J, Jacquin L, Mukherjee D, Mitra P, Ray S, Chakraborty SB. Physiological and behavioural responses to acid and osmotic stress and effects of Mucuna extract in Guppies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:37-46. [PMID: 30031943 DOI: 10.1016/j.ecoenv.2018.07.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Variation in pH (acidification) and salinity conditions have severe impact at different levels of biological organization in fish. Present study focused to assess the effects of acidification and salinity changes on physiological stress responses at three different levels of function: i) hormonal and oxidative response, ii) osmoregulation and iii) reproduction, in order to identify relevant biomarkers. Second objective of the study was to evaluate the efficacy of plant (Mucuna pruriens) extract for alleviating pH and salinity related stress. Guppies (Poecilia reticulata) were exposed to different pH (6.0, 5.5, 5.0) and salinity (1.5, 3.0, 4.5 ppt) for 7, 14 and 21 days. Following exposure to stress for respective duration, fish were fed diet containing methanol extract of Mucuna seeds (dose 0.80 gm/kg feed) for 7, 14 and 21 days to measure their possible recovery response. Stress hormone (cortisol), hepatic oxidative stress parameters [superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GRd), glutathione peroxidise (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), glutathione (GSH)], gill osmoregulatory response (Na+-K+ATPase activity), sex steroid profiles and mating behaviours (gonopodial thrust and gestation period) were estimated. Cortisol and MDA levels increased with dose and duration of acid and salinity stress, and cortisol levels were higher in males than in females. Effect on Na+-K+ATPase activity was more intense by salinity stress rather than pH induced stress. Both acid and salinity stress reduced sex steroid levels, and mating response was highly affected by both stresses in a dose- and duration-dependent manner. Mucuna treatment reduced stress-induced alteration of cortisol, MDA, Na+-K+ATPase activity and reproductive parameters. Dietary administration of Mucuna seed extract decreased the intensity of environmental stressors at all three functional levels. Mucuna treatment was more effective against salinity stress than acid stress. Thus, cortisol, oxidative stress marker MDA and Na+-K+ATPase could be effective indicators for acid and salinity stress in wild and domestic fish populations. Dietary administration of Mucuna extract may limit the detrimental effects of acidification and salinity variations that are the inevitable outcomes expected under global climate change conditions.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Joyita Mukherjee
- Department of Zoology, Krishna Chandra College, University of Burdwan, Hetampur, Birbhum 731124, West Bengal, India
| | - Lisa Jacquin
- Laboratoire Evolution & Diversité Biologique EDB, UMR 5174, Université de Toulouse, UPS, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Debosree Mukherjee
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Pubali Mitra
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Santanu Ray
- Ecological Modeling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
32
|
Liu J, Cai Y, Lu G, Dan X, Wu D, Yan Z. Interaction of erythromycin and ketoconazole on the neurological, biochemical and behavioral responses in crucian carp. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:14-19. [PMID: 28802958 DOI: 10.1016/j.etap.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment has received great attention due to their potential impacts on public health. The single, as well as the combined toxicities of erythromycin (ERY) and ketoconazole (KCZ) on the bioaccumulation, biochemical and behavioral responses, were examined in crucian carp. This study focused on the uptake of contaminants, acetylcholinesterase (AChE) activity in the brain, swimming and shoaling behavior of fish. After 14days of binary exposure, the addition of KCZ at nominal concentrations of 0.2, 2 and 20μg/L significantly increased the accumulation of ERY in the brain of the fish and the bioconcentration factor of 2.08 was 2.6-fold higher than that calculated from the ERY-alone exposure. The brain AChE activity was significantly inhibited by ERY and KCZ with a significant correlation with respect to the accumulative concentration of the contaminants. The inhibition rates of swimming activity to KCZ were increased with a corresponding increase in the exposure concentration of KCZ in the single exposure. However, this manner was altered by the combined exposure. In addition, shoaling was significantly enhanced by KCZ-alone exposure, which was significantly correlated with the swimming activity. This study indicates that the mixture of the contaminants may cause endocrine disrupting effects and behavior modification especially in fish with known ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuanfei Cai
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China; Wentian College, Hohai University, Ma'anshan, 243031, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China; College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, China.
| | - Xiaoxiang Dan
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Donghai Wu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|