1
|
Luijten I, Onishi A, McKay EJ, Bengtsson T, Semple RK. The metabolically protective energy expenditure increase of Pik3r1-related insulin resistance is not explained by Ucp1-mediated thermogenesis. Am J Physiol Endocrinol Metab 2025; 328:E743-E755. [PMID: 40152560 DOI: 10.1152/ajpendo.00449.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Human SHORT syndrome is caused by dominant negative human PIK3R1 mutations that impair insulin-stimulated phosphoinositide 3-kinase (PI3K) activity. This produces severe insulin resistance (IR) and often reduced adiposity, commonly described as lipodystrophy. However, unlike human primary lipodystrophies, SHORT syndrome does not feature fatty liver or dyslipidemia. Pik3r1Y657*/WT (Pik3r1Y657*) mice metabolically phenocopy humans, moreover exhibiting increased energy expenditure on high-fat feeding. We have hypothesized that this increased energy expenditure explains protection from lipotoxicity and suggested that understanding its mechanism may offer novel approaches to mitigating the metabolic syndrome. We set out to determine whether increased Ucp1-dependent thermogenesis explains the increased energy expenditure in Pik3r1-related IR. Male and female Pik3r1Y657* mice challenged with a 45% fat diet for 3 wk at 21°C showed reduced metabolic efficiency not explained by changes in food intake or physical activity. No changes were seen in thermoregulation, assessed by thermal imaging and a modified Scholander protocol. Ucp1-dependent thermogenesis, assessed by norepinephrine-induced oxygen consumption, was also unaltered. Housing at 30°C did not alter the metabolic phenotype of male Pik3r1Y657* mice but led to lowered physical activity in female Pik3r1Y657* mice compared with controls. Nevertheless, these mice still exhibited increased energy expenditure. Ucp1-dependent thermogenic capacity at 30°C was similar in Pik3r1Y657* and WT mice. We conclude that the likely metabolically protective "energy leak" in Pik3r1-related IR is not caused by Ucp1-mediated brown adipose tissue (BAT) hyperactivation, nor impaired thermal insulation. Further metabolic studies are required to seek alternative explanations such as non-Ucp1-mediated futile cycling.NEW & NOTEWORTHY Understanding how Pik3r1Y657* mice and humans are protected from lipotoxicity despite insulin resistance may suggest new ways to mitigate metabolic syndrome. We find reduced metabolic efficiency in Pik3r1Y657* mice but no differences in locomotion, thermoregulation, or Ucp1-dependent thermogenesis. The protective higher energy expenditure in Pik3r1-related insulin resistance has an alternative, likely metabolic, explanation.
Collapse
Affiliation(s)
- Ineke Luijten
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ami Onishi
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleanor J McKay
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Phan TX, Sahibzada N, Freichel M, Miyares RL, Ahern GP. Arteries are finely tuned thermosensors regulating myogenic tone and blood flow. Proc Natl Acad Sci U S A 2025; 122:e2503186122. [PMID: 40392848 DOI: 10.1073/pnas.2503186122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/10/2025] [Indexed: 05/22/2025] Open
Abstract
In response to changing blood pressure, arteries adjust their caliber to control blood flow. This vital autoregulatory property, termed vascular myogenic tone, stabilizes downstream capillary pressure. Here, we reveal that tissue temperature, combined with intraluminal pressure, critically determines myogenic tone. Heating steeply activates tone in skeletal muscle, gut, brain, and skin arteries with temperature coefficients (Q10) of ~11 to 20. Each of these tissues has a distinct resting temperature, and we find that arterial thermosensitivity is tuned to this temperature, making myogenic tone sensitive to small thermal fluctuations. Interestingly, temperature and intraluminal pressure are sensed largely independently and the signals integrated to trigger myogenic tone. We demonstrate that thermosensitive channels TRPV1 and TRPM4 mediate heat-induced tone in skeletal muscle arteries with discrete temperature sensitivities. Similarly, TRPM4 contributes to heat-induced tone in gut and brain arteries. The half-maximal responses occur at approximately 31 °C for TRPV1 and 33 °C for TRPM4. Variations in tissue temperature are known to alter blood fluidity and therefore vascular conductance; remarkably, thermosensitive tone counterbalances this effect, thus protecting capillary integrity and fluid balance. In conclusion, thermosensitive myogenic tone is a fundamental homeostatic mechanism regulating tissue perfusion.
Collapse
Affiliation(s)
- Thieu X Phan
- Department of Pharmacology and Physiology, Georgetown University, Washington DC 20007
- Department of Biology, Vinh University, Vinh City 43105, Vietnam
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University, Washington DC 20007
| | - Marc Freichel
- Department of General Pharmacology, Pharmakologisches Institut, Universität Heidelberg, Heidelberg D-69120, Germany
| | - Rosa L Miyares
- Department of Pharmacology and Physiology, Georgetown University, Washington DC 20007
| | - Gerard P Ahern
- Department of Pharmacology and Physiology, Georgetown University, Washington DC 20007
| |
Collapse
|
3
|
Tse BC, Wang H, Dvoriantchikova G, Pelaez D, Tse DT. Systemic Hypothermia in the Acute Management of Traumatic Optic Neuropathy in a Murine Animal Model. Ophthalmic Plast Reconstr Surg 2025; 41:293-298. [PMID: 39656522 DOI: 10.1097/iop.0000000000002821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
PURPOSE To examine the effects of systemic hypothermia on retinal ganglion cell survival and visual outcomes after optic nerve trauma in a sonication-inducted traumatic optic neuropathy murine animal model. METHODS Twenty mice underwent sonication-inducted traumatic optic neuropathy. Afterward, 10 mice were placed on a warming pad set to 36°C, and 10 mice were placed on a table. General anesthesia was maintained for 3 hours with subcutaneous injections of ketamine. The rectal temperature was measured every 15 minutes. Pattern electroretinograms were obtained at 2, 4, and 6 weeks. Mice were sacrificed at 6 weeks, and retinal ganglion cell counts were performed. RESULTS The hypothermia group had an average rectal temperature of 23.1°C; the control group was 33.3°C. At 6 weeks, the hypothermia group had larger a-wave amplitudes (18.19 µV) than the control group (12.75 µV) ( p < 0.05). At 6 weeks, retinal ganglion cell density over the entire retina was significantly higher in the hypothermia group versus the control ( p < 0.0001). CONCLUSIONS The hypothermia treatment group had significantly higher retinal ganglion cell density and pattern electroretinogram a-wave amplitudes 6 weeks after injury than the control group. Systemic hypothermia may have a neuroprotective effect when initiated immediately after sonication-inducted traumatic optic neuropathy.
Collapse
Affiliation(s)
- Brian C Tse
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, U.S.A
| | | | | | | | | |
Collapse
|
4
|
Blok NB, Myronovych A, McMahon G, Bozadjieva-Kramer N, Seeley RJ. The evolution of steatosis and fibrosis in mice on a MASH-inducing diet and the effects of housing temperature. Am J Physiol Endocrinol Metab 2025; 328:E513-E523. [PMID: 39998384 DOI: 10.1152/ajpendo.00401.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Obesity induction in mice requires high-fat diet exposure. Although hepatic steatosis develops, progression to inflammation and fibrosis, as in humans, requires prolonged exposure and additional dietary factors. Immunosuppression at room temperature may slow this progression. We evaluated thermoneutrality's effect on metabolic dysfunction-associated steatohepatitis (MASH) development using a fibrosis-inducing MASH [Gubra-Amylin NASH (GAN)] diet. Mice were fed either a MASH or chow diet and housed at room temperature or thermoneutrality. MASH diet groups were euthanized monthly from 4 to 7 mo. Serum markers of hepatic function were analyzed, and liver histology assessed steatosis, inflammation, ballooning [nonalcoholic fatty liver disease activity score (NAS) score], and fibrosis via Picrosirius Red staining. MASH diet increased body weight, liver-to-body mass ratio, and hepatic fat, with no difference between housing conditions. Housing temperature had minimal effects on MASH. Serum markers and hepatic fibrosis were similar across groups. NAS score was lower at 4 mo in thermoneutral MASH mice but not by 7 mo. Thermoneutrality did not significantly impact MASH development. These findings, alongside existing literature, suggest thermoneutral housing does not consistently enhance MASH progression in GAN MASH-fed mice.NEW & NOTEWORTHY The development of MASH in mice-does housing temperature make a real difference?
Collapse
Affiliation(s)
- Neil B Blok
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Andriy Myronovych
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Garrett McMahon
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
5
|
Millan I, Pérez S, Rius-Pérez S, Asensi MÁ, Vento M, García-Verdugo JM, Torres-Cuevas I. Postnatal hypoxic preconditioning attenuates lung damage from hyperoxia in newborn mice. Pediatr Res 2025; 97:1684-1695. [PMID: 39317699 DOI: 10.1038/s41390-024-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Preterm infants frequently require oxygen supplementation at birth. However, preterm lung is especially sensible to structural and functional damage caused by oxygen free radicals. METHODS The adaptive mechanisms implied in the fetal-neonatal transition from a lower to a higher oxygen environment were evaluated in a murine model using a custom-designed oxy-chamber. Pregnant mice were randomly assigned to deliver in 14% (hypoxic preconditioning group) or 21% (normoxic group) oxygen environment. Eight hours after birth FiO2 was increased to 100% for 60 min and then switched to 21% in both groups. A control group remained in 21% oxygen throughout the study. RESULTS Mice in the normoxic group exhibited thinning of the alveolar septa, increased cell death, increased vascular damage, and decreased synthesis of pulmonary surfactant. However, lung histology, lamellar bodies microstructure, and surfactant integrity were preserved in the hypoxic preconditioning group after the hyperoxic insult. CONCLUSION Postnatal hyperoxia has detrimental effects on lung structure and function when preceded by normoxia compared to controls. However, postnatal hypoxic preconditioning mitigates lung damage caused by a hyperoxic insult. IMPACT Hypoxic preconditioning, implemented shortly after birth mitigates lung damage caused by postnatal supplemental oxygenation. The study introduces an experimental mice model to investigate the effects of hypoxic preconditioning and its effects on lung development. This model enables researchers to delve into the intricate processes involved in postnatal lung maturation. Our findings suggest that hypoxic preconditioning may reduce lung parenchymal damage and increase pulmonary surfactant synthesis in reoxygenation strategies during postnatal care.
Collapse
Affiliation(s)
- Iván Millan
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, University of Valencia, Burjassot, Spain
| | - Sergio Rius-Pérez
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | | | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain.
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Department of Physiology, University of Valencia, Burjassot, Spain.
| |
Collapse
|
6
|
Carrizo MC, Zenuto RR, Luna F, Cutrera AP. Ambient temperature leads to differential immune strategies in the subterranean rodent Ctenomys talarum. J Exp Biol 2025; 228:JEB249634. [PMID: 39882663 DOI: 10.1242/jeb.249634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Animal thermoregulation may have significant costs and compete directly or indirectly with other energetically demanding processes, such as immune function. Although the subterranean environment is characterized by thermally stable conditions, small changes in ambient temperature could be critical in shaping immunity. However, little is known about the effects of ambient temperature, in naturally varying ranges, on immunity of wild species. Therefore, to evaluate the effect of short-term exposure to ambient temperatures on energy metabolism and body temperature during the acute phase immune response (APR) in the subterranean rodent Ctenomys talarum, 70 adult animals were divided into three experimental groups and exposed twice for 1 h to 15, 25 or 32°C (below, at or near the upper limit of the thermoneutral zone, respectively) before and after injection with saline (control) or lipopolysaccharide (LPS, which induces the APR). Animals exposed to 25 and 32°C showed a similar APR pattern, characterized by fever (average: 37.1 and 37.7°C, respectively), a 16% increase in O2 consumption and an increase in the neutrophil/lymphocyte ratio (N/L). Body mass loss and symptoms of sickness behavior were detected from 3 and 1 h post-injection, respectively. Individuals exposed to 15°C increased their metabolic rate by 60%, showed frequent hypothermia (34.3°C on average) and the characteristic N/L increase was attenuated. Body mass loss and sickness behavior were mostly detected 24 h post-injection. Our results suggest that the thermoregulation costs in C. talarum may limit the energy available for immunity, leading to different strategies to cope with infection.
Collapse
Affiliation(s)
- María Celina Carrizo
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Roxana Rita Zenuto
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Facundo Luna
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Ana Paula Cutrera
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
7
|
Schroeder HT, de Lemos Muller CH, Rodrigues MIL, Azevedo MAD, Heck TG, Krause M, Homem de Bittencourt PI. Early detection and progression of insulin resistance revealed by impaired organismal anti-inflammatory heat shock response during ex vivo whole-blood heat challenge. Clin Sci (Lond) 2025; 139:85-113. [PMID: 39716481 DOI: 10.1042/cs20243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Chronic inflammatory diseases, e.g., obesity, cardiovascular disease and type-2 diabetes, progressively suppress the anti-inflammatory heat shock response (HSR) by impairing the synthesis of key components, perpetuating inflammation. Monitoring HSR progression offers predictive value for countering chronic inflammation. This study quantified HSR in high-fat diet (HFD) and normal chow (NC) mice by measuring 70 kDa heat shock protein (HSP70) expression after heat treatment of whole blood samples. To align with human translational relevance, animals were housed within their thermoneutral zone (TNZ). Whole blood was heat-challenged weekly at 42 °C for 1-2 hours over 22 weeks, and ΔHSP70 was calculated as the difference between HSP70 expressions at 42 °C and 37 °C. Results correlated with fasting glycaemia, oral glucose tolerance test, intraperitoneal insulin tolerance test and 2-hour post-glucose load glycaemia. ΔHSP70 levels >0.2250 indicated normal fasting glycaemia, while levels <0.2125 signalled insulin resistance and type-2 diabetes onset. A logistic model (five-parameter logistic) showed progressive HSR decline, with HFD mice exhibiting earlier ΔHSP70 reduction (t1/2 = 3.14 weeks) compared with NC mice (t1/2 = 8.24 weeks), highlighting compromised anti-inflammatory capacity in both groups of mice maintained at TNZ. Remarkably, even NC mice surpassed insulin resistance thresholds by week 22, relevant as control diets confronted interventions. Observed HSR decline mirrors tissue-level suppression in obese and type-2 diabetic individuals, underscoring HSR failure as a hallmark of obesity-driven inflammation. This study introduces a practical whole-blood assay to evaluate HSR suppression, allowing assessment of glycaemic status during obesity onset before any clinical manifestation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, 90035-003 Porto Alegre, RS, Brazil
| | - Maria Inês Lavina Rodrigues
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Marcela Alves de Azevedo
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Thiago Gomes Heck
- Postgraduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), 98700-000 Ijuí, RS, Brazil
- Postgraduate Program in Mathematical and Computational Modelling (PPGMMC), UNIJUI, 98700-000 Ijuí, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, 90035-003 Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Adahman Z, Ooyama R, Gashi DB, Medik ZZ, Hollosi HK, Sahoo B, Akowuah ND, Riceberg JS, Carcea I. Hypothalamic Vasopressin Neurons Enable Maternal Thermoregulatory Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634569. [PMID: 40196592 PMCID: PMC11974691 DOI: 10.1101/2025.01.23.634569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Newborns of many mammalian species are partial poikilotherms and require adult thermoregulatory care for survival. In mice, pup survival in cold and cool ambient temperature depends on the ability of adult caregivers to huddle pups and bring them into a high-quality nest. It is therefore essential that adult mice adjust parental care as a function of changes in ambient temperature. Here, we investigated how mouse maternal care adapts to a range of temperatures, from cold to warm. We show that changes in ambient temperature affect several individual and co-parenting maternal behaviors in both dams and virgin female mice, and modulate activity of vasopressin neurons. Furthermore, we establish that the effects of ambient temperature on both maternal care and the activity of vasopressin neurons depend in part on thermosensation, specifically on the TRPM8 sensor. Using trans-synaptic anterograde tracing and whole-brain activity mapping, we find that vasopressin neurons from the paraventricular hypothalamic nucleus connect synaptically with temperature-responsive brain structures implicated in maternal care. We then show that optogenetic activation of vasopressin projections to the central amygdala, a structure activated by cold ambient temperature, recapitulates the effects of cold on co-parenting behaviors. Our data provide a biological mechanism for maternal thermoregulatory behavior in mice with translational relevance to the reported association between ecosystem temperature fluctuations and variations in human child neglect cases.
Collapse
Affiliation(s)
- Zahra Adahman
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| | - Rumi Ooyama
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| | - Dinore B. Gashi
- Rutgers, The State University of New Jersey, School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
| | - Zeyneb Z. Medik
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Bezmialem Vakıf University, Department of Medicine, Instanbul, Turkey
| | - Hannah K. Hollosi
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
| | - Biswaranjan Sahoo
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| | - Nana D. Akowuah
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| | | | - Ioana Carcea
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| |
Collapse
|
9
|
Hidrobo MS, Höring M, Brunner S, Liebisch G, Schweizer S, Klingenspor M, Schreiber R, Zechner R, Burkhardt R, Ecker J. Cold-induced phosphatidylethanolamine synthesis in liver and brown adipose tissue of mice. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159562. [PMID: 39214167 DOI: 10.1016/j.bbalip.2024.159562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Increasing energy expenditure in brown adipose (BAT) tissue by cold-induced lipolysis is discussed as a potential strategy to counteract imbalanced lipid homeostasis caused through unhealthy lifestyle and cardiometabolic disease. Yet, it is largely unclear how liberated fatty acids (FA) are metabolized. We investigated the liver and BAT lipidome of mice housed for 1 week at thermoneutrality, 23 °C and 4 °C using quantitative mass spectrometry-based lipidomics. Housing at temperatures below thermoneutrality triggered the generation of phosphatidylethanolamine (PE) in both tissues. Particularly, the concentrations of PE containing polyunsaturated fatty acids (PUFA) in their acyl chains like PE 18:0_20:4 were increased at cold. Investigation of the plasma's FA profile using gas chromatography coupled to mass spectrometry revealed a negative correlation of PUFA with unsaturated PE in liver and BAT indicating a flux of FA from the circulation into these tissues. Beta-adrenergic stimulation elevated intracellular levels of PE 38:4 and PE 40:6 in beige wildtype adipocytes, but not in adipose triglyceride lipase (ATGL)-deficient cells. These results imply an induction of PE synthesis in liver, BAT and thermogenic adipocytes after activation of the beta-adrenergic signaling cascade.
Collapse
Affiliation(s)
- Maria Soledad Hidrobo
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sarah Brunner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sabine Schweizer
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/2, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/2, 8010 Graz, Austria
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
10
|
Laitano O, Oki K, Charkoudian N. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39189870 DOI: 10.1152/physiol.00028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
11
|
Isay SE, Vornholz L, Schnalzger T, Groll T, Magg T, Loll P, Weirich G, Steiger K, Hauck F, Ruland J. Enforced CARD11/MALT1 signaling in dendritic cells triggers hemophagocytic lymphohistiocytosis. Proc Natl Acad Sci U S A 2024; 121:e2413162121. [PMID: 39661061 DOI: 10.1073/pnas.2413162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome fueled by uncontrolled mononuclear phagocyte activity, yet the innate immune mechanisms driving HLH pathogenesis remain elusive. Germline gain-of-function (GOF) mutations in CARD11, a pivotal regulator of lymphocyte antigen receptor signaling, cause the lymphoproliferative disease B-cell expansion with NF-κB and T-cell anergy, which is frequently associated with HLH development. Given that CARD11 is physiologically expressed not only in lymphocytes but also in dendritic cells (DCs), we explored whether enforced CARD11 signaling in DCs contributes to immunopathology. We demonstrated that exclusive DC-intrinsic expression of CARD11-GOF in mice was sufficient to induce a lethal autoinflammatory syndrome that mimicked human HLH. Mechanistically, DC-intrinsic CARD11-GOF signaling triggered cell-autonomous inflammatory cytokine production via MALT1 paracaspase engagement. Genetic deletion of Malt1 in CARD11-GOF-expressing animals reversed the hyperinflammatory phenotype. These results highlight the significant role of enforced CARD11/MALT1 signaling in DCs as a contributor to HLH pathology and suggest potential therapeutic strategies for HLH treatment.
Collapse
Affiliation(s)
- Sophie E Isay
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Theresa Schnalzger
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Tanja Groll
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Patricia Loll
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Gregor Weirich
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
- German Cancer Consortium, Partner Site Munich, a Partnership between German Cancer Research Center and Hospital of the Technical University of Munich, Munich 81675, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich 81675, Germany
| |
Collapse
|
12
|
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS, Vinagre AS. Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism. Biochem Pharmacol 2024; 230:116623. [PMID: 39542180 DOI: 10.1016/j.bcp.2024.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Collapse
Affiliation(s)
- Jorge F A Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafaella S Normann
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton L Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maiza Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rui Xu
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Poli Mara Spritzer
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Anapaula S Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Azizian-Farsani F, Weixelbaumer K, Mascher D, Klang A, Högler S, Dinhopl N, Bauder B, Weissenböck H, Tichy A, Schmidt P, Mascher H, Osuchowski MF. Lethal versus surviving sepsis phenotypes displayed a partly differential regional expression of neurotransmitters and inflammation and did not modify the blood-brain barrier permeability in female CLP mice. Intensive Care Med Exp 2024; 12:96. [PMID: 39497013 PMCID: PMC11535104 DOI: 10.1186/s40635-024-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Septic encephalopathy is frequent but its pathophysiology is enigmatic. We studied expression of neurotransmitters, inflammation and integrity of the blood-brain barrier (BBB) in several brain regions during abdominal sepsis. We compared mice with either lethal or surviving phenotype in the first 4 sepsis days. Mature CD-1 females underwent cecal ligation and puncture (CLP). Body temperature (BT) was measured daily and predicted-to-die (within 24 h) mice (for P-DIE; BT < 28 °C) were sacrificed together (1:1 ratio) with mice predicted-to-survive (P-SUR; BT > 35 °C), and healthy controls (CON). Brains were dissected into neocortex, cerebellum, midbrain, medulla, striatum, hypothalamus and hippocampus. RESULTS CLP mice showed an up to threefold rise of serotonin in the hippocampus, 5-hydroxyindoleacetic and homovanillic acid (HVA) in nearly all regions vs. CON. Compared to P-SUR, P-DIE mice showed a 1.7 to twofold rise of HVA (386 ng/g of tissue), dopamine (265 ng/g) and 3,4-Dihydroxyphenylacetic acid (DOPAC; 140 ng/g) in the hippocampus, hypothalamus and medulla (174, 156, 82 ng/g of tissue, respectively). CLP increased expression of TNFα, IL-1β and IL-6 mRNA by several folds in the midbrain, cerebellum and hippocampus versus CON. The same cytokines were further elevated in P-DIE vs P-SUR in the midbrain and cerebellum. Activation of astrocytes and microglia was robust across regions but remained typically phenotype independent. There was a similar influx of sodium fluorescein across the BBB in both P-DIE and P-SUR mice. CONCLUSIONS Compared to survivors, the lethal phenotype induced a stronger deregulation of amine metabolism and cytokine expression in selected brain regions, but the BBB permeability remained similar regardless of the predicted outcome.
Collapse
Affiliation(s)
- Fatemeh Azizian-Farsani
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | - Katrin Weixelbaumer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | | | - Andrea Klang
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Sandra Högler
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Nora Dinhopl
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Bauder
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | | | - Alexander Tichy
- Institute of Medical Physics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
| | - Peter Schmidt
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | | | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria.
| |
Collapse
|
14
|
Hannan FM, Leow MKS, Lee JKW, Kovats S, Elajnaf T, Kennedy SH, Thakker RV. Endocrine effects of heat exposure and relevance to climate change. Nat Rev Endocrinol 2024; 20:673-684. [PMID: 39080505 DOI: 10.1038/s41574-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 10/09/2024]
Abstract
Climate change is increasing both seasonal temperatures and the frequency and severity of heat extremes. As the endocrine system facilitates physiological adaptations to temperature changes, diseases with an endocrinological basis have the potential to affect thermoregulation and increase the risk of heat injury. The effect of climate change and associated high temperature exposure on endocrine axis development and function, and on the prevalence and severity of diseases associated with hormone deficiency or excess, is unclear. This Perspective summarizes current knowledge relating to the hormonal effects of heat exposure in species ranging from rodents to humans. We also describe the potential effect of high temperature exposures on patients with endocrine diseases. Finally, we highlight the need for more basic science, clinical and epidemiological research into the effects of heat on endocrine function and health; this research could enable the development of interventions for people most at risk, in the context of rising environmental temperatures.
Collapse
Affiliation(s)
- Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| | - Melvin K S Leow
- Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jason K W Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sari Kovats
- NIHR Health Protection Research Unit in Environmental Change and Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
15
|
de Laat V, Topal H, Spotbeen X, Talebi A, Dehairs J, Idkowiak J, Vanderhoydonc F, Ostyn T, Zhao P, Jacquemyn M, Wölk M, Sablina A, Augustyns K, Vanden Berghe T, Roskams T, Daelemans D, Fedorova M, Topal B, Swinnen JV. Intrinsic temperature increase drives lipid metabolism towards ferroptosis evasion and chemotherapy resistance in pancreatic cancer. Nat Commun 2024; 15:8540. [PMID: 39358362 PMCID: PMC11447004 DOI: 10.1038/s41467-024-52978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
A spontaneously occurring temperature increase in solid tumors has been reported sporadically, but is largely overlooked in terms of cancer biology. Here we show that temperature is increased in tumors of patients with pancreatic ductal adenocarcinoma (PDAC) and explore how this could affect therapy response. By mimicking this observation in PDAC cell lines, we demonstrate that through adaptive changes in lipid metabolism, the temperature increase found in human PDAC confers protection to lipid peroxidation and contributes to gemcitabine resistance. Consistent with the recently uncovered role of p38 MAPK in ferroptotic cell death, we find that the reduction in lipid peroxidation potential following adaptation to tumoral temperature allows for p38 MAPK inhibition, conferring chemoresistance. As an increase in tumoral temperature is observed in several other tumor types, our findings warrant taking tumoral temperature into account in subsequent studies related to ferroptosis and therapy resistance. More broadly, our findings indicate that tumoral temperature affects cancer biology.
Collapse
Affiliation(s)
- Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Halit Topal
- Abdominal Surgical Oncology, University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xander Spotbeen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Frank Vanderhoydonc
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Tessa Ostyn
- Department of Pathology, University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Peihua Zhao
- Laboratory for Mechanisms of Cell Transformation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Maarten Jacquemyn
- Molecular Genetics and Therapeutics in Virology and Oncology, Rega Institute for Medical Research, KU Leuven Department of Microbiology and Immunology, Leuven, Belgium
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Anna Sablina
- Laboratory for Mechanisms of Cell Transformation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Koen Augustyns
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tania Roskams
- Department of Pathology, University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dirk Daelemans
- Molecular Genetics and Therapeutics in Virology and Oncology, Rega Institute for Medical Research, KU Leuven Department of Microbiology and Immunology, Leuven, Belgium
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Baki Topal
- Abdominal Surgical Oncology, University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
16
|
Landen JG, Vandendoren M, Killmer S, Bedford NL, Nelson AC. Huddling substates in mice facilitate dynamic changes in body temperature and are modulated by Shank3b and Trpm8 mutation. Commun Biol 2024; 7:1186. [PMID: 39304735 PMCID: PMC11415358 DOI: 10.1038/s42003-024-06781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Social thermoregulation is a means of maintaining homeostatic body temperature. While adult mice are a model organism for studying both social behavior and energy regulation, the relationship between huddling and core body temperature (Tb) is poorly understood. Here, we develop a behavioral paradigm and computational tools to identify active-huddling and quiescent-huddling as distinct thermal substates. We find that huddling is an effective thermoregulatory strategy in female but not male groups. At 23 °C (room temperature), but not 30 °C (near thermoneutrality), huddling facilitates large reductions in Tb and Tb-variance. Notably, active-huddling is associated with bidirectional changes in Tb, depending on its proximity to bouts of quiescent-huddling. Further, group-housed animals lacking the synaptic scaffolding gene Shank3b have hyperthermic Tb and spend less time huddling. In contrast, individuals lacking the cold-sensing gene Trpm8 have hypothermic Tb - a deficit that is rescued by increased huddling time. These results reveal how huddling behavior facilitates acute adjustments of Tb in a state-dependent manner.
Collapse
Affiliation(s)
- Jason G Landen
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Morgane Vandendoren
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Samantha Killmer
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Nicole L Bedford
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.
- University of Wyoming Sensory Biology Center, Laramie, WY, USA.
| |
Collapse
|
17
|
Lee MC, Ho CS, Hsu YJ, Kan NW, Fei CY, Yang HJ, Huang CC. The Impact of DAZZEON αSleep ® Far-Infrared Blanket on Sleep, Blood Pressure, Vascular Health, Muscle Function, Inflammation, and Fatigue. Clocks Sleep 2024; 6:499-516. [PMID: 39311228 PMCID: PMC11417803 DOI: 10.3390/clockssleep6030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
The application of far-infrared blankets has shown certain benefits in health promotion and therapy, such as improving blood circulation and alleviating muscle pain. However, the effects of such blankets on increasing deep sleep, reducing blood pressure, enhancing memory, dilating microvessels for blood flow, reducing chronic inflammation, and decreasing fatigue remain to be studied. We aim to investigate the effects of the DAZZEON αSleep® far-infrared blanket on these indicators. This study adopted a double-blind design, recruiting 24 male participants aged over 45 years, divided into two groups of 12 each: (A) a placebo group and (B) a DAZZEON αSleep® group. The participants used the blanket every night for two weeks, with sleep records taken using a wearable device and blood pressure, blood oxygen levels, arterial stiffness, and surface temperature measured before and after the intervention. Blood samples were collected for an analysis of inflammation and sleep-related blood indicators (serotonin and melatonin), and exercise tests were conducted to assess fatigue improvement. Compared with before the intervention, the blanket significantly increased changes in grip strength and reaction time. Additionally, it significantly increased blood serotonin, melatonin, and nitric oxide concentrations (p < 0.05), thus significantly increasing deep sleep and REM sleep durations (p < 0.05) and improving subjective sleep quality (p < 0.05). This study confirmed that using the DAZZEON αSleep® far-infrared blanket for 14 consecutive days helps to improve blood circulation, reduce vascular age and arterial stiffness, increase serotonin and melatonin levels, and improve sleep quality, as well as enhances muscle strength and reaction time.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei City 110301, Taiwan;
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
| | - Nai-Wen Kan
- Center for General Education, Taipei Medical University, Taipei City 110301, Taiwan;
| | - Chen-Yin Fei
- Dazzeon Biotech Co., Ltd., New Taipei City 248022, Taiwan;
| | - Hung-Jen Yang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
- Department of General Medicine, Min-Sheng General Hospital, Taoyuan City 330063, Taiwan
- Tajen University, Pingtung County 907101, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
- Tajen University, Pingtung County 907101, Taiwan
| |
Collapse
|
18
|
Horgan BG, West NP, Tee N, Halson SL, Drinkwater EJ, Chapman DW, Haff GG. Effect of repeated post-resistance exercise cold or hot water immersion on in-season inflammatory responses in academy rugby players: a randomised controlled cross-over design. Eur J Appl Physiol 2024; 124:2615-2628. [PMID: 38613679 PMCID: PMC11365841 DOI: 10.1007/s00421-024-05424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/25/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Uncertainty exists if post-resistance exercise hydrotherapy attenuates chronic inflammatory and hormone responses. The effects of repeated post-resistance exercise water immersion on inflammatory and hormone responses in athletes were investigated. METHODS Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week programme divided into 3 × 4-week blocks of post-resistance exercise water immersion (either, no immersion control [CON]; cold [CWI]; or hot [HWI] water immersion), utilising a randomised cross-over pre-post design. Fasted, morning blood measures were collected prior to commencement of first intervention block, and every fourth week thereafter. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects. RESULTS Repeated CWI (p = 0.025, g = 0.05) and HWI (p < 0.001, g = 0.62) reduced creatine kinase (CK), compared to CON. HWI decreased (p = 0.013, g = 0.59) interleukin (IL)-1ra, compared to CON. HWI increased (p < 0.001-0.026, g = 0.06-0.17) growth factors (PDGF-BB, IGF-1), compared to CON and CWI. CWI increased (p = 0.004, g = 0.46) heat shock protein-72 (HSP-72), compared to HWI. CONCLUSION Post-resistance exercise CWI or HWI resulted in trivial and moderate reductions in CK, respectively, which may be partly due to hydrostatic effects of water immersion. Post-resistance exercise HWI moderately decreased IL-1ra, which may be associated with post-resistance exercise skeletal muscle inflammation influencing chronic resistance exercise adaptive responses. Following post-resistance exercise water immersion, CWI increased HSP-72 suggesting a thermoregulatory response indicating improved adaptive inflammatory responses to temperature changes, while HWI increased growth factors (PDGF-BB, IGF-1) indicating different systematic signalling pathway activation. Our data supports the continued use of post-resistance exercise water immersion recovery strategies of any temperature during in-season competition phases for improved inflammatory adaptive responses in athletes.
Collapse
Affiliation(s)
- Barry G Horgan
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia.
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia.
- Brumbies Rugby, Bruce, ACT, Australia.
| | - Nicholas P West
- School of Medical Science, Menzies Health Institute QLD, Griffith University, Gold coast, Queensland, Australia
| | - Nicolin Tee
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Shona L Halson
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Queensland, Australia
| | - Eric J Drinkwater
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Centre for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dale W Chapman
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Curtin University, Bentley, WA, 6102, Australia
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Directorate of Psychology and Sport, University of Salford, Greater Manchester, Salford, UK
| |
Collapse
|
19
|
Wang R, Gomez Salazar M, Pruñonosa Cervera I, Coutts A, French K, Pinto MM, Gohlke S, García-Martín R, Blüher M, Schofield CJ, Kourtzelis I, Stimson RH, Bénézech C, Christian M, Schulz TJ, Gudmundsson EF, Jennings LL, Gudnason VG, Chavakis T, Morton NM, Emilsson V, Michailidou Z. Adipocyte deletion of the oxygen-sensor PHD2 sustains elevated energy expenditure at thermoneutrality. Nat Commun 2024; 15:7483. [PMID: 39209825 PMCID: PMC11362468 DOI: 10.1038/s41467-024-51718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Enhancing thermogenic brown adipose tissue (BAT) function is a promising therapeutic strategy for metabolic disease. However, predominantly thermoneutral modern human living conditions deactivate BAT. We demonstrate that selective adipocyte deficiency of the oxygen-sensor HIF-prolyl hydroxylase (PHD2) gene overcomes BAT dormancy at thermoneutrality. Adipocyte-PHD2-deficient mice maintain higher energy expenditure having greater BAT thermogenic capacity. In human and murine adipocytes, a PHD inhibitor increases Ucp1 levels. In murine brown adipocytes, antagonising the major PHD2 target, hypoxia-inducible factor-(HIF)-2a abolishes Ucp1 that cannot be rescued by PHD inhibition. Mechanistically, PHD2 deficiency leads to HIF2 stabilisation and binding of HIF2 to the Ucp1 promoter, thus enhancing its expression in brown adipocytes. Serum proteomics analysis of 5457 participants in the deeply phenotyped Age, Gene and Environment Study reveal that serum PHD2 associates with increased risk of metabolic disease. Here we show that adipose-PHD2-inhibition is a therapeutic strategy for metabolic disease and identify serum PHD2 as a disease biomarker.
Collapse
Affiliation(s)
- Rongling Wang
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mario Gomez Salazar
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Iris Pruñonosa Cervera
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Amanda Coutts
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Karen French
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marlene Magalhaes Pinto
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Ruben García-Martín
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Campus-UAM, Madrid, Spain
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research University of Oxford, Oxford, UK
| | - Ioannis Kourtzelis
- Hull York Medical School, York Biomedical Research Institute, University of York, York, UK
| | - Roland H Stimson
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Lori L Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Vilmundur G Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Triantafyllos Chavakis
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Nicholas M Morton
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Zoi Michailidou
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK.
| |
Collapse
|
20
|
De Jesus R, Britton GB, Herrera L, Madrid A, Lleonart R, Fernández PL. Lethality associated with snake venom exposure can be predicted by temperature drop in Swiss mice. Toxicon 2024; 247:107831. [PMID: 38936670 DOI: 10.1016/j.toxicon.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Establishing humane endpoints to minimize animal suffering in studies on snake venom toxicity and antivenom potency tests is crucial. Our findings reveal that Swiss mice exhibit early temperature drop following exposure to different snake venoms and combinations of venoms and antivenoms, predicting later mortality. Evaluating temperature we can identify within 3 h post-inoculation, the animals that will not survive in a period of 48 h. Implementing temperature as a criterion would significantly reduce animal suffering in these studies without compromising the outcomes.
Collapse
Affiliation(s)
- Rosa De Jesus
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, 0843-01103, Panama.
| | - Gabrielle B Britton
- Centro de Neurociencias, INDICASAT AIP, City of Knowledge, Panama City, 0843-01103, Panama; Sistema Nacional de Investigación (SNI), SENACYT, Panama City, 0816-02852, Panama.
| | - Lizzi Herrera
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, 0843-01103, Panama.
| | - Alanna Madrid
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, 0843-01103, Panama.
| | - Ricardo Lleonart
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City, 0816-02852, Panama; Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, City of Knowledge, Panama City, 0843-01103, Panama.
| | - Patricia L Fernández
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City, 0816-02852, Panama; Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, City of Knowledge, Panama City, 0843-01103, Panama.
| |
Collapse
|
21
|
Jacobsen JM, Petersen N, Torz L, Gerstenberg MK, Pedersen K, Østergaard S, Wulff BS, Andersen B, Raun K, Christoffersen BØ, John LM, Reitman ML, Kuhre RE. Housing mice near vs. below thermoneutrality affects drug-induced weight loss but does not improve prediction of efficacy in humans. Cell Rep 2024; 43:114501. [PMID: 39067024 PMCID: PMC11380917 DOI: 10.1016/j.celrep.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Evaluation of weight loss drugs is usually performed in diet-induced obese mice housed at ∼22°C. This is a cold stress that increases energy expenditure by ∼35% compared to thermoneutrality (∼30°C), which may overestimate drug-induced weight loss. We investigated five anti-obesity mechanisms that have been in clinical development, comparing weight loss in mice housed at 22°C vs. 30°C. Glucagon-like peptide-1 (GLP-1), human fibroblast growth factor 21 (hFGF21), and melanocortin-4 receptor (MC4R) agonist induced similar weight losses. Peptide YY elicited greater vehicle-subtracted weight loss at 30°C (7.2% vs. 1.4%), whereas growth differentiation factor 15 (GDF15) was more effective at 22°C (13% vs. 6%). Independent of ambient temperature, GLP-1 and hFGF21 prevented the reduction in metabolic rate caused by weight loss. There was no simple rule for a better prediction of human drug efficacy based on ambient temperature, but since humans live at thermoneutrality, drug testing using mice should include experiments near thermoneutrality.
Collapse
Affiliation(s)
- Julie M Jacobsen
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Natalia Petersen
- Liver and Gut Biology, Obesity & NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | - Lola Torz
- Liver and Gut Biology, Obesity & NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Kent Pedersen
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Søren Østergaard
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Birgitte S Wulff
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Birgitte Andersen
- Diabetes, Obesity and NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | - Kirsten Raun
- Lead Portfolio Projects, Research and Early Development, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Linu M John
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Rune E Kuhre
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Skurnack AME, Lane SP, Garman L, Burke AL, Williams WR, Budda ML. Voluntary Wheel Running an Effective Intervention in the Management of Excessive Food Usage in CD-1 Mice ( Mus musculus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:504-512. [PMID: 39142812 PMCID: PMC11467874 DOI: 10.30802/aalas-jaalas-24-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024]
Abstract
Some mice demonstrate excessive food-grinding behaviors in which food pellets are broken down into crumbs (orts). This is considered abnormal behavior and is undesirable in a research environment, as it is thought to potentially be a stereotypic behavior suggestive of a negative welfare state in these animals. Further, food grinding often necessitates more frequent food and bedding changes. Research outcomes may also be affected if investigators do not exclude food losses due to grinding when measuring food consumption. We hypothesized some mice may excessively grind food in part to expend energy and access to a running wheel would contribute to a reduction in food grinding. Total daily food usage (the combined weight of food consumption and ort production) was measured for 40 d in CD-1 mice that exhibited food grinding. Median daily food usage was compared 10 d before, 20 d during, and 10 d after access to a running wheel. Additional cages of similar food-grinding mice that did not have access to a running wheel were monitored during the same period for comparison. A significant reduction in food usage was observed in 8 out of the 20 d in which mice had access to a running wheel compared with controls (P < 0.05). This reduction was significantly less than the median daily food usage before and after the running wheels were available (P < 0.01). Food usage significantly increased sharply in the 3 d following removal of the running wheel compared with controls during the same period (P < 0.05). A positive correlation between relative humidity and median daily food usage was observed (P < 0.05). Despite fluctuations in relative humidity, providing a running wheel effectively reduced excessive food-grinding behavior.
Collapse
Affiliation(s)
- Alexis M E Skurnack
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shawn P Lane
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Amy L Burke
- Office of Animal Welfare Assurance, Vice President for Research, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Wendy R Williams
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Madeline L Budda
- Office of Animal Welfare Assurance, Vice President for Research, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
23
|
Chau PK, Ryan E, Dalen KT, Haugen F. Timing of acute cold exposure determines UCP1 and FGF21 expression - Possible interactions between the thermal environment, thermoregulatory responses, and peripheral clocks. J Therm Biol 2024; 124:103938. [PMID: 39142264 DOI: 10.1016/j.jtherbio.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Thermoregulation is synchronized across the circadian cycle to uphold thermal homeostasis. To test if time-of-day matters for the response to environmental cold exposure, mice were acclimated to thermoneutrality (27 °C) for 2 months were subjected acutely (8 h) to cold ambient conditions (15 °C), whereas controls were maintained at thermoneutral conditions. The thermal exposure was tested in separate groups (N = 8) at three distinct time-of-day periods: in the LIGHT phase (L); the DARK phase (D); and a mix of the two (D + L). The magnitude of UCP1 protein and mRNA induction in brown adipose tissue (BAT) in response to acute cold exposure was time-of-day sensitive, peaking in LIGHT, whereas lower induction levels were observed in D + L, and DARK. Plasma levels of FGF21 were induced 3-fold by acute cold exposure at LIGHT and D + L, compared to the time-matched thermoneutral controls, whereas cold in DARK did not cause a significant increase of FGF21 plasma levels. Cold exposure affected, in BAT, the temporal mRNA expression patterns of core circadian clock components: Bmal1, Clock, Per1, Per3, Cry1, Cry2 Nr1d1, and Nr1d2, but in the liver, none of the transcripts were modified. Behavioral assessment using the Thermal Gradient Test (TGT) showed that acute cold exposure reduced cold sensitivity in D + L, but not in DARK. RNA-seq analyses of somatosensory neurons in DRG highlighted the role of the core circadian components in these cells, as well as transcriptional changes due to acute cold exposure. This elucidates the sensory system as a gauge and potential regulator of thermoregulatory responses based on circadian physiology. In conclusion, acute cold exposure elicits time-of-day specific effects on thermoregulatory pathways, which may involve underlying changes in thermal perception. These results have implications for efforts aimed at reducing risks associated with the organization of shift work in cold environments.
Collapse
Affiliation(s)
- Phong Kt Chau
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Elin Ryan
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition and Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fred Haugen
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway.
| |
Collapse
|
24
|
Gano A, Wojcik H, Danseglio NC, Kelliher K, Varlinskaya EI, Deak T. Adolescent intermittent ethanol (AIE) sensitized fever in male Sprague Dawley rats exposed to poly I:C in adulthood. Brain Behav Immun 2024; 120:82-97. [PMID: 38777284 PMCID: PMC11269031 DOI: 10.1016/j.bbi.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
Fever plays an indispensable role in host defense processes and is used as a rapid index of infection severity. Unfortunately, there are also substantial individual differences in fever reactions with biological sex, immunological history, and other demographic variables contributing to adverse outcomes of infection. The present series of studies were designed to test the hypothesis that a history of adolescent alcohol misuse may be a latent experiential variable that determines fever severity using polyinosinic:polycytidylic acid (poly I:C), a synthetic form of double-stranded RNA that mimics a viral challenge. Adult male and female Sprague Dawley rats were injected with 0 (saline) or 4 mg/kg poly I:C to first establish sex differences in fever sensitivity in Experiment 1 using implanted radiotelemetry devices for remote tracking. In Experiments 2 and 3, adolescent males and females were exposed to either water or ethanol (0 or 4 g/kg intragastrically, 3 days on, 2 days off, ∼P30-P50, 4 cycles/12 exposures total). After a period of abstinence, adult rats (∼P80-96) were then challenged with saline or poly I:C, and fever induction and maintenance were examined across a prolonged time course of 8 h using implanted probes. In Experiments 4 and 5, adult male and female subjects with a prior history of adolescent water or adolescent intermittent ethanol (AIE) were given saline or poly I:C, with tissue collected for protein and gene expression analysis at 5 h post-injection. Initial sex differences in fever sensitivity were minimal in response to the 4 mg/kg dose of poly I:C in ethanol-naïve rats. AIE exposed males injected with poly I:C showed a sensitized fever response as well as enhanced TLR3, IκBα, and IL-1β expression in the nucleus of the solitary tract. Other brain regions related to thermoregulation and peripheral organs such as spleen, liver, and blood showed generalized immune responses to poly I:C, with no differences evident between AIE and water-exposed males. In contrast, AIE did not affect responsiveness to poly I:C in females. Thus, the present findings suggest that adolescent binge drinking may produce sex-specific and long-lasting effects on fever reactivity to viral infection, with preliminary evidence suggesting that these effects may be due to centrally-mediated changes in fever regulation rather than peripheral immunological mechanisms.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Hannah Wojcik
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Nina C Danseglio
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Kaitlyn Kelliher
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
25
|
Agno KC, Yang K, Byun SH, Oh S, Lee S, Kim H, Kim K, Cho S, Jeong WI, Jeong JW. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat Biomed Eng 2024; 8:963-976. [PMID: 37903901 DOI: 10.1038/s41551-023-01116-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/26/2023] [Indexed: 11/01/2023]
Abstract
The high stiffness of intravenous needles can cause tissue injury and increase the risk of transmission of blood-borne pathogens through accidental needlesticks. Here we describe the development and performance of an intravenous needle whose stiffness and shape depend on body temperature. The needle is sufficiently stiff for insertion into soft tissue yet becomes irreversibly flexible after insertion, adapting to the shape of the blood vessel and reducing the risk of needlestick injury on removal, as we show in vein phantoms and ex vivo porcine tissue. In mice, the needles had similar fluid-delivery performance and caused substantially less inflammation than commercial devices for intravenous access of similar size. We also show that an intravenous needle integrated with a thin-film temperature sensor can monitor core body temperature in mice and detect fluid leakage in porcine tissue ex vivo. Temperature-responsive intravenous needles may improve patient care.
Collapse
Affiliation(s)
- Karen-Christian Agno
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Keungmo Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hyuk Byun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Subin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heesoo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyurae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sungwoo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Madhvapathy SR, Bury MI, Wang LW, Ciatti JL, Avila R, Huang Y, Sharma AK, Rogers JA. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat Biomed Eng 2024; 8:1040-1052. [PMID: 38499643 DOI: 10.1038/s41551-024-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Diagnosing and monitoring inflammatory bowel diseases, such as Crohn's disease, involves the use of endoscopic imaging, biopsies and serology. These infrequent tests cannot, however, identify sudden onsets and severe flare-ups to facilitate early intervention. Hence, about 70% of patients with Crohn's disease require surgical intestinal resections in their lifetime. Here we report wireless, miniaturized and implantable temperature sensors for the real-time chronic monitoring of disease progression, which we tested for nearly 4 months in a mouse model of Crohn's-disease-like ileitis. Local measurements of intestinal temperature via intraperitoneally implanted sensors held in place against abdominal muscular tissue via two sutures showed the development of ultradian rhythms at approximately 5 weeks before the visual emergence of inflammatory skip lesions. The ultradian rhythms showed correlations with variations in the concentrations of stress hormones and inflammatory cytokines in blood. Decreasing average temperatures over the span of approximately 23 weeks were accompanied by an increasing percentage of inflammatory species in ileal lesions. These miniaturized temperature sensors may aid the early treatment of inflammatory bowel diseases upon the detection of episodic flare-ups.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Matthew I Bury
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL, USA
| | - Larry W Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joanna L Ciatti
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL, USA.
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
27
|
Harmon ME, Fiamingo M, Toler S, Lee K, Kim Y, Martin B, Gilmour I, Farraj AK, Hazari MS. The effect of enriched versus depleted housing on eucalyptus smoke-induced cardiovascular dysfunction in mice. Inhal Toxicol 2024; 36:355-366. [PMID: 38776456 PMCID: PMC11632382 DOI: 10.1080/08958378.2024.2352748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Objectives: Living conditions play a major role in health and well-being, particularly for the cardiovascular and pulmonary systems. Depleted housing contributes to impairment and development of disease, but how it impacts body resiliency during exposure to environmental stressors is unknown. This study examined the effect of depleted (DH) versus enriched housing (EH) on cardiopulmonary function and subsequent responses to wildfire smoke. Materials and Methods: Two cohorts of healthy female mice, one of them surgically implanted with radiotelemeters for the measurement of electrocardiogram, body temperature (Tco) and activity, were housed in either DH or EH for 7 weeks. Telemetered mice were exposed for 1 h to filtered air (FA) and then flaming eucalyptus wildfire smoke (WS) while untelemetered mice, which were used for ventilatory assessment and tissue collection, were exposed to either FA or WS. Animals were continuously monitored for 5-7 days after exposure. Results: EH prevented a decrease in Tco after radiotelemetry surgery. EH mice also had significantly higher activity levels and lower heart rate during and after FA and WS. Moreover, EH caused a decreased number of cardiac arrhythmias during WS. WS caused ventilatory depression in DH mice but not EH mice. Housing enrichment also upregulated the expression of cardioprotective genes in the heart. Conclusions: The results of this study indicate that housing conditions impact overall health and cardiopulmonary function. More importantly, depleted housing appears to worsen the response to air pollution. Thus, non-chemical factors should be considered when assessing the susceptibility of populations, especially when it comes to extreme environmental events.
Collapse
Affiliation(s)
- Molly E. Harmon
- Curriculum in Toxicology and Environmental Medicine, University of NC – Chapel Hill, Chapel Hill, NC, USA
| | - Michelle Fiamingo
- Curriculum in Toxicology and Environmental Medicine, University of NC – Chapel Hill, Chapel Hill, NC, USA
| | - Sydnie Toler
- Gillings School of Global Public Health, University of North Carolina – Chapel Hill, Chapel Hill, NC, USA
| | - Kaleb Lee
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Yongho Kim
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Brandi Martin
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Ian Gilmour
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Aimen K. Farraj
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Mehdi S. Hazari
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| |
Collapse
|
28
|
Landen JG, Vandendoren M, Killmer S, Bedford NL, Nelson AC. Huddling substates in mice facilitate dynamic changes in body temperature and are modulated by Shank3b and Trpm8 mutation. RESEARCH SQUARE 2024:rs.3.rs-3904829. [PMID: 38978581 PMCID: PMC11230468 DOI: 10.21203/rs.3.rs-3904829/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Social thermoregulation is a means of maintaining homeostatic body temperature. While adult mice are a model organism for studying both social behavior and energy regulation, the relationship between huddling and core body temperature (Tb) is poorly understood. Here, we develop a behavioral paradigm and computational tools to identify active-huddling and quiescent-huddling as distinct thermal substates. We find that huddling is an effective thermoregulatory strategy in female but not male groups. At 23°C (room temperature), but not 30°C (near thermoneutrality), huddling facilitates large reductions in Tb and Tb-variance. Notably, active-huddling is associated with bidirectional changes in Tb, depending on its proximity to bouts of quiescent-huddling. Further, group-housed animals lacking the synaptic scaffolding gene Shank3b have hyperthermic Tb and spend less time huddling. In contrast, individuals lacking the cold-sensing gene Trpm8 have hypothermic Tb - a deficit that is rescued by increased huddling time. These results reveal how huddling behavior facilitates acute adjustments of Tb in a state-dependent manner.
Collapse
Affiliation(s)
- Jason G. Landen
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Morgane Vandendoren
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Samantha Killmer
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Nicole L. Bedford
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C. Nelson
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| |
Collapse
|
29
|
Luu DD, Ramesh N, Kazan IC, Shah KH, Lahiri G, Mana MD, Ozkan SB, Van Horn WD. Evidence that the cold- and menthol-sensing functions of the human TRPM8 channel evolved separately. SCIENCE ADVANCES 2024; 10:eadm9228. [PMID: 38905339 PMCID: PMC11192081 DOI: 10.1126/sciadv.adm9228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a temperature- and menthol-sensitive ion channel that contributes to diverse physiological roles, including cold sensing and pain perception. Clinical trials targeting TRPM8 have faced repeated setbacks predominantly due to the knowledge gap in unraveling the molecular underpinnings governing polymodal activation. A better understanding of the molecular foundations between the TRPM8 activation modes may aid the development of mode-specific, thermal-neutral therapies. Ancestral sequence reconstruction was used to explore the origins of TRPM8 activation modes. By resurrecting key TRPM8 nodes along the human evolutionary trajectory, we gained valuable insights into the trafficking, stability, and function of these ancestral forms. Notably, this approach unveiled the differential emergence of cold and menthol sensitivity over evolutionary time, providing a fresh perspective on complex polymodal behavior. These studies provide a paradigm for understanding polymodal behavior in TRPM8 and other proteins with the potential to enhance our understanding of sensory receptor biology and pave the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nikhil Ramesh
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Karan H. Shah
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Gourab Lahiri
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Miyeko D. Mana
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Wade D. Van Horn
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
30
|
Škop V, Liu N, Xiao C, Stinson E, Chen KY, Hall KD, Piaggi P, Gavrilova O, Reitman ML. Beyond day and night: The importance of ultradian rhythms in mouse physiology. Mol Metab 2024; 84:101946. [PMID: 38657735 PMCID: PMC11070603 DOI: 10.1016/j.molmet.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma Stinson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Meng Z, Liu C, Xu M, Tao Y, Li H, Wang X, Liao J, Wang M. Adipose transplantation improves metabolism and atherosclerosis but not perivascular adipose tissue abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe null mice. Am J Physiol Cell Physiol 2024; 326:C1410-C1422. [PMID: 38525541 PMCID: PMC11371364 DOI: 10.1152/ajpcell.00698.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Meng
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chuangxing Liu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengke Xu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongqiang Tao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyu Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xijia Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mengyu Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
32
|
Khan RH, Rhodes JS, Girard IA, Schwartz NE, Garland T. Does Behavior Evolve First? Correlated Responses to Selection for Voluntary Wheel-Running Behavior in House Mice. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:97-117. [PMID: 38728689 DOI: 10.1086/730153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.
Collapse
|
33
|
Wang H, Ülgen M, Trajkovski M. Importance of temperature on immuno-metabolic regulation and cancer progression. FEBS J 2024; 291:832-845. [PMID: 36152006 DOI: 10.1111/febs.16632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapies emerge as promising strategies for restricting tumour growth. The tumour microenvironment (TME) has a major impact on the anti-tumour immune response and on the efficacy of the immunotherapies. Recent studies have linked changes in the ambient temperature with particular immuno-metabolic reprogramming and anti-cancer immune response in laboratory animals. Here, we describe the energetic balance of the organism during change in temperature, and link this to the immune alterations that could be of relevance for cancer, as well as for other human diseases. We highlight the contribution of the gut microbiota in modifying this interaction. We describe the overall metabolic response and underlying mechanisms of tumourigenesis in mouse models at varying ambient temperatures and shed light on their potential importance in developing therapeutics against cancer.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Melis Ülgen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Farré R, Rodríguez-Lázaro MA, Otero J, Gavara N, Sunyer R, Farré N, Gozal D, Almendros I. Low-cost, open-source device for simultaneously subjecting rodents to different circadian cycles of light, food, and temperature. Front Physiol 2024; 15:1356787. [PMID: 38434139 PMCID: PMC10904513 DOI: 10.3389/fphys.2024.1356787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory.
Collapse
Affiliation(s)
- Ramon Farré
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Institut Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel A. Rodríguez-Lázaro
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Núria Gavara
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Raimon Sunyer
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Núria Farré
- Discipline of Cardiology, Saolta University Healthcare Group, Galway, Ireland
- School of Medicine, University of Galway, Galway, Ireland
| | - David Gozal
- Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Isaac Almendros
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Institut Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
35
|
De Luca SN, Kivivali L, Chong K, Kirby A, Lawther AJ, Nguyen JCD, Hale MW, Kent S. Calorie restriction partially attenuates sickness behavior induced by viral mimetic poly I:C. Behav Brain Res 2024; 457:114715. [PMID: 37838243 DOI: 10.1016/j.bbr.2023.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Calorie restriction (CR) has been shown to extend the mean and maximum lifespan in both preclinical and clinical settings. We have previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and sickness behavior. CR also leads to reductions in pro-inflammatory and increases in anti-inflammatory profiles. LPS is a bacterial mimetic; however, few studies have explored this phenomenon utilizing a viral mimetic, such as polyinosinic:polycytidylic acid (poly I:C). Dose-dependently, poly I:C induced an increase in core body temperature (Tb), with the largest dose (5000 µg/kg) resulting in a 1.62 °C ( ± 0.23 °C) Tb increase at 7 h post-injection in ad libitum mice and was associated with reduced home-cage locomotor activity. We then investigated the effect of 50% CR for 28 days to attenuate fever and sickness behavior induced by a poly I:C (5000 µg/kg) viral immune challenge. CR resulted in the partial attenuation of fever and sickness behavior measures post-poly I:C. The freely fed, control mice demonstrated a 2.02 °C ( ± 0.22 °C) increase in Tb at 7 h post-injection compared to the CR poly I:C group which demonstrated an increase in Tb of 0.94 °C ( ± 0.27 °C). Locomotor patterns post-injection were different, CR mice displayed a reduction in activity during the light phase, and the control group displayed a reduction during the dark phase. CR moderately attenuated the neuroinflammatory response with a reduction in microglial density in the ventromedial nucleus of the hypothalamus. The fever and sickness behavior attenuation seen after CR may be driven by similar anti-inflammatory processes as after LPS; however, further investigation is required.
Collapse
Affiliation(s)
- Simone N De Luca
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia; Centre for Respiratory Science & Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Leah Kivivali
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Ken Chong
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Alice Kirby
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Adam J Lawther
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jason C D Nguyen
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia.
| | - Matthew W Hale
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Stephen Kent
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Gębczyński AK, Sadowska J, Konarzewski M. Differences in the range of thermoneutral zone between mouse strains: potential effects on translational research. Am J Physiol Regul Integr Comp Physiol 2024; 326:R91-R99. [PMID: 38009211 DOI: 10.1152/ajpregu.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Laboratory mice are commonly used for studies emulating human metabolism. To render human energetics, their ratio of daily (DEE) to basal (BMR) energy expenditure of 1.7-1.8 should be maintained. However, the DEE/BMR ratio strongly depends on whether a given study using a mouse model is carried out above, or below the lower critical temperature (LCT) of the thermoneutral zone, which is rarely considered in translational research. Here, we used mice artificially selected for high or low rates of BMR along with literature data to analyze the effect of ambient temperature on possible systematic bias in DEE/BMR. We demonstrated that the estimated LCTs of mice from the high and low BMR lines differ by more than 7°C. Furthermore, the range of variation of LCTs of mouse strains used in translational research spans from 23 to 33°C. Differences between LCTs in our selected mice and other mouse strains are mirrored by differences in their DEE-to-BMR ratio, on average increasing it at the rate of 0.172°C-1 at temperatures below LCT. Given the wide range of LCTs in different mouse strains, we conclude that the energetic cost of thermoregulation may differ greatly for different mouse strains with a potentially large impact on translational outcomes. Thus, the LCT of a given mouse strain is an important factor that must be considered in designing translational studies.
Collapse
Affiliation(s)
| | - Julita Sadowska
- Faculty of Biology, University of Białystok, Białystok, Poland
| | | |
Collapse
|
37
|
Maloney E, Duffy D. Deciphering the relationship between temperature and immunity. DISCOVERY IMMUNOLOGY 2024; 3:kyae001. [PMID: 38567294 PMCID: PMC10917241 DOI: 10.1093/discim/kyae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Fever is a hallmark symptom of disease across the animal kingdom. Yet, despite the evidence linking temperature fluctuation and immune response, much remains to be discovered about the molecular mechanisms governing these interactions. In patients with rheumatoid arthritis, for instance, it is clinically accepted that joint temperature can predict disease progression. But it was only recently demonstrated that the mitochondria of stimulated T cells can rise to an extreme 50°C, potentially indicating a cellular source of these localized 'fevers'. A challenge to dissecting these mechanisms is a bidirectional interplay between temperature and immunity. Heat shock response is found in virtually all organisms, activating protective pathways when cells are exposed to elevated temperatures. However, the temperature threshold that activates these pathways can vary within the same organism, with human immune cells, in particular, demonstrating differential sensitivity to heat. Such inter-cellular variation may be clinically relevant given the small but significant temperature differences seen between tissues, ages, and sexes. Greater understanding of how such small temperature perturbations mediate immune responses may provide new explanations for persistent questions in disease such as sex disparity in disease prevalence. Notably, the prevalence and severity of many maladies are rising with climate change, suggesting temperature fluctuations can interact with disease on multiple levels. As global temperatures are rising, and our body temperatures are falling, questions regarding temperature-immune interactions are increasingly critical. Here, we review this aspect of environmental interplay to better understand temperature's role in immune variation and subsequent risk of disease.
Collapse
Affiliation(s)
- Elizabeth Maloney
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Frontiers of Innovation in Research and Education PhD Program, LPI Doctoral School, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
38
|
Zanetti GDO, Pessoa PWM, Vieira TS, Garcia RDA, Santos Barbosa NH, Arantes RME, Kettelhut IDC, Navegantes LCC, Wanner SP, Soares DD, Gonçalves DAP. Long-term heat acclimation training in mice: Similar metabolic and running performance adaptations despite a lower absolute intensity than training at temperate conditions. J Therm Biol 2024; 119:103797. [PMID: 38340467 DOI: 10.1016/j.jtherbio.2024.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
This study investigated the impact of long-term heat acclimation (HA) training on mouse thermoregulation, metabolism, and running performance in temperate (T) and hot (H) environments. Male Swiss mice were divided into 1) Sedentary (SED) mice kept in T (22 °C; SED/T), 2) Endurance Trained mice (ET, 1 h/day, 5 days/week, 8 weeks, 60 % of maximum speed) in T (ET/T), 3) SED kept in H (32 °C; SED/H), and 4) ET in H (ET/H). All groups performed incremental load tests (ILT) in both environments before (pre-ET) and after four and eight weeks of ET. In the pre-ET period, H impaired (∼30 %) performance variables (maximum speed and external work) and increased (1.3 °C) maximum abdominal body temperature compared with T. In T, after four weeks, although ET/H exercised at a lower (∼30 %) absolute intensity than ET/T, performance variables and aerobic power (peak oxygen uptake, VO2peak) were similarly increased in both ET groups compared with SED/T. After eight weeks, the external work was higher in both ET groups compared with SED/T. Only ET/T significantly increased VO2peak (∼11 %) relative to its pre-ET period. In H, only after eight weeks, both ET groups improved (∼19 %) maximum speed and reduced (∼46 %) post-ILT blood lactate concentrations compared with their respective pre-ET values. Liver glycogen content increased (34 %) in both ET groups and SED/H compared with SED/T. Thus, ET/H was performed at a lower absolute intensity but promoted similar effects to ET/T on metabolism, aerobic power, and running performance. Our findings open perspectives for applying HA training as part of a training program or orthopedic and metabolic rehabilitation programs in injured or even obese animals, reducing mechanical load with equivalent or higher physiological demand.
Collapse
Affiliation(s)
- Gustavo de Oliveira Zanetti
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Pedro William Martins Pessoa
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales Sambrano Vieira
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo de Almeida Garcia
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nicolas Henrique Santos Barbosa
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosa Maria Esteves Arantes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isis do Carmo Kettelhut
- Departments of Biochemistry & Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Samuel Penna Wanner
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Dawit Albieiro Pinheiro Gonçalves
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Section of Sports Physiology (SFE), Sports Training Center (CTE), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
39
|
Adedeji AO, Zhong F, Corpuz J, Hu F, Zhao X, Sangaraju D, Ruff CF, Dybdal N. Comparative Impact of Various Fasting Periods on the Welfare of Sprague-Dawley Rats With or Without Supplementation. Toxicol Pathol 2024; 52:21-34. [PMID: 38379371 DOI: 10.1177/01926233241230536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
In nonclinical toxicology studies, lab animals are fasted typically overnight, to reduce variability in some clinical pathology parameters. However, fasting adds undue stress, and this is particularly concerning in rodents given their fast metabolic rates. Furthermore, as rodents are nocturnal animals, an overnight fasting may cause a protracted negative metabolic state even when the fasting has technically ended, given their minimal activity and food consumption during the day. Therefore, to evaluate the impacts of different fasting durations (±DietGel supplementation) on rats' welfare, we assessed the traditional and ancillary clinical pathology parameters in Sprague-Dawley rats, along with body weight, organ weight, and histopathology. Although most endpoints were comparable between the different fasting durations (±DietGel supplementation), the long fasting times (≥8 hr) without DietGel supplementation caused significant decreases in body weight, liver weight, liver glycogen content, serum glucose, triglyceride, and creatinine concentrations-all findings suggestive of a negative energy balance that could impact animal welfare and consequently, data quality; while the short fasting time (4 hr) and DietGel supplementation were associated with higher triglycerides variability. Hence, we propose that short fasting time should be adequate for most toxicology studies in rats, and long fasting times should only be accommodated with scientific justification.
Collapse
Affiliation(s)
- Adeyemi O Adedeji
- Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Fiona Zhong
- Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Janice Corpuz
- Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Fangyao Hu
- Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Xiaofeng Zhao
- Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Dewakar Sangaraju
- Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Catherine F Ruff
- Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Noel Dybdal
- Genentech, A Member of the Roche Group, South San Francisco, California, USA
| |
Collapse
|
40
|
Lee SS, Oudjedi F, Kirk AG, Paliouras M, Trifiro MA. Photothermal therapy of papillary thyroid cancer tumor xenografts with targeted thyroid stimulating hormone receptor antibody functionalized multiwalled carbon nanotubes. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
AbstractMultiwalled carbon nanotubes (MWCNTs) are being widely investigated in multiple biomedical applications including, and not limited to, drug delivery, gene therapy, imaging, biosensing, and tissue engineering. Their large surface area and aspect ratio in addition to their unique structural, optical properties, and thermal conductivity also make them potent candidates for novel hyperthermia therapy. Here we introduce thyroid hormone stimulating receptor (TSHR) antibody–conjugate–MWCNT formulation as an enhanced tumor targeting and light-absorbing device for the photoablation of xenografted BCPAP papillary thyroid cancer tumors. To ensure successful photothermal tumor ablation, we determined three key criteria that needed to be addressed: (1) predictive pre-operational modeling; (2) real-time monitoring of the tumor ablation process; and (3) post-operational follow-up to assess the efficacy and ensure complete response with minimal side effects. A COMSOL-based model of spatial temperature distributions of MWCNTs upon selected laser irradiation of the tumor was prepared to accurately predict the internal tumor temperature. This modeling ensured that 4.5W of total laser power delivered over 2 min, would cause an increase of tumor temperature above 45 ℃, and be needed to completely ablate the tumor while minimizing the damage to neighboring tissues. Experimentally, our temperature monitoring results were in line with our predictive modeling, with effective tumor photoablation leading to a significantly reduced post 5-week tumor recurrence using the TSHR-targeted MWCNTs. Ultimately, the results from this study support a utility for photosensitive biologically modified MWCNTs as a cancer therapeutic modality. Further studies will assist with the transition of photothermal therapy from preclinical studies to clinical evaluations.
Collapse
|
41
|
Cao KX, Deng ZC, Liu M, Huang YX, Yang JC, Sun LH. Heat Stress Impairs Male Reproductive System with Potential Disruption of Retinol Metabolism and Microbial Balance in the Testis of Mice. J Nutr 2023; 153:3373-3381. [PMID: 37923224 DOI: 10.1016/j.tjnut.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Heat stress (HS) has a harmful impact on the male reproductive system, primarily by reducing the sperm quality. The testicular microenvironment plays an important role in sperm quality. OBJECTIVES This study aimed to explore the underlying mechanism by which HS impairs the male reproductive system through the testicular microenvironment. METHODS Ten-week-old male mice (n = 8 mice/group) were maintained at a normal temperature (25°C, control) or subjected to HS (38°C for 2 h each day, HS) for 2 wk. The epididymides and testes were collected at week 2 to determine sperm quality, histopathology, retinol concentration, the expression of retinol metabolism-related genes, and the testicular microbiome. The testicular microbiome profiles were analyzed using biostatistics and bioinformatics; other data were analyzed using a 2-sided Student's t test. RESULTS Compared with the control, HS reduced (P < 0.05) sperm count (42.4%) and motility (97.7%) and disrupted the integrity of the blood-testis barrier. Testicular microbial profiling analysis revealed that HS increased the abundance of the genera Asticcacaulis, Enhydrobacter, and Stenotrophomonas (P < 0.05) and decreased the abundance of the genera Enterococcus and Pleomorphomonas (P < 0.05). Notably, the abundance of Asticcacaulis spp. showed a significant negative correlation with sperm count (P < 0.001) and sperm motility (P < 0.001). Moreover, Asticcacaulis spp. correlated significantly with most blood differential metabolites, particularly retinol (P < 0.05). Compared with the control, HS increased serum retinol concentrations (25.3%) but decreased the testis retinol concentration by 23.7%. Meanwhile, HS downregulated (P < 0.05) the expression of 2 genes (STRA6 and RDH10) and a protein (RDH10) involved in retinol metabolism by 27.3%-36.6% in the testis compared with the control. CONCLUSIONS HS reduced sperm quality, mainly because of an imbalance in the testicular microenvironment potentially caused by an increase in Asticcacaulis spp. and disturbed retinol metabolism. These findings may offer new strategies for improving male reproductive capacity under HS.
Collapse
Affiliation(s)
- Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Sałat K, Zaręba P, Awtoniuk M, Sałat R. Naturally Inspired Molecules for Neuropathic Pain Inhibition-Effect of Mirogabalin and Cebranopadol on Mechanical and Thermal Nociceptive Threshold in Mice. Molecules 2023; 28:7862. [PMID: 38067591 PMCID: PMC10708129 DOI: 10.3390/molecules28237862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Neuropathic pain is drug-resistant to available analgesics and therefore novel treatment options for this debilitating clinical condition are urgently needed. Recently, two drug candidates, namely mirogabalin and cebranopadol have become a subject of interest because of their potential utility as analgesics for chronic pain treatment. However, they have not been investigated thoroughly in some types of neuropathic pain, both in humans and experimental animals. METHODS This study used the von Frey test, the hot plate test and the two-plate thermal place preference test supported by image analysis and machine learning to assess the effect of intraperitoneal mirogabalin and subcutaneous cebranopadol on mechanical and thermal nociceptive threshold in mouse models of neuropathic pain induced by streptozotocin, paclitaxel and oxaliplatin. RESULTS Mirogabalin and cebranopadol effectively attenuated tactile allodynia in models of neuropathic pain induced by streptozotocin and paclitaxel. Cebranopadol was more effective than mirogabalin in this respect. Both drugs also elevated the heat nociceptive threshold in mice. In the oxaliplatin model, cebranopadol and mirogabalin reduced cold-exacerbated pain. CONCLUSIONS Since mirogabalin and cebranopadol are effective in animal models of neuropathic pain, they seem to be promising novel therapies for various types of neuropathic pain in patients, in particular those who are resistant to available analgesics.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland
| | - Paula Zaręba
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Michał Awtoniuk
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Robert Sałat
- Faculty of Electrical and Computer Engineering, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland;
| |
Collapse
|
43
|
Ziegler AA, Lawton SBR, Grobe CC, Reho JJ, Freudinger BP, Burnett CML, Nakagawa P, Grobe JL, Segar JL. Early-life sodium deprivation programs long-term changes in ingestive behaviors and energy expenditure in C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R576-R592. [PMID: 37720996 PMCID: PMC10866575 DOI: 10.1152/ajpregu.00137.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Postnatal growth failure remains a significant problem for infants born prematurely, despite aggressive efforts to improve perinatal nutrition. Though often dysregulated in early life when children are born preterm, sodium (Na) homeostasis is vital to achieve optimal growth. We hypothesize that insufficient Na supply in this critical period contributes to growth restriction and programmed risks for cardiometabolic disease in later adulthood. Thus, we sought to ascertain the effects of prolonged versus early-life Na depletion on weight gain, body composition, food and water intake behaviors, and energy expenditure in C57BL/6J mice. In one study, mice were provided a low (0.04%)- or normal/high (0.30%)-Na diet between 3 and 18 wk of age. Na-restricted mice demonstrated delayed growth and elevated basal metabolic rate. In a second study, mice were provided 0.04% or 0.30% Na diet between 3 and 6 wk of age and then returned to standard (0.15%)-Na diet through the end of the study. Na-restricted mice exhibited growth delays that quickly caught up on return to standard diet. Between 6 and 18 wk of age, previously restricted mice exhibited sustained, programmed changes in feeding behaviors, reductions in total food intake, and increases in water intake and aerobic energy expenditure while maintaining normal body composition. Although having no effect in control mice, administration of the ganglionic blocker hexamethonium abolished the programmed increase in basal metabolic rate in previously restricted mice. Together these data indicate that early-life Na restriction can cause programmed changes in ingestive behaviors, autonomic function, and energy expenditure that persist well into adulthood.
Collapse
Affiliation(s)
- Alisha A Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Samuel B R Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Bonnie P Freudinger
- Engineering Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
44
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 1: Foundational principles and theories of regulation. Eur J Appl Physiol 2023; 123:2379-2459. [PMID: 37702789 DOI: 10.1007/s00421-023-05272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/30/2023] [Indexed: 09/14/2023]
Abstract
This contribution is the first of a four-part, historical series encompassing foundational principles, mechanistic hypotheses and supported facts concerning human thermoregulation during athletic and occupational pursuits, as understood 100 years ago and now. Herein, the emphasis is upon the physical and physiological principles underlying thermoregulation, the goal of which is thermal homeostasis (homeothermy). As one of many homeostatic processes affected by exercise, thermoregulation shares, and competes for, physiological resources. The impact of that sharing is revealed through the physiological measurements that we take (Part 2), in the physiological responses to the thermal stresses to which we are exposed (Part 3) and in the adaptations that increase our tolerance to those stresses (Part 4). Exercising muscles impose our most-powerful heat stress, and the physiological avenues for redistributing heat, and for balancing heat exchange with the environment, must adhere to the laws of physics. The first principles of internal and external heat exchange were established before 1900, yet their full significance is not always recognised. Those physiological processes are governed by a thermoregulatory centre, which employs feedback and feedforward control, and which functions as far more than a thermostat with a set-point, as once was thought. The hypothalamus, today established firmly as the neural seat of thermoregulation, does not regulate deep-body temperature alone, but an integrated temperature to which thermoreceptors from all over the body contribute, including the skin and probably the muscles. No work factor needs to be invoked to explain how body temperature is stabilised during exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Garcia CK, Gambino BJ, Robinson GP, Rua MT, Alzahrani JM, Clanton TL. Delayed metabolic disturbances in the myocardium after exertional heat stroke: contrasting effects of exertion and thermal load. J Appl Physiol (1985) 2023; 135:1186-1198. [PMID: 37795530 PMCID: PMC10979828 DOI: 10.1152/japplphysiol.00372.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies report higher risks of cardiovascular disease in humans exposed to heat stroke earlier in life. Previously, we explored mechanistic links between heat stroke and developing cardiac abnormalities using a preclinical mouse model of exertional heat stroke (EHS). Profound metabolic abnormalities developed in the ventricles of females but not males after 2 wk of recovery. Here we tested whether this lack of response in males could be attributed to the lower exercise performances or reduced thermal loads they experienced with the same running protocol. We systematically altered environmental temperature (Te) during EHS to manipulate heat exposure and exercise performance in the males. Three groups of adult C57BL/6 male mice were studied: "EHS-34" (Te = 34°C), "EHS-41" (Te = 41°C), and "EHS-39.5" (Te = 39.5°C). Mice ran until symptom limitation (unconsciousness), reaching max core temperature (Tc,max). After a 2-wk recovery, the mice were euthanized, and the ventricles were removed for untargeted metabolomics. Results were compared against age-matched nonexercise controls. The EHS-34 mice greatly elevated their exercise performance but reached lower Tc,max and lower thermal loads. The EHS-41 mice exhibited equivalent thermal loads, exercise times, and Tc,max compared with EHS-39.5. The ventricles from EHS-34 mice exhibited the greatest metabolic disturbances in the heart, characterized by shifts toward glucose metabolism, reductions in acylcarnitines, increased amino acid metabolites, elevations in antioxidants, altered TCA cycle flux, and increased xenobiotics. In conclusion, delayed metabolic disturbances following EHS in male myocardium appear to be greatly amplified by higher levels of exertion in the heat, even with lower thermal loads and max core temperatures.NEW & NOTEWORTHY Epidemiological data demonstrate greater cardiovascular risk in patients with previous heat stroke exposure. Using a preclinical mouse model of exertional heat stroke, male mice were exposed to one of three environmental temperatures (Te) during exercise. Paradoxically, after 2 wk, the mice in the lowest Te, exhibiting the largest exercise response and lowest heat load, had the greatest ventricular metabolic disturbances. Metabolic outcomes resemble developing left ventricular hypertrophy or stress-induced heart disease.
Collapse
Affiliation(s)
- Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Bryce J Gambino
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Gerard P Robinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Michael T Rua
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Jamal M Alzahrani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
46
|
Appana B, Queen NJ, Cao L. Protocol to minimize the confounding effect of cold stress on socially isolated mice using thermoneutral housing. STAR Protoc 2023; 4:102533. [PMID: 37660300 PMCID: PMC10491848 DOI: 10.1016/j.xpro.2023.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Social isolation, a risk factor for mortality and various disease states, in mice remains poorly understood, due in part to under-consideration of housing temperature and the murine thermoneutral zone. Here, we present a housing protocol to minimize the confounding effect of chronic cold stress on socially isolated mice that are unable to socially thermoregulate. We describe steps for allocating mice to group housing or social isolation conditions, housing mice in thermoneutral cabinets, feeding mice with high-fat diet, and measuring body weight, food intake, and metabolic indicators. For complete details on the use and execution of this protocol, please refer to Queen et al..1.
Collapse
Affiliation(s)
- Bhavya Appana
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas J Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
47
|
Hasan N, Imran M, Sheikh A, Tiwari N, Jaimini A, Kesharwani P, Jain GK, Ahmad FJ. Advanced multifunctional nano-lipid carrier loaded gel for targeted delivery of 5-flurouracil and cannabidiol against non-melanoma skin cancer. ENVIRONMENTAL RESEARCH 2023; 233:116454. [PMID: 37343751 DOI: 10.1016/j.envres.2023.116454] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Non-melanoma skin cancer is one of the most common malignancies reported around the globe. Current treatment therapies fail to meet the desired therapeutic efficacy due to high degree of drug resistance. Thus, there is prominent demand in advancing the current conventional therapy to achieve desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The current investigation has been designed to evaluate the safety and efficacy of developed 5-Flurouracil and cannabidiol loaded combinatorial lipid-based nanocarrier (FU-CBD NLCs) gel for the effective treatment of skin cancer. Initially, confocal microscopy study results showed excellent uptake and deposition at epidermal and the dermal layer. Irritation studies performed by IR camera and HET cam shows FU-CBD NLCs was much more tolerated and less irritant compared to conventional treatment. Furthermore, gamma scintigraphy evaluation shows the skin retention behavior of the formulation. Later, in-ovo tumor remission studies were performed, and it was found that prepared FU-CBD NLCs was able to reduce tumor volume significantly compared to conventional formulation. Thus, obtained results disclosed that permeation and disposition of 5-FU and CBD into different layers of the skin FU-CBD NLCs gel could be more potential carrier than conventional gel. Furthermore, prepared formulation showed greater tumor remission, better survival rate, reduction in tumor number, area, and volume with improved biochemical profile. Thus, prepared gel could serve as a promising formulation approach for the skin cancer treatment.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nidhi Tiwari
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, 1100654, Delhi, India; Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, 110017, India
| | - Abhinav Jaimini
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, 1100654, Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, 110017, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
48
|
Alitalo O, González-Hernández G, Rosenholm M, Kohtala P, Matsui N, Müller HK, Theilmann W, Klein A, Kärkkäinen O, Rozov S, Rantamäki T, Kohtala S. Linking Hypothermia and Altered Metabolism with TrkB Activation. ACS Chem Neurosci 2023; 14:3212-3225. [PMID: 37551888 PMCID: PMC10485900 DOI: 10.1021/acschemneuro.3c00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Many mechanisms have been proposed to explain acute antidepressant drug-induced activation of TrkB neurotrophin receptors, but several questions remain. In a series of pharmacological experiments, we observed that TrkB activation induced by antidepressants and several other drugs correlated with sedation, and most importantly, coinciding hypothermia. Untargeted metabolomics of pharmacologically dissimilar TrkB activating treatments revealed effects on shared bioenergetic targets involved in adenosine triphosphate (ATP) breakdown and synthesis, demonstrating a common perturbation in metabolic activity. Both activation of TrkB signaling and hypothermia were recapitulated by administration of inhibitors of glucose and lipid metabolism, supporting a close relationship between metabolic inhibition and neurotrophic signaling. Drug-induced TrkB phosphorylation was independent of electroencephalography slow-wave activity and remained unaltered in knock-in mice with the brain-derived neurotrophic factor (BDNF) Val66Met allele, which have impaired activity-dependent BDNF release, alluding to an activation mechanism independent from BDNF and neuronal activity. Instead, we demonstrated that the active maintenance of body temperature prevents activation of TrkB and other targets associated with antidepressants, including p70S6 kinase downstream of the mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3β (GSK3β). Increased TrkB, GSK3β, and p70S6K phosphorylation was also observed during recovery sleep following sleep deprivation, when a physiological temperature drop is known to occur. Our results suggest that the changes in bioenergetics and thermoregulation are causally connected to TrkB activation and may act as physiological regulators of signaling processes involved in neuronal plasticity.
Collapse
Affiliation(s)
- Okko Alitalo
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Gemma González-Hernández
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Marko Rosenholm
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Center
for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Piia Kohtala
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Department
of Psychiatry, Weill Cornell Medicine, New York, New York 10021, United States
| | - Nobuaki Matsui
- Faculty
of Pharmacy, Gifu University of Medical
Science, 4-3-3 Nijigaoka,
Kani, Gifu 509-0293, Japan
| | - Heidi Kaastrup Müller
- Translational
Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Wiebke Theilmann
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Anders Klein
- Novo
Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen DK-2200, Denmark
- Department
of Drug Design & Pharmacology, University
of Copenhagen, Copenhagen DK-2100, Denmark
| | - Olli Kärkkäinen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70210, Finland
- Afekta
Technologies Ltd., Kuopio 70210, Finland
| | - Stanislav Rozov
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Tomi Rantamäki
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Samuel Kohtala
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Department
of Psychiatry, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
49
|
Grobe CC, Reho JJ, Brown-Williams D, Ziegler AA, Mathieu NM, Lawton SB, Fekete EM, Brozoski DT, Wackman KK, Burnett CM, Nakagawa P, Sigmund CD, Segar JL, Grobe JL. Cardiometabolic Effects of DOCA-Salt in Mice Depend on Ambient Temperature. Hypertension 2023; 80:1871-1880. [PMID: 37470185 PMCID: PMC10528934 DOI: 10.1161/hypertensionaha.122.20415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Mice prefer warmer environments than humans. For this reason, behavioral and physiological thermoregulatory responses are engaged by mice in response to a standard room temperature of 22 to 24 °C. Autonomic mechanisms mediating thermoregulatory responses overlap with mechanisms activated in hypertension, and, therefore, we hypothesized that housing at thermoneutral temperatures (TNs; 30 °C) would modify the cardiometabolic effects of deoxycorticosterone acetate (DOCA)-salt in mice. METHODS The effects of DOCA-salt treatment upon ingestive behaviors, energy expenditure, blood pressure, heart rate (HR), and core temperature were assessed in C57BL/6J mice housed at room temperature or TN. RESULTS Housing at TN reduced food intake, energy expenditure, blood pressure, and HR and attenuated HR responses to acute autonomic blockade by chlorisondamine. At room temperature, DOCA-salt caused expected increases in fluid intake, sodium retention in osmotically inactive pools, blood pressure, core temperature, and also caused expected decreases in fat-free mass, total body water, and HR. At TN, the effects of DOCA-salt upon fluid intake, fat gains, hydration, and core temperature were exaggerated, but effects on energy expenditure and HR were blunted. Effects of DOCA-salt upon blood pressure were similar for 3 weeks and exaggerated by TN housing in the fourth week. CONCLUSIONS Ambient temperature robustly influences behavioral and physiological functions in mice, including metabolic and cardiovascular phenotype development in response to DOCA-salt treatment. Studying cardiometabolic responses of mice at optimal ambient temperatures promises to improve the translational relevance of rodent models.
Collapse
Affiliation(s)
- Connie C. Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Alisha A. Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Natalia M. Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Samuel B.R. Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Eva M. Fekete
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Daniel T. Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Colin M.L. Burnett
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jeffrey L. Segar
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
50
|
De Jesus R, Tratner AE, Madrid A, Rivera-Mondragón A, Navas GE, Lleonart R, Britton GB, Fernández PL. Body Temperature Drop as a Humane Endpoint in Snake Venom-Lethality Neutralization Tests. Toxins (Basel) 2023; 15:525. [PMID: 37755951 PMCID: PMC10535418 DOI: 10.3390/toxins15090525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Snake venom neutralization potency tests are required for quality control assessment by manufacturers and regulatory authorities. These assays require the use of large numbers of mice that manifest severe signs associated with pain and distress and long periods of suffering. Despite this, many animals make a full recovery; therefore, the observation of clinical signs as a predictor of animal death is highly subjective and could affect the accuracy of the results. The use of a more objective parameter such as body temperature measurement could help establish a humane endpoint that would contribute to significantly reducing the suffering of large numbers of animals. We determined the temperature drop in BALB/c mice exposed to the mixtures of Bothrops asper or Lachesis stenophrys venom and a polyvalent antivenom by using an infrared thermometer. Our data show that, based on the temperature change from baseline, it is possible to predict which animals will survive during the first 3 h after inoculation. The data provided in this study may contribute to future reductions in animal suffering, in concordance with general trends in the use of laboratory animals for the quality control of biologicals.
Collapse
Affiliation(s)
- Rosa De Jesus
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (R.D.J.); (A.M.)
| | - Adam E. Tratner
- Florida State University, Republic of Panama Campus, City of Knowledge, Panama City 0843-01103, Panama;
- Centro de Neurociencias, INDICASAT AIP, City of Knowledge, Panama City 0843-01103, Panama
| | - Alanna Madrid
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (R.D.J.); (A.M.)
| | - Andrés Rivera-Mondragón
- Instituto Especializado de Análisis (IEA), Universidad de Panamá, Panama City P.O. Box 3366, Panama; (A.R.-M.); (G.E.N.)
| | - Goy E. Navas
- Instituto Especializado de Análisis (IEA), Universidad de Panamá, Panama City P.O. Box 3366, Panama; (A.R.-M.); (G.E.N.)
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, City of Knowledge, Panama City 0843-01103, Panama;
| | - Gabrielle B. Britton
- Centro de Neurociencias, INDICASAT AIP, City of Knowledge, Panama City 0843-01103, Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, City of Knowledge, Panama City 0843-01103, Panama;
| |
Collapse
|