1
|
Martin LE, Lim J. Selective increases in taste sensitivity to glucose as a function of hunger status. Appetite 2025; 207:107901. [PMID: 39933656 PMCID: PMC11884995 DOI: 10.1016/j.appet.2025.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Glucose is critical for normal metabolic function in humans. Accordingly, the ability to sense glucose and glucose-containing saccharides is crucial for maintenance of energy homeostasis. Here, we report the evidence that glucose is perceived relatively stronger compared to fructose or sucralose when subjects are hungry. In the initial experiment, we measured the relative sensitivities between glucose and fructose when subjects were fasted vs. fed. Overnight fasted subjects (n = 22) completed a series of 3-AFC tests comparing one target (glucose from a range of concentrations) and two constants (200 mM fructose) before and after consuming mild-tasting breakfast sandwiches until satiated (738 ± 60 kcal). We found that the relative sensitivity to glucose as compared to fructose was significantly higher when individuals were hungry vs. satiated (p < 0.001). We replicated this finding by comparing the same range of glucose concentrations to a constant sucralose concentration (0.04 mM) (N = 19, p < 0.001). Importantly, when we compared a fixed concentration of sucralose (0.4 mM) to a range of fructose concentrations, we saw no difference in iso-intense concentration before and after eating (N = 19, p > 0.05). These findings support the hypothesis that hunger selectively increases taste sensitivity of glucose compared to other sweeteners.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA; Monell Chemical Senses Center, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Hartley C, Keast RSJ, Bredie WLP. Investigating the Effect of Maltodextrins and Degree of Polymerization on Individual Complex Carbohydrate Taste Sensitivity. Food Sci Nutr 2025; 13:e4751. [PMID: 39906726 PMCID: PMC11790608 DOI: 10.1002/fsn3.4751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025] Open
Abstract
Research shows that complex carbohydrates (maltodextrins) can be perceived in the oral cavity independent of sweet taste. However, little is known about individual differences in complex carbohydrate taste sensitivity. Therefore, the relationship between complex carbohydrate structure and individual complex carbohydrate taste sensitivity requires further investigation. This study investigated individual taste sensitivity among adults for maltodextrins with different degrees of polymerization. Participants (n = 37) (BMI (kg/m2): 24.29 ± 1.06, age (years): 30.32 ± 1.24) taste perception and oral sensitivity for sour (citric acid), sweet (glucose), and complex carbohydrate (mixture of short chain maltodextrins (SCM, average DP 6) and mixture of long chain maltodextrin (LCM, average DP 20)) were assessed using taste assessment measures (detection threshold (DT) and suprathreshold intensity perception (ST)). Taste assessment measures were performed in a randomized, repeated, blinded design. There were significant correlations between LCM DT, SCM DT, Sour DT, and Sweet DT (all p < 0.01). There were further significant correlations between LCM ST, SCM ST and Sweet ST (all p < 0.01) and between SCM ST, Sweet ST and Sour ST (all p < 0.01). There was a significant effect of sex on DT ranking values (p = 0.050). For the majority of participants, complex carbohydrate sensitivity status did not change according to chain length. This study strengthens existing research that complex carbohydrates can be perceived in the oral cavity and highlighted that for the majority, maltodextrin chain length does not influence complex carbohydrate taste sensitivity (specifically DT and ST).
Collapse
Affiliation(s)
- Claudia Hartley
- CASS Food Research CentreDeakin UniversityBurwoodVictoriaAustralia
- Department of Food ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | | | | |
Collapse
|
3
|
Androutsos L, Pallante L, Bompotas A, Stojceski F, Grasso G, Piga D, Di Benedetto G, Alexakos C, Kalogeras A, Theofilatos K, Deriu MA, Mavroudi S. Predicting multiple taste sensations with a multiobjective machine learning method. NPJ Sci Food 2024; 8:47. [PMID: 39054312 PMCID: PMC11272927 DOI: 10.1038/s41538-024-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Taste perception plays a pivotal role in guiding nutrient intake and aiding in the avoidance of potentially harmful substances through five basic tastes - sweet, bitter, umami, salty, and sour. Taste perception originates from molecular interactions in the oral cavity between taste receptors and chemical tastants. Hence, the recognition of taste receptors and the subsequent perception of taste heavily rely on the physicochemical properties of food ingredients. In recent years, several advances have been made towards the development of machine learning-based algorithms to classify chemical compounds' tastes using their molecular structures. Despite the great efforts, there remains significant room for improvement in developing multi-class models to predict the entire spectrum of basic tastes. Here, we present a multi-class predictor aimed at distinguishing bitter, sweet, and umami, from other taste sensations. The development of a multi-class taste predictor paves the way for a comprehensive understanding of the chemical attributes associated with each fundamental taste. It also opens the potential for integration into the evolving realm of multi-sensory perception, which encompasses visual, tactile, and olfactory sensations to holistically characterize flavour perception. This concept holds promise for introducing innovative methodologies in the rational design of foods, including pre-determining specific tastes and engineering complementary diets to augment traditional pharmacological treatments.
Collapse
Affiliation(s)
| | - Lorenzo Pallante
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, 10129, Italy
| | - Agorakis Bompotas
- Industrial Systems Institute, Athena Research Center, 265 04, Patras, Greece
| | - Filip Stojceski
- Department of Innovative Technologies, Dalle Molle Institute for Artificial Intelligence, Lugano-Viganello, 6962, Switzerland
| | - Gianvito Grasso
- Department of Innovative Technologies, Dalle Molle Institute for Artificial Intelligence, Lugano-Viganello, 6962, Switzerland
| | - Dario Piga
- Department of Innovative Technologies, Dalle Molle Institute for Artificial Intelligence, Lugano-Viganello, 6962, Switzerland
| | | | - Christos Alexakos
- Industrial Systems Institute, Athena Research Center, 265 04, Patras, Greece
| | | | | | - Marco A Deriu
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, 10129, Italy
| | - Seferina Mavroudi
- InSyBio PC, Patras, 265 04, Greece
- Department of Nursing, University of Patras, 265 04, Patras, Greece
| |
Collapse
|
4
|
Glendinning JI, Archambeau A, Brouwer LR, Dennis A, Georgiou K, Ivanov J, Vayntrub R, Sclafani A. Mice Condition Cephalic-Phase Insulin Release to Flavors Associated with Postoral Actions of Concentrated Glucose. Nutrients 2024; 16:2250. [PMID: 39064693 PMCID: PMC11279997 DOI: 10.3390/nu16142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Rats can condition cephalic-phase insulin responses (CPIRs) to specific sounds or times of the day that predict food availability. The present study asked whether mice can condition a CPIR to the flavor of sapid solutions that produce postoral glucose stimulation. To this end, we subjected C57BL/6 mice to one of six experimental protocols. We varied both the duration of the five training sessions (i.e., 23 h or 1 h) and the nature of the training solution. In Experiment 1, consumption of a 0.61% saccharin solution was paired with IG co-infusion of a 16% glucose solution. In Experiments 2-6, the mice consumed a training solution containing a mixture of 0.61% saccharin + 16% glucose, 32% sucrose, 32% maltodextrin, flavored 32% maltodextrin, or 16% maltodextrin. We subsequently asked whether consumption of any of these fluids conditioned a CPIR to a test solution that produced a similar flavor, but which did not elicit a CPIR in naïve mice. The mice did condition a CPIR, but only to the solutions containing 32% maltodextrin. We attribute this conditioning to postoral actions of the concentrated maltodextrin solutions.
Collapse
Affiliation(s)
- John I. Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Alix Archambeau
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Lillian R. Brouwer
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Alyson Dennis
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Kiriaki Georgiou
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Jessica Ivanov
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Rochelle Vayntrub
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA;
| |
Collapse
|
5
|
Hartley C, Keast RSJ, Carr AJ, Roberts SSH, Bredie WLP. Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose. Foods 2024; 13:2130. [PMID: 38998636 PMCID: PMC11240887 DOI: 10.3390/foods13132130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Previous research has demonstrated that complex carbohydrates (maltodextrins) can be perceived in the oral cavity. However, little research has been conducted to thoroughly investigate complex carbohydrate taste perception and contributing factors. This study explored the effects of the degree of polymerization and the concentration of complex carbohydrates on taste perception. Additionally, the impact of lactisole and acarbose on carbohydrate taste perception was investigated. Using a blinded, Latin Square design, participants (n = 40) received samples (control) or samples with acarbose (5 mM) or lactisole (1.4 mM). Per visit, participants received solutions: (1) short chain maltodextrin (average DP 6) (SCM), (2) long chain maltodextrin (average DP 24) (LCM), (3) maltose, and (4) glucose. Samples were evaluated in duplicate, both at low concentration and high concentration. Participants tasted the samples and rated sweetness, starchiness, and viscosity (mouthfeel) perceived on a 10 cm continuous line scale and perceived intensity on a Labelled Magnitude Scale. There was a significant effect of degree of polymerisation on sweetness (p = 0.001) and intensity (p = 0.001). For low concentration samples, no significant differences were found between LCM and acarbose LCM or SCM and acarbose SCM for sweetness, starchiness, or mouthfeel (all p > 0.05). Significant differences were observed between LCM and lactisole LCM for sweetness (1.1 ± 0.1 vs. 2.5 ± 0.3, p = 0.001), starchiness (1.4 ± 0.2 vs. 2.3 ± 0.3, p = 0.005), and mouthfeel (1.4 ± 0.2 vs. 2.3 ± 0.3, p = 0.013). In conclusion, the taste perception of maltodextrins is influenced by the degree of polymerisation. Furthermore, for this study, the sweet taste receptor was not involved in maltodextrin taste perception. While salivary α-amylase did not appear to influence taste perception with low concentration maltodextrins, further investigation is necessary.
Collapse
Affiliation(s)
- Claudia Hartley
- CASS Food Research Centre, Deakin University, Burwood Highway, Burwood, VIC 3125, Australia
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Russell S J Keast
- CASS Food Research Centre, Deakin University, Burwood Highway, Burwood, VIC 3125, Australia
| | - Amelia J Carr
- Centre for Sport Research, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC 3220, Australia
| | - Spencer S H Roberts
- Centre for Sport Research, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC 3220, Australia
| | - Wender L P Bredie
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
6
|
Zhang Y, Chen Y, Chen C, Zhu Y, Liu M, Chen J. The enhancement mechanisms of mucin and lactoferrin on α-amylase activity in saliva: Exploring the interactions using QCM-D and molecular docking. Int J Biol Macromol 2024; 257:128710. [PMID: 38101660 DOI: 10.1016/j.ijbiomac.2023.128710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
α-Amylase activity differs between individuals and is influenced by dietary behavior and salivary constituents, but limited information is available on the relationship between α-amylase activity and saliva components. This study investigated the impact of salivary proteins on α-amylase activity, their various correlations, the effect of mucin (MUC5B and MUC7) and lactoferrin on the enzymatic kinetics of α-amylase, and the mechanisms of these interactions using the quartz crystal microbalance with dissipation (QCM-D) technique and molecular docking. The results showed that α-amylase activity was significantly correlated with the concentrations of MUC5B (R2 = 0.42, p < 0.05), MUC7 (R2 = 0.35, p < 0.05), and lactoferrin (R2 = 0.35, p < 0.05). An in vitro study demonstrated that α-amylase activity could be significantly increased by mucins and lactoferrin by decreasing the Michaelis constant (Km) of α-amylase. Moreover, the results from the QCM-D and molecule docking suggested that mucin and lactoferrin could interact with α-amylase to form stable α-amylase-mucin and α-amylase-lactoferrin complexes through hydrophobic interactions, electrostatic interactions, Van der Waals forces, and hydrogen bonds. In conclusion, these findings indicated that the salivary α-amylase activity depended not only on the α-amylase content, but also could be enhanced by the interactions of mucin/lactoferrin with α-amylase.
Collapse
Affiliation(s)
- Yufeng Zhang
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yong Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| | - Chen Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yang Zhu
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ming Liu
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University - Qishan Campus, Fuzhou, Fujian 350108, China
| | - Jianshe Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
7
|
Martin LE, Penner MH, Lim J. Taste of common prebiotic oligosaccharides: impact of molecular structure. Chem Senses 2024; 49:bjae023. [PMID: 38824402 PMCID: PMC12097989 DOI: 10.1093/chemse/bjae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Indexed: 06/03/2024] Open
Abstract
Prebiotic oligosaccharides are naturally occurring nondigestible carbohydrates with demonstrated health benefits. They are also a chemically diverse class of nutrients, offering an opportunity to investigate the impact of molecular structure on oligosaccharide taste perception. Accordingly, a relevant question is whether these compounds are detected by the human gustatory system, and if so, whether they elicit sweet or "starchy" taste. Here, in 3 psychophysical experiments, we investigated the taste perception of 3 commercially popular prebiotics [fructooligosaccharides (FOS), galactooligosaccharides (GOS), xylooligosaccharides (XOS)] in highly pure form. Each of these classes of prebiotics differs in the type of glycosyl residue, and position and type of bond between those residues. In experiments I and II, participants were asked to discriminate a total of 9 stimuli [FOS, GOS, XOS; degree of polymerization (DP) of 2, 3, 4] prepared at 75 mM in the presence and absence of lactisole, a sweet receptor antagonist. We found that all 9 compounds were detectable (P < 0.05). We also found that GOS and XOS DP 4 were discriminable even with lactisole, suggesting that their detection was not via the canonical sweet receptor. Accordingly, in experiment III, the taste of GOS and XOS DP 4 were directly compared with that of MOS (maltooligosaccharides) DP 4-6, which has been reported to elicit "starchy" taste. We found that GOS and MOS were perceived similarly although narrowly discriminable, while XOS was easily discriminable from both GOS and MOS. The current findings suggest that the molecular structure of oligosaccharides impacts their taste perception in humans.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Michael H Penner
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
8
|
Yin J, Cheng L, Hong Y, Li Z, Li C, Ban X, Zhu L, Gu Z. A Comprehensive Review of the Effects of Glycemic Carbohydrates on the Neurocognitive Functions Based on Gut Microenvironment Regulation and Glycemic Fluctuation Control. Nutrients 2023; 15:5080. [PMID: 38140339 PMCID: PMC10745758 DOI: 10.3390/nu15245080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.
Collapse
Affiliation(s)
- Jian Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Pullicin AJ, Wils D, Lim J. Oral glucose sensing in cephalic phase insulin release. Appetite 2023; 191:107070. [PMID: 37788735 DOI: 10.1016/j.appet.2023.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Oral stimulation with foods or food components elicits cephalic phase insulin release (CPIR), which limits postprandial hyperglycemia. Despite its physiological importance, the specific gustatory mechanisms that elicit CPIR have not been clearly defined. While most studies point to glucose and glucose-containing saccharides (e.g., sucrose, maltodextrins) as being the most consistent elicitors, it is not apparent whether this is due to the detection of glucose per se, or to the perceived taste cues associated with these stimuli (e.g., sweetness, starchiness). This study investigated potential sensory mechanisms involved with eliciting CPIR in humans, focusing on the role of oral glucose detection and associated taste. Four stimulus conditions possessing different carbohydrate and taste profiles were designed: 1) glucose alone; 2) glucose mixed with lactisole, a sweet taste inhibitor; 3) maltodextrin, which is digested to starchy- and sweet-tasting products during oral processing; and 4) maltodextrin mixed with lactisole and acarbose, an oral digestion inhibitor. Healthy adults (N = 22) attended four sessions where blood samples were drawn before and after oral stimulation with one of the target stimuli. Plasma c-peptide, insulin, and glucose concentrations were then analyzed. Whereas glucose alone elicited CPIR (one-sample t-test, p < 0.05), it did not stimulate the response in the presence of lactisole. Likewise, maltodextrin alone stimulated CPIR (p < 0.05), but maltodextrin with lactisole and acarbose did not. Together, these findings indicate that glucose is an effective CPIR stimulus, but that an associated taste sensation also serves as an important cue for triggering this response in humans.
Collapse
Affiliation(s)
- Alexa J Pullicin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Daniel Wils
- Nutrition and Health Department, Roquette Frères, Lestrem, France
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
10
|
Bláhová M, Štefuca V, Hronská H, Rosenberg M. Maltooligosaccharides: Properties, Production and Applications. Molecules 2023; 28:molecules28073281. [PMID: 37050044 PMCID: PMC10097025 DOI: 10.3390/molecules28073281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Maltooligosaccharides (MOS) are homooligosaccharides that consist of 3-10 glucose molecules linked by α-1,4 glycosidic bonds. As they have physiological functions, they are commonly used as ingredients in nutritional products and functional foods. Many researchers have investigated the potential applications of MOS and their derivatives in the pharmaceutical industry. In this review, we summarized the properties and methods of fabricating MOS and their derivatives, including sulfated and non-sulfated alkylMOS. For preparing MOS, different enzymatic strategies have been proposed by various researchers, using α-amylases, maltooligosaccharide-forming amylases, or glycosyltransferases as effective biocatalysts. Many researchers have focused on using immobilized biocatalysts and downstream processes for MOS production. This review also provides an overview of the current challenges and future trends of MOS production.
Collapse
Affiliation(s)
- Mária Bláhová
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Vladimír Štefuca
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Helena Hronská
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Rosenberg
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
11
|
Oral stimulation with maltodextrin: Effect on cephalic phase insulin release. Appetite 2023; 183:106464. [PMID: 36682624 DOI: 10.1016/j.appet.2023.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Cephalic phase insulin release (CPIR) occurs following sensory stimulation with food-related stimuli, and has been shown to limit postabsorptive hyperglycemia. While the specific stimuli that elicit CPIR in humans have not been clearly defined, previous research points to sugars as having potential importance. Maltodextrins are a starch-derived food ingredient commonly found in a variety of processed food products. When consumed, salivary α-amylase rapidly cleaves its component saccharides into smaller units, leading to the production of sugars in the mouth. Here, we investigated whether humans elicit CPIR after tasting but not swallowing maltodextrin, and whether the degree of CPIR exhibited is affected by individuals' salivary α-amylase activity. We found that a gelatin-based stimulus containing 22% w/v maltodextrin elicited CPIR in healthy individuals (N = 22) following a modified sham-feeding protocol using both insulin and c-peptide as indices of the response. However, the degree of CPIR measured did not differ across three groupings (low, medium, or high) of effective α-amylase activity by either index. In a follow-up experiment, a subset of participants (N = 14) underwent the same protocol using a gelatin stimulus without maltodextrin, and no observable CPIR ensued. These findings suggest that oral stimulation with maltodextrin elicits CPIR in humans, but that individual differences in effective salivary α-amylase activity may not necessarily be predictive of the degree of CPIR.
Collapse
|
12
|
Silva LMA, Filho EGA, Rodrigues THS, Louredo FJC, Zocolo GJ, Canuto KM, Mikich SB, Liebsch D, De Almeida A, De Brito ES. Metabolomic Profiling of Phloem Sap from Different Pine Species and Implications on Black Capuchin. J Chem Ecol 2022; 48:660-669. [PMID: 35653012 DOI: 10.1007/s10886-022-01365-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
In most commercial pine farms in southern Brazil, black capuchin causes damage to wood and financial losses when it removes bark from some pine species to feed upon underlying vascular tissues. Therefore, this study aimed to evaluate the variability of the primary metabolites of phloem saps from 10 different species of pine by NMR spectroscopy, as well as the aroma compounds using SPME-GC-MS. Each technique provided a different set of metabolites that we can correlate to monkey predilection. The PCA showed monosaccharide (detected by NMR) and α-pinene (pine-like and resinous flavor descriptors) as attractive compounds for monkeys. On the other hand, the low content of monosaccharide and the high content of β-phellandrene (citrus odor descriptor) was observed in less attacked pine species (P. patula). The data fusion on primary metabolites and aroma compounds corroborated the individual analyses, complementing the comprehension of the monkey predilection. Thus, P. elliottii was an avoided tree even with high content of sugars possibly due to its high content of β-phellandrene (citrus odor). The results are useful for further behavioral studies to determine the role that each highlighted metabolite plays in chemically mediated animal-plant interactions.
Collapse
Affiliation(s)
- Lorena Mara A Silva
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270-Pici, Fortaleza, CE, CEP 60511-110, Brazil.
| | - Elenilson G Alves Filho
- Department of Food Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 858, Fortaleza, CE, CEP 60440-900, Brazil
| | | | - Francisca Jamila C Louredo
- Department of Food Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 858, Fortaleza, CE, CEP 60440-900, Brazil
| | - Guilherme J Zocolo
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270-Pici, Fortaleza, CE, CEP 60511-110, Brazil
| | - Kirley M Canuto
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270-Pici, Fortaleza, CE, CEP 60511-110, Brazil
| | - Sandra B Mikich
- Embrapa Floresta, Estrada da Ribeira, Km 111, Bairro Guaraituba, Colombo, PR, CEP 83411-000, Brazil
| | - Dieter Liebsch
- Arauka Ambiental, Rua Ten. Ricardo Kirch, 188, Curitiba, Paraná, CEP 81530120, Brazil
| | - Adriana De Almeida
- Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo 2265, São José Do Rio Preto, SP, 15054-000, Brazil
| | - Edy S De Brito
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270-Pici, Fortaleza, CE, CEP 60511-110, Brazil
| |
Collapse
|
13
|
Goza JL, Ziegler GR, Wee J, Hayes JE, Hopfer H. Salivary α-amylase activity and flow rate explain differences in temporal flavor perception in a chewing gum matrix comprising starch-limonene inclusion complexes. Food Res Int 2022; 158:111573. [DOI: 10.1016/j.foodres.2022.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
|
14
|
Lyu X, Sasaki Y, Ohshiro K, Tang W, Yuan Y, Minami T. Printed 384-Well Microtiter Plate on Paper for Fluorescent Chemosensor Array in Food Analysis. Chem Asian J 2022; 17:e202200479. [PMID: 35612563 DOI: 10.1002/asia.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Indexed: 11/06/2022]
Abstract
We propose a printed 384-well microtiter paper-based fluorescent chemosensor array device (384-well microtiter PCAD) to simultaneously categorize and discriminate saccharides and sulfur-containing amino acids for food analysis. The 384-well microtiter PCAD required 1 μL/4 mm 2 of each well can allow high-throughput sensing. The device embedded with self-assembled fluorescence chemosensors displayed a fingerprint-like response pattern for targets, the image of which was rapidly captured by a portable digital camera. Indeed, the paper-based chemosensor array system combined with imaging analysis and pattern recognition techniques successfully not only categorized saccharides and sulfur-containing amino acids but also classified mono- and disaccharide groups. Furthermore, the quantitative detectability of the printed device was revealed by a spike recovery test for fructose and glutathione in a diluted freshly made tomato juice. We believe that the 384-well microtiter PCAD using the imaging analysis system will be a powerful sensor for multi-analytes at several categorized groups in real samples.
Collapse
Affiliation(s)
- Xiaojun Lyu
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Yui Sasaki
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Kohei Ohshiro
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Wei Tang
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Yousi Yuan
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Tsuyoshi Minami
- The University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| |
Collapse
|
15
|
Hartley C, Carr A, Bowe SJ, Bredie WLP, Keast RSJ. Maltodextrin-Based Carbohydrate Oral Rinsing and Exercise Performance: Systematic Review and Meta-Analysis. Sports Med 2022; 52:1833-1862. [PMID: 35239154 PMCID: PMC9325805 DOI: 10.1007/s40279-022-01658-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 12/04/2022]
Abstract
Background Carbohydrates are an important fuel for optimal exercise performance during moderate- and high-intensity exercise; however, carbohydrate ingestion during high-intensity exercise may cause gastrointestinal upset. A carbohydrate oral rinse is an alternative method to improve exercise performance in moderate- to high-intensity exercise with a duration of 30–75 min. This is the first systematic review and meta-analysis to comprehensively examine the isolated effect of maltodextrin-based rinsing on exercise performance. Objective The objective of this review was to establish the effect of a maltodextrin-based carbohydrate oral rinse on exercise performance across various modes of exercise. Furthermore, a secondary objective was to determine the effects of moderators [(1) participant characteristics; (2) oral rinse protocols; (3) exercise protocol (i.e. cycling, running etc.) and (4) fasting] on exercise performance while using a maltodextrin-based, carbohydrate oral rinse. Methods Five databases (MEDLINE, PsycINFO, Embase, SPORTDiscus and Global Health) were systematically searched for articles up to March 2021 and screened using Covidence (a systematic review management tool). A random effects robust meta-analysis and subgroup analyses were performed using Stata Statistical Software: Release 16. Results Thirty-five articles met the inclusion criteria and were included in the systematic review; 34 of these articles were included in the meta-analysis. When using a conventional meta-analytic approach, overall, a carbohydrate oral rinse improved exercise performance in comparison with a placebo (SMD = 0.15, 95% CI 0.04, 0.27; p = 0.01). Furthermore, when implementing an adjusted, conservative, random effects meta-regression model using robust variance estimation, overall, compared with placebo, a carbohydrate oral rinse demonstrated evidence of improving exercise performance with a small effect size (SMD = 0.17, 95% CI − 0.01, 0.34; p = 0.051). Conclusion This systematic review and meta-analysis demonstrates that a maltodextrin-based carbohydrate oral rinse can improve exercise performance. When comparing the two meta-analytic approaches, although non-significant, the more robust, adjusted, random effects meta-regression model demonstrated some evidence of a maltodextrin-based carbohydrate oral rinse improving exercise performance overall. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01658-3.
Collapse
Affiliation(s)
- Claudia Hartley
- CASS Food Research Centre, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Amelia Carr
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Steven J Bowe
- Deakin Biostatistics Unit, Faculty of Health, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Wender L P Bredie
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Russell S J Keast
- CASS Food Research Centre, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| |
Collapse
|
16
|
Martin LE, Lim J. OUP accepted manuscript. Chem Senses 2022; 47:6565984. [PMID: 35397161 PMCID: PMC8994581 DOI: 10.1093/chemse/bjac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligosaccharides, a subclass of complex carbohydrates, occur both naturally in foods and as a result of oral starch digestion. We have previously shown that humans can taste maltooligosaccharides (MOS) and that their detection is independent of the canonical sweet taste receptor. While MOSs most commonly occur in a linear form, they can also exist in cyclic structures, referred to as cyclodextrins (CD). The aim of this study was to investigate how the structure of the MOS backbone (i.e. cyclic form) and the size (i.e. degree of polymerization; DP) affect their taste perception. We tested taste detection of cyclodextrins with DP of 6, 7, and 8 (i.e. α-, β-, and γ-CD, respectively) in the presence and absence of lactisole, a sweet receptor antagonist. We found that subjects could detect the taste of cyclodextrins in aqueous solutions at a significant level (P < 0.05), but were not able to detect them in the presence of lactisole (P > 0.05). These findings suggest that the cyclodextrins, unlike their linear analogs, are ligands of the human sweet taste receptor, hT1R2/hT1R3. Study findings are discussed in terms of how chemical structures may contribute to tastes of saccharides.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding author: Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
17
|
Gayatri RW, Tama TD, Alma LR, Yun LW, Savira L, Kuroidah A. Behavioral risk factors and periodontal disease in Malang, Indonesia. GACETA SANITARIA 2021; 35 Suppl 2:S438-S440. [PMID: 34929871 DOI: 10.1016/j.gaceta.2021.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to analyze the relationship of behavioral risk factors for periodontal disease among 19-64 age group in Malang City. METHOD A non-experimental quantitative analytic with a cross sectional study approach was used in this study. The respondents were 331 patients who visited the dental clinics of the Health Centers in Malang City. A cluster random sampling technique was used in this study. The instrument used was questionnaire. The data analysis was done through multivariate analyses use logistic-regression. RESULTS The Wald test results on logistic-regression models showed there is no significant effect of smoking habits and consumption patterns on periodontal disease. There is a significant effect of systemic disease on periodontal disease with a significance value of 0.000 (p<0.05). CONCLUSIONS There was a significant relationship and effect between systemic disease and periodontal disease in this study.
Collapse
Affiliation(s)
- Rara Warih Gayatri
- Department of Public Health, Universitas Negeri Malang, Malang, Indonesia.
| | - Tika Dwi Tama
- Department of Public Health, Universitas Negeri Malang, Malang, Indonesia
| | - Lucky Radhita Alma
- Department of Public Health, Universitas Negeri Malang, Malang, Indonesia
| | - Low Wah Yun
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lita Savira
- Department of Public Health, Universitas Negeri Malang, Malang, Indonesia
| | - Asmi Kuroidah
- Department of Public Health, Universitas Negeri Malang, Malang, Indonesia
| |
Collapse
|
18
|
Cheon E, Reister EJ, Hunter SR, Mattes RD. Finding the Sweet Spot: Measurement, Modification, and Application of Sweet Hedonics in Humans. Adv Nutr 2021; 12:2358-2371. [PMID: 33957666 PMCID: PMC8634475 DOI: 10.1093/advances/nmab055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 11/14/2022] Open
Abstract
Sweetness is a sensation that contributes to the palatability of foods, which is the primary driver of food choice. Thus, understanding how to measure the appeal (hedonics) of sweetness and how to modify it are key to effecting dietary change for health. Sweet hedonics is multidimensional so can only be captured by multiple approaches including assessment of elements such as liking, preference, and consumption intent. There are both innate and learned components to the appeal of sweet foods and beverages. These are responsive to various behavioral and biological factors, suggesting the opportunity to modify intake. Given the high amount of added sugar intake in the United States and recommendations from many groups to reduce this, further exploration of current hypothesized approaches to moderate sugar intake (e.g., induced hedonic shift, use of low-calorie sweeteners) is warranted.
Collapse
Affiliation(s)
- Eunjin Cheon
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Evan J Reister
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Stephanie R Hunter
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
19
|
Gutierrez R, Simon SA. Physiology of Taste Processing in the Tongue, Gut, and Brain. Compr Physiol 2021; 11:2489-2523. [PMID: 34558667 DOI: 10.1002/cphy.c210002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gustatory system detects and informs us about the nature of various chemicals we put in our mouth. Some of these have nutritive value (sugars, amino acids, salts, and fats) and are appetitive and avidly ingested, whereas others (atropine, quinine, nicotine) are aversive and rapidly rejected. However, the gustatory system is mainly responsible for evoking the perception of a limited number of qualities that humans taste as sweet, umami, bitter, sour, salty, and perhaps fat [free fatty acids (FFA)] and starch (malto-oligosaccharides). The complex flavors and mouthfeel that we experience while eating food result from the integration of taste, odor, texture, pungency, and temperature. The latter three arise primarily from the somatosensory (trigeminal) system. The sensory organs used for detecting and transducing many chemicals are found in taste buds (TBs) located throughout the tongue, soft palate esophagus, and epiglottis. In parallel with the taste system, the trigeminal nerve innervates the peri-gemmal epithelium to transmit temperature, mechanical stimuli, and painful or cooling sensations such as those produced by changes in temperature as well as from chemicals like capsaicin and menthol, respectively. This article gives an overview of the current knowledge about these TB cells' anatomy and physiology and their trigeminal induced sensations. We then discuss how taste is represented across gustatory cortices using an intermingled and spatially distributed population code. Finally, we review postingestion processing (interoception) and central integration of the tongue-gut-brain interaction, ultimately determining our sensations as well as preferences toward the wholesomeness of nutritious foods. © 2021 American Physiological Society. Compr Physiol 11:1-35, 2021.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Affiliation(s)
- Beverly J Tepper
- Center for Sensory Science & Innovation, Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Huang T, Ohman LC, Clements AV, Whiddon ZD, Krimm RF. Variable Branching Characteristics of Peripheral Taste Neurons Indicates Differential Convergence. J Neurosci 2021; 41:4850-4866. [PMID: 33875572 PMCID: PMC8260161 DOI: 10.1523/jneurosci.1935-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
Taste neurons are functionally and molecularly diverse, but their morphologic diversity remains completely unexplored. Using sparse cell genetic labeling, we provide the first reconstructions of peripheral taste neurons. The branching characteristics across 96 taste neurons show surprising diversity in their complexities. Individual neurons had 1-17 separate arbors entering between one and seven taste buds, 18 of these neurons also innervated non-taste epithelia. Axon branching characteristics are similar in gustatory neurons from male and female mice. Cluster analysis separated the neurons into four groups according to branch complexity. The primary difference between clusters was the amount of the nerve fiber within the taste bud available to contact taste-transducing cells. Consistently, we found that the maximum number of taste-transducing cells capable of providing convergent input onto individual gustatory neurons varied with a range of 1-22 taste-transducing cells. Differences in branching characteristics across neurons indicate that some neurons likely receive input from a larger number of taste-transducing cells than other neurons (differential convergence). By dividing neurons into two groups based on the type of taste-transducing cell most contacted, we found that neurons contacting primarily sour transducing cells were more heavily branched than those contacting primarily sweet/bitter/umami transducing cells. This suggests that neuron morphologies may differ across functional taste quality. However, the considerable remaining variability within each group also suggests differential convergence within each functional taste quality. Each possibility has functional implications for the system.SIGNIFICANCE STATEMENT Taste neurons are considered relay cells, communicating information from taste-transducing cells to the brain, without variation in morphology. By reconstructing peripheral taste neuron morphologies for the first time, we found that some peripheral gustatory neurons are simply branched, and can receive input from only a few taste-transducing cells. Other taste neurons are heavily branched, contacting many more taste-transducing cells than simply branched neurons. Based on the type of taste-transducing cell contacted, branching characteristics are predicted to differ across (and within) quality types (sweet/bitter/umami vs sour). Therefore, functional differences between neurons likely depends on the number of taste-transducing cells providing input and not just the type of cell providing input.
Collapse
Affiliation(s)
- Tao Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Lisa C Ohman
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Anna V Clements
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Zachary D Whiddon
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
22
|
Lim LS, Tang XH, Yang WY, Ong SH, Naumovski N, Jani R. Taste Sensitivity and Taste Preference among Malay Children Aged 7 to 12 Years in Kuala Lumpur-A Pilot Study. Pediatr Rep 2021; 13:245-256. [PMID: 34069893 PMCID: PMC8162539 DOI: 10.3390/pediatric13020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/24/2022] Open
Abstract
The taste and food preferences in children can affect their food intake and body weight. Bitter and sweet taste sensitivities were identified as primary taste contributors to children's preference for consuming various foods. This pilot study aimed to determine the taste sensitivity and preference for bitter and sweet tastes in a sample of Malaysian children. A case-control study was conducted among 15 pairs of Malay children aged 7 to 12 years. Seven solutions at different concentrations of 6-n-propylthiouracil and sucrose were prepared for testing bitterness and sweet sensitivity, respectively. The intensity of both bitter and sweet sensitivity was measured using a 100 mm Labelled Magnitude Scale (LMS), while the taste preference was rated using a 5-point Likert scale. The participants were better at identifying bitter than sweet taste (median score 6/7 vs. 4/7). No significant differences were detected for both tastes between normal-weight and overweight groups (bitter: 350 vs. 413, p = 0.273; sweet: 154 vs. 263, p = 0.068), as well as in Likert readings (bitter 9 vs. 8: p = 0.490; sweet 22 vs. 22: p = 0.677). In this sample of Malay children, the participants were more sensitive to bitterness than sweetness, yet presented similar taste sensitivity and preference irrespective of their weight status. Future studies using whole food samples are warranted to better characterize potential taste sensitivity and preference in children.
Collapse
Affiliation(s)
- Ler Sheang Lim
- Division of Nutrition and Dietetics, School of Health Sciences, Faculty of Medicine and Health, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.L.); (X.H.T.); (S.H.O.)
| | - Xian Hui Tang
- Division of Nutrition and Dietetics, School of Health Sciences, Faculty of Medicine and Health, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.L.); (X.H.T.); (S.H.O.)
| | - Wai Yew Yang
- Division of Nutrition and Dietetics, School of Health Sciences, Faculty of Medicine and Health, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.L.); (X.H.T.); (S.H.O.)
- Correspondence: ; Tel.: +60-327-317-579; Fax: +60-386-567-229
| | - Shu Hwa Ong
- Division of Nutrition and Dietetics, School of Health Sciences, Faculty of Medicine and Health, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.L.); (X.H.T.); (S.H.O.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, School of Rehabilitation and Exercise Sciences, Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (N.N.); (R.J.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Rati Jani
- Discipline of Nutrition and Dietetics, School of Rehabilitation and Exercise Sciences, Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (N.N.); (R.J.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| |
Collapse
|
23
|
Choi JH. TAS1R2 sweet taste receptor genetic variation and dietary intake in Korean females. Appetite 2021; 164:105281. [PMID: 33930495 DOI: 10.1016/j.appet.2021.105281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022]
Abstract
Taste receptor type 1, member 2 (TAS1R2) controls the oral sensing of sweetness. Genetic variations in TAS1R2 have been shown to be associated with differential sweetness intensity and varying carbohydrate intake levels among individuals. This study examined whether rs7534618 A > C in TAS1R2 is associated with dietary behavior and energy nutrient intake in Korean females. A cross-sectional design utilizing data from the Multi-Rural Communities Cohort Study, which was a nationwide epidemiological research project in Korea, was applied in this study. In total, 2198 females were analyzed to evaluate the differences in macronutrient intake levels and intake of carbohydrate-rich and sweet-tasting foods between the rs7534618 genotypes. The findings suggest that individuals with the CC minor genotype tended to have lower carbohydrate but higher fat intake than subjects with the A* genotype (p = 0.035 and p = 0.042, respectively). Subjects with the CC genotype also exhibited less intake of total grains but greater intake of bread than those with the A* genotype (p = 0.017 and p = 0.006, respectively). However, these observed associations were statistically modest (false discovery rate adjusted p > 0.05). In conclusion, TAS1R2 rs7534618 is not a decisive genetic modifier of nutrition and dietary intake in Korean females. However, given the paucity of studies, these putative associations between the TAS1R variation and dietary intake may be referred for further sensory genetic studies in Koreans.
Collapse
Affiliation(s)
- Jeong-Hwa Choi
- Department of Food Science and Nutrition, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
24
|
Ali MA, Wang Y, Qin Z, Yuan X, Zhang Y, Zeng C. Odorant and Taste Receptors in Sperm Chemotaxis and Cryopreservation: Roles and Implications in Sperm Capacitation, Motility and Fertility. Genes (Basel) 2021; 12:genes12040488. [PMID: 33801624 PMCID: PMC8065900 DOI: 10.3390/genes12040488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Sperm chemotaxis, which guide sperm toward oocyte, is tightly associated with sperm capacitation, motility, and fertility. However, the molecular mechanism of sperm chemotaxis is not known. Reproductive odorant and taste receptors, belong to G-protein-coupled receptors (GPCR) super-family, cause an increase in intracellular Ca2+ concentration which is pre-requisite for sperm capacitation and acrosomal reaction, and result in sperm hyperpolarization and increase motility through activation of Ca2+-dependent Cl¯ channels. Recently, odorant receptors (ORs) in olfactory transduction pathway were thought to be associated with post-thaw sperm motility, freeze tolerance or freezability and cryo-capacitation-like change during cryopreservation. Investigation of the roles of odorant and taste receptors (TRs) is important for our understanding of the freeze tolerance or freezability mechanism and improve the motility and fertility of post-thaw sperm. Here, we reviewed the roles, mode of action, impact of odorant and taste receptors on sperm chemotaxis and post-thaw sperm quality.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore 54000, Punjab, Pakistan;
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan
| | - Yihan Wang
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Ziyue Qin
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Xiang Yuan
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Yan Zhang
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Changjun Zeng
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
- Correspondence: ; Tel./Fax: +86-28-86291010
| |
Collapse
|
25
|
Kurt SB, Ayyala RS, Sahiner N. Versatile poly(maltose) micro/nanoparticles with tunable surface functionality as a biomaterial. J Appl Polym Sci 2021. [DOI: 10.1002/app.49906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saliha B. Kurt
- Department of Chemistry & Nanoscience and Technology Research and Application Center Canakkale Onsekiz Mart University Terzioglu Campus Canakkale Turkey
| | - Ramesh S. Ayyala
- Department of Ophthalmology, Morsani College of Medicine University of South Florida Tampa Florida USA
| | - Nurettin Sahiner
- Department of Chemistry & Nanoscience and Technology Research and Application Center Canakkale Onsekiz Mart University Terzioglu Campus Canakkale Turkey
- Department of Ophthalmology, Morsani College of Medicine University of South Florida Tampa Florida USA
| |
Collapse
|
26
|
Nishinari K, Fang Y. Molar mass effect in food and health. Food Hydrocoll 2021; 112:106110. [PMID: 32895590 PMCID: PMC7467918 DOI: 10.1016/j.foodhyd.2020.106110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
It is demanded to supply foods with good quality for all the humans. With the advent of aging society, palatable and healthy foods are required to improve the quality of life and reduce the burden of finance for medical expenditure. Food hydrocolloids can contribute to this demand by versatile functions such as thickening, gelling, stabilising, and emulsifying, controlling texture and flavour release in food processing. Molar mass effects on viscosity and diffusion in liquid foods, and on mechanical and other physical properties of solid and semi-solid foods and films are overviewed. In these functions, the molar mass is one of the key factors, and therefore, the effects of molar mass on various health problems related to noncommunicable diseases or symptoms such as cancer, hyperlipidemia, hyperglycemia, constipation, high blood pressure, knee pain, osteoporosis, cystic fibrosis and dysphagia are described. Understanding these problems only from the viewpoint of molar mass is limited since other structural characteristics, conformation, branching, blockiness in copolymers such as pectin and alginate, degree of substitution as well as the position of the substituents are sometimes the determining factor rather than the molar mass. Nevertheless, comparison of different behaviours and functions in different polymers from the viewpoint of molar mass is expected to be useful to find a common characteristics, which may be helpful to understand the mechanism in other problems.
Collapse
Affiliation(s)
- Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, PR China
- Department of Food and Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, 558-6565, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
27
|
Macronutrient Sensing in the Oral Cavity and Gastrointestinal Tract: Alimentary Tastes. Nutrients 2021; 13:nu13020667. [PMID: 33669584 PMCID: PMC7922037 DOI: 10.3390/nu13020667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
There are numerous and diverse factors enabling the overconsumption of foods, with the sense of taste being one of these factors. There are four well established basic tastes: sweet, sour, salty, and bitter; all with perceptual independence, salience, and hedonic responses to encourage or discourage consumption. More recently, additional tastes have been added to the basic taste list including umami and fat, but they lack the perceptual independence and salience of the basics. There is also emerging evidence of taste responses to kokumi and carbohydrate. One interesting aspect is the link with the new and emerging tastes to macronutrients, with each macronutrient having two distinct perceptual qualities that, perhaps in combination, provide a holistic perception for each macronutrient: fat has fat taste and mouthfeel; protein has umami and kokumi; carbohydrate has sweet and carbohydrate tastes. These new tastes can be sensed in the oral cavity, but they have more influence post- than pre-ingestion. Umami, fat, kokumi, and carbohydrate tastes have been suggested as an independent category named alimentary. This narrative review will present and discuss evidence for macronutrient sensing throughout the alimentary canal and evidence of how each of the alimentary tastes may influence the consumption of foods.
Collapse
|
28
|
Effects of gastrointestinal delivery of non-caloric tastants on energy intake: a systematic review and meta-analysis. Eur J Nutr 2021; 60:2923-2947. [PMID: 33559026 PMCID: PMC8354866 DOI: 10.1007/s00394-021-02485-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Purpose Taste receptors are expressed throughout the gastrointestinal tract. The activation of post-oral taste receptors using tastants could provide a non-invasive treatment option in combating the obesity epidemic. The aim of this review was to examine the effect of post-oral delivery of non-caloric tastants on eating behavior reflected by primary outcome energy intake and secondary outcomes GI symptoms and perceptions and potential underlying mechanisms. This review was conducted according to the PRISMA guidelines for systematic reviews. Methods A systematic literature search of the Cochrane, PubMed, Embase, and Medline databases was performed. This systematic review and meta-analysis was registered in the PROSPERO database on 26 February 2020 (ID: CRD42020171182). Two researchers independently screened 11,912 articles and extracted information from 19 articles. If at least two studies investigated the effect of the same taste compound on primary outcome energy intake, a meta-analysis was performed to determine pooled effect sizes. Results Nineteen papers including healthy volunteers were included. In the 19 papers analyzed, effects of various tastants were investigated in healthy volunteers. Most extensively investigated were bitter tastants. The meta-analysis of effects of bitter tastants showed a significant reduction in energy intake of 54.62 kcal (95% CI − 78.54 to − 30.69, p = 0.0014). Conclusions Bitter stimuli are most potent to influence eating behavior. Energy intake decreased after post-oral delivery of bitter tastants. This highlights the potential of a preventive role of bitter tastants in battling the obesity epidemic. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02485-4.
Collapse
|
29
|
|
30
|
An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch 2020; 472:1667-1691. [PMID: 33030576 DOI: 10.1007/s00424-020-02467-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Sweet substances are detected by taste-bud cells upon binding to the sweet-taste receptor, a T1R2/T1R3 heterodimeric G protein-coupled receptor. In addition, experiments with mouse models lacking the sweet-taste receptor or its downstream signaling components led to the proposal of a parallel "alternative pathway" that may serve as metabolic sensor and energy regulator. Indeed, these mice showed residual nerve responses and behavioral attraction to sugars and oligosaccharides but not to artificial sweeteners. In analogy to pancreatic β cells, such alternative mechanism, to sense glucose in sweet-sensitive taste cells, might involve glucose transporters and KATP channels. Their activation may induce depolarization-dependent Ca2+ signals and release of GLP-1, which binds to its receptors on intragemmal nerve fibers. Via unknown neuronal and/or endocrine mechanisms, this pathway may contribute to both, behavioral attraction and/or induction of cephalic-phase insulin release upon oral sweet stimulation. Here, we critically review the evidence for a parallel sweet-sensitive pathway, involved signaling mechanisms, neural processing, interactions with endocrine hormonal mechanisms, and its sensitivity to different stimuli. Finally, we propose its physiological role in detecting the energy content of food and preparing for digestion.
Collapse
|
31
|
Faast R, Clarke PA, Taylor GS, Salagaras RL, Weinstein P. Indigenous Use of Lerps in Australia: So Much More Than a Sweet Treat. J ETHNOBIOL 2020. [DOI: 10.2993/0278-0771-40.3.328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Renate Faast
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | | | - Gary S. Taylor
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Renée L. Salagaras
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Philip Weinstein
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| |
Collapse
|
32
|
Ervina E, Berget I, Nilsen A, Almli VL. The ability of 10–11-year-old children to identify basic tastes and their liking towards unfamiliar foods. Food Qual Prefer 2020. [DOI: 10.1016/j.foodqual.2020.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Nolden AA, Feeney EL. Genetic Differences in Taste Receptors: Implications for the Food Industry. Annu Rev Food Sci Technol 2020; 11:183-204. [PMID: 31922882 DOI: 10.1146/annurev-food-032519-051653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inborn genetic differences in chemosensory receptors can lead to differences in perception and preference for foods and beverages. These differences can drive market segmentation for food products as well as contribute to nutritional status. This knowledge may be essential in the development of foods and beverages because the sensory profiles may not be experienced in the same way across individuals. Rather, distinct consumer groups may exist with different underlying genetic variations. Identifying genetic factors associated with individual variability can help better meet consumer needs through an enhanced understanding of perception and preferences. This review provides an overview of taste and chemesthetic sensations and their receptors, highlighting recent advances linking genetic variations in chemosensory genes to perception, food preference and intake, and health. With growing interest in personalized foods, this information is useful for both food product developers and nutrition health professionals alike.
Collapse
Affiliation(s)
- Alissa A Nolden
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA;
| | - Emma L Feeney
- Institute of Food and Health, University College Dublin, Dublin 4, Ireland
| |
Collapse
|