1
|
Ermini L, Farrell A, Alahari S, Ausman J, Park C, Sallais J, Melland-Smith M, Porter T, Edson M, Nevo O, Litvack M, Post M, Caniggia I. Ceramide-Induced Lysosomal Biogenesis and Exocytosis in Early-Onset Preeclampsia Promotes Exosomal Release of SMPD1 Causing Endothelial Dysfunction. Front Cell Dev Biol 2021; 9:652651. [PMID: 34017832 PMCID: PMC8130675 DOI: 10.3389/fcell.2021.652651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts. This is accompanied by augmented levels of transcription factor EB (TFEB). In vitro and in vivo experiments demonstrate that ceramide increases TFEB expression and nuclear translocation and induces lysosomal formation and exocytosis. Further, we show that TFEB directly regulates the expression of lysosomal sphingomyelin phosphodiesterase (L-SMPD1) that degrades sphingomyelin to ceramide. In early-onset preeclampsia, ceramide-induced lysosomal exocytosis carries L-SMPD1 to the apical membrane of the syncytial epithelium, resulting in ceramide accumulation in lipid rafts and release of active L-SMPD1 via ceramide-enriched exosomes into the maternal circulation. The SMPD1-containing exosomes promote endothelial activation and impair endothelial tubule formation in vitro. Both exosome-induced processes are attenuated by SMPD1 inhibitors. These findings suggest that ceramide-induced lysosomal biogenesis and exocytosis in preeclamptic placentae contributes to maternal endothelial dysfunction, characteristic of this pathology.
Collapse
Affiliation(s)
- Leonardo Ermini
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jonathan Ausman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Julien Sallais
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Megan Melland-Smith
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Michael Edson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Ori Nevo
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael Litvack
- Translational Medicine Program, Peter Gilgan Center, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Translational Medicine Program, Peter Gilgan Center, The Hospital for Sick Children, Toronto, ON, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Anoshchenko O, Prasad B, Neradugomma NK, Wang J, Mao Q, Unadkat JD. Gestational Age-Dependent Abundance of Human Placental Transporters as Determined by Quantitative Targeted Proteomics. Drug Metab Dispos 2020; 48:735-741. [PMID: 32591415 PMCID: PMC7469251 DOI: 10.1124/dmd.120.000067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 11/24/2022] Open
Abstract
Some women take medication during pregnancy to address a variety of clinical conditions. Because of ethical and logistical concerns, it is impossible to determine fetal drug exposure, and therefore fetal risk, during pregnancy. Hence, alternative approaches need to be developed to predict maternal-fetal drug exposure throughout pregnancy. To do so, we previously developed and verified a maternal-fetal physiologically based pharmacokinetic model, which can predict fetal exposure to drugs that passively cross the placenta. However, many drugs are actively transported by the placenta (e.g., human immunodeficiency virus protease inhibitors). To extend our maternal-fetal physiologically based pharmacokinetic model to these actively transported drugs, we determined the gestational age-dependent changes in the protein abundance of placental transporters. Total cellular membrane fractions from first trimester (T1; n = 15), second trimester (T2; n = 19), and term (n = 15) human placentae obtained from uncomplicated pregnancies were isolated by ultracentrifugation. Transporter protein abundance was determined by targeted quantitative proteomics using liquid chromatography tandem mass specrometry. We observed that breast cancer resistance protein and P-glycoprotein abundance significantly decreased from T1 to term by 55% and 69%, respectively (per gram of tissue). Organic anion-transporting polypeptide (OATP) 2B1 abundance significantly decreased from T1 to T2 by 32%. In contrast, organic cation transporter (OCT) 3 and organic anion transporter 4 abundance significantly increased with gestational age (2-fold from T1 to term, 1.6-fold from T2 to term). Serotonin transporter and norepinephrine transporter did not change with gestational age. The abundance of bile salt export pump, multidrug resistance-associated protein 1-5, Na+-taurocholate cotransporting polypeptide, OATP1B1, OATP1B3, OCTN1-2, concentrative nucleoside transporter 1-3, equilibrative nucleoside transporter 2, and multidrug and toxin extrusion 1 could not be quantified. These data can be incorporated into our maternal-fetal physiologically based pharmacokinetic model to predict fetal exposure to drugs that are actively transported across the placenta. SIGNIFICANCE STATEMENT: We quantified the protein abundance of key placental uptake and efflux transporters [organic cation transporter (OCT) 3, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)] across gestational ages (first trimester, second trimester, and term) using quantitative targeted proteomics. We observed that the protein abundance of P-gp and BCRP decreased, whereas that of OCT3 increased with gestational age. Incorporating the protein abundance determined in this study into maternal-fetal physiologically based pharmacokinetic model can help us better predict fetal drug exposure to substrates of these transporters.
Collapse
Affiliation(s)
- Olena Anoshchenko
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Pogorelova TN, Gunko VO, Nikashina AA, Mikhelson AA, Alliluev IA, Larichkin AV. [Impairment of production and posttranslational changes of placental nuclear and membrane proteins with complicated pregnancy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:513-519. [PMID: 31876522 DOI: 10.18097/pbmc20196506513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The content of nuclear and membrane proteins of the placenta, as well as posttranslational modification of these proteins in physiological pregnancy and placental insufficiency (PI) were studied. Differential centrifugation, electrophoresis in polyacrylamide gel, spectrophotometric methods were used. It was found that with PN there is a decrease in the degree of production of the studied proteins of varying degrees relative to control parameters. For chromatin proteins, a more pronounced decrease in the content of non-histone proteins was found in comparison with histones. Among histone fractions, the maximum decrease was detected in the H2A fraction. The degree of change in the amount of membrane proteins depends on the detergent used. Changes in posttranslational protein modifications disorders are characterized by a decrease in the content of amine and amide (especially difficult to hydrolyze) groups and an increase in carbonyl derivatives of proteins. The revealed changes in the composition and structure of the nuclear and membrane proteins of the placenta, performing numerous regulatory functions, can be triggering links in the chain of molecular damage in the placenta at PI.
Collapse
Affiliation(s)
- T N Pogorelova
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| | - V O Gunko
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| | - A A Nikashina
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| | - A A Mikhelson
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| | - I A Alliluev
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia; Academy of Biology and Biotechnology of the South Federal University, Rostov-on-Don, Russia
| | - A V Larichkin
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| |
Collapse
|
4
|
Ermini L, Ausman J, Melland-Smith M, Yeganeh B, Rolfo A, Litvack ML, Todros T, Letarte M, Post M, Caniggia I. A Single Sphingomyelin Species Promotes Exosomal Release of Endoglin into the Maternal Circulation in Preeclampsia. Sci Rep 2017; 7:12172. [PMID: 28939895 PMCID: PMC5610344 DOI: 10.1038/s41598-017-12491-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/11/2017] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a short form of the auxillary TGF-beta (TGFB) receptor endoglin (sENG). Until now, its release and functionality in PE remains poorly understood. Here we show that ENG selectively interacts with sphingomyelin(SM)-18:0 which promotes its clustering with metalloproteinase 14 (MMP14) in SM-18:0 enriched lipid rafts of the apical syncytial membranes from PE placenta where ENG is cleaved by MMP14 into sENG. The SM-18:0 enriched lipid rafts also contain type 1 and 2 TGFB receptors (TGFBR1 and TGFBR2), but not soluble fms-like tyrosine kinase 1 (sFLT1), another protein secreted in excess in the circulation of women with PE. The truncated ENG is then released into the maternal circulation via SM-18:0 enriched exosomes together with TGFBR1 and 2. Such an exosomal TGFB receptor complex could be functionally active and block the vascular effects of TGFB in the circulation of PE women.
Collapse
Affiliation(s)
- Leonardo Ermini
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Jonathan Ausman
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Megan Melland-Smith
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Behzad Yeganeh
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Alessandro Rolfo
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Michael L Litvack
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Tullia Todros
- Department of Obstetrics and Gynecology, University of Turin, Turin, 10126, Italy
| | - Michelle Letarte
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Martin Post
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | - Isabella Caniggia
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
5
|
Szilagyi JT, Vetrano AM, Laskin JD, Aleksunes LM. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity. Placenta 2017. [PMID: 28623970 DOI: 10.1016/j.placenta.2017.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. METHODS BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). RESULTS AND DISCUSSION BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts.
Collapse
Affiliation(s)
- John T Szilagyi
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Anna M Vetrano
- Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Takahashi Y, Nishimura T, Maruyama T, Tomi M, Nakashima E. Contributions of system A subtypes to α-methylaminoisobutyric acid uptake by placental microvillous membranes of human and rat. Amino Acids 2017; 49:795-803. [PMID: 28161797 DOI: 10.1007/s00726-017-2384-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 11/28/2022]
Abstract
System A consists of three subtypes, sodium-coupled neutral amino acid transporter 1 (SNAT1), SNAT2, and SNAT4, which are all expressed in the placenta. The aim of this study was to evaluate the contributions of each of the three subtypes to total system A-mediated uptake in placental MVM of human and rat, using betaine and L-arginine as subtype-selective inhibitors of SNAT2 and SNAT4, respectively. Appropriate concentrations of betaine and L-arginine for subtype-selective inhibition in SNAT-overexpressing cells were identified. It was found that 10 mM betaine specifically and almost completely inhibited human and rat SNAT2-mediated [14C]α-methylaminoisobutyric acid ([14C]MeAIB) uptake, while 5 mM L-arginine specifically and completely inhibited [3H]glycine uptake via human SNAT4, as well as [14C]MeAIB uptake via rat SNAT4. In both human and rat placental MVM vesicles, sodium-dependent uptake of [14C]MeAIB was almost completely inhibited by 20 mM unlabeled MeAIB. L-Arginine (5 mM) partly inhibited the uptake in humans, but hardly affected that in rats. Betaine (10 mM) partly inhibited the uptake in rats, but hardly affected it in humans. These results suggest that SNAT1 is most likely the major contributor to system A-mediated MeAIB uptake by human and rat MVM vesicles and that the remaining uptake is mainly mediated by SNAT4 in humans and SNAT2 in rats. Thus, inhibition studies using betaine and L-arginine are useful to characterize the molecular mechanisms of system A-mediated transport.
Collapse
Affiliation(s)
- Yu Takahashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tomohiro Nishimura
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
7
|
Duan Y, Sun F, Que S, Li Y, Yang S, Liu G. Prepregnancy maternal diabetes combined with obesity impairs placental mitochondrial function involving Nrf2/ARE pathway and detrimentally alters metabolism of offspring. Obes Res Clin Pract 2017; 12:90-100. [PMID: 28111084 DOI: 10.1016/j.orcp.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 02/06/2023]
Abstract
Metabolic disorders usually increase the level of reactive oxygen species (ROS) and damage mitochondrial function. The placenta supplies nutrients and hormonal signals to the fetus for regulating fetal metabolism, and is also prone to injury by oxidants. The aim of this study was to determine the effect of pre-existing maternal type 2 diabetes mellitus (DM) combined with obesity on placental mitochondrial function and metabolism disorders of offspring. The study included 96 pregnant women. The women were put into the following groups: healthy women (control, n=24), women with DM (DM, n=24), women with obesity (OB, n=24) and women with both DM and obesity (DM+OB, n=24). The ROS level, mitochondrial content, and the mitochondrial respiratory complex activities of the placenta were measured in the four groups. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was detected by immunofluorescence staining and western blotting. In addition, serum levels of insulin, glucose, leptin, nonesterified fatty acid (NEFA), adiponectin and triglycerides of their offspring were also measured. Maternal DM combined with obesity markedly increased ROS level, reduced mitochondrial DNA (mtDNA) content and mitochondrial respiratory complex I, II-III activities in placenta compared to the placenta from the control group and the DM group. Maternal DM combined with obesity significantly decreased Nrf2 and HO-1 expression. Furthermore, maternal DM combined with obesity influenced the glucose and lipid metabolism in their offspring. In conclusion, women with both DM and obesity detrimentally alter placenta function in oxidative stress regulation, and the Nrf2/ARE (antioxidant responsive element) pathway is involved. This may increase metabolic disturbance susceptibility in their offspring.
Collapse
Affiliation(s)
- Yang Duan
- Department of Neonatology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Fuqiang Sun
- Department of Neonatology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shengshun Que
- Department of Neonatology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yueqin Li
- Department of Neonatology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Suyan Yang
- Department of Neonatology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Geli Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin 300053, China.
| |
Collapse
|
8
|
Tomi M, Eguchi H, Ozaki M, Tawara T, Nishimura S, Higuchi K, Maruyama T, Nishimura T, Nakashima E. Role of OAT4 in Uptake of Estriol Precursor 16α-Hydroxydehydroepiandrosterone Sulfate Into Human Placental Syncytiotrophoblasts From Fetus. Endocrinology 2015; 156:2704-12. [PMID: 25919187 DOI: 10.1210/en.2015-1130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estriol biosynthesis in human placenta requires the uptake of a fetal liver-derived estriol precursor, 16α-hydroxydehydroepiandrosterone sulfate (16α-OH DHEAS), by placental syncytiotrophoblasts at their basal plasma membrane (BM), which faces the fetal circulation. The aim of this work is to identify the transporter(s) mediating 16α-OH DHEAS uptake at the fetal side of syncytiotrophoblasts by using human placental BM-enriched vesicles and to examine the contribution of the putative transporter to estriol synthesis at the cellular level, using choriocarcinoma JEG-3 cells. Organic anion transporter (OAT)-4 and organic anion transporting polypeptide 2B1 proteins were enriched in human placental BM vesicles compared with crude membrane fraction. Uptake of [(3)H]16α-OH DHEAS by BM vesicles was partially inhibited in the absence of sodium but was significantly increased in the absence of chloride and after preloading glutarate. Uptake of [(3)H]16α-OH DHEAS by BM vesicles was significantly inhibited by OAT4 substrates such as dehydroepiandrosterone sulfate, estrone-3-sulfate, and bromosulfophthalein but not by cyclosporin A, tetraethylammonium, p-aminohippuric acid, or cimetidine. These characteristics of vesicular [(3)H]16α-OH DHEAS uptake are in good agreement with those of human OAT4-transfected COS-7 cells as well as forskolin-differentiated JEG-3 cells. Estriol secretion from differentiated JEG-3 cells was detected when the cells were incubated with 16α-OH DHEAS for 8 hours but was inhibited in the presence of 50 μM bromosulfophthalein. Our results indicate that OAT4 at the BM of human placental syncytiotrophoblasts plays a predominant role in the uptake of 16α-OH DHEAS for placental estriol synthesis.
Collapse
Affiliation(s)
- Masatoshi Tomi
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| | - Hiromi Eguchi
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| | - Mayuko Ozaki
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| | - Tomohiro Tawara
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| | - Sachika Nishimura
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| | - Kei Higuchi
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| | - Tetsuo Maruyama
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| | - Tomohiro Nishimura
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| | - Emi Nakashima
- Faculty of Pharmacy (M.T., H.E., M.O., T.T., S.N., K.H., T.N., E.N.), Keio University, Minato-ku 105-8512, Tokyo, Japan; School of Pharmaceutical Sciences (K.H.), Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan; and Department of Obstetrics and Gynecology (T.M.), School of Medicine, Keio University, Shinjuku-ku 160-8512, Tokyo, Japan
| |
Collapse
|
9
|
Noguchi S, Nishimura T, Fujibayashi A, Maruyama T, Tomi M, Nakashima E. Organic Anion Transporter 4-Mediated Transport of Olmesartan at Basal Plasma Membrane of Human Placental Barrier. J Pharm Sci 2015; 104:3128-35. [PMID: 25820021 DOI: 10.1002/jps.24434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
Mechanisms regulating fetal transfer of olmesartan, an angiotensin-II receptor type 1 antagonist, are important as potential determinants of life-threatening adverse fetal effects. The purpose of this study was to examine the olmesartan transport mechanism through the basal plasma membrane (BM) of human syncytiotrophoblasts forming the placental barrier. Uptake of olmesartan by human placental BM vesicles was potently inhibited by dehydroepiandrosterone sulfate (DHEAS), estrone 3-sulfate, and bromosulfophthalein, which are all typical substrates of organic anion transporter (OAT) 4 localized at the BM of syncytiotrophoblasts, and was increased in the absence of chloride. In tetracycline-inducible OAT4-expressing cells, [(3) H]olmesartan uptake was increased by tetracycline treatment. Olmesartan uptake via OAT4 was concentration dependent with a Km of 20 μM, and was increased in the absence of chloride. [(3) H]Olmesartan efflux via OAT4 was also observed and was trans-stimulated by extracellular chloride and DHEAS. Thus, OAT4 mediates bidirectional transport of olmesartan and appears to regulate fetal transfer of olmesartan at the BM of syncytiotrophoblasts. Efflux transport of olmesartan via OAT4 from syncytiotrophoblasts to the fetal circulation might be facilitated in the presence of an inwardly directed physiological chloride gradient and extracellular DHEAS.
Collapse
Affiliation(s)
- Saki Noguchi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | | | - Ayasa Fujibayashi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8512, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
10
|
Abad C, Vargas FR, Zoltan T, Proverbio T, Piñero S, Proverbio F, Marín R. Magnesium sulfate affords protection against oxidative damage during severe preeclampsia. Placenta 2014; 36:179-85. [PMID: 25486968 DOI: 10.1016/j.placenta.2014.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION MgSO4 is the drug of choice to prevent seizures in preeclamptic pregnant women, but its mechanism of action at the molecular level remains an enigma. In previous works, we found that treating preeclamptic women with MgSO4 reduces the lipid peroxidation of their red blood cell membranes to normal levels and leads to a significant reduction in the osmotic fragility of the red blood cells that is increased during preeclampsia. In addition, the increase in lipid peroxidation of red cell membranes induced by the Fenton reaction does not occur when MgSO4 is present. METHODS The antioxidant protection of MgSO4 was evaluated in UV-C-treated red blood cell ghosts and syncytiotrophoblast plasma membranes by measuring their level of lipid peroxidation. The interaction of MgSO4 with free radicals was assessed for its association with the galvinoxyl radical, the quenching of H2O2-induced chemiluminescence and its effect on sensitized peroxidation of linoleic acid. RESULTS a) MgSO4 protected red blood cell ghosts and the syncytiotrophoblast plasma membranes of normotensive pregnant women against lipid peroxidation induced by UV-C irradiation. b) MgSO4 does not seem to scavenge the galvinoxyl free radical. c) The quenching of the H2O2-enhanced luminol chemiluminescence is increased by the presence of MgSO4. d) The peroxidation of linoleic acid is significantly blocked by MgSO4. DISCUSSION MgSO4 may provide protection against oxidative damage of plasma membranes through interactions with alkyl radicals.
Collapse
Affiliation(s)
- C Abad
- Laboratorio de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - F R Vargas
- Laboratorio de Fotoquímica, Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - T Zoltan
- Laboratorio de Fotoquímica, Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - T Proverbio
- Laboratorio de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - S Piñero
- Laboratorio de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - F Proverbio
- Laboratorio de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - R Marín
- Laboratorio de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
11
|
Abad C, Vallejos C, De Gregorio N, Díaz P, Chiarello DI, Mendoza M, Piñero S, Proverbio T, Botana D, Rojas P, Riquelme G, Proverbio F, Marín R. Na⁺, K⁺-ATPase and Ca²⁺-ATPase activities in basal and microvillous syncytiotrophoblast membranes from preeclamptic human term placenta. Hypertens Pregnancy 2014; 34:65-79. [PMID: 25356531 DOI: 10.3109/10641955.2014.973038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study is to evaluate the effect of preeclampsia on the level of lipid peroxidation, activity and expression of both plasma membrane Ca(2+)- and Na(+), K(+)-ATPases in syncytiotrophoblast. METHODS The level of lipid peroxidation was estimated by measuring TBARS. ATPase activities were quantified by a colorimetric method measuring the amount of inorganic phosphate during the assay. Expression of Ca(2+)- and Na(+), K(+)-ATPases in syncytiotrophoblast plasma membranes and term placenta tissue sections was investigated using Western blot and immunohistochemistry, respectively. RESULTS Our results show a higher level of lipid peroxidation of syncytiotrophoblast plasma membranes from preeclamptic, as compared to uncomplicated pregnant women. Preeclampsia also significantly reduced the activity of Ca(2+)- and Na(+), K(+)-ATPases; however, expression of both ATPases was unaffected. CONCLUSION Our findings suggest that the reduction of Ca(2+)- and Na(+), K(+)-ATPase activities during preeclampsia could be at least partially due to an increased level of lipid peroxidation of the syncytiotrophoblast plasma membranes.
Collapse
Affiliation(s)
- Cilia Abad
- Laboratorio de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC) , Caracas , Venezuela , and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Effect of hypoxia on the calcium and magnesium content, lipid peroxidation level, and Ca²⁺-ATPase activity of syncytiotrophoblast plasma membranes from placental explants. BIOMED RESEARCH INTERNATIONAL 2014; 2014:597357. [PMID: 25180187 PMCID: PMC4142282 DOI: 10.1155/2014/597357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/18/2022]
Abstract
In the current study the possible relationship between the Ca2+/Mg2+ ratio of human syncytiotrophoblast plasma membranes and their lipid peroxidation and Ca2+-ATPase activity was determined. Syncytiotrophoblast plasma membranes of placental explants cultured under hypoxia increased their lipid peroxidation and Ca2+ content, diminished their Ca2+-ATPase activity, and kept their Mg2+ content unchanged. Membranes preincubated with different concentrations of Ca2+ increased their Ca2+ content without changes in their Mg2+ content. There is a direct relationship between Ca2+ content and lipid peroxidation of the membranes, as well as an inverse relationship between their Ca2+ content and Ca2+-ATPase activity. On the contrary, preincubation of membranes with different concentrations of Mg2+ showed a higher Mg2+ content without changing their lipid peroxidation and Ca2+-ATPase activity. Explants cultured under hypoxia in the presence of 4 mM MgSO4 showed similar values of lipid peroxidation and Ca2+-ATPase activity of their membranes compared to those of explants cultured under normoxia. Increased Ca2+ content of the membranes by interacting with negatively charged phospholipids could result in destabilizing effects of the membrane structure, exposing hydrocarbon chains of fatty acids to the action of free radicals. Mg2+ might exert a stabilizing effect of the membranes, avoiding their exposure to free radicals.
Collapse
|
13
|
Abdallah D, Hamade E, Merhi RA, Bassam B, Buchet R, Mebarek S. Fatty acid composition in matrix vesicles and in microvilli from femurs of chicken embryos revealed selective recruitment of fatty acids. Biochem Biophys Res Commun 2014; 446:1161-4. [PMID: 24685481 DOI: 10.1016/j.bbrc.2014.03.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
Hypertrophic chondrocytes participate in matrix mineralization by releasing matrix vesicles (MVs). These MVs, by accumulating Ca(2+) and phosphate initiate the formation of hydroxyapatite. To determine the types of lipids essential for mineralization, we analyzed fatty acids (FAs) in MVs, microvilli and in membrane fractions of chondrocytes isolated from femurs of chicken embryos. The FA composition in the MVs was almost identical to that in microvilli, indicating that the MVs originated from microvilli. These fractions contained more monounsaturated FAs especially oleic acid than in membrane homogenates of chondrocytes. They were enriched in 5,8,11-eicosatrienoic acid (20:3n-9), in eicosadienoic acid (20:2n-6), and in arachidonic acid (20:4n-6). In contrast, membrane homogenates from chondrocytes were enriched in 20:1n-9, 18:3n-3, 22:5n-3 and 22:5n-6. Due to their relatively high content in MVs and to their selective recruitment within microvilli from where MV originate, we concluded that 20:2n-6 and 20:3n-9 (pooled values), 18:1n-9 and 20:4n-6 are essential for the biogenesis of MVs and for bone mineralization.
Collapse
Affiliation(s)
- Dina Abdallah
- Université de Lyon, Lyon F-69361, France; Université Lyon 1, Villeurbanne F-69622, France; INSA-Lyon, Villeurbanne F-69622, France; CPE Lyon, Villeurbanne F-69616, France; ICBMS CNRS UMR 5246, Villeurbanne F-69622, France; Genomic and Health Laboratory/PRASE-EDST Campus Rafic Hariri-Hadath-Beirut-Liban, Faculty of Sciences, Lebanese University, Beirut 999095, Lebanon
| | - Eva Hamade
- Genomic and Health Laboratory/PRASE-EDST Campus Rafic Hariri-Hadath-Beirut-Liban, Faculty of Sciences, Lebanese University, Beirut 999095, Lebanon
| | - Raghida Abou Merhi
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath, Beirut, Lebanon
| | - Badran Bassam
- Genomic and Health Laboratory/PRASE-EDST Campus Rafic Hariri-Hadath-Beirut-Liban, Faculty of Sciences, Lebanese University, Beirut 999095, Lebanon
| | - René Buchet
- Université de Lyon, Lyon F-69361, France; Université Lyon 1, Villeurbanne F-69622, France; INSA-Lyon, Villeurbanne F-69622, France; CPE Lyon, Villeurbanne F-69616, France; ICBMS CNRS UMR 5246, Villeurbanne F-69622, France
| | - Saida Mebarek
- Université de Lyon, Lyon F-69361, France; Université Lyon 1, Villeurbanne F-69622, France; INSA-Lyon, Villeurbanne F-69622, France; CPE Lyon, Villeurbanne F-69616, France; ICBMS CNRS UMR 5246, Villeurbanne F-69622, France.
| |
Collapse
|
14
|
Influence of prenatal exposure to environmental pollutants on human cord blood levels of glutamate. Neurotoxicology 2013; 40:102-10. [PMID: 24361731 DOI: 10.1016/j.neuro.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/21/2022]
Abstract
Some chemicals released into the environment, including mercury and some organochlorine compounds (OCs), are suspected to have a key role on subclinical brain dysfunction in childhood. Alteration of the glutamatergic system may be one mechanistic pathway. We aimed to determine whether mercury and seven OCs, including PCBs 138, 153, and 180, DDT and DDE, hexachlorobenzene (HCB), and beta-hexachlorocyclohexane (β-HCH) influence the cord levels of two excitatory amino acids, glutamate and aspartate. Second, we evaluated if this association was mediated by glutamate uptake measured in human placental membranes. The study sample included 40 newborns from a Spanish cohort selected according to cord mercury levels. We determined the content of both amino acids in cord blood samples by means of HPLC and assessed their associations with the contaminants using linear regression analyses, and the effect of the contaminants on glutamate uptake by means of [(3)H]-aspartate binding in human placenta samples. PCB138, β-HCH, and the sum of the three PCBs and seven OCs showed a significant negative association with glutamate levels (decrease of 51, 24, 56 and 54%, respectively, in glutamate levels for each 10-fold increase in the contaminant concentration). Mercury did not show a significant correlation neither with glutamate nor aspartate levels in cord blood, however a compensatory effect between T-Hg and both PCB138, and 4,4'-DDE was observed. The organo-metallic derivative methylmercury completely inhibited glutamate uptake in placenta while PCB138 and β-HCH partially inhibited it (IC50 values: 4.9±0.8 μM, 14.2±1.2 nM and 6.9±2.9 nM, respectively). We conclude that some environmental toxicants may alter the glutamate content in the umbilical cord blood, which might underlie alterations in human development.
Collapse
|
15
|
Boeuf P, Aitken EH, Chandrasiri U, Chua CLL, McInerney B, McQuade L, Duffy M, Molyneux M, Brown G, Glazier J, Rogerson SJ. Plasmodium falciparum malaria elicits inflammatory responses that dysregulate placental amino acid transport. PLoS Pathog 2013; 9:e1003153. [PMID: 23408887 PMCID: PMC3567154 DOI: 10.1371/journal.ppat.1003153] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/21/2012] [Indexed: 01/09/2023] Open
Abstract
Placental malaria (PM) can lead to poor neonatal outcomes, including low birthweight due to fetal growth restriction (FGR), especially when associated with local inflammation (intervillositis or IV). The pathogenesis of PM-associated FGR is largely unknown, but in idiopathic FGR, impaired transplacental amino acid transport, especially through the system A group of amino acid transporters, has been implicated. We hypothesized that PM-associated FGR could result from impairment of transplacental amino acid transport triggered by IV. In a cohort of Malawian women and their infants, the expression and activity of system A (measured by Na+-dependent 14C-MeAIB uptake) were reduced in PM, especially when associated with IV, compared to uninfected placentas. In an in vitro model of PM with IV, placental cells exposed to monocyte/infected erythrocytes conditioned medium showed decreased system A activity. Amino acid concentrations analyzed by reversed phase ultra performance liquid chromatography in paired maternal and cord plasmas revealed specific alterations of amino acid transport by PM, especially with IV. Overall, our data suggest that the fetoplacental unit responds to PM by altering its placental amino acid transport to maintain adequate fetal growth. However, IV more profoundly compromises placental amino acid transport function, leading to FGR. Our study offers the first pathogenetic explanation for FGR in PM. Malaria infection during pregnancy can cause fetal growth restriction and low birthweight associated with high infant mortality and morbidity rates. The pathogenesis of fetal growth restriction in placental malaria is largely unknown, but in other pathological pregnancies, impaired transplacental amino acid transport has been implicated. In a cohort of Malawian women and their infants, we found that placental malaria, especially when associated with local inflammation, was associated with decreased expression and activity of an important group of amino acid placental transporters. Using an in vitro model of placental malaria with local inflammation, we discovered that maternal monocyte products could impair the activity of amino acid transporters on placental cells. Amino acid concentrations in paired maternal and cord plasmas revealed specific alterations of amino acid transport by placental malaria, especially with local inflammation. Overall, our data suggest that, more than malaria infection per se, the local inflammation it triggers compromises placental amino acid transport function, leading to fetal growth restriction. Greater understanding of the mechanisms involved, combined with interventions to improve fetal growth in malaria, are important priorities in areas of the world where the co-existence of malaria and maternal malnutrition threatens the health and lives of millions of young babies.
Collapse
Affiliation(s)
- Philippe Boeuf
- The University of Melbourne, Department of Medicine-RMH, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Maliqueo M, Lara HE, Sánchez F, Echiburú B, Crisosto N, Sir-Petermann T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2012; 166:151-5. [PMID: 23122578 DOI: 10.1016/j.ejogrb.2012.10.015] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/07/2012] [Accepted: 10/04/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the placental activity of steroid sulfatase (STS), 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD-1) and P450 aromatase (P450arom) in polycystic ovarian syndrome (PCOS) compared to normal pregnant women. DESIGN Twenty pregnant women with PCOS and 30 control pregnant women who delivered at term were studied. Samples of placental tissue and cord blood were obtained after delivery. A maternal blood sample was obtained during the 34th week of gestation. In placental tissue, the activities of STS, 3β-HSD-1 and P450arom were evaluated. In the blood samples, progesterone, DHEAS, DHEA, androstenedione, testosterone, estrone, estradiol and total estriol were determined. RESULT In placental tissue from women with PCOS, higher 3β-HSD-1 and lower P450 aromatase activities were observed compared to control women. Moreover, women with PCOS showed higher androstenedione and testosterone concentrations compared to normal pregnant women (p=0.016 and p=0.025, respectively). In cord blood, female newborns of women with PCOS exhibited lower androstenedione and higher estriol concentrations compared to daughters of control women (p=0.038; p=0.031, respectively). CONCLUSION These data suggest that placental tissue from women with PCOS shows changes in the activities of two important enzymes for steroid synthesis, higher 3β-HSD-1 and lower P450, which could increase androgen production during pregnancy.
Collapse
Affiliation(s)
- Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
17
|
Riquelme G, de Gregorio N, Vallejos C, Berrios M, Morales B. Differential expression of potassium channels in placentas from normal and pathological pregnancies: targeting of the K(ir) 2.1 channel to lipid rafts. J Membr Biol 2012; 245:141-50. [PMID: 22391579 DOI: 10.1007/s00232-012-9422-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Potassium channels play important physiological roles in human syncytiotrophoblasts (hSTBs) from placenta, an epithelium responsible for maternal-fetal exchange. Basal and apical plasma membranes differ in their lipid and protein composition, and the latter contains cholesterol-enriched microdomains. In placental tissue, the specific localization of potassium channels is unknown. Previously, we described two isolated subdomains from the apical membrane (MVM and LMVM) and their respective microdomains (lipid rafts). Here, we report on the distribution of K(ir)2.1, K(v)2.1, TASK-1, and TREK-1 in hSTB membranes and the lipid rafts that segregate them. Immunoblotting experiments showed that these channels are present mainly in the apical membrane from healthy hSTBs. Apical expression versus basal membrane was 84 and 16% for K(ir)2.1 and K(v)2.1, 60 and 30% for TREK-1, and 74 and 26% for TASK-1. Interestingly, K(v)2.1 showed differences between apical membrane subdomains: 26 ± 8% was located in the LMVM and 59 ± 9% in MVM. In pathological placentas, the expression distribution changed in the basal membrane: preeclampsia shifted to 50% and intrauterine growth restriction to 42% for TASK-1 and both pathologies increased to 25% for K(ir)2.1 and K(v)2.1, K(ir)2.1 appeared to be associated with rafts that were sensitive to cholesterol depletion in healthy, but not in pathological, placentas. K(v)2.1 and TREK-1 emerged in the nonraft fractions. The precise membrane localization of ion channels in hSTB membranes is necessary to understand the physiological events.
Collapse
Affiliation(s)
- Gloria Riquelme
- Departamento de Fisiología y Biofísica, Instituto de Ciencias Biomédicas-ICBM, Facultad de Medicina, Universidad de Chile, Casilla, 70005 Santiago 7, Chile.
| | | | | | | | | |
Collapse
|
18
|
Vandré DD, Ackerman WE, Tewari A, Kniss DA, Robinson JM. A placental sub-proteome: the apical plasma membrane of the syncytiotrophoblast. Placenta 2012; 33:207-13. [PMID: 22222045 PMCID: PMC3277652 DOI: 10.1016/j.placenta.2011.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
As a highly vascularized tissue, the placenta mediates gas and solute exchange between maternal and fetal circulations. In the human placenta, the interface with maternal blood is a unique epithelial structure known as the syncytiotrophoblast. Previously we developed a colloidal-silica based method to generate highly enriched preparations of the apical plasma membrane of the syncytiotrophoblast. Using similar preparations, a proteomics assessment of this important sub-proteome has identified 340 proteins as part of this apical membrane fraction. The expression of 38 of these proteins was previously unknown in the human placental syncytiotrophoblast. Together with previous studies, the current proteomic database expands our knowledge of the proteome of the syncytiotrophoblast apical plasma membrane from normal placentas to include more than 500 proteins. This database is a valuable resource for future comparisons to diseased placentas. Additionally, this data set provides a basis for further experimental studies of placenta and trophoblast function.
Collapse
Affiliation(s)
- D D Vandré
- Department of Physiology and Cell Biology, Ohio State University, 304 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
19
|
Errasti-Murugarren E, Díaz P, Godoy V, Riquelme G, Pastor-Anglada M. Expression and distribution of nucleoside transporter proteins in the human syncytiotrophoblast. Mol Pharmacol 2011; 80:809-17. [PMID: 21825094 DOI: 10.1124/mol.111.071837] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plasma membrane distribution and related biological activity of nucleoside transporter proteins (NTs) were investigated in human syncytiotrophoblast from term placenta using a variety of approaches, including nucleoside uptake measurements into vesicles from selected plasma membrane domains, NT immunohistochemistry, and subcellular localization (basal, heavy, and light apical membranes as well as raft-enriched membranes from the apical domain). In contrast with other epithelia, in this epithelium, we have identified the high-affinity pyrimidine-preferring human concentrative nucleoside transporter (hCNT) 1 as the only hCNT-type protein expressed at both the basal and apical membranes. hCNT1 localization in lipid rafts is also dependent on its subcellular localization in the apical plasma membrane, suggesting a complex cellular and regional expression. Overall, this result favors the view that the placenta is a pyrimidine-preferring nucleoside sink from both maternal and fetal sides, and hCNT1 plays a major role in promoting pyrimidine salvage and placental growth. This finding may be of pharmacological relevance, because hCNT1 is known to interact with anticancer nucleoside-derived drugs and other molecules, such as nicotine and caffeine, for which a great variety of harmful effects on placental and fetal development, including intrauterine growth retardation, have been reported.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Riquelme G, Vallejos C, de Gregorio N, Morales B, Godoy V, Berrios M, Bastías N, Rodríguez C. Lipid rafts and cytoskeletal proteins in placental microvilli membranes from preeclamptic and IUGR pregnancies. J Membr Biol 2011; 241:127-40. [PMID: 21573936 DOI: 10.1007/s00232-011-9369-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 12/17/2022]
Abstract
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are leading causes of perinatal and maternal morbidity and mortality. Previously we reported the expression of lipid rafts in classical microvillous membrane (MVM) and light microvillous membrane (LMVM), two subdomains in apical membrane from the human placental syncytiotrophoblast (hSTB), which constitute the epithelium responsible for maternal-fetal transport. Here the aim was to study the raft and cytoskeletal proteins from PE and IUGR. Microdomains from MVM and LMVM were tested with raft markers (placental alkaline phosphatase, lipid ganglioside, and annexin 2) and a nonraft marker (hTf-R). No changes were detected with those markers in whole purified apical membranes in normal, PE, and IUGR pregnancies; however, their patterns of distribution in lipid rafts were different in PE and IUGR. Cholesterol depletion modified their segregation, confirming their presence in lipid rafts, although unlike normal placenta, in these pathologies there is only one type of microdomain. Additionally, the cytoskeleton proteins actin, ezrin, and cytokeratin-7 showed clear differences between normal and pathological membranes. Cytokeratin-7 expression decreased to 50% in PE, and the distribution between LMVM and MVM (~43 and 57%, respectively) changed in both PE and IUGR, in contrast with the asymmetrical enrichment obtained in normal LMVM (~62%). In conclusion, lipid rafts from IUGR and PE have different features compared to rafts from normal placentae, and this is associated with alterations in the expression and distribution of cytoskeletal proteins.
Collapse
Affiliation(s)
- Gloria Riquelme
- Depto. de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Riquelme G. Review: Placental syncytiotrophoblast membranes--domains, subdomains and microdomains. Placenta 2011; 32 Suppl 2:S196-202. [PMID: 21272934 DOI: 10.1016/j.placenta.2011.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 11/27/2022]
Abstract
Human placental syncytiotrophoblast (STB) is an epithelium responsible for materno-fetal exchange. Ions play multiple roles in STB, as in other transport epithelia. We have been interested in the character and functional expression of ion channels in STB membrane fractions. Characterization of ion channels and their relationship with different domains, subdomains and microdomains of STB membranes is important to explain the intracellular mechanisms operating in the placental barrier. The aim of this paper is to summarize our work on this subject. We isolated and purified basal membrane (BM) and two fractions from the apical membrane, a classical fraction (MVM) and a light fraction (LMVM). They were used either for reconstitution into giant liposomes or for transplantation into Xenopus oocyte membranes followed by electrophysiological recordings to characterize chloride and cationic channels in STB from term human placenta. In addition, Western blot analysis, using ion channel antibodies, was performed on purified apical and basal membrane fractions. We also reported the presence of two functional microdomains (lipid rafts) in LMVM and MVM, using detergent resistant membranes (DRMs) and cholesterol-sensitive depletion. Moreover we found evidence of cytoskeletal participation in lipid rafts of different composition. Our results contribute to knowledge of the ion channels present in STB membranes and their participation in the physiology of this epithelium in normal and pathological pregnancies.
Collapse
Affiliation(s)
- G Riquelme
- Physiology and Biophysics, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
22
|
Brand A, Greenwood S, Glazier J, Bennett E, Godfrey K, Sibley C, Hanson M, Lewis R. Comparison of l-serine uptake by human placental microvillous membrane vesicles and placental villous fragments. Placenta 2010; 31:456-9. [DOI: 10.1016/j.placenta.2010.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 12/18/2022]
|
23
|
Zhang Q, Schulenborg T, Tan T, Lang B, Friauf E, Fecher-Trost C. Proteome analysis of a plasma membrane-enriched fraction at the placental feto-maternal barrier. Proteomics Clin Appl 2010; 4:538-49. [DOI: 10.1002/prca.200900048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 12/15/2022]
|
24
|
Abstract
The human placental syncytiotrophoblast (hSTB) is a polarized epithelial structure, that forms the main barrier to materno-fetal exchange. The chloride (Cl(-)) channels in other epithelial tissues contribute to several functions, such as maintenance of the membrane potential, volume regulation, absorption and secretion. Additionally, the contributions of Cl(-) channels to these functions are demonstrated by certain diseases and knock-out animal models. There are multiple lines of evidence for the presence of Cl(-) channels in the hSTB, which could contribute to different placental functions. However, both the mechanism by which these channels are involved in the physiology of the placenta, and their molecular identities are still unclear. Furthermore, a correlation between altered Cl(-) channels functions and pathological pregnancies is beginning to emerge. This review summarizes recent developments on conductive placental chloride transport, and discusses its potential implications for placental physiology.
Collapse
|
25
|
Robinson JM, Ackerman WE, Tewari AK, Kniss DA, Vandre DD. Isolation of highly enriched apical plasma membranes of the placental syncytiotrophoblast. Anal Biochem 2009; 387:87-94. [PMID: 19454249 PMCID: PMC3720144 DOI: 10.1016/j.ab.2009.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/07/2009] [Accepted: 01/09/2009] [Indexed: 11/17/2022]
Abstract
The human placenta is a complex organ whose proper function is crucial for the development of the fetus. The placenta contains within its structure elements of the maternal and fetal circulatory systems. The interface with maternal blood is the lining of the placenta, that is a unique compartment known as the syncytiotrophoblast. This large syncytial structure is a single cell layer in thickness, and the apical plasma membrane of the syncytiotrophoblast interacts directly with maternal blood. Relatively little is known about the proteins that reside in this unique plasma membrane or how they may change in various placental diseases. Our goal was to develop methods for isolating highly enriched preparations of this apical plasma membrane compatible with high-quality proteomics analysis and herein describe the properties of these isolated membranes.
Collapse
Affiliation(s)
- John M Robinson
- Department of Physiology and Cell Biology, Ohio State University, 1645 Neil Ave., 304 Hamilton Hall, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
26
|
Robinson JM, Vandré DD, Ackerman WE. Placental proteomics: a shortcut to biological insight. Placenta 2009; 30 Suppl A:S83-9. [PMID: 19070895 PMCID: PMC3532024 DOI: 10.1016/j.placenta.2008.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 12/30/2022]
Abstract
Proteomics analysis of biological samples has the potential to identify novel protein expression patterns and/or changes in protein expression patterns in different developmental or disease states. An important component of successful proteomics research, at least in its present form, is to reduce the complexity of the sample if it is derived from cells or tissues. One method to simplify complex tissues is to focus on a specific, highly purified sub-proteome. Using this approach we have developed methods to prepare highly enriched fractions of the apical plasma membrane of the syncytiotrophoblast. Through proteomics analysis of this fraction we have identified over five hundred proteins several of which were previously not known to reside in the syncytiotrophoblast. Herein, we focus on two of these, dysferlin and myoferlin. These proteins, largely known from studies of skeletal muscle, may not have been found in the human placenta were it not for discovery-based proteomics analysis. This new knowledge, acquired through a discovery-driven approach, can now be applied for the generation of hypothesis-based experimentation. Thus discovery-based and hypothesis-based research are complimentary approaches that when coupled together can hasten scientific discoveries.
Collapse
Affiliation(s)
- J M Robinson
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
27
|
Thouverey C, Strzelecka-Kiliszek A, Balcerzak M, Buchet R, Pikula S. Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells. J Cell Biochem 2009; 106:127-38. [PMID: 19009559 DOI: 10.1002/jcb.21992] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In bone, mineralization is tightly regulated by osteoblasts and hypertrophic chondrocytes which release matrix vesicles (MVs) and control extracellular ionic conditions and matrix composition. MVs are the initial sites of hydroxyapatite (HA) mineral formation. Despite growing knowledge about their morphology and function, their biogenesis is not well understood. The purpose of this work was to determine the source of MVs in osteoblast lineage, Saos-2 cells, and to check whether MVs originated from microvilli. Microvilli were isolated from the apical plasma membrane of Saos-2 cells. Their morphology, structure, and function were compared with those of MVs. The role of actin network in MV release was investigated by using microfilament perturbing drugs. When examined by electron microscopy MVs and microvillar vesicles were found to exhibit similar morphology with trilaminar membranes and diameters in the same range. Both types of vesicles were able to induce HA formation. Their electrophoretic profiles displayed analogous enrichment in alkaline phosphatase, Na(+)/K(+) ATPase, and annexins A2 and A6. MVs and microvillar vesicles exhibited almost the same lipid composition with a higher content of cholesterol, sphingomyelin, and phosphatidylserine as compared to plasma membrane. Finally, cytochalasin D, which inhibits actin polymerization, was found to stimulate release of MVs. Our findings were consistent with the hypothesis that MVs originated from cell microvilli and that actin filament disassembly was involved in their biogenesis.
Collapse
Affiliation(s)
- Cyril Thouverey
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, PL-02093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
28
|
Díaz P, Vallejos C, Guerrero I, Riquelme G. Barium, Tea and Sodium Sensitive Potassium Channels are Present in the Human Placental Syncytiotrophoblast Apical Membrane. Placenta 2008; 29:883-91. [DOI: 10.1016/j.placenta.2008.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
29
|
Distinct Lipid Rafts in Subdomains from Human Placental Apical Syncytiotrophoblast Membranes. J Membr Biol 2008; 224:21-31. [DOI: 10.1007/s00232-008-9125-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 08/19/2008] [Indexed: 12/13/2022]
|
30
|
Functional and Structural Demonstration of the Presence of Ca-ATPase (PMCA) in Both Microvillous and Basal Plasma Membranes from Syncytiotrophoblast of Human Term Placenta. Placenta 2008; 29:671-9. [DOI: 10.1016/j.placenta.2008.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 06/06/2008] [Accepted: 06/09/2008] [Indexed: 11/22/2022]
|
31
|
Stumpf T, Zhang Q, Hirnet D, Lewandrowski U, Sickmann A, Wissenbach U, Dörr J, Lohr C, Deitmer JW, Fecher-Trost C. The Human TRPV6 Channel Protein Is Associated with Cyclophilin B in Human Placenta. J Biol Chem 2008; 283:18086-98. [DOI: 10.1074/jbc.m801821200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Robinson JM, Ackerman WE, Kniss DA, Takizawa T, Vandré DD. Proteomics of the human placenta: promises and realities. Placenta 2008; 29:135-43. [PMID: 18222537 DOI: 10.1016/j.placenta.2007.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/06/2007] [Accepted: 12/11/2007] [Indexed: 02/08/2023]
Abstract
Proteomics is an area of study that sets as its ultimate goal the global analysis of all of the proteins expressed in a biological system of interest. However, technical limitations currently hamper proteome-wide analyses of complex systems. In a more practical sense, a desired outcome of proteomics research is the translation of large protein data sets into formats that provide meaningful information regarding clinical conditions (e.g., biomarkers to serve as diagnostic and/or prognostic indicators of disease). Herein, we discuss placental proteomics by describing existing studies, pointing out their strengths and weaknesses. In so doing, we strive to inform investigators interested in this area of research about the current gap between hyperbolic promises and realities. Additionally, we discuss the utility of proteomics in discovery-based research, particularly as regards the capacity to unearth novel insights into placental biology. Importantly, when considering under studied systems such as the human placenta and diseases associated with abnormalities in placental function, proteomics can serve as a robust 'shortcut' to obtaining information unlikely to be garnered using traditional approaches.
Collapse
Affiliation(s)
- J M Robinson
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
33
|
Vallejos C, Riquelme G. The maxi-chloride channel in human syncytiotrophoblast: a pathway for taurine efflux in placental volume regulation? Placenta 2007; 28:1182-91. [PMID: 17675153 DOI: 10.1016/j.placenta.2007.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/05/2007] [Accepted: 06/16/2007] [Indexed: 11/19/2022]
Abstract
Taurine (Tau), the most abundant amino acid in fetal blood, is highly concentrated in human placenta. During pregnancy, Tau is involved in the neurological development of the fetus, and in volume regulation of the placenta. The placenta may release taurine in parallel with K(+) and Cl(-) in response to an increase in cell volume. However, the pathway for the volume-activated taurine efflux is unknown. One candidate is a voltage-dependent Maxi-chloride channel from apical syncytiotrophoblast membrane (MVM), with a conductance over 200pS and multiple subconductance states. Our aim was to study whether this channel could be a Tau conductive pathway in the MVM. Purified human placental MVM were reconstituted into giant liposomes suitable for patch clamp recordings. Typical Maxi-chloride channel activity was detected in symmetrical chloride (Cl(-)) solutions, and then taurine (Tau), Aspartate (Asp), and glutamate (Glu) solutions were used in the bath of excised patches to detect single channel currents carried by these anions. The relative permeabilities (P), estimated from the shift in reversal potential of current-voltage curves after anion replacement, were as follows: Chloride>Taurine=Glutamate=Aspartate. In Tau symmetric conditions using equivalent Cl(-) concentrations, the slope conductance was 62.4+/-7.3pS. The data shows that Tau and other amino acids diffuse through the Maxi-chloride channel, which could be of great importance as part of the mechanism involved in the volume regulation process in human placenta.
Collapse
Affiliation(s)
- C Vallejos
- Laboratorio de Electrofisiología de Membranas, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | |
Collapse
|
34
|
Vandré DD, Ackerman WE, Kniss DA, Tewari AK, Mori M, Takizawa T, Robinson JM. Dysferlin is expressed in human placenta but does not associate with caveolin. Biol Reprod 2007; 77:533-42. [PMID: 17554076 DOI: 10.1095/biolreprod.107.062190] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A proteomics screen of human placental microvillous syncytiotrophoblasts (STBs) revealed the expression of dysferlin (DYSF), a plasma membrane repair protein associated with certain muscular dystrophies. This was unexpected given that previous studies of DYSF have been restricted to skeletal muscle. Within the placenta, DYSF localized to the STB and, with the exception of variable labeling in the fetal placental endothelium, none of the other cell types expressed detectable levels of DYSF. Such restricted expression was recapitulated using primary trophoblast cell cultures, because the syncytia expressed DYSF, but not the prefusion mononuclear cells. The apical plasma membrane of the STB contained approximately 4-fold more DYSF than the basal membrane, suggesting polarized trafficking. Unlike skeletal muscle, DYSF in the STB is localized to the plasma membrane in the absence of caveolin. DYSF expression in the STB was developmentally regulated, because first-trimester placentas expressed approximately 3-fold more DYSF than term placentas. As the current literature indicates that few cell types express DYSF, it is of interest that the two major syncytial structures in the human body, skeletal muscle and the STB, express this protein.
Collapse
Affiliation(s)
- Dale D Vandré
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Paradela A, Bravo SB, Henríquez M, Riquelme G, Gavilanes F, González-Ros JM, Albar JP. Proteomic analysis of apical microvillous membranes of syncytiotrophoblast cells reveals a high degree of similarity with lipid rafts. J Proteome Res 2006; 4:2435-41. [PMID: 16335998 DOI: 10.1021/pr050308v] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brush borders (microvilli) are cell membrane specialized structures that function mainly as high-throughput absortive/secretory areas. It has been well-established that brush borders are particularly rich in membrane lipids characteristic to lipid rafts. Here, we report 57 proteins identified from microvillous membranes (MVM) isolated from human syncytiotrophoblast cells using an experimental method that avoids the use of nonionic detergents. About 60% of the proteins reported here have been described previously as lipid-raft specific. Well-known lipid raft-markers such as Annexin A2 and alkaline phosphatase were identified. Cytoskeleton structural constituents and proteins related with the control and modulation of the cytoskeletal architecture as well as the regulation of the interaction of cytoskeletal constituents with the cell membrane and particularly with lipid raft domains were found (Ezrin, IQGAP1 and 2, EBP50). Other proteins identified include signal transduction molecules, such as Ras-related protein Rab-1B and Rab-7, and ADP-ribosylation factor 1. Several proteins harbor putative post-translational modifications that favor its localization in the lipid-raft environment, such as GPI (alkaline phosphatase and 5'-nucleotidase) and myristoylation (BASP1 and MARCKS). On the whole, this extensive description demonstrates from the protein composition point of view that brush border membranes are indeed highly enriched in lipid raft microdomains.
Collapse
Affiliation(s)
- Alberto Paradela
- Servicio de Proteómica, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, España
| | | | | | | | | | | | | |
Collapse
|
36
|
Riquelme G, Llanos P, Tischner E, Neil J, Campos B. Annexin 6 modulates the maxi-chloride channel of the apical membrane of syncytiotrophoblast isolated from human placenta. J Biol Chem 2004; 279:50601-8. [PMID: 15355961 DOI: 10.1074/jbc.m407859200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The syncytiotrophoblast separates the maternal and fetal blood and constitutes the primary barrier for maternal-fetal transport. The Maxi-chloride channel from the apical membrane of the syncytiotrophoblast plays a role in the chloride conductance. Annexins can play an important role in the regulation of membrane events. In this study we evaluate the role of annexin 6 in the Maxichloride channel properties. The results showed that annexin 6 is bound in the apical placenta membranes in a calcium-dependent phospholipid-binding manner but also in a calcium-independent fashion. The neutralization of annexin 6 decreased the total current by 39 +/- 1.9% in the range of +/-80 mV, and the currents decrease with the time. The single-channel slope conductance was decreased from 253 +/- 7.4 pS (control) to 105 +/- 13 pS, and the amplitude decreased by 50%. The open probability was also affected when higher voltage steps were used, changes in either the positive or negative direction induced the channel to close, and the open probability (P(o)) did not decrease. In channels with neutralized annexin 6, it was maintained at 1 at +/-40 mV and at +/-80 mV. These results suggest that endogenous annexin 6 could regulate the Maxi-chloride channel. The results obtained with normal placentae, in which annexin 6 was neutralized, are similar to those described for the Maxi-chloride channel isolated from pre-eclamptic placenta. Together these data suggest that annexin 6 could play an important role in ion transport of the placenta.
Collapse
Affiliation(s)
- Gloria Riquelme
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | | | | | | | |
Collapse
|