1
|
Lee KM, Kim TH, Noh EJ, Han JW, Kim JS, Lee SK. 25-Hydroxycholesterol induces oxidative stress, leading to apoptosis and ferroptosis in extravillous trophoblasts. Chem Biol Interact 2024; 403:111214. [PMID: 39197811 DOI: 10.1016/j.cbi.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
25-hydroxycholesterol (25HC) is an oxysterol derived from cholesterol and plays a role in various cellular processes, such as lipid metabolism, inflammatory responses, and cell survival. Extravillous trophoblasts (EVTs) are a major cell type found in the placenta, which are highly energetic cells with proliferative and invasive properties. EVT dysfunction can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction. This study investigated the effects and underlying mechanisms of action of 25HC on EVT proliferation. Swan 71 cells, an EVT cell line, were treated with different concentrations of 25HC. Next, cell proliferation was assessed. The mitochondrial reactive oxygen species (mtROS), mitochondrial membrane potentials (MMPs), lipid peroxidation (LPO), and glutathione (GSH) levels were measured. Apoptosis, ferroptosis, and autophagy were evaluated by western blotting and flow cytometry. The results revealed that 25HC significantly inhibited proliferation and decreased the metabolic activity of EVTs. Moreover, 25HC caused oxidative stress by altering mtROS, LPO, MMPs, and GSH levels. Additionally, 25HC induces apoptosis, ferroptosis, and autophagy through the modulation of relevant protein levels. Interestingly, pretreatment with Z-VAD-FMK, an apoptosis inhibitor, and ferrostatin-1, a ferroptosis inhibitor, partially restored the effects of 25HC on cell proliferation, oxidative stress, and cell death. In summary, our findings suggest that 25HC treatment inhibits EVT proliferation and triggers apoptosis, ferroptosis, and autophagy, which are attributable to oxidative stress.
Collapse
Affiliation(s)
- Ki Mo Lee
- Department of Obstetrics and Gynecology, Myuonggok Medical Research Center, Konyang University College of Medicine, Daejeon, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics and Gynecology, Myuonggok Medical Research Center, Konyang University College of Medicine, Daejeon, South Korea
| | - Eui-Jeong Noh
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae Won Han
- Department of Obstetrics and Gynecology, Myuonggok Medical Research Center, Konyang University College of Medicine, Daejeon, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, South Korea.
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Myuonggok Medical Research Center, Konyang University College of Medicine, Daejeon, South Korea.
| |
Collapse
|
2
|
Zhang Z, Zhang B, Jiang X, Yu Y, Cui Y, Luo H, Wang B. Hyocholic acid retards renal fibrosis by regulating lipid metabolism and inflammatory response in a sheep model. Int Immunopharmacol 2023; 122:110670. [PMID: 37481851 DOI: 10.1016/j.intimp.2023.110670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
The kidneys are vital organs that regulate metabolic homeostasis in the body, filter waste products from the blood, and remove extrahepatic bile acids. We previously found that the dietary supplementation of hyocholic acid alleviated the sheep body lipid deposition and decreased kidney weight. This study evaluated hyocholic acid's (HCA) roles and mechanisms on lipid metabolism and anti-inflammatory function in the kidney under a high-energy diet. Histomicrograph showing the apparent improvement by HCA by attenuating structural damage. The HCA treatment reduced the renal accumulation of cholesterol. Bile acid receptors such as LXR and FXR were activated at the protein level. HCA significantly altered several genes related to immune response (NF-κB, IL-6, and MCP1) and fibrosis (TGF-β, Col1α1, and α-SMA). These significant changes correlated with renal lipid accumulation. The KEGG pathways including non-alcoholic fatty liver disease, insulin resistance, TNF signaling pathway, and Th17 cell differentiation were enriched and NF-κB, IL-6, and TGF-β were identified as the core interconnected genes. This study revealed that HCA plays an efficient role in alleviating kidney lipids accumulation and inflammatory response through crucial genes such as FXR, LXR, HMGCR, NF-κB, IL-6, MCP1, and TGF-β, and expand our understanding of HCA's role in kidney function. In conclusion, HCA mitigated kidney fibrosis, lipid metabolism disorders and immune responses induced by a high-energy diet by regulating a potential LXR/SREBP2/TGF-β-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zeping Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Boyan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xianzhe Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yue Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
3
|
A pilot study of the association between maternal mid-pregnancy cholesterol and oxysterol concentrations and labor duration. Lipids Health Dis 2023; 22:37. [PMID: 36906556 PMCID: PMC10007829 DOI: 10.1186/s12944-023-01800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Previous animal model studies have highlighted a role for cholesterol and its oxidized derivatives (oxysterols) in uterine contractile activity, however, a lipotoxic state associated with hypercholesterolemia may contribute to labor dystocia. Therefore, we investigated if maternal mid-pregnancy cholesterol and oxysterol concentrations were associated with labor duration in a human pregnancy cohort. METHODS We conducted a secondary analysis of serum samples and birth outcome data from healthy pregnant women (N = 25) with mid-pregnancy fasting serum samples collected at 22-28 weeks of gestation. Serum was analyzed for total-C, HDL-C, and LDL-C by direct automated enzymatic assay and oxysterol profile including 7α-hydroxycholesterol (7αOHC), 7β-hydroxycholesterol (7βOHC), 24-hydroxycholesterol (24OHC), 25-hydroxycholesterol (25OHC), 27-hydroxycholesterol (27OHC), and 7-ketocholesterol (7KC) by liquid chromatography-selected ion monitoring-stable isotope dilution-atmospheric pressure chemical ionization-mass spectroscopy. Associations between maternal second trimester lipids and labor duration (minutes) were assessed using multivariable linear regression adjusting for maternal nulliparity and age. RESULTS An increase in labor duration was observed for every 1-unit increment in serum 24OHC (0.96 min [0.36,1.56], p < 0.01), 25OHC (7.02 min [1.92,12.24], p = 0.01), 27OHC (0.54 min [0.06, 1.08], p < 0.05), 7KC (8.04 min [2.7,13.5], p < 0.01), and total oxysterols (0.42 min [0.18,0.06], p < 0.01]. No significant associations between labor duration and serum total-C, LDL-C, or HDL-C were observed. CONCLUSIONS In this cohort, mid-pregnancy concentrations of maternal oxysterols (24OHC, 25OHC, 27OHC, and 7KC) were positively associated with labor duration. Given the small population and use of self-reported labor duration, subsequent studies are required for confirmation.
Collapse
|
4
|
Li L, Gu Z, Zhang J. CTRP9 overexpression attenuates palmitic acid‑induced inflammation, apoptosis and impaired migration in HTR8/SVneo cells through AMPK/SREBP1c signaling. Exp Ther Med 2022; 24:459. [PMID: 35747146 PMCID: PMC9204553 DOI: 10.3892/etm.2022.11386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022] Open
Abstract
Obesity in pregnant mothers often leads to a range of obstetric complications, including miscarriage, pre-eclampsia, gestational hypertension and diabetes. C1q/TNF-related protein 9 (CTRP9) is an adipokine with an anti-inflammatory effect. The aim of the present study was to identify the role of CTRP9 in the pathogenesis of maternal obesity during pregnancy. Following treatment with palmitic acid (PA), HTR8/SVneo cell viability and CTRP9 expression were analyzed using Cell Counting Kit-8 (CCK-8), reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses. The effects of CTRP9 overexpression on cell viability, apoptosis, pro-inflammatory cytokine levels and migration were assessed using CCK-8, TUNEL, RT-qPCR and Transwell assays, respectively. Subsequently, sterol-regulatory element binding protein 1c (SREBP1c) overexpression efficiency was verified using RT-qPCR, and its effects on cell viability, apoptosis, pro-inflammatory cytokines and migration damage were then examined in HTR8/SVneo cells. The results showed that CTRP9 overexpression attenuated the inhibition of cell viability and apoptosis caused by PA in HTR8/SVneo cells, reduced pro-inflammatory cytokine release, improved cell migration and regulated the protein expression level of AMP-activated protein kinase (AMPK)/SREBP1c signaling. In addition, CTRP9 inhibited SREBP1c expression through AMPK signaling, thereby attenuating the inflammation, apoptosis and inhibited migration caused by PA in HTR8/SVneo cells. In brief, CTRP9 protected against inflammation, apoptosis and migration defects in HTR8/SVneo cells exposed to PA treatment through AMPK/SREBP1c signaling, which suggested the potential role of CTRP9 in alleviating the toxicity of PA.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Zhongyi Gu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Junjie Zhang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
5
|
Nuclear Receptors in Pregnancy and Outcomes: Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:3-19. [DOI: 10.1007/978-3-031-11836-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
7
|
Identifying selective agonists targeting LXRβ from terpene compounds of alismatis rhizoma. J Mol Model 2021; 27:91. [PMID: 33616795 DOI: 10.1007/s00894-021-04699-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Hyperlipidemia is thought of as an important contributor to coronary disease, diabetes, and fatty liver. Liver X receptor β (LXRβ) was considered as a validated target for hyperlipidemia therapy due to its role in regulating cholesterol homeostasis and immunity. However, many current drugs applied in clinics are not selectively targeting LXRβ, and they can also activate LXRα which activates SREBP-1c that worked as an activator of lipogenic genes. Therefore, exploiting agonists selectively targeting LXRβ is urgent. Here, computational tools were used to screen potential agonists selectively targeting LXRβ from 112 terpenes of alismatis rhizoma. Firstly, a structural analysis between selective and nonselective agonists was used to explore key residues of selective binding with LXRβ. Our data indicated that Phe271, Ser278, Met312, His435, and Trp457 were important to compounds binding with LXRβ, suggesting that engaging ligand interaction with these residues may provide directions for the development of ligands with improved selective profiles. Then, ADMET analysis, molecular docking, MD simulations, and calculation of binding free energy and its decomposition were executed to screen the agonists whose bioactivity was favorable from 112 terpenes of alismatis rhizoma. We found that two triterpenes 16-hydroxy-alisol B 23-acetate and alisol M 23-acetate showed favorable ADMET properties and high binding affinity against LXRβ. These compounds could be considered as promising selective agonists targeting LXRβ. Our work provides an alternative strategy for screening agonists selectively targeting LXRβ from alismatis rhizoma for hyperlipidemia disease treatment.
Collapse
|
8
|
Phung AS, Bannenberg G, Vigor C, Reversat G, Oger C, Roumain M, Galano JM, Durand T, Muccioli GG, Ismail A, Wang SC. Chemical Compositional Changes in Over-Oxidized Fish Oils. Foods 2020; 9:foods9101501. [PMID: 33092165 PMCID: PMC7590219 DOI: 10.3390/foods9101501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
A recent study has reported that the administration during gestation of a highly rancid hoki liver oil, obtained by oxidation through sustained exposure to oxygen gas and incident light for 30 days, causes newborn mortality in rats. This effect was attributed to lipid hydroperoxides formed in the omega-3 long-chain polyunsaturated fatty acid-rich oil, while other chemical changes in the damaged oil were overlooked. In the present study, the oxidation condition employed to damage the hoki liver oil was replicated, and the extreme rancidity was confirmed. A detailed analysis of temporal chemical changes resulting from the sustained oxidative challenge involved measures of eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) omega-3 oil oxidative quality (peroxide value, para-anisidine value, total oxidation number, acid value, oligomers, antioxidant content, and induction time) as well as changes in fatty acid content, volatiles, isoprostanoids, and oxysterols. The chemical description was extended to refined anchovy oil, which is a more representative ingredient oil used in omega-3 finished products. The present study also analyzed the effects of a different oxidation method involving thermal exposure in the dark in contact with air, which is an oxidation condition that is more relevant to retail products. The two oils had different susceptibility to the oxidation conditions, resulting in distinct chemical oxidation signatures that were determined primarily by antioxidant protection as well as specific methodological aspects of the applied oxidative conditions. Unique isoprostanoids and oxysterols were formed in the over-oxidized fish oils, which are discussed in light of their potential biological activities.
Collapse
Affiliation(s)
- Austin S. Phung
- Department of Chemistry, University of California, Davis, CA 95616, USA;
| | - Gerard Bannenberg
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
- Correspondence: (G.B.); (S.C.W.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Martin Roumain
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Giulio G. Muccioli
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Adam Ismail
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
| | - Selina C. Wang
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Correspondence: (G.B.); (S.C.W.)
| |
Collapse
|
9
|
Cantin C, Fuenzalida B, Leiva A. Maternal hypercholesterolemia during pregnancy: Potential modulation of cholesterol transport through the human placenta and lipoprotein profile in maternal and neonatal circulation. Placenta 2020; 94:26-33. [DOI: 10.1016/j.placenta.2020.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 01/28/2023]
|
10
|
Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci Rep 2020; 10:5264. [PMID: 32210256 PMCID: PMC7093446 DOI: 10.1038/s41598-020-61629-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal physiological (MPH) or supraphysiological hypercholesterolaemia (MSPH) occurs during pregnancy. Cholesterol trafficking from maternal to foetal circulation requires the uptake of maternal LDL and HDL by syncytiotrophoblast and cholesterol efflux from this multinucleated tissue to ApoA-I and HDL. We aimed to determine the effects of MSPH on placental cholesterol trafficking. Placental tissue and primary human trophoblast (PHT) were isolated from pregnant women with total cholesterol <280 md/dL (MPH, n = 27) or ≥280 md/dL (MSPH, n = 28). The lipid profile in umbilical cord blood from MPH and MSPH neonates was similar. The abundance of LDL receptor (LDLR) and HDL receptor (SR-BI) was comparable between MSPH and MPH placentas. However, LDLR was localized mainly in the syncytiotrophoblast surface and was associated with reduced placental levels of its ligand ApoB. In PHT from MSPH, the uptake of LDL and HDL was lower compared to MPH, without changes in LDLR and reduced levels of SR-BI. Regarding cholesterol efflux, in MSPH placentas, the abundance of cholesterol transporter ABCA1 was increased, while ABCG1 and SR-BI were reduced. In PHT from MSPH, the cholesterol efflux to ApoA-I was increased and to HDL was reduced, along with reduced levels of ABCG1, compared to MPH. Inhibition of SR-BI did not change cholesterol efflux in PHT. The TC content in PHT was comparable in MPH and MSPH cells. However, free cholesterol was increased in MSPH cells. We conclude that MSPH alters the trafficking and content of cholesterol in placental trophoblasts, which could be associated with changes in the placenta-mediated maternal-to-foetal cholesterol trafficking.
Collapse
|
11
|
Castaño-Moreno E, Castillo V, Peñailillo R, Llanos MN, Valenzuela R, Ronco AM. Fatty acid and lipid metabolism in liver of pregnant mice and their offspring is influenced by unbalanced folates/vitamin B12 diets. Prostaglandins Leukot Essent Fatty Acids 2020; 154:102057. [PMID: 32028098 DOI: 10.1016/j.plefa.2020.102057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022]
Abstract
Micronutrients (folates and vitamin B12) and long chain polyunsaturated fatty acids (LC-PUFAs) are linked through the one carbon cycle. We studied the effects of pre and postnatal high FA/low B12 diets (HFLB12) on hepatic fatty acid metabolism. Pregnant C57BL/6 mice were divided in two groups: control (2 mg folic acid: FA/25 µg vitamin B12/Kg food) and HFLB12 diets (8 mg FA/5 µg vitamin B12/Kg food). Offspring continued on the same diets until 60 days old. We determined hepatic fatty acid profile in dams and offspring and the expression of PPARα, Cpt-1, Acox-1 and Fas and the enzymatic activity of desaturases, all involved in lipid metabolism. In liver of dams, the HFHB12 diet decreased total fatty acids and desaturase activities; in offspring, effects were opposite, being more noticeable in females. Prenatal and postnatal unbalanced folic acid/B12 diets play a crucial role in regulating genes and enzymes involved in lipid metabolism in liver of dams and their offspring in adulthood.
Collapse
Affiliation(s)
- Erika Castaño-Moreno
- Laboratory of Nutrition and Metabolic Regulation, Human Nutrition Unit, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, 7830490, Chile
| | - Valeska Castillo
- Laboratory of Nutrition and Metabolic Regulation, Human Nutrition Unit, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, 7830490, Chile
| | - Reyna Peñailillo
- Laboratory of Nutrition and Metabolic Regulation, Human Nutrition Unit, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, 7830490, Chile
| | - Miguel N Llanos
- Laboratory of Nutrition and Metabolic Regulation, Human Nutrition Unit, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, 7830490, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, 8380000, Chile
| | - Ana María Ronco
- Laboratory of Nutrition and Metabolic Regulation, Human Nutrition Unit, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, 7830490, Chile.
| |
Collapse
|
12
|
Vondra S, Kunihs V, Eberhart T, Eigner K, Bauer R, Haslinger P, Haider S, Windsperger K, Klambauer G, Schütz B, Mikula M, Zhu X, Urban AE, Hannibal RL, Baker J, Knöfler M, Stangl H, Pollheimer J, Röhrl C. Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages. J Lipid Res 2019; 60:1922-1934. [PMID: 31530576 PMCID: PMC6824492 DOI: 10.1194/jlr.p093427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
During pregnancy, extravillous trophoblasts (EVTs) invade the maternal decidua and remodel the local vasculature to establish blood supply for the growing fetus. Compromised EVT function has been linked to aberrant pregnancy associated with maternal and fetal morbidity and mortality. However, metabolic features of this invasive trophoblast subtype are largely unknown. Using primary human trophoblasts isolated from first trimester placental tissues, we show that cellular cholesterol homeostasis is differentially regulated in EVTs compared with villous cytotrophoblasts. Utilizing RNA-sequencing, gene set-enrichment analysis, and functional validation, we provide evidence that EVTs display increased levels of free and esterified cholesterol. Accordingly, EVTs are characterized by increased expression of the HDL-receptor, scavenger receptor class B type I, and reduced expression of the LXR and its target genes. We further reveal that EVTs express elevated levels of hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1) (a rate-limiting enzyme in progesterone synthesis) and are capable of secreting progesterone. Increasing cholesterol export by LXR activation reduced progesterone secretion in an ABCA1-dependent manner. Importantly, HSD3B1 expression was decreased in EVTs of idiopathic recurrent spontaneous abortions, pointing toward compromised progesterone metabolism in EVTs of early miscarriages. Here, we provide insights into the regulation of cholesterol and progesterone metabolism in trophoblastic subtypes and its putative relevance in human miscarriage.
Collapse
Affiliation(s)
- Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Tanja Eberhart
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Karin Eigner
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Raimund Bauer
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Karin Windsperger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Günter Klambauer
- Institute of Machine Learning,Johannes Kepler University Linz, Linz, Austria
| | - Birgit Schütz
- Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Xiaowei Zhu
- Departments of PsychiatryStanford University School of Medicine, Stanford, CA,Genetics,Stanford University School of Medicine, Stanford, CA
| | - Alexander E. Urban
- Departments of PsychiatryStanford University School of Medicine, Stanford, CA,Genetics,Stanford University School of Medicine, Stanford, CA
| | | | - Julie Baker
- Genetics,Stanford University School of Medicine, Stanford, CA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria,To whom correspondence should be addressed. e-mail: (C.R.); (J.P.)
| | - Clemens Röhrl
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria,University of Applied Sciences Upper Austria, Wels, Austria,To whom correspondence should be addressed. e-mail: (C.R.); (J.P.)
| |
Collapse
|
13
|
Klf14 is an imprinted transcription factor that regulates placental growth. Placenta 2019; 88:61-67. [PMID: 31675530 DOI: 10.1016/j.placenta.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Imprinted genes are preferentially expressed from one parentally inherited allele, and many are crucial to the regulation of placental function and fetal growth. Murine Krüppel-like factor 14 (Klf14) is a maternally expressed imprinted transcription factor that is a component of the Mest imprinted gene cluster on mouse chromosome 6. We sought to determine if loss of Klf14 expression alters the course of normal mouse extraembryonic development. We also used high-throughput RNA sequencing (RNAseq) to identify a set of differentially expressed genes (DEGs) in placentas with loss of Klf14. METHODS We generated a Klf14 knockout (Klf14null) mouse using recombineering and transgenic approaches. To identify DEGs in the mouse placenta we compared mRNA transcriptomes derived from 17.5dpc Klf14matKO and wild-type littermate placentas by RNAseq. Candidate DEGs were confirmed with quantitative reverse transcription PCR (qPCR) on an independent cohort of male and female gestational age matched Klf14matKO placentas. RESULTS We found that 17.5dpc placentas inheriting a maternal null allele (Klf14matKO) had a modest overgrowth phenotype and a near complete ablation of Klf14 expression. However, there was no effect on fetal growth. We identified 20 DEGs differentially expressed in Klf14matKO placentas by RNAseq, and subsequently validated five that are highly upregulated (Begain, Col26a1, Fbln5, Gdf10, and Nell1) by qPCR. The most enriched functional gene-networks included those classified as regulating cellular development and metabolism. CONCLUSION These results suggest that loss of the maternal Klf14 locus in the mouse placenta acts results in changes in gene expression patterns that modulate placental growth.
Collapse
|
14
|
Huang W, Zhou J, Zhang G, Zhang Y, Wang H. Decreased H3K9 acetylation level of LXRα mediated dexamethasone-induced placental cholesterol transport dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158524. [PMID: 31513924 DOI: 10.1016/j.bbalip.2019.158524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023]
Abstract
Due to the insufficient fetal cholesterol synthesis, maternal cholesterol transport through the placenta becomes an important source of fetal cholesterol pool, which is essential for fetal growth and development. This study aimed to investigate the effects of dexamethasone on fetal cholesterol levels, and explore its placental mechanism. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.8 mg/kg·d) from gestational day 9 to 20. Results showed that dexamethasone increased maternal serum total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C) levels, as well as placental cholesterol synthesis and TC concentration, while reduced fetal birth weight, and serum TC, HDL-C and LDL-C levels. Meanwhile, the expression of placental cholesterol transporters, including low-density lipoprotein receptor (LDLR), scavenger receptor class B type I (SR-B1) and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) were decreased by dexamethasone. Furthermore, the expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) were increased, while the H3K9ac and expression levels of liver X receptor α (LXRα) promoter were reduced. In human trophoblast cell line (BeWo), dexamethasone concentration-dependently decreased the expression levels of LDLR, SR-B1, ABCA1, ABCG1 as well as LXRα. Dexamethasone (2500 nM) induced GR translocation into nucleus and recruited HDAC3. Furthermore, LXRα agonist and GR inhibitor reversed respectively dexamethasone-induced the expression inhibitions of cholesterol transporter and LXRα, and HDAC3 siRNA reversed the H3K9ac level of LXRα promoter and its expression. Together, dexamethasone impaired placental cholesterol transport and eventually decreased fetal cholesterol levels, which is related to the down-regulation of LXRα mediated by GR/HDAC3/H3K9ac signaling.
Collapse
Affiliation(s)
- Wen Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guohui Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
15
|
Novel high-coverage targeted metabolomics method (SWATHtoMRM) for exploring follicular fluid metabolome alterations in women with recurrent spontaneous abortion undergoing in vitro fertilization. Sci Rep 2019; 9:10873. [PMID: 31350457 PMCID: PMC6659694 DOI: 10.1038/s41598-019-47370-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/16/2019] [Indexed: 12/31/2022] Open
Abstract
The complexity of follicular fluid metabolome presents a significant challenge for qualitative and quantitative metabolite profiling, and for discovering the comprehensive biomarkers. In order to address this challenge, a novel SWATHtoMRM metabolomics method was used for providing broad coverage and excellent quantitative capability to discover the human follicular fluid metabolites related to recurrent spontaneous abortion (RSA) after in vitro fertilization and embryo transfer, and to evaluate their relationship with pregnancy outcome. The follicular fluid samples from the spontaneous abortion group (n = 22) and the control group (n = 22) were analyzed using ultra-performance liquid chromatography high-resolution mass spectrometry. A novel, high-coverage, targeted metabolomics method (SWATH to MRM) and a targeted metabolomics method were used to find and validate the differential metabolites between the two groups. A total of 18 follicular fluid metabolites, including amino acids, cholesterol, vitamins, fatty acids, cholic acid, lysophosphatidylcholine and other metabolites, were identified. In the RSA group, 8 metabolites, namely dehydroepiandrosterone, lysoPC(16:0), lysoPC(18:2), lysoPC(18:1), lysoPC(18:0), lysoPC(20:5), lysoPC(20:4), and lysoPC(20:3), were up-regulated, and 10 metabolites, namely phenylalanine, linoleate, oleic acid, docosahexaenoic acid, lithocholic acid, 25-hydroxyvitamin D3, hydroxycholesterol, 13-hydroxy-alpha-tocopherol, leucine, and tryptophan, were down-regulated. These differential metabolites related to RSA may provide a possible diagnostic basis and therapeutic target for RSA, as well as a scientific basis for elucidating the mechanism of RSA.
Collapse
|
16
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Impairment of trophoblast survival and differentiation by LXR ligands is prevented by cholesterol but not ABCA1 silencing. Placenta 2018; 69:50-56. [DOI: 10.1016/j.placenta.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 01/31/2023]
|
18
|
Kallol S, Huang X, Müller S, Ontsouka CE, Albrecht C. Novel Insights into Concepts and Directionality of Maternal⁻Fetal Cholesterol Transfer across the Human Placenta. Int J Mol Sci 2018; 19:ijms19082334. [PMID: 30096856 PMCID: PMC6121295 DOI: 10.3390/ijms19082334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is indispensable for cellular membrane composition and function. It is also a precursor for the synthesis of steroid hormones, which promote, among others, the maturation of fetal organs. A role of the ATP-binding-cassette-transporter-A1 (ABCA1) in the transport of maternal cholesterol to the fetus was suggested by transferring cholesterol to apolipoprotein-A-1 (apo-A1), but the directionality of the apoA-1/ABCA1-dependent cholesterol transport remains unclear. We isolated primary trophoblasts from term placentae to test the hypotheses that (1) apoA-1/ABCA1 dispatches cholesterol mainly towards the fetus to support fetal developmental maturation at term, and (2) differentiated syncytiotrophoblasts (STB) exert higher cholesterol transport activity than undifferentiated cytotrophoblasts (CTB). As experimental models, we used (1) trophoblast monolayers grown on Transwell® system consisting of apical (maternal-like) and basal (fetal-like) compartments, and (2) trophoblasts grown on conventional culture plates at CTB and STB stages. Surprisingly, apoA-1-mediated cholesterol efflux operated almost exclusively at the apical-maternal side, where ABCA1 was also localized by immunofluorescence. We found greater cholesterol efflux capacity in STB, which was increased by liver-X-receptor agonist treatment and decreased by ABCA1 inhibition. We conclude that at term the apoA-1/ABCA1 pathway is rather involved in cholesterol transport to the mother than in transfer to the fully developed fetus.
Collapse
Affiliation(s)
- Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Stefan Müller
- Department of BioMedical Research, University of Bern, CH-3012 Bern, Switzerland.
| | - Corneille Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
19
|
Li C, Deng YQ, Wang S, Ma F, Aliyari R, Huang XY, Zhang NN, Watanabe M, Dong HL, Liu P, Li XF, Ye Q, Tian M, Hong S, Fan J, Zhao H, Li L, Vishlaghi N, Buth JE, Au C, Liu Y, Lu N, Du P, Qin FXF, Zhang B, Gong D, Dai X, Sun R, Novitch BG, Xu Z, Qin CF, Cheng G. 25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephaly in a Mouse Model. Immunity 2017; 46:446-456. [PMID: 28314593 DOI: 10.1016/j.immuni.2017.02.012] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/21/2017] [Accepted: 02/08/2017] [Indexed: 02/01/2023]
Abstract
Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.
Collapse
Affiliation(s)
- Chunfeng Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005 Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China
| | - Shuo Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
| | - Feng Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005 Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Roghiyh Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xing-Yao Huang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China
| | - Na-Na Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China; Guangxi Medical University, 530021 Nanning, China
| | - Momoko Watanabe
- Department of Neurobiology and Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Hao-Long Dong
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China
| | - Ping Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China
| | - Min Tian
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China; Beijing Traditional Medicine Chinese Hospital, Capital Medical University, 100069 Beijing, China
| | - Shuai Hong
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
| | - Junwan Fan
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China
| | - Lili Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China
| | - Neda Vishlaghi
- Department of Neurobiology and Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Jessie E Buth
- Department of Neurobiology and Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Connie Au
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ying Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China
| | - Ning Lu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China
| | - Peishuang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China
| | - F Xiao-Feng Qin
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005 Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu, China
| | - Bo Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Science, 430071 Wuhan, China
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinghong Dai
- Department of Molecular and Medical Pharmacology and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett G Novitch
- Department of Neurobiology and Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China; Guangxi Medical University, 530021 Nanning, China.
| | - Genhong Cheng
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005 Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Relationship of Liver X Receptors α and Endoglin Levels in Serum and Placenta with Preeclampsia. PLoS One 2016; 11:e0163742. [PMID: 27736929 PMCID: PMC5063368 DOI: 10.1371/journal.pone.0163742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Background Liver X receptor alpha (LXRα) and endoglin have been postulated to play roles in trophoblast invasion and lipid metabolic disturbances. However, the relationship between LXRα and endoglin levels in serum and placenta of patients with preeclampsia remains poorly understood. The objective of this study was to identify correlations between LXRα, endoglin and preeclampsia and provide new feasible methods of clinical prediction and treatment for preeclampsia. Methods We enrolled 45 patients with preeclampsia (24 with moderate preeclampsia and 21 with severe preeclampsia) and 15 normal pregnant women (control group) who were admitted to the Department of Obstetrics of the General Hospital of Beijing Command between October 2012 and July 2013 in this study. Serum and placental LXRα and endoglin levels were analyzed by enzyme-linked immunosorbent assay, real-time quantitative PCR, tissue microarray and immunohistochemistry. Results Serum and placental LXRα and endoglin levels were significantly higher in patients with preeclampsia than those in control group (P<0.05, each). Moreover, patients with severe preeclampsia displayed significantly higher LXRα and endoglin levels than those with moderate preeclampsia (P<0.05, each). The LXRα sensitivity, specificity and positive and negative predictive values were 66.00%, 80.00%, 89.19% and 48.48%, respectively, while those of endoglin levels were 62.00%, 85.00%, 91.18% and 47.22%, respectively. LXRα and endoglin levels in serum and placenta from patients with preeclampsia were positively correlated (serum: r = 0.486, P<0.01; placenta: r = 0.569, P<0.01). Conclusions Elevated LXRα and endoglin levels may be associated with preeclampsia pathogenesis and development and could be used as potential predictors for this disorder.
Collapse
|
21
|
The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 2016; 37:150-6. [PMID: 26750103 DOI: 10.1038/aps.2015.87] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Although various types of drugs and therapies are available to treat atherosclerosis, it remains a major cause of mortality throughout the world. Macrophages are the major source of foam cells, which are hallmarks of atherosclerotic lesions. Consequently, the roles of macrophages in the pathophysiology of atherosclerosis are increasingly investigated. Autophagy is a self-protecting cellular catabolic pathway. Since its discovery, autophagy has been found to be associated with a variety of diseases, including cardiovascular diseases, malignant tumors, neurodegenerative diseases, and immune system disorders. Accumulating evidence demonstrates that autophagy plays an important role in inhibiting inflammation and apoptosis, and in promoting efferocytosis and cholesterol efflux. These facts suggest the induction of autophagy may be exploited as a potential strategy for the treatment of atherosclerosis. In this review we mainly discuss the relationship between macrophage autophagy and atherosclerosis and the molecular mechanisms, as well as the recent advances in targeting the process of autophagy to treat atherosclerosis.
Collapse
|