1
|
Muenzenberger MK, Klisch K, Menzies BR, Rieger J, Kaessmeyer S, Drews B. Histomorphometric comparison of the gravid and non-gravid uterus at the time of birth in the tammar wallaby ( Macropus eugenii): insights into the embryo-maternal interface. Reprod Fertil Dev 2025; 37:RD24118. [PMID: 40324058 DOI: 10.1071/rd24118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Context Tammar wallabies have a very short gestation which does not exceed the length of the estrus cycle. Direct contact between embryo and mother is established via a short-lived yolk sac placenta only in the last third of gestation. Therefore, an efficient embryo-maternal interface is required to ensure rapid embryonic growth. However, the morphology of the placenta at the time of birth is not well described in marsupials. Aims To study the morphology of the embryo-maternal interface, to compare the gravid and the non-gravid uterus at the time of birth and to examine the presence of polyploid trophoblast cells. Methods Histomorphometrical analysis of the uteri from light microscopic images. Quantification of the endometrial vascularization in samples stained with CD31 using AI machine learning. DNA content estimations of the giant trophoblast cell nuclei by Feulgen Image Analysis Densitometry. Key results In histological sections of the gravid endometrium, more tissue area was occupied by blood vessels than in the non-gravid endometrium, with subepithelial capillaries making up one-fourth of the vessel area in the gravid endometrium. The gravid uterus exhibited a 2.75-fold increase in surface area due to winding folds. Polyploidy of the giant trophoblast cells was confirmed. Giant trophoblast cells showed signs of degeneration. Conclusions The adaptations of the gravid uterus and the polyploidy of the trophoblast cells ensure sufficient embryo-maternal exchange. However, they seem to be self-limiting. Implications Morphology of the tammar wallaby trophoblast and endometrium prior birth is optimized for rapid embryonic growth during the brief interaction between maternal and fetal cells but the placenta seemingly cannot persist after the designated due time.
Collapse
Affiliation(s)
- Marie K Muenzenberger
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Karl Klisch
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Brandon R Menzies
- School of Bioscience, Faculty of Science G31, Biosciences 4, Royal Parade, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Juliane Rieger
- Institute of Translational Medicine for Health Care Systems, Department of Human Medicine, Faculty of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Sabine Kaessmeyer
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Barbara Drews
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| |
Collapse
|
2
|
He W, Zhao Y, Yin L, Du Q, Ren W, Mao L, Liu A, Wang D, Qian J. The transcription factor XBP1 regulates mitochondrial remodel and autophagy in spontaneous abortion. Int Immunopharmacol 2025; 152:114398. [PMID: 40068517 DOI: 10.1016/j.intimp.2025.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
PURPOSE Spontaneous abortion (SA) remains a clinical challenge in early pregnancy. It has been reported that endoplasmic reticulum stress (ERS) is implicated in pregnancy-related complications. However, the precise mechanistic role of ERS in SA pathogenesis remains elusive. This study aims to explore the therapeutic potential of targeting ERS-related decidual dysfunction in SA. METHODS An ERS model was established in both decidualized stromal cells (DSCs) and pregnant mice through tunicamycin (Tu) administration. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were performed to determine the interaction between XBP1s and the transcription factor binding site (TFBS) of tumor necrosis factor receptor-associated factor 6 (TRAF6). Mitochondrial membrane potential (MMP) and mitochondrial function were assessed using JC-1 and TMRM staining following ERS induction in DSCs. The effects of XBP1s inhibitors on mitochondrial metabolism and autophagy were evaluated through RT-qPCR, Western blotting, RNA-Seq, TUNEL assays, ROS and MitoSOX detection, and histological analyses in Tu-treated DSCs and SA patients. STF-083010 (STF) or shXBP1 was utilized to assess the inhibitory effects of X-box binding protein 1 (XBP1s) on DSC function both in vitro and in vivo. RESULTS We observed significant upregulation of XBP1s in decidual tissues from SA patients and Tu-exposed DSCs. Tu exposure significantly increased the proportion of TUNEL-positive cells and upregulated pro-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-18) in DSCs. XBP1s inhibition via shXBP1 or pharmacological inhibitor STF attenuated Tu-induced apoptosis and inflammatory cytokine expression. Notably, STF or shXBP1 treatment enhanced MMP and upregulated LC3-II expression in Tu-treated DSCs, indicating autophagy activation.Intriguingly, chloroquine (CQ)-mediated autophagy suppression exacerbated apoptosis in STF/Tu-co-treated DSCs, suggesting that XBP1s inhibition confers cytoprotection through autophagy induction. Mechanistically, XBP1s directly bound to the TFBS of TRAF6, a ubiquitin E3 ligase. TRAF6 overexpression exacerbated mitochondrial dysfunction and apoptosis while suppressing autophagy via inhibition of mTORC2/Akt pathway in Tu-treated DSCs. CONCLUSION XBP1s inhibition restored mitochondrial homeostasis and promoted autophagy by modulating the TRAF6/mTORC2 axis under ERS conditions, providing novel mechanistic insights into SA pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Weihua He
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yating Zhao
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lijun Yin
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiangxing Du
- Department of Obstetrics and Gynecology, Jingning She Autonomous County People's Hospital, Lishui, Zhejiang, China
| | - Wenfen Ren
- Department of Obstetrics and Gynecology, Jingning She Autonomous County People's Hospital, Lishui, Zhejiang, China
| | - Liwei Mao
- Department of Obstetrics and Gynecology, Jingning She Autonomous County People's Hospital, Lishui, Zhejiang, China
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
| | - Dimin Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianhua Qian
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Goudarzi ST, Vousooghi N, Verdi J, Mehdizadeh A, Aslanian-Kalkhoran L, Yousefi M. Autophagy genes and signaling pathways in endometrial decidualization and pregnancy complications. J Reprod Immunol 2024; 163:104223. [PMID: 38489930 DOI: 10.1016/j.jri.2024.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Autophagy is a process that occurs in almost all eukaryotic cells and this process is controlled by several molecular processes. Its biological roles include the provision of energy, the maintenance of cell homeostasis, and the promotion of aberrant cell death. The importance of autophagy in pregnancy is gradually becoming recognized. In literature, it has been indicated that autophagy has three different effects on the onset and maintenance of pregnancy: embryo (embryonic development), feto-maternal immune crosstalk, and maternal (decidualization). In humans, proper decidualization is a major predictor of pregnancy accomplishment and it can be influenced by different factors. This review highlights the genes, pathways, regulation, and function of autophagy in endometrial decidualization and other involved factors in this process.
Collapse
Affiliation(s)
- Saeedeh Torabi Goudarzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Aslanian-Kalkhoran
- Department of Immunology, school of medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Diaz-Cuadros M. Mitochondrial metabolism and the continuing search for ultimate regulators of developmental rate. Curr Opin Genet Dev 2024; 86:102178. [PMID: 38461774 DOI: 10.1016/j.gde.2024.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
The rate of embryonic development is a species-specific trait that depends on the properties of the intracellular environment, namely, the rate at which gene products flow through the central dogma of molecular biology. Although any given step in the production and degradation of gene products could theoretically be co-opted by evolution to modulate developmental speed, species are observed to accelerate or slow down all steps simultaneously. This suggests the rate of these molecular processes is jointly regulated by an upstream, ultimate factor. Mitochondrial metabolism was recently proposed to act as an ultimate regulator by controlling the pace of protein synthesis upstream of developmental tempo. Alternative candidates for ultimate regulators include species-specific gene expression levels of factors involved in the central dogma, as well as species-specific cell size. Overall, much work remains to be done before we can confidently identify the ultimate causes of species-specific developmental rates.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Vrljicak P, Lucas ES, Tryfonos M, Muter J, Ott S, Brosens JJ. Dynamic chromatin remodeling in cycling human endometrium at single-cell level. Cell Rep 2023; 42:113525. [PMID: 38060448 DOI: 10.1016/j.celrep.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Estrogen-dependent proliferation followed by progesterone-dependent differentiation of the endometrium culminates in a short implantation window. We performed single-cell assay for transposase-accessible chromatin with sequencing on endometrial samples obtained across the menstrual cycle to investigate the regulation of temporal gene networks that control embryo implantation. We identify uniquely accessible chromatin regions in all major cellular constituents of the endometrium, delineate temporal patterns of coordinated chromatin remodeling in epithelial and stromal cells, and gain mechanistic insights into the emergence of a receptive state through integrated analysis of enriched transcription factor (TF) binding sites in dynamic chromatin regions, chromatin immunoprecipitation sequencing analyses, and gene expression data. We demonstrate that the implantation window coincides with pervasive cooption of transposable elements (TEs) into the regulatory chromatin landscape of decidualizing cells and expression of TE-derived transcripts in a spatially defined manner. Our data constitute a comprehensive map of the chromatin changes that control TF activities in a cycling endometrium at cellular resolution.
Collapse
Affiliation(s)
- Pavle Vrljicak
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK; The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - Emma S Lucas
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK
| | - Maria Tryfonos
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Sascha Ott
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK; The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK.
| |
Collapse
|
6
|
Diessler ME, Hernández R, Gomez Castro G, Barbeito CG. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front Cell Dev Biol 2023; 11:1134874. [PMID: 37009475 PMCID: PMC10060884 DOI: 10.3389/fcell.2023.1134874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Decidualization is considered a distinctive feature of eutherian pregnancy, and has appeared during evolution along with the development of invasive forms of placentation, as the endotheliochorial placenta. Although decidualization is not massive in carnivores, as it is in most species developing hemochorial placentas, isolated or grouped cells regarded as decidual have been documented and characterized, mainly in bitches and queens. For the majority of the remaining species of the order, data in the bibliography are fragmentary. In this article, general morphological aspects of decidual stromal cells (DSCs), their time of appearance and lasting, data about the expression of cytoskeletal proteins and molecules considered as markers of decidualization were reviewed. From the data reviewed, it follows that carnivoran DSCs take part either in the secretion of progesterone, prostaglandins, relaxin, among other substances, or at least in the signaling pathways triggered by them. Beyond their physiological roles, some of those molecules are already being used, or are yet under study, for the non-invasive endocrine monitoring and reproductive control of domestic and wild carnivores. Only insulin-like growth factor binding protein 1, among the main decidual markers, has been undoubtedly demonstrated in both species. Laminin, on the contrary, was found only in feline DSCs, and prolactin was preliminary reported in dogs and cats. Prolactin receptor, on the other hand, was found in both species. While canine DSCs are the only placental cell type expressing the nuclear progesterone receptor (PGR), that receptor has not been demonstrated neither in feline DSCs, nor in any other cell in the queen placenta, although the use of PGR blockers leads to abortion. Against this background, and from the data gathered so far, it is unquestionable that DSCs in carnivorans do play a pivotal role in placental development and health. The knowledge about placental physiology is critical for medical care and breeding management, primarily in domestic carnivores; it is also absolutely crucial for a conservation approach in the management of endangered carnivore species.
Collapse
Affiliation(s)
- Mónica Elizabeth Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- *Correspondence: Mónica Elizabeth Diessler,
| | - Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
| | - Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| |
Collapse
|
7
|
Rytkönen KT, Adossa N, Mahmoudian M, Lönnberg T, Poutanen M, Elo LL. Cell type markers indicate distinct contributions of decidual stromal cells and natural killer cells in preeclampsia. Reproduction 2022; 164:V9-V13. [PMID: 36111648 DOI: 10.1530/rep-22-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
In brief Preeclampsia is a common serious disorder that can occur during pregnancy. This study uses integrative analysis of preeclampsia transcriptomes and single-cell transcriptomes to predict cell type-specific contributions to preeclampsia. Abstract Preeclampsia is a devastating pregnancy disorder and a major cause of maternal and perinatal mortality. By combining previous transcriptomic results on preeclampsia with single-cell sequencing data, we here predict distinct and partly unanticipated contributions of decidual stromal cells and uterine natural killer cells in early- and late-onset preeclampsia.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Nigatu Adossa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mehrad Mahmoudian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Weaver LN, Fulghum HZ, Grossnickle DM, Brightly WH, Kulik ZT, Wilson Mantilla GP, Whitney MR. Multituberculate Mammals Show Evidence of a Life History Strategy Similar to That of Placentals, Not Marsupials. Am Nat 2022; 200:383-400. [DOI: 10.1086/720410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lucas N. Weaver
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - Henry Z. Fulghum
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - David M. Grossnickle
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - William H. Brightly
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - Zoe T. Kulik
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - Gregory P. Wilson Mantilla
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
| | - Megan R. Whitney
- Department of Biology, University of Washington, Seattle, Washington 98195; and Burke Museum of Natural History and Culture, Seattle, Washington 98195
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
9
|
Kumar M, Saadaoui M, Al Khodor S. Infections and Pregnancy: Effects on Maternal and Child Health. Front Cell Infect Microbiol 2022; 12:873253. [PMID: 35755838 PMCID: PMC9217740 DOI: 10.3389/fcimb.2022.873253] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Pregnancy causes physiological and immunological adaptations that allow the mother and fetus to communicate with precision in order to promote a healthy pregnancy. At the same time, these adaptations may make pregnant women more susceptible to infections, resulting in a variety of pregnancy complications; those pathogens may also be vertically transmitted to the fetus, resulting in adverse pregnancy outcomes. Even though the placenta has developed a robust microbial defense to restrict vertical microbial transmission, certain microbial pathogens have evolved mechanisms to avoid the placental barrier and cause congenital diseases. Recent mechanistic studies have begun to uncover the striking role of the maternal microbiota in pregnancy outcomes. In this review, we discuss how microbial pathogens overcome the placental barrier to cause congenital diseases. A better understanding of the placental control of fetal infection should provide new insights into future translational research.
Collapse
Affiliation(s)
- Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | |
Collapse
|
10
|
Arif ED, Saeed NM, Rachid SK, Dyary HO, Rashid PM. Expression Level of the mip, pmp18D, and ompA Genes in Chlamydia abortus Isolated from Aborted Ewes. Pol J Microbiol 2022; 71:115-121. [PMID: 35635174 PMCID: PMC9152909 DOI: 10.33073/pjm-2022-014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/20/2022] [Indexed: 11/22/2022] Open
Abstract
In this manuscript, we report the proteins macrophage infectivity potentiator (mip, CAB080), major outer membrane protein (momp, CAB048), and polymorphic outer membrane protein (pmp18D, CAB776) that are expressed in different times of pregnancy in mice infected with Chlamydia abortus. Enzootic abortion of ewes (EAE) by C. abortus, an obligate intracellular pathogen, is a critical zoonotic disease-causing significant economic loss to livestock farming globally. This study was carried out for the detection and characterization of macrophage infectivity potentiator (mip, CAB080), major outer membrane protein (momp, CAB048), and polymorphic outer membrane protein (pmp18D, CAB776) using RT-qPCR. These proteins are believed to be expressed as virulence factors in C. abortus isolated from aborted ewes. BALB/c mice (pregnant and nonpregnant) were used as an animal model to be injected intraperitoneally with C. abortus culture in Vero cells since the endometrial lymphoid tissues of these animals resembles that of ewes. Also, the short duration of pregnancy in mice makes them a suitable animal model for obstetric studies. Tissue samples were taken from the mice after 10, 15, and 20 days of pregnancy to compare the expression of the genes mip, pmp18D, and ompA. Transcription level was quantified using RT-qPCR, the GAPDH transcription quantification, as a normalization signal. Abortion occurred in pregnant mice, and apparent differences between the transcriptional levels of the mip, pmp18D, and ompA genes in the samples taken during different time intervals of pregnancy were not observed (p > 0.05). The result indicated that the three bacterial genes, mip, pmp18D, and ompA, play a role as virulence factors in abortion and are differentially expressed in pregnant and nonpregnant animals. Inactivation of the genes is suggested to confirm the hypothesis.
Collapse
Affiliation(s)
- Eman Dhahir Arif
- Department of Microbiology, College of Veterinary Medicine , University of Sulaimani , Sulaymaniyah , Iraq
| | - Nahla Mohammad Saeed
- Department of Microbiology, College of Veterinary Medicine , University of Sulaimani , Sulaymaniyah , Iraq
| | | | - Hiewa Othman Dyary
- Department of Basic Sciences, College of Veterinary Medicine , University of Sulaimani , Sulaymaniyah , Iraq
| | - Peshnyar M.A. Rashid
- Kurdistan Institution for Strategic Studies and Scientific Research , Sulaymaniyah , Iraq
- Molecular Diagnostic Laboratory , Directorate of Veterinary Services in Sulaymaniyah , Sulaymaniyah , Iraq
| |
Collapse
|
11
|
Stadtmauer DJ, Wagner GP. Single-cell analysis of prostaglandin E2-induced human decidual cell in vitro differentiation: a minimal ancestral deciduogenic signal†. Biol Reprod 2021; 106:155-172. [PMID: 34591094 PMCID: PMC8757638 DOI: 10.1093/biolre/ioab183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/31/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
The decidua is a hallmark of reproduction in many placental mammals. Differentiation of decidual stromal cells is known to be induced by progesterone and the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Several candidates have been identified as the physiological stimulus for adenylyl cyclase activation, but their relative importance remains unclear. To bypass this uncertainty, the standard approach for in vitro experiments uses membrane-permeable cAMP and progestin. We phylogenetically infer that prostaglandin E2 (PGE2) likely was the signal that ancestrally induced decidualization in conjunction with progesterone. This suggests that PGE2 and progestin should be able to activate the core gene regulatory network of decidual cells. To test this prediction, we performed a genome-wide study of gene expression in human endometrial fibroblasts decidualized with PGE2 and progestin. Comparison to a cAMP-based protocol revealed shared activation of core decidual genes and decreased induction of senescence-associated genes. Single-cell transcriptomics of PGE2-mediated decidualization revealed a distinct, early-activated state transitioning to a differentiated decidual state. PGE2-mediated decidualization was found to depend upon progestin-dependent induction of PGE2 receptor 2 (PTGER2) which in turn leads to PKA activation upon PGE2 stimulation. Progesterone-dependent induction of PTGER2 is absent in opossum, an outgroup taxon of placental mammals which is incapable of decidualization. Together, these findings suggest that the origin of decidualization involved the evolution of progesterone-dependent activation of the PGE2/PTGER2/PKA axis, facilitating entry into a PKA-dominant rather than AKT-dominant cellular state. We propose the use of PGE2 for in vitro decidualization as an alternative to 8-Br-cAMP.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Correspondence: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3091; E-mail: (Günter P. Wagner); Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3092; E-mail: (Daniel J. Stadtmauer)
| | - Günter P Wagner
- Correspondence: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3091; E-mail: (Günter P. Wagner); Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3092; E-mail: (Daniel J. Stadtmauer)
| |
Collapse
|
12
|
Dudley JS, Murphy CR, Thompson MB, McAllan BM. Uterine cellular changes during mammalian pregnancy and the evolution of placentation. Biol Reprod 2021; 105:1381-1400. [PMID: 34514493 DOI: 10.1093/biolre/ioab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
There are many different forms of nutrient provision in viviparous (live bearing) species. The formation of a placenta is one method where the placenta functions to transfer nutrients from mother to fetus (placentotrophy), transfer waste from the fetus to the mother and respiratory gas exchange. Despite having the same overarching function, there are different types of placentation within placentotrophic vertebrates, and many morphological changes occur in the uterus during pregnancy to facilitate formation of the placenta. These changes are regulated in complex ways but are controlled by similar hormonal mechanisms across species. This review describes current knowledge of the morphological and molecular changes to the uterine epithelium preceding implantation among mammals. Our aim is to identify the commonalities and constraints of these cellular changes to understand the evolution of placentation in mammals and propose directions for future research. We compare and discuss the complex modifications to the ultrastructure of uterine epithelial cells and show that there are similarities in the changes to the cytoskeleton and gross morphology of the uterine epithelial cells, especially of the apical and lateral plasma membrane of the cells during the formation of a placenta in all eutherians and marsupials studied to date. We conclude that further research is needed to understand the evolution of placentation among viviparous mammals, particularly concerning the level of placental invasiveness, hormonal control and genetic underpinnings of pregnancy in marsupial taxa.
Collapse
Affiliation(s)
- Jessica S Dudley
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia.,School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.,Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, NSW, 2109, Australia
| | - Christopher R Murphy
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael B Thompson
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Bronwyn M McAllan
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia.,School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Ishikawa W, Kazama S, Suzuki T, Yamana R, Miyazaki Y, Tanaka K, Usami M, Takizawa T. L-NAME, a nitric oxide synthase inhibitor, increases the protein expression of both executioner and inhibitor of apoptosis in the placental bed of mid-to-late pregnant rats. Congenit Anom (Kyoto) 2021; 61:183-187. [PMID: 33877713 DOI: 10.1111/cga.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
The involvement of nitric oxide (NO) signaling in apoptosis was examined in the placental bed of mid-to-late pregnant rats. Pregnant rats were treated with l-NAME, a nitric oxide synthase inhibitor, by subcutaneous infusion for 48 hours before the examination at day 13.5, 17.5, or 21.5. l-NAME induced apoptosis in the placental bed to a limited extent at days 13.5 and 17.5, but not at day 21.5. When the placental bed was examined at day 17.5, the protein expression of both executioner (C-Cas3) and inhibitor (XIAP) of apoptosis was increased by l-NAME, but they did not co-localized with apoptosis. It was presumed that placental bed apoptosis induced by l-NAME is regulated through the expression of both executioner and inhibitor, possibly involving protein S-nitrosylation.
Collapse
Affiliation(s)
- Wataru Ishikawa
- Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Shugo Kazama
- Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takehito Suzuki
- Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Rei Yamana
- Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yoko Miyazaki
- Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazuaki Tanaka
- Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Makoto Usami
- Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Tatsuya Takizawa
- Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
14
|
Carter AM. Unique Aspects of Human Placentation. Int J Mol Sci 2021; 22:8099. [PMID: 34360862 PMCID: PMC8347521 DOI: 10.3390/ijms22158099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Human placentation differs from that of other mammals. A suite of characteristics is shared with haplorrhine primates, including early development of the embryonic membranes and placental hormones such as chorionic gonadotrophin and placental lactogen. A comparable architecture of the intervillous space is found only in Old World monkeys and apes. The routes of trophoblast invasion and the precise role of extravillous trophoblast in uterine artery transformation is similar in chimpanzee and gorilla. Extended parental care is shared with the great apes, and though human babies are rather helpless at birth, they are well developed (precocial) in other respects. Primates and rodents last shared a common ancestor in the Cretaceous period, and their placentation has evolved independently for some 80 million years. This is reflected in many aspects of their placentation. Some apparent resemblances such as interstitial implantation and placental lactogens are the result of convergent evolution. For rodent models such as the mouse, the differences are compounded by short gestations leading to the delivery of poorly developed (altricial) young.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
15
|
De novo generation of macrophage from placenta-derived hemogenic endothelium. Dev Cell 2021; 56:2121-2133.e6. [PMID: 34197725 DOI: 10.1016/j.devcel.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/31/2023]
Abstract
Macrophages play pivotal roles in immunity, hematopoiesis, and tissue homeostasis. In mammals, macrophages have been shown to originate from yolk-sac-derived erythro-myeloid progenitors and aorta-gonad-mesonephros (AGM)-derived hematopoietic stem cells. However, whether macrophages can arise from other embryonic sites remains unclear. Here, using single-cell RNA sequencing, we profile the transcriptional landscape of mouse fetal placental hematopoiesis. We uncover and experimentally validate that a CD44+ subpopulation of placental endothelial cells (ECs) exhibits hemogenic potential. Importantly, lineage tracing using the newly generated Hoxa13 reporter line shows that Hoxa13-labeled ECs can produce placental macrophages, named Hofbauer cell (HBC)-like cells. Furthermore, we identify two subtypes of HBC-like cells, and cell-cell interaction analysis identifies their potential roles in angiogenesis and antigen presentation, separately. Our study provides a comprehensive understanding of placental hematopoiesis and highlights the placenta as a source of macrophages, which has important implications for both basic and translational research.
Collapse
|
16
|
Ticconi C, Di Simone N, Campagnolo L, Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell 2021; 72:101586. [PMID: 34217128 DOI: 10.1016/j.tice.2021.101586] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Decidualization is characterized by a series of genetic, metabolic, morphological, biochemical, vascular and immune changes occurring in the endometrial stroma in response to the implanting embryo or even before conception and involves the stromal cells of the endometrium. It is a fundamental reproductive event occurring in mammalian species with hemochorial placentation. A growing body of experimental and clinical evidence strongly suggests that defective or disrupted decidualization contributes to the establishment of an inappropriate maternal-fetal interface. This has relevant clinical consequences, ranging from recurrent implantation failure and recurrent pregnancy loss in early pregnancy to several significant complications of advanced gestation. Moreover, recent evidence indicates that selected diseases of the endometrium, such as chronic endometritis and endometriosis, can have a detrimental impact on the decidualization response in the endometrium and may help explain some aspects of the reduced reproductive outcome associated with these conditions. Further research efforts are needed to fully understand the biomolecular mechanisms ans events underlying an abnormal decidualization response. This will permit the development of new diagnostic and therapeutic strategies aimed to improve the likelihood of achieveing a successful pregnancy.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
17
|
Stadtmauer DJ, Wagner GP. The Primacy of Maternal Innovations to the Evolution of Embryo Implantation. Integr Comp Biol 2021; 60:742-752. [PMID: 32525521 DOI: 10.1093/icb/icaa030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Embryo implantation is a hallmark of the female reproductive biology of eutherian (placental) mammals and does not exist in a sustainable form in any other vertebrate group. Implantation is the initial process that leads to a sustained fetal-maternal unit engendering a complex functional relationship between the mother and the embryo/fetus. The nature of this relationship is often portrayed as one of conflict between an aggressive embryo and a passive or defensive maternal organism. Recent progress in elucidating the evolutionary origin of eutherian pregnancy leads to a different picture. The emerging scenario suggests that the very initial stages in the evolution of embryo implantation required evolutionary changes to the maternal physiology which modified an ancestral generic mucosal inflammation in response to the presence of the embryo into an active embedding process. This "female-first" evolutionary scenario also explains the role of endometrial receptivity in human pregnancy. On the marsupial side, where in most animals the fetal-maternal interaction is short and does not lead to a long term sustainable placentation, the relationship is mutual. In these mammals, uterine inflammation is followed by parturition in short order. The inflammatory signaling pathways, however, are cooperative, i.e., they are performed by both the fetus and the mother and therefore we call this relationship "cooperative inflammation." Based on these discoveries we reconceive the narrative of the maternal-fetal relationship.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.,Yale Systems Biology Institute, West Haven, CT 06516, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.,Yale Systems Biology Institute, West Haven, CT 06516, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA.,Department of Obstetrics, Gynecology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Chavan AR, Griffith OW, Stadtmauer DJ, Maziarz J, Pavlicev M, Fishman R, Koren L, Romero R, Wagner GP. Evolution of Embryo Implantation Was Enabled by the Origin of Decidual Stromal Cells in Eutherian Mammals. Mol Biol Evol 2021; 38:1060-1074. [PMID: 33185661 PMCID: PMC7947829 DOI: 10.1093/molbev/msaa274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.
Collapse
Affiliation(s)
- Arun R Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Oliver W Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Ruth Fishman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
19
|
Hao Y, Lee HJ, Baraboo M, Burch K, Maurer T, Somarelli JA, Conant GC. Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biol Evol 2021; 12:35-47. [PMID: 32053193 PMCID: PMC7144826 DOI: 10.1093/gbe/evaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | - Hyuk Jin Lee
- Division of Biological Sciences, University of Missouri-Columbia
| | | | | | | | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center.,Department of Medicine, Duke University School of Medicine
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Division of Animal Sciences, University of Missouri-Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
20
|
Nuño de la Rosa L, Pavličev M, Etxeberria A. Pregnant Females as Historical Individuals: An Insight From the Philosophy of Evo-Devo. Front Psychol 2021; 11:572106. [PMID: 33551898 PMCID: PMC7854466 DOI: 10.3389/fpsyg.2020.572106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Criticisms of the "container" model of pregnancy picturing female and embryo as separate entities multiply in various philosophical and scientific contexts during the last decades. In this paper, we examine how this model underlies received views of pregnancy in evolutionary biology, in the characterization of the transition from oviparity to viviparity in mammals and in the selectionist explanations of pregnancy as an evolutionary strategy. In contrast, recent evo-devo studies on eutherian reproduction, including the role of inflammation and new maternal cell types, gather evidence in favor of considering pregnancy as an evolved relational novelty. Our thesis is that from this perspective we can identify the emergence of a new historical individual in evolution. In evo-devo, historical units are conceptualized as evolved entities which fulfill two main criteria, their continuous persistence and their non-exchangeability. As pregnancy can be individuated in this way, we contend that pregnant females are historical individuals. We argue that historical individuality differs from, and coexists with, other views of biological individuality as applied to pregnancy (the physiological, the evolutionary and the ecological one), but brings forward an important new insight which might help dissolve misguided conceptions.
Collapse
Affiliation(s)
- Laura Nuño de la Rosa
- Department of Logic and Theoretical Philosophy, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Mihaela Pavličev
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - Arantza Etxeberria
- Department of Logic and Philosophy of Science, IAS Research Center for Life, Mind, and Society, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| |
Collapse
|
21
|
Griffith OW. Novel tissue interactions support the evolution of placentation. J Morphol 2021; 282:1047-1053. [PMID: 33433907 DOI: 10.1002/jmor.21322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023]
Abstract
Organ development occurs through the coordinated interaction of distinct tissue types. So, a question at the core of understanding the evolution of new organs is, how do new tissue-tissue signalling networks arise? The placenta is a great model for understanding the evolution of new organs, because placentas have evolved repeatedly, evolved relatively recently in some lineages, and exhibit intermediate forms in extant clades. Placentas, like other organs, form from the interaction of two distinct tissues, one maternal and one fetal. If each of these tissues produces signals that can be received by the other, then the apposition of these tissues is likely to result in new signalling dynamics that can be used as a scaffold to support placenta development. Using published data and examples, in this review I demonstrate that placentas are derived from hormonally active organs, that considerable signalling potential exists between maternal and fetal tissues in egg-laying vertebrates, that this signalling potential is conserved through the oviparity-viviparity transition, and that consequences of these interactions form the basis of derived aspects of placentation including embryo implantation. I argue that the interaction of placental tissues, is not merely a consequence of placenta formation, but that novel interactions form the basis of new placental regulatory networks, functions, and patterning mechanisms.
Collapse
Affiliation(s)
- Oliver W Griffith
- Department of Biological Science, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Rokas A, Mesiano S, Tamam O, LaBella A, Zhang G, Muglia L. Developing a theoretical evolutionary framework to solve the mystery of parturition initiation. eLife 2020; 9:e58343. [PMID: 33380346 PMCID: PMC7775106 DOI: 10.7554/elife.58343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Eutherian mammals have characteristic lengths of gestation that are key for reproductive success, but relatively little is known about the processes that determine the timing of parturition, the process of birth, and how they are coordinated with fetal developmental programs. This issue remains one of biology's great unsolved mysteries and has significant clinical relevance because preterm birth is the leading cause of infant and under 5 year old child mortality worldwide. Here, we consider the evolutionary influences and potential signaling mechanisms that maintain or end pregnancy in eutherian mammals and use this knowledge to formulate general theoretical evolutionary models. These models can be tested through evolutionary species comparisons, studies of experimental manipulation of gestation period and birth timing, and human clinical studies. Understanding how gestation time and parturition are determined will shed light on this fundamental biological process and improve human health through the development of therapies to prevent preterm birth.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, United States
| | - Ortal Tamam
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Abigail LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics. University of Cincinnati College of Medicine, Cincinnati, United States
| | - Louis Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics. University of Cincinnati College of Medicine, Cincinnati, United States
- Burroughs Wellcome Fund, Research Triangle Park, Durham, United States
| |
Collapse
|
23
|
Critchley HOD, Babayev E, Bulun SE, Clark S, Garcia-Grau I, Gregersen PK, Kilcoyne A, Kim JYJ, Lavender M, Marsh EE, Matteson KA, Maybin JA, Metz CN, Moreno I, Silk K, Sommer M, Simon C, Tariyal R, Taylor HS, Wagner GP, Griffith LG. Menstruation: science and society. Am J Obstet Gynecol 2020; 223:624-664. [PMID: 32707266 PMCID: PMC7661839 DOI: 10.1016/j.ajog.2020.06.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation-a fast, scarless healing process in healthy individuals-will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, "Menstruation: Science and Society" with an aim to "identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field." Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration-and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids-to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent "menstrual equity" and "period poverty" movements spreading across high-income countries.
Collapse
Affiliation(s)
- Hilary O D Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, United Kingdom.
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Iolanda Garcia-Grau
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - Peter K Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | | | | | | | - Erica E Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI
| | - Kristen A Matteson
- Division of Research, Department of Obstetrics and Gynecology, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Jacqueline A Maybin
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, United Kingdom
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Inmaculada Moreno
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain
| | - Kami Silk
- Department of Communication, University of Delaware, Newark, DE
| | - Marni Sommer
- Department of Sociomedical Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Carlos Simon
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain; Beth Israel Deaconess Medical Center, Harvard University, Boston, MA; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | | | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Department of Obstetrics, Gynecology and Reproductive Sciences, Systems Biology Institute, Yale University, New Haven, CT; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
24
|
Zhang X, Pavlicev M, Jones HN, Muglia LJ. Eutherian-Specific Gene TRIML2 Attenuates Inflammation in the Evolution of Placentation. Mol Biol Evol 2020; 37:507-523. [PMID: 31633784 PMCID: PMC6993854 DOI: 10.1093/molbev/msz238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Evolution of highly invasive placentation in the stem lineage of eutherians and subsequent extension of pregnancy set eutherians apart from other mammals, that is, marsupials with short-lived placentas, and oviparous monotremes. Recent studies suggest that eutherian implantation evolved from marsupial attachment reaction, an inflammatory process induced by the direct contact of fetal placenta with maternal endometrium after the breakdown of the shell coat, and shortly before the onset of parturition. Unique to eutherians, a dramatic downregulation of inflammation after implantation prevents the onset of premature parturition, and is critical for the maintenance of gestation. This downregulation likely involved evolutionary changes on maternal as well as fetal/placental side. Tripartite-motif family-like2 (TRIML2) only exists in eutherian genomes and shows preferential expression in preimplantation embryos, and trophoblast-derived structures, such as chorion and placental disc. Comparative genomic evidence supports that TRIML2 originated from a gene duplication event in the stem lineage of Eutheria that also gave rise to eutherian TRIML1. Compared with TRIML1, TRIML2 lost the catalytic RING domain of E3 ligase. However, only TRIML2 is induced in human choriocarcinoma cell line JEG3 with poly(I:C) treatment to simulate inflammation during viral infection. Its knockdown increases the production of proinflammatory cytokines and reduces trophoblast survival during poly(I:C) stimulation, while its overexpression reduces proinflammatory cytokine production, supporting TRIML2’s role as a regulatory inhibitor of the inflammatory pathways in trophoblasts. TRIML2’s potential virus-interacting PRY/SPRY domain shows significant signature of selection, suggesting its contribution to the evolution of eutherian-specific inflammation regulation during placentation.
Collapse
Affiliation(s)
- Xuzhe Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH
| | - Mihaela Pavlicev
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH
| | - Helen N Jones
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH
| |
Collapse
|
25
|
Endometrial Decidualization: The Primary Driver of Pregnancy Health. Int J Mol Sci 2020; 21:ijms21114092. [PMID: 32521725 PMCID: PMC7312091 DOI: 10.3390/ijms21114092] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
Interventions to prevent pregnancy complications have been largely unsuccessful. We suggest this is because the foundation for a healthy pregnancy is laid prior to the establishment of the pregnancy at the time of endometrial decidualization. Humans are one of only a few mammalian viviparous species in which decidualization begins during the latter half of each menstrual cycle and is therefore independent of the conceptus. Failure to adequately prepare (decidualize) the endometrium hormonally, biochemically, and immunologically in anticipation of the approaching blastocyst—including the downregulation of genes involved in the pro- inflammatory response and resisting tissue invasion along with the increased expression of genes that promote angiogenesis, foster immune tolerance, and facilitate tissue invasion—leads to abnormal implantation/placentation and ultimately to adverse pregnancy outcome. We hypothesize, therefore, that the primary driver of pregnancy health is the quality of the soil, not the seed.
Collapse
|
26
|
Carter AM. The role of mammalian foetal membranes in early embryogenesis: Lessons from marsupials. J Morphol 2020; 282:940-952. [PMID: 32374455 DOI: 10.1002/jmor.21140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
Across mammals, early embryonic development is supported by uterine secretions taken up through the yolk sac and other foetal membranes (histotrophic nutrition). The marsupial conceptus is enclosed in a shell coat for the first two-thirds of gestation and nutrients pass to the embryo through the shell and the avascular bilaminar yolk sac. At around the time of shell rupture, part of the yolk sac is trilaminar and supplied with blood vessels. It attaches to the uterus and forms a choriovitelline placenta. Rapid growth of the embryo ensues, still supported by histotrophe as well as exchange of oxygen and nutrients between maternal and foetal blood vessels (haemotrophic nutrition). Few marsupials have a chorioallantoic placenta and the highly altricial newborn is delivered after a short gestation. Eutherian embryos pass through a similar sequence before there is a fully functional chorioallantoic placenta. In most orders, there is transient yolk sac placentation, but even before this, nutrients are transferred through an avascular yolk sac. Yolk sac placentation does not occur in rodents or catarrhine primates. Early embryonic development in the mouse is nonetheless dependent on histotrophic nutrition. In the first trimester of human pregnancy, uterine glands open to the intervillous space and secretion products are taken up by the trophoblast. Transfer of nutrients to the early human embryo also involves the yolk sac, which floats free in the exocoelom. Marsupials can therefore inform us about the role of foetal membranes and histotrophic nutrition in early embryogenesis, knowledge that can translate to eutherians.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Immunological memory and tolerance at the maternal-fetal interface: Implications for reproductive management of mares. Theriogenology 2020; 150:432-436. [PMID: 32164989 DOI: 10.1016/j.theriogenology.2020.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
The development of placentation that coincided with the evolution of mammals presented new challenges to the transmission of life from one generation to the next, particularly with regard to the possibility of maternal immunological recognition and destruction of the developing conceptus. The balance between immunity and tolerance dominates the immunological relationship between mother and fetus during mammalian pregnancy, and the focal point of this relationship lies at the interface between the trophoblast cells that comprise the outermost layer of the placenta and the maternal endometrial tissues. Immune memory and tolerance are two of the cardinal characteristics of the immune system. Immune memory is essential in preventing or lessening the effect of infections to the mother or conceptus, but may also be a threat to the semi-allogeneic tissues of the fetus and placenta. The mother must develop functional immune tolerance to her fetus, but at the same time retain her ability to combat infections while pregnant. To address this imperative, mammals have developed overlapping and independent mechanisms for evading maternal anti-fetal immune responses that could result in pregnancy loss. Studies of the unusual component of equine invasive trophoblast in the epitheliochorial placenta have illuminated aspects of immune memory and tolerance that have relevance to fertility in the horse and other mammalian species.
Collapse
|
28
|
Stadtmauer DJ, Wagner GP. Cooperative inflammation: The recruitment of inflammatory signaling in marsupial and eutherian pregnancy. J Reprod Immunol 2020; 137:102626. [PMID: 31783286 PMCID: PMC7028515 DOI: 10.1016/j.jri.2019.102626] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/19/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
The evolution of viviparity in therian mammals, i.e. marsupials and "placental" mammals, occurred by retention of the conceptus in the female reproductive tract and precocious "hatching" from the shell coat. Both eutherian embryo implantation and the opossum embryo attachment reaction are evolutionarily derived from and homologous to a defensive inflammatory process induced after shell coat hatching. However, both lineages, marsupials and placental mammals, have modified the inflammatory response substantially. We review the induction, maintenance, and effects of inflammation throughout pregnancy, with special attention to the role of prostaglandins and the mucosal inflammatory response, both of which likely had roles in early mammalian viviparity. We propose that the key step was not only suppression of the inflammatory response after implantation in placental mammals, but also the transfer of the inflammatory cell-cell communication network to a different set of cell types than in generic inflammation. To support this conclusion we discuss evidence that pro-inflammatory signal production in the opossum is not limited to maternal cells, as expected in bona fide defensive inflammation, but also includes fetal tissues, in a process we term cooperative inflammation. The ways in which the inflammatory reaction was independently modified in these two lineages helps explain major life history differences between extant marsupials and eutherians.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale Universisty. 165 Prospect Street, New Haven, CT, USA; Yale Systems Biology Institute, Yale University. 850 West Campus Drive, West Haven, CT, USA.
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale Universisty. 165 Prospect Street, New Haven, CT, USA; Yale Systems Biology Institute, Yale University. 850 West Campus Drive, West Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine. 300 Cedar Street, New Haven, CT, USA; Department of Obstetrics and Gynecology, Wayne State University. 540 East Canfield Avenue, Detroit, MI, USA.
| |
Collapse
|
29
|
Abstract
The human endometrium is essential in providing the site for implantation and maintaining the growth and survival of the conceptus. An unreceptive endometrium and disrupted maternal-conceptus interactions can cause infertility due to pregnancy loss or later pregnancy complications. Despite this, the role of uterine glands in first trimester human pregnancy is little understood. An established organoid protocol was used to generate and comprehensively analyze 3-dimensional endometrial epithelial organoid (EEO) cultures from human endometrial biopsies. The derived EEO expand long-term, are genetically stable, and can be cryopreserved. Using endometrium from 2 different donors, EEO were derived and then treated with estrogen (E2) for 2 d or E2 and medroxyprogesterone acetate (MPA) for 6 d. EEO cells were positive for the gland marker, FOXA2, and exhibited appropriate hormonal regulation of steroid hormone receptor expression. Real-time qPCR and bulk RNA-sequencing analysis revealed effects of hormone treatment on gene expression that recapitulated changes in proliferative and secretory phase endometrium. Single-cell RNA sequencing analysis revealed that several different epithelial cell types are present in the EEO whose proportion and gene expression changed with hormone treatment. The EEO model serves as an important platform for studying the physiology and pathology of the human endometrium.
Collapse
|
30
|
Ettensohn CA, Adomako-Ankomah A. The evolution of a new cell type was associated with competition for a signaling ligand. PLoS Biol 2019; 17:e3000460. [PMID: 31532765 PMCID: PMC6768484 DOI: 10.1371/journal.pbio.3000460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022] Open
Abstract
There is presently a very limited understanding of the mechanisms that underlie the evolution of new cell types. The skeleton-forming primary mesenchyme cells (PMCs) of euechinoid sea urchins, derived from the micromeres of the 16-cell embryo, are an example of a recently evolved cell type. All adult echinoderms have a calcite-based endoskeleton, a synapomorphy of the Ambulacraria. Only euechinoids have a micromere-PMC lineage, however, which evolved through the co-option of the adult skeletogenic program into the embryo. During normal development, PMCs alone secrete the embryonic skeleton. Other mesoderm cells, known as blastocoelar cells (BCs), have the potential to produce a skeleton, but a PMC-derived signal ordinarily prevents these cells from expressing a skeletogenic fate and directs them into an alternative developmental pathway. Recently, it was shown that vascular endothelial growth factor (VEGF) signaling plays an important role in PMC differentiation and is part of a conserved program of skeletogenesis among echinoderms. Here, we report that VEGF signaling, acting through ectoderm-derived VEGF3 and its cognate receptor, VEGF receptor (VEGFR)-10-Ig, is also essential for the deployment of the skeletogenic program in BCs. This VEGF-dependent program includes the activation of aristaless-like homeobox 1 (alx1), a conserved transcriptional regulator of skeletogenic specification across echinoderms and an example of a “terminal selector” gene that controls cell identity. We show that PMCs control BC fate by sequestering VEGF3, thereby preventing activation of alx1 and the downstream skeletogenic network in BCs. Our findings provide an example of the regulation of early embryonic cell fates by direct competition for a secreted signaling ligand, a developmental mechanism that has not been widely recognized. Moreover, they reveal that a novel cell type evolved by outcompeting other embryonic cell lineages for an essential signaling ligand that regulates the expression of a gene controlling cell identity. How do new cell types evolve? This study shows that mesoderm cells in sea urchin embryos diversified, at least in part, through a heterochronic shift in the expression of a key transcription factor, which led to competition for a signaling ligand and subsequent gene regulatory independence of the two cell types.
Collapse
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Ashrifia Adomako-Ankomah
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
31
|
Griffith OW, Chavan AR, Pavlicev M, Protopapas S, Callahan R, Maziarz J, Wagner GP. Endometrial recognition of pregnancy occurs in the grey short-tailed opossum ( Monodelphis domestica). Proc Biol Sci 2019; 286:20190691. [PMID: 31213185 DOI: 10.1098/rspb.2019.0691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In human pregnancy, recognition of an embryo within the uterus is essential to support the fetus through gestation. In most marsupials, such as the opossums, pregnancy is shorter than the oestrous cycle and the steroid hormone profile during pregnancy and oestrous cycle are indistinguishable. For these reasons, it was assumed that recognition of pregnancy, as a trait, evolved in the eutherian (placental) stem lineage and independently in wallabies and kangaroos. To investigate whether uterine recognition of pregnancy occurs in species with pregnancy shorter than the oestrous cycle, we examined reproduction in the short-tailed opossum ( Monodelphis domestica), a marsupial with a plesiomorphic mode of pregnancy. We examined the morphological and gene expression changes in the uterus of females in the non-pregnant oestrous cycle and compared these to pregnancy. We found that the presence of an embryo did not alter some aspects of uterine development but increased glandular activity. Transcriptionally, we saw big differences between the uterus of pregnant and cycling animals. These differences included an upregulation of genes involved in transport, inflammation and metabolic-activity in response to the presence of a fetus. Furthermore, transcriptional differences reflected protein level differences in transporter abundance. Our results suggest that while the uterus exhibits programmed changes after ovulation, its transcriptional landscape during pregnancy responds to the presence of a fetus and upregulates genes that may be essential for fetal support. These results are consistent with endometrial recognition of pregnancy occurring in the opossum. While the effects on maternal physiology appear to differ, recognition of pregnancy has now been observed in eutherian mammals, as well as, Australian and American marsupials.
Collapse
Affiliation(s)
- Oliver W Griffith
- 1 Department of Ecology and Evolutionary Biology, Yale University , New Haven, CT , USA.,2 Yale Systems Biology Institute, Yale University , New Haven, CT , USA.,3 School of BioSciences, University of Melbourne , Parkville, Victoria , Australia
| | - Arun R Chavan
- 1 Department of Ecology and Evolutionary Biology, Yale University , New Haven, CT , USA.,2 Yale Systems Biology Institute, Yale University , New Haven, CT , USA
| | - Mihaela Pavlicev
- 4 Cincinnati Children's Hospital Medical Center , Cincinnati, OH , USA
| | - Stella Protopapas
- 1 Department of Ecology and Evolutionary Biology, Yale University , New Haven, CT , USA.,2 Yale Systems Biology Institute, Yale University , New Haven, CT , USA
| | - Ryan Callahan
- 1 Department of Ecology and Evolutionary Biology, Yale University , New Haven, CT , USA
| | - Jamie Maziarz
- 1 Department of Ecology and Evolutionary Biology, Yale University , New Haven, CT , USA.,2 Yale Systems Biology Institute, Yale University , New Haven, CT , USA
| | - Günter P Wagner
- 1 Department of Ecology and Evolutionary Biology, Yale University , New Haven, CT , USA.,2 Yale Systems Biology Institute, Yale University , New Haven, CT , USA.,5 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School , New Haven, CT , USA.,6 Department of Obstetrics and Gynecology, Wayne State University , Detroit, MI , USA
| |
Collapse
|
32
|
Yockey LJ, Iwasaki A. Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity 2018; 49:397-412. [PMID: 30231982 PMCID: PMC6152841 DOI: 10.1016/j.immuni.2018.07.017] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/13/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Successful pregnancy requires carefully-coordinated communications between the mother and fetus. Immune cells and cytokine signaling pathways participate as mediators of these communications to promote healthy pregnancy. At the same time, certain infections or inflammatory conditions in pregnant mothers cause severe disease and have detrimental impacts on the developing fetus. In this review, we examine evidence for the role of maternal and fetal immune responses affecting pregnancy and fetal development, both under homeostasis and following infection. We discuss immune responses that are necessary to promote healthy pregnancy and those that lead to congenital disorders and pregnancy complications, with a particular emphasis on the role of interferons and cytokines. Understanding the contributions of the immune system in pregnancy and fetal development provides important insights into the pathogenesis underlying maternal and fetal diseases and sheds insights on possible targets for therapy.
Collapse
Affiliation(s)
- Laura J Yockey
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
33
|
Classics revisited: C. J. van der Horst on pregnancy and menstruation in elephant shrews. Placenta 2018; 67:24-30. [PMID: 29941170 DOI: 10.1016/j.placenta.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/14/2018] [Accepted: 05/25/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Menstruation occurs only in higher primates, some bats, the spiny mouse and the elephant shrew. Our knowledge of the latter species is due to work by C. J. van der Horst. FINDINGS Changes in the uterine stroma are initially similar in fertile and infertile cycles and are confined to a small area. In pregnant animals, the presence of the conceptus causes further development to an implantation chamber. In infertile cycles an outgrowth of highly glandular stroma (a polyp) appears. With decline of the corpora lutea it is shed in a process equivalent to menstruation. Van der Horst described the further development of the placenta and a decidua pseudocapsularis in pregnant animals. In addition he built a unique collection that has thrown light on embryonic development and placentation in other South African mammals. CONCLUSIONS The changes in endometrial stromal cells during the menstrual cycle appear similar between primates and the elephant shrew and deserve to be studied at the molecular level.
Collapse
|
34
|
Abstract
The mammalian placenta shows an extraordinary degree of variation in gross and fine structure, but this has been difficult to interpret in physiological terms. Transcriptomics offers a path to understanding how structure relates to function. This essay examines how studies of gene transcription can inform us about placental evolution in eutherian and marsupial mammals and more broadly about convergent evolution of viviparity and placentation in vertebrates. Thus far, the focus has been on the chorioallantoic placenta of eutherians at term, the reproductive strategies of eutherians and marsupials, and the decidual response of the uterus at implantation. Future work should address gene expression during early stages of placental development and endeavor to cover all major groups of mammals. Comparative studies across oviparous and viviparous vertebrates have centered on the chorioallantoic membrane and yolk sac. They point to the possibility of defining a set of genes that can be recruited to support commonalities in reproductive strategies. Further advances can be anticipated from single-cell transcriptomics if those techniques are applied to a range of placental structures and in species other than humans and mice.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsloews Vej 21, DK-5000 Odense, Denmark
| |
Collapse
|
35
|
The inflammation paradox in the evolution of mammalian pregnancy: turning a foe into a friend. Curr Opin Genet Dev 2017; 47:24-32. [DOI: 10.1016/j.gde.2017.08.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023]
|
36
|
Yu SX, Zhou FH, Chen W, Jiang GM, Du CT, Hu GQ, Liu ZZ, Yan SQ, Gu JM, Deng XM, Lin TJ, Duan EK, Yang YJ. Decidual Stromal Cell Necroptosis Contributes to Polyinosinic-Polycytidylic Acid-Triggered Abnormal Murine Pregnancy. Front Immunol 2017; 8:916. [PMID: 28824641 PMCID: PMC5539177 DOI: 10.3389/fimmu.2017.00916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious agents can reach the placenta either via the maternal blood or by ascending the genito-urinary tract, and then initially colonizing the maternal decidua. Decidual stromal cells (DSCs) are the major cellular component of the decidua. Although DSCs at the maternal–fetal interface contribute to the regulation of immunity in pregnancy in the face of immunological and physiological challenges, the roles of these DSCs during viral infection remain ill defined. Here, we characterized the response of DSCs to a synthetic double-stranded RNA molecule, polyinosinic-polycytidylic acid [poly(I:C)], which is a mimic of viral infection. We demonstrated that both transfection of cells with poly(I:C) and addition of extracellular (non-transfected) poly(I:C) trigger the necroptosis of DSCs and that this response is dependent on RIG-I-like receptor/IPS-1 signaling and the toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β pathway, respectively. Furthermore, following poly(I:C) challenge, pregnant mixed lineage kinase domain-like protein-deficient mice had fewer necrotic cells in the mesometrial decidual layer, as well as milder pathological changes in the uterine unit, than did wild-type mice. Collectively, our results establish that necroptosis is a contributing factor in poly(I:C)-triggered abnormal pregnancy and thereby indicate a novel therapeutic strategy for reducing the severity of the adverse effects of viral infections in pregnancy.
Collapse
Affiliation(s)
- Shui-Xing Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Feng-Hua Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Gui-Mei Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Chong-Tao Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Gui-Qiu Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Zhen-Zhen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Shi-Qing Yan
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Jing-Min Gu
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Xu-Ming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| | - Tong-Jun Lin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - En-Kui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Medicine, Jilin University, Changchun, China
| |
Collapse
|
37
|
Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proc Natl Acad Sci U S A 2017; 114:E6566-E6575. [PMID: 28747528 DOI: 10.1073/pnas.1701129114] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular changes that support implantation in eutherian mammals are necessary to establish pregnancy. In marsupials, pregnancy is relatively short, and although a placenta does form, it is present for only a few days before parturition. However, morphological changes in the uterus of marsupials at term mimic those that occur during implantation in humans and mice. We investigated the molecular similarity between term pregnancy in the marsupials and implantation in eutherian mammals using the gray short-tailed opossum (Monodelphis domestica) as a model. Transcriptomic analysis shows that term pregnancy in the opossum is characterized by an inflammatory response consistent with implantation in humans and mice. This immune response is temporally correlated with the loss of the eggshell, and we used immunohistochemistry to report that this reaction occurs at the materno-fetal interface. We demonstrate that key markers of implantation, including Heparin binding EGF-like growth factor and Mucin 1, exhibit expression and localization profiles consistent with the pattern observed during implantation in eutherian mammals. Finally, we show that there are transcriptome-wide similarities between the opossum attachment reaction and implantation in rabbits and humans. Our data suggest that the implantation reaction that occurs in eutherians is derived from an attachment reaction in the ancestral therian mammal which, in the opossum, leads directly to parturition. Finally, we argue that the ability to shift from an inflammatory attachment reaction to a noninflammatory period of pregnancy was a key innovation in eutherian mammals that allowed an extended period of intimate placentation.
Collapse
|
38
|
Griffith OW, Wagner GP. The placenta as a model for understanding the origin and evolution of vertebrate organs. Nat Ecol Evol 2017; 1:72. [DOI: 10.1038/s41559-017-0072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
|
39
|
Lou Y, Hu M, Wang Q, Yuan M, Wang N, Le F, Li L, Huang S, Wang L, Xu X, Jin F. Estradiol Suppresses TLR4-triggered Apoptosis of Decidual Stromal Cells and Drives an Anti-inflammatory T H2 Shift by Activating SGK1. Int J Biol Sci 2017; 13:434-448. [PMID: 28529452 PMCID: PMC5436564 DOI: 10.7150/ijbs.18278] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/28/2017] [Indexed: 12/27/2022] Open
Abstract
A pro-inflammatory cytokine profile at the feto-maternal interface may predispose immune maladaptation notably in early miscarriages. We investigated the involvement of estradiol (E2)-activated serum-glucocorticoid regulated kinase 1 (SGK1) in preserving the tolerogenic and pro-survival intrauterine microenvironment beneficial to gestation maintenance. Decidual SGK1 was down-regulated in early miscarriage, consistent with the lower serum E2 concentration seen in pregnancy loss. Lipopolysaccharide (LPS)/Toll-like receptors 4 (TLR4) signaling induced apoptosis and the pro-inflammatory T helper type (TH) 1 response of decidual stromal cells (DSCs) were associated with miscarriage. SGK1 activation was suppressed by LPS/TLR4 signaling and would be rescued by E2 administration via the PI3K signaling pathway in DSCs. SGK1 activation attenuated TLR4-mediated cell apoptosis, while promoting cell viability of DSCs by up-regulating the pro-survival genes BCL2 and XIAP, and enhancing the phosphorylation of FOXO1. Furthermore, E2-induced SGK1 activation reduced the secretion of pro-inflammatory TH1 cytokines, and promoted the generation of TH2 cytokines and elevated IRF4 mRNA and protein levels in LPS-incubated DSCs. Pharmacologic inhibition of SGK1 or suppression by small interfering (si) RNA increased the phosphorylation and nuclear translocation of NF-κB to reverse the pro-TH2 and anti-inflammatory effects of E2 pretreatment, leading to compromised pregnancy. These findings suggest that the E2-mediated SGK1 activation suppressed LPS-mediated apoptosis and promoted the anti-inflammatory TH2 responses in DSCs, ultimately contributing to a successful pregnancy.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mu Yuan
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shisi Huang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
40
|
da Anunciação ARA, Mess AM, Orechio D, Aguiar BA, Favaron PO, Miglino MA. Extracellular matrix in epitheliochorial, endotheliochorial and haemochorial placentation and its potential application for regenerative medicine. Reprod Domest Anim 2016; 52:3-15. [DOI: 10.1111/rda.12868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- ARA da Anunciação
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - AM Mess
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - D Orechio
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - BA Aguiar
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - PO Favaron
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - MA Miglino
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
41
|
Abstract
Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.
Collapse
|
42
|
Park Y, Nnamani MC, Maziarz J, Wagner GP. Cis-Regulatory Evolution of Forkhead Box O1 (FOXO1), a Terminal Selector Gene for Decidual Stromal Cell Identity. Mol Biol Evol 2016; 33:3161-3169. [PMID: 27634871 DOI: 10.1093/molbev/msw193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies in human and mouse have shown that decidual stromal cells (DSC), which develop in the innermost lining of uterus, mediate placentation by regulating maternal immune response against the fetus and the extent of fetal invasion. Investigating when and how DSC evolved is thus a key step to reconstructing the evolutionary history of mammalian pregnancy. We present molecular evidence placing the origin of DSC in the stem lineage of eutherians (extant placental mammals). The transcription factor forkhead box O1 (FOXO1) is a part of the core regulatory transcription factor complex (CoRC) that establishes the cell type identity of DSC. Decidualization, the process through which DSC differentiate from endometrial stromal fibroblasts, requires transcriptional upregulation of FOXO1 Contrary to other examples in mammals where gene recruitment is caused by the origin of an alternative promoter, FOXO1 is transcribed from the same promoter in DSC as in endometrial stromal fibroblasts. Comparing the activities of FOXO1 promoters from human, mouse, manatee (Afrotheria), and opossum (marsupial) revealed that FOXO1 promoter evolved responsiveness to decidualization signals in the stem lineage of eutherians. This eutherian vs. marsupial pattern of promoter activity was not observed in some other cell types expressing FOXO1, suggesting that this cis-regulatory evolution occurred specifically in the context of the origin of DSC. Sequence comparison revealed eutherian-specifically conserved nucleotides that contribute to the eutherian promoter activity. We conclude that the cis-regulatory activity of a terminal selector gene for decidual stromal cell identity evolved in the stem lineage of eutherians supporting a model where decidual cells are a eutherian innovation.
Collapse
Affiliation(s)
- Yeonwoo Park
- Systems Biology Institute, Yale University, West Haven, CT
| | | | - Jamie Maziarz
- Systems Biology Institute, Yale University, West Haven, CT
| | - Günter P Wagner
- Systems Biology Institute, Yale University, West Haven, CT .,Department of Ecology and Evolutionary Biology, Yale University, West Haven, CT.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, West Haven, CT.,Department of Obstetrics and Gynecology, Wayne State University
| |
Collapse
|
43
|
Kin K, Maziarz J, Chavan AR, Kamat M, Vasudevan S, Birt A, Emera D, Lynch VJ, Ott TL, Pavlicev M, Wagner GP. The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression Innovations in Endometrial Stromal Fibroblasts. Genome Biol Evol 2016; 8:2459-73. [PMID: 27401177 PMCID: PMC5010902 DOI: 10.1093/gbe/evw168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type "neo-ESF" in contrast to "paleo-ESF" which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation.
Collapse
Affiliation(s)
- Koryu Kin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut Yale Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Jamie Maziarz
- Yale Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Arun R Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut Yale Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Manasi Kamat
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, Stage College, Pennsylvania
| | - Sreelakshmi Vasudevan
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, Stage College, Pennsylvania
| | - Alyssa Birt
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, Stage College, Pennsylvania
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Vincent J Lynch
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Troy L Ott
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, Stage College, Pennsylvania
| | - Mihaela Pavlicev
- Department of Pediatrics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut Yale Systems Biology Institute, Yale University, West Haven, Connecticut Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, Connecticut Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
44
|
Chavan AR, Wagner GP. The fetal-maternal interface of the nine-banded armadillo: endothelial cells of maternal sinus are partially replaced by trophoblast. ZOOLOGICAL LETTERS 2016; 2:11. [PMID: 27284459 PMCID: PMC4899922 DOI: 10.1186/s40851-016-0048-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The evolution of invasive placentation in the stem lineage of eutherian mammals entailed resolution of the incompatibility between a semi-allogenic fetus and the maternal immune system. The haemochorial placenta of nine-banded armadillo (Dasypus novemcinctus) is thought to conceal itself from the maternal immune system to some degree by developing inside a preformed blood sinus, with minimal contact with the uterine connective tissue. In the present study, we elucidate the micro-anatomical relationship between fetal and maternal tissue of the nine-banded armadillo using histochemical and immunohistochemical tools. RESULTS We conclude that the chorio-allantoic villi are separated from the myometrium by a vascular endothelial layer, as previously proposed. However, we also observe that the trophoblast cells establish direct contact with the endometrial stroma on the luminal side of the endometrium by partially replacing the endothelial lining of the sinus. Further, we demonstrate the presence of leukocytes, perhaps entrapped, in the placental fibrinoids at the interface between the intervillous space and the endometrial arcade. CONCLUSIONS The trophoblast of the armadillo invades the uterine tissue to a greater extent than was previously believed. We discuss the implications of this finding for the fetal-maternal immune tolerance.
Collapse
Affiliation(s)
- Arun Rajendra Chavan
- />Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- />Yale Systems Biology Institute, Yale University, West Haven, CT USA
| | - Günter P. Wagner
- />Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- />Yale Systems Biology Institute, Yale University, West Haven, CT USA
- />Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, CT USA
- />Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI USA
| |
Collapse
|