1
|
Ren Y, Zhu D, Han X, Zhang Q, Chen B, Zhou P, Wei Z, Zhang Z, Cao Y, Zou H. HMGB1: a double-edged sword and therapeutic target in the female reproductive system. Front Immunol 2023; 14:1238785. [PMID: 37691930 PMCID: PMC10484633 DOI: 10.3389/fimmu.2023.1238785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
HMGB1 that belongs to the High Mobility Group-box superfamily, is a nonhistone chromatin associated transcription factor. It is present in the nucleus of eukaryotes and can be actively secreted or passively released by kinds of cells. HMGB1 is important for maintaining DNA structure by binding to DNA and histones, protecting it from damage. It also regulates the interaction between histones and DNA, affecting chromatin packaging, and can influence gene expression by promoting nucleosome sliding. And as a DAMP, HMGB1 binding to RAGE and TLRs activates NF-κB, which triggers the expression of downstream genes like IL-18, IL-1β, and TNF-α. HMGB1 is known to be involved in numerous physiological and pathological processes. Recent studies have demonstrated the significance of HMGB1 as DAMPs in the female reproductive system. These findings have shed light on the potential role of HMGB1 in the pathogenesis of diseases in female reproductive system and the possibilities of HMGB1-targeted therapies for treating them. Such therapies can help reduce inflammation and metabolic dysfunction and alleviate the symptoms of reproductive system diseases. Overall, the identification of HMGB1 as a key player in disease of the female reproductive system represents a significant breakthrough in our understanding of these conditions and presents exciting opportunities for the development of novel therapies.
Collapse
Affiliation(s)
- Yu Ren
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui, China
| | - Damin Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xingxing Han
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Qiqi Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Valenzuela I, Kinoshita M, van der Merwe J, Maršál K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta 2022; 126:90-113. [PMID: 35796064 DOI: 10.1016/j.placenta.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 12/09/2022]
Abstract
Fetal growth restriction (FGR) in human pregnancy is associated with perinatal mortality, short- and long-term morbidities. No prenatal therapy is currently established despite decades of research. We aimed to review interventions in animal models for prenatal FGR treatment, and to seek the next steps for an effective clinical therapy. We registered our protocol and searched MEDLINE, Embase, and The Cochrane Library with no language restrictions, in accordance with the PRISMA guideline. We included all studies that reported the effects of any prenatal intervention in animal models of induced FGR. From 3257 screened studies, 202 describing 237 interventions were included for the final synthesis. Mice and rats were the most used animals (79%) followed by sheep (16%). Antioxidants (23%), followed by vasodilators (18%), nutrients (14%), and immunomodulators (12%) were the most tested therapy. Two-thirds of studies only reported delivery or immediate neonatal outcomes. Adverse effects were rarely reported (11%). Most studies (73%), independent of the intervention, showed a benefit in fetal survival or birthweight. The risk of bias was high, mostly due to the lack of randomization, allocation concealment, and blinding. Future research should aim to describe both short- and long-term outcomes across various organ systems in well-characterized models. Further efforts must be made to reduce selection, performance, and detection bias.
Collapse
|
3
|
Oda H, Nagamatsu T, Osuga Y. Thrombomodulin and pregnancy in the limelight: Insights into the therapeutic aspect of thrombomodulin in pregnancy complications. J Thromb Haemost 2022; 20:1040-1055. [PMID: 35191182 DOI: 10.1111/jth.15680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thrombomodulin (TM) is a transmembrane glycoprotein expressed on the endothelial cell functioning as a cofactor in the anticoagulation system. However, aside from anticoagulation, recent studies have revealed its multiple organ protective roles such as anti-inflammation, angiogenesis, and cell proliferation, which may redefine the function of TM. Although TM is predominantly expressed on placental trophoblasts, the physiological role of TM during pregnancy remains unclear. Because the understanding of TM function has drastically progressed, these new discoveries shed light on the unknown activities of placental TM. Moreover, the clinical application of recombinant TM (rTM) has opened the possibility of TM as a therapeutic target for pregnancy complications. OBJECTIVES Here, we comprehensively review the studies elucidating the role of TM during pregnancy from both classic and newly discovered perspectives, and seek for its potential as a therapeutic target for pregnancy complications. METHODS Basic research using trophoblast cells and transgenic mice, as well as cohort studies of inherited TM deficiency and clinical trials of rTM were summarized, which led us to further discuss the clinical application of rTM as a novel therapeutic for pregnancy complications. RESULTS AND CONCLUSION Accumulating evidence suggest the relevance of placental TM deficiency in pregnancy complications such as miscarriage, fetal growth restriction, and preeclampsia. Most importantly, promising results in animal studies and clinical trials further assure the possibility of rTM as an optimal therapeutic for such conditions. The therapeutic potential of TM raised throughout this review could drastically change the clinical approach to pregnancy complication and improve maternal outcomes.
Collapse
Affiliation(s)
- Hiroko Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
4
|
Gao P, Zha Y, Wei L, Zhou X, Zhu S, Zhang H, Gao X, Jiang Y, Chen Y, Li J, Zhang J, Yu J, Wang S, Liu H, Feng L. G-CSF: A vehicle for communication between trophoblasts and macrophages which may cause problems in recurrent spontaneous abortion. Placenta 2022; 121:164-172. [DOI: 10.1016/j.placenta.2022.03.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
|
5
|
Mesenchymal stem cell therapy attenuates complement C3 deposition and improves the delicate equilibrium between angiogenic and anti-angiogenic factors in abortion-prone mice. Mol Immunol 2021; 141:246-256. [PMID: 34875452 DOI: 10.1016/j.molimm.2021.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/15/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Immunological disorders are one of the main causes of recurrent spontaneous abortions (RSA). A rapidly expanding body of evidence indicates that excessive activation of the complement system is critically involved in the development of miscarriages. In the CBA/J × DBA/2 murine model of recurrent miscarriage, exaggerated and unrestrained complement activation is reported to be the underlying cause of angiogenic factor imbalance and persistent inflammation. We have previously shown that mesenchymal stem cell (MSC) therapy can significantly reduce the abortion rate in abortion-prone mice through regulating the feto-maternal immune response. In the present study, we hypothesized that MSCs might improve the balance of angiogenic factors at the feto-maternal unit of CBA/J × DBA/2 mice by restraining complement activation and deposition. To explore this hypothesis, autologous adipose tissue-derived mesenchymal stem cells (AD-MSCs) were administered intra-peritoneally to abortion-prone mice on the 4.5th day of gestation. Control mice received PBS as vehicle. On day 13.5 of pregnancy, deposition of the complement component C3 and expression levels of Crry, CFD (adipsin), VEGF, PlGF and FLT-1 were measured at the feto-maternal interface by immunohistochemistry and real-time PCR, respectively. Decidual cells were also cultured in RPMI 1640 medium for 48 h and VEGF and sFLT-1 protein levels were quantified in supernatants using enzyme-linked immunosorbent assay (ELISA). Our results indicated that MSC therapy significantly reduced C3 deposition and adipsin transcription in the fetal-maternal interface of abortion-prone mice. Furthermore, administration of MSCs robustly upregulated the mRNA expression levels of Crry, VEGF, PlGF and FLT-1 in the placenta and decidua of CBA/J × DBA/2 mice. Consistently, the in vitro results demonstrated that decidual cells obtained from MSC-treated dams produced increased concentrations of VEGF in culture supernatants, with concomitant decreased levels of sFLT-1 protein. Here, we show for the first time that adoptive transfer of MSCs rectifies the disturbed balance of angiogenic factors observed at the feto-maternal unit of CBA/J × DBA/2 mice, in part at least, through inhibiting excessive complement activation and promoting the production of angiogenic factors. Collectively, these alterations seem to play a pivotal role in reducing the abortion rate and improving the intrauterine condition for the benefit of the fetus.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Preeclampsia is a common complication of pregnancy and contributes significantly to maternal and fetal morbidity and mortality. A protective hypercoagulable state is often developed during late pregnancy and can evolve into a prothrombotic state in patients with preeclampsia. The underlying mechanism of this prothrombotic transition remains poorly understood. We discuss recent progress in understanding the pathophysiology of preeclampsia and associated prothrombotic state. RECENT FINDINGS The hypercoagulable state developed during pregnancy is initiated by placental factors and progresses into the prothrombotic state in preeclampsia when the placenta is subjected ischemic and oxidative injuries. The cause of the preeclampsia-induced prothrombotic state is multifactorial, involving not only placental factors but also maternal conditions, which include genetic predisposition, preexisting medical conditions, and conditions acquired during pregnancy. Endotheliopathy is the primary pathology of preeclampsia and contributes to the prothrombotic state by inducing the dysregulation of coagulation, platelets, and adhesive ligands. SUMMARY Patients with preeclampsia often develop a severe prothrombotic state that predisposes them to life-threatening thrombosis and thromboembolism during and after pregnancy. Early recognition and treatment of this prothrombotic state can improve maternal and infant outcomes of preeclampsia patients.
Collapse
Affiliation(s)
- Chan Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan-Yuan Chen
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
7
|
Okano Y, Takeshita A, Yasuma T, Toda M, Nishihama K, Fridman D’Alessandro V, Inoue C, D’Alessandro-Gabazza CN, Kobayashi T, Yano Y, Gabazza EC. Protective Role of Recombinant Human Thrombomodulin in Diabetes Mellitus. Cells 2021; 10:2237. [PMID: 34571886 PMCID: PMC8470378 DOI: 10.3390/cells10092237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a global threat to human health. The ultimate cause of diabetes mellitus is insufficient insulin production and secretion associated with reduced pancreatic β-cell mass. Apoptosis is an important and well-recognized mechanism of the progressive loss of functional β-cells. However, there are currently no available antiapoptotic drugs for diabetes mellitus. This study evaluated whether recombinant human thrombomodulin can inhibit β-cell apoptosis and improve glucose intolerance in a diabetes mouse model. A streptozotocin-induced diabetes mouse model was prepared and treated with thrombomodulin or saline three times per week for eight weeks. The glucose tolerance and apoptosis of β-cells were evaluated. Diabetic mice treated with recombinant human thrombomodulin showed significantly improved glucose tolerance, increased insulin secretion, decreased pancreatic islet areas of apoptotic β-cells, and enhanced proportion of regulatory T cells and tolerogenic dendritic cells in the spleen compared to counterpart diseased mice treated with saline. Non-diabetic mice showed no changes. This study shows that recombinant human thrombomodulin, a drug currently used to treat patients with coagulopathy in Japan, ameliorates glucose intolerance by protecting pancreatic islet β-cells from apoptosis and modulating the immune response in diabetic mice. This observation points to recombinant human thrombomodulin as a promising antiapoptotic drug for diabetes mellitus.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line, Tumor
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Hypoglycemic Agents/administration & dosage
- Injections, Intraperitoneal
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Recombinant Proteins/administration & dosage
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Streptozocin
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thrombomodulin/administration & dosage
- Mice
Collapse
Affiliation(s)
- Yuko Okano
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Atsuro Takeshita
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Taro Yasuma
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Masaaki Toda
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan;
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Esteban C. Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| |
Collapse
|
8
|
Oda H, Nagamatsu T, Schust DJ, Cabral H, Miyazaki T, Iriyama T, Kawana K, Osuga Y, Fujii T. Recombinant Thrombomodulin Attenuates Preeclamptic Symptoms by Inhibiting High-Mobility Group Box 1 in Mice. Endocrinology 2021; 162:6066512. [PMID: 33406229 DOI: 10.1210/endocr/bqaa248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a common gestational complication that involves systemic endothelial dysfunction and inflammatory responses primarily due to placental damage. Recombinant thrombomodulin (rTM), a novel anticoagulant clinically used for disseminated intravascular coagulation, is reported to have a unique anti-inflammatory endothelial repair function by inhibiting proinflammatory mediator high-mobility group box 1 (HMGB1). Despite the severe patient outcomes, there are currently no effective therapeutic options to treat PE. Here, we verified the efficacy of rTM as a novel therapeutic agent for PE using a murine model and human trophoblast cells. We revealed the therapeutic potential of rTM in an angiotensin II(Ang II)-induced PE mouse model. Injection of rTM significantly attenuated clinical features of PE, such as hypertension, proteinuria, fetal growth restriction, and impaired placental vasculature. Elevation of maternal soluble fms-like tyrosine kinase-1 (sFlt-1), a well-accepted causal factor of PE that induces systemic endothelial dysfunction, was suppressed in response to rTM treatment. Supporting these findings, our in vitro experiments revealed that rTM reduces Ang II-triggered overproduction of sFlt-1 in human trophoblast cells. Moreover, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), well-known key inflammatory mediators in PE pathogenesis, were diminished by rTM. SiRNA knockdown experiments further determined that these processes were directly mediated by HMGB1. Our studies demonstrate that rTM exerts its clinical effect as HMBG1 inhibitor and ameliorates placental dysfunction, which is central to PE pathogenesis. Our findings suggest that rTM could be a promising therapeutic that significantly improve the outcomes of PE patients.
Collapse
Affiliation(s)
- Hiroko Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyazaki
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Nihon University, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Kohli S, Singh KK, Gupta A, Markmeyer P, Lochmann F, Gupta D, Rana R, Elwakiel A, Huebner H, Ruebner M, Isermann B. Placental thromboinflammation impairs embryonic survival by reducing placental thrombomodulin expression. Blood 2021; 137:977-982. [PMID: 32870264 DOI: 10.1182/blood.2020005225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Excess platelet activation by extracellular vesicles (EVs) results in trophoblast inflammasome activation, interleukin 1β (IL-1β) activation, preeclampsia (PE), and partial embryonic lethality. Embryonic thrombomodulin (TM) deficiency, which causes embryonic lethality hallmarked by impaired trophoblast proliferation, has been linked with maternal platelet activation. We hypothesized that placental TM loss, platelet activation, and embryonic lethality are mechanistically linked to trophoblast inflammasome activation. Here, we uncover unidirectional interaction of placental inflammasome activation and reduced placental TM expression: although inflammasome inhibition did not rescue TM-null embryos from lethality, the inflammasome-dependent cytokine IL-1β reduced trophoblast TM expression and impaired pregnancy outcome. EVs, known to induce placental inflammasome activation, reduced trophoblast TM expression and proliferation. Trophoblast TM expression correlated negatively with IL-1β expression and positively with platelet numbers and trophoblast proliferation in human PE placentae, implying translational relevance. Soluble TM treatment or placental TM restoration ameliorated the EV-induced PE-like phenotype in mice, preventing placental thromboinflammation and embryonic death. The lethality of TM-null embryos is not a consequence of placental NLRP3 inflammasome activation. Conversely, EV-induced placental inflammasome activation reduces placental TM expression, promoting placental and embryonic demise. These data identify a new function of placental TM in PE and suggest that soluble TM limits thromboinflammatory pregnancy complications.
Collapse
Affiliation(s)
- Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Kunal Kumar Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Paulina Markmeyer
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Franziska Lochmann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Compreshensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (EMN), Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Compreshensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (EMN), Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| |
Collapse
|
10
|
STAT3 signaling pathway is involved in the pathogenesis of miscarriage. Placenta 2020; 101:30-38. [DOI: 10.1016/j.placenta.2020.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
|
11
|
Watanabe-Kusunoki K, Nakazawa D, Ishizu A, Atsumi T. Thrombomodulin as a Physiological Modulator of Intravascular Injury. Front Immunol 2020; 11:575890. [PMID: 33042158 PMCID: PMC7525002 DOI: 10.3389/fimmu.2020.575890] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Thrombomodulin (TM), which is predominantly expressed on the endothelium, plays an important role in maintaining vascular homeostasis by regulating the coagulation system. Intravascular injury and inflammation are complicated physiological processes that are induced by injured endothelium-mediated pro-coagulant signaling, necrotic endothelial- and blood cell-derived damage-associated molecular patterns (DAMPs), and DAMP-mediated inflammation. During the hypercoagulable state after endothelial injury, TM is released into the intravascular space by proteolytic cleavage of the endothelium component. Recombinant TM (rTM) is clinically applied to patients with disseminated intravascular coagulation, resulting in protection from tissue injury. Recent studies have revealed that rTM functions as an inflammatory regulator beyond hemostasis through various molecular mechanisms. More specifically, rTM neutralizes DAMPs, including histones and high mobility group box 1 (HMGB1), suppresses excessive activation of the complement system, physiologically protects the endothelium, and influences both innate and acquired immunity. Neutrophil extracellular traps (NETs) promote immunothrombosis by orchestrating platelets to enclose infectious invaders as part of the innate immune system, but excessive immunothrombosis can cause intravascular injury. However, rTM can directly and indirectly regulate NET formation. Furthermore, rTM interacts with mediators of acquired immunity to resolve vascular inflammation. So far, rTM has shown good efficacy in suppressing inflammation in various experimental models, including thrombotic microangiopathy, sterile inflammatory disorders, autoimmune diseases, and sepsis. Thus, rTM has the potential to become a novel tool to regulate intravascular injury via pleiotropic effects.
Collapse
Affiliation(s)
- Kanako Watanabe-Kusunoki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Daimon A, Morihara H, Tomoda K, Morita N, Koishi Y, Kanki K, Ohmichi M, Asahi M. Intravenously Injected Pluripotent Stem Cell-derived Cells Form Fetomaternal Vasculature and Prevent Miscarriage in Mouse. Cell Transplant 2020; 29:963689720970456. [PMID: 33349053 PMCID: PMC7873769 DOI: 10.1177/0963689720970456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
Miscarriage is the most common complication of pregnancy, and about 1% of pregnant women suffer a recurrence. Using a widely used mouse miscarriage model, we previously showed that intravenous injection of bone marrow (BM)-derived endothelial progenitor cells (EPCs) may prevent miscarriage. However, preparing enough BM-derived EPCs to treat a patient might be problematic. Here, we demonstrated the generation of mouse pluripotent stem cells (PSCs), propagation of sufficient PSC-derived cells with endothelial potential (PSC-EPs), and intravenous injection of the PSC-EPs into the mouse miscarriage model. We found that the injection prevented miscarriage. Three-dimensional reconstruction images of the decidua after tissue cleaning revealed robust fetomaternal neovascularization induced by the PSC-EP injection. Additionally, the injected PSC-EPs directly formed spiral arteries. These findings suggest that intravenous injection of PSC-EPs could become a promising remedy for recurrent miscarriage.
Collapse
Affiliation(s)
- Atsushi Daimon
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- These authors contributed equally to
this article
| | - Hirofumi Morihara
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- These authors contributed equally to
this article
| | - Kiichiro Tomoda
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- Department of Life Science Frontiers, Center for iPS Cell Research
and Application, Kyoto University, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA,
USA
- These authors contributed equally to
this article
| | - Natsuko Morita
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
| | - Yoshinori Koishi
- Division of Research Animal Laboratory and Translational Medicine,
Research and Development Center, Takatsuki, Osaka, Japan
| | - Kazuyoshi Kanki
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
| | - Michio Asahi
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
| |
Collapse
|
13
|
Ghaffari H, Varner JD, Petzold LR. Analysis of the role of thrombomodulin in all-trans retinoic acid treatment of coagulation disorders in cancer patients. Theor Biol Med Model 2019; 16:3. [PMID: 30764845 PMCID: PMC6376718 DOI: 10.1186/s12976-019-0099-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clinical studies have shown that all-trans retinoic acid (RA), which is often used in treatment of cancer patients, improves hemostatic parameters and bleeding complications such as disseminated intravascular coagulation (DIC). However, the mechanisms underlying this improvement have yet to be elucidated. In vitro studies have reported that RA upregulates thrombomodulin (TM) expression on the endothelial cell surface. The objective of this study was to investigate how and to what extent the TM concentration changes after RA treatment in cancer patients, and how this variation influences the blood coagulation cascade. RESULTS In this study, we introduced an ordinary differential equation (ODE) model of gene expression for the RA-induced upregulation of TM concentration. Coupling the gene expression model with a two-compartment pharmacokinetic model of RA, we obtained the time-dependent changes in TM and thrombomodulin-mRNA (TMR) concentrations following oral administration of RA. Our results indicated that the TM concentration reached its peak level almost 14 h after taking a single oral dose (110 [Formula: see text]) of RA. Continuous treatment with RA resulted in oscillatory expression of TM on the endothelial cell surface. We then coupled the gene expression model with a mechanistic model of the coagulation cascade, and showed that the elevated levels of TM over the course of RA therapy with a single daily oral dose (110 [Formula: see text]) of RA, reduced the peak thrombin levels and endogenous thrombin potential (ETP) up to 50 and 49%, respectively. We showed that progressive reductions in plasma levels of RA, observed in continuous RA therapy with a once-daily oral dose (110 [Formula: see text]) of RA, did not affect TM-mediated reduction of thrombin generation significantly. This finding prompts the hypothesis that continuous RA treatment has more consistent therapeutic effects on coagulation disorders than on cancer. CONCLUSIONS Our results indicate that the oscillatory upregulation of TM expression on the endothelial cells over the course of RA therapy could potentially contribute to the treatment of coagulation abnormalities in cancer patients. Further studies on the impacts of RA therapy on the procoagulant activity of cancer cells are needed to better elucidate the mechanisms by which RA therapy improves hemostatic abnormalities in cancer.
Collapse
Affiliation(s)
- Hamed Ghaffari
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Jeffrey D Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Linda R Petzold
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|