1
|
Yang R, Fu Y, Guan M, Yang X, Hu M, Cui Y, Zhang Y. The varied effects of different microplastics on stem development and carbon-nitrogen metabolism in tomato. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126387. [PMID: 40339879 DOI: 10.1016/j.envpol.2025.126387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/10/2025]
Abstract
Microplastics (MPs) pollution negatively impacts agricultural production, posing serious challenges to food security. However, research on the effects of different MPs types on plant growth, particularly on anatomical structures and carbon-nitrogen metabolism, is limited. This study investigates the effects of six MPs types on tomato (Solanum lycopersicum cv. Micro Tom) seedlings, including four non-degradable plastics (polyethylene [PE], polypropylene [PP], polystyrene [PS], and polyvinyl chloride [PVC]) and two biodegradable plastics (polybutylene succinate [PBS] and polylactic acid [PLA]). Results showed that MPs exposure inhibited seedling growth, with the degree of inhibition dependent on both the concentration and MPs type. MPs exert a significant negative impact on the development of the cortex (ct), vascular bundles (VBs), and pith tissue (pi) in tomato stems. Among them, PS-MPs induce relatively weaker negative effects. Analyses of key enzyme activities and gene expression revealed that MPs inhibited glycolysis pathway (EMP) and the tricarboxylic acid cycle (TCA), while enhancing the pentose phosphate pathway (PPP). Specifically, PBS-MPs and PVC-MPs strongly suppressed carbon assimilation, while PBS-MPs severely inhibited nitrogen assimilation. The results indicate that the negative impacts of biodegradable plastics on plants are comparable to those of traditional plastics. This study improves our understanding of the specific toxic effects of various MPs types on plant growth and metabolism.
Collapse
Affiliation(s)
- Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Youyang Fu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Mingzhu Guan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yilan Cui
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Li J, Na X, Qi C, Shi R, Li K, Jin J, Liu Z, Pu M, Wang S, Sun H, Wang X, Bi Y. Cytoplasmic G6PDs modulate callus formation in Arabidopsis root explants through regulation of very-long-chain fatty acids accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109526. [PMID: 39847973 DOI: 10.1016/j.plaphy.2025.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/12/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, impacts cancer cell proliferation and plant stress responses. However, its role in plant cell dedifferentiation and callus formation is not well understood. This study explores the function of cytoplasmic G6PD isoforms in Arabidopsis pericycle cell reprogramming into callus by employing a suite of mutant analyses, qRT-PCR, and GC-MS. Our findings demonstrate that g6pd5/6 double mutants exhibit enhanced callus formation compared to wild-type and single mutants, implicating cytoplasmic G6PDs as negative regulators of callus development. The double mutant showed reduced NADPH levels and increased expression of very-long-chain fatty acid (VLCFA) biosynthesis genes and the VLCFA-downstream gene Aberrant Lateral Root Formation 4 (ALF4) on callus-inducing medium (CIM). Notably, VLCFA concentrations were decreased in g6pd5/6 mutants, and supplementation of VLCFA reduced callus area. Additionally, callus formation in the alf4/g6pd5/6 triple mutant aligned with wild-type, suggesting a redundant inhibitory function of G6PD5 and G6PD6 in the regulation of VLCFA accumulation and related signaling. Contrasting with their roles in cancer cell proliferation, our study unveils novel insights into the G6PD signaling pathway, highlighting its unique function in negatively regulating plant callus formation.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xiaofan Na
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chang Qi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Ruiqing Shi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Kaile Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jie Jin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Ziyu Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Meiyun Pu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Shengwang Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Hao Sun
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Wieloch T, Holloway‐Phillips M, Yu J, Niittylä T. New insights into the mechanisms of plant isotope fractionation from combined analysis of intramolecular 13C and deuterium abundances in Pinus nigra tree-ring glucose. THE NEW PHYTOLOGIST 2025; 245:1000-1017. [PMID: 39314055 PMCID: PMC11711956 DOI: 10.1111/nph.20113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
Understanding isotope fractionation mechanisms is fundamental for analyses of plant ecophysiology and paleoclimate based on tree-ring isotope data. To gain new insights into isotope fractionation, we analysed intramolecular 13C discrimination in tree-ring glucose (Δi', i = C-1 to C-6) and metabolic deuterium fractionation at H1 and H2 (εmet) combinedly. This dual-isotope approach was used for isotope-signal deconvolution. We found evidence for metabolic processes affecting Δ1' and Δ3', which respond to air vapour pressure deficit (VPD), and processes affecting Δ1', Δ2', and εmet, which respond to precipitation but not VPD. These relationships exhibit change points dividing a period of homeostasis (1961-1980) from a period of metabolic adjustment (1983-1995). Homeostasis may result from sufficient groundwater availability. Additionally, we found Δ5' and Δ6' relationships with radiation and temperature, which are temporally stable and consistent with previously proposed isotope fractionation mechanisms. Based on the multitude of climate covariables, intramolecular carbon isotope analysis has a remarkable potential for climate reconstruction. While isotope fractionation beyond leaves is currently considered to be constant, we propose significant parts of the carbon and hydrogen isotope variation in tree-ring glucose originate in stems (precipitation-dependent signals). As basis for follow-up studies, we propose mechanisms introducing Δ1', Δ2', Δ3', and εmet variability.
Collapse
Affiliation(s)
- Thomas Wieloch
- Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences, Umeå Plant Science Centre90183UmeåSweden
- Division of Geological and Planetary SciencesCalifornia Institute of Technology91125PasadenaCAUSA
| | - Meisha Holloway‐Phillips
- Research Unit of Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmendsorfSwitzerland
| | - Jun Yu
- Department of Mathematics and Mathematical StatisticsUmeå University90187UmeåSweden
| | - Totte Niittylä
- Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences, Umeå Plant Science Centre90183UmeåSweden
| |
Collapse
|
4
|
Yu L, Zhang X, Xie P, Su T, Liang W, Wang Y, Prusky D, Romanazzi G, Bi Y. Improving sugar and respiratory metabolism in pear wounds by postharvest dipping with chitosan and chitooligosaccharide. Food Chem 2025; 464:141700. [PMID: 39447271 DOI: 10.1016/j.foodchem.2024.141700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Chitosan (CTS) and its degradation product, chitooligosaccharide (COS), promote fruit healing by activating phenylpropanoid metabolism. This study investigates their effects on sucrose metabolism in pear wounds. CTS and COS were found to activate neutral invertase, acid invertase, sucrose synthase, and sucrose phosphate synthase, increasing sucrose, glucose, and fructose levels in fruit wounds. They also enhanced sorbitol dehydrogenase activity and promoted sorbitol accumulation. In addition, CTS and COS improved the activities of hexokinase, phosphofructokinase, and pyruvate kinase, increasing phosphoenolpyruvate and ATP production. They activated glucose-6-phosphate dehydrogenase and increased erythrose-4-phosphate, NADPH, and shikimic acid levels. In conclusion, CTS and COS support the formation of the healing closing layer by supplying carbon skeletons, energy, and reducing power through the activation of sugar and respiratory metabolism during the healing process. Compared to CTS, COS was superior in activating the above metabolisms, which is expected to be widely used as a chitin product in postharvest fruit and vegetable preservation and provide new insights into preserving pear freshness.
Collapse
Affiliation(s)
- Lirong Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Su
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Liang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Yang H, Yuan Y, Li Z. Dehydration priming remodels protein abundance and phosphorylation level regulating tolerance to subsequent dehydration or salt stress in creeping bentgrass. J Proteomics 2025; 310:105325. [PMID: 39369954 DOI: 10.1016/j.jprot.2024.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Dehydration priming (DP) induces stress memory which plays a positive role in plant adaptability, but it is not well understood how DP differentially regulates subsequent dehydration (cis priming) or salt (trans priming) tolerance at the post-translational level. Purpose of this study was to identify proteins, phosphorylation levels and sites, and relevant metabolic pathways for DP-induced dehydration or salt tolerance in Agrostis stolonifera. DP-induced differentially regulated proteins (DRPs) were mostly located in the cytoplasm, chloroplast, and cell membrane, and differentially regulated phosphoproteins (DRPPs) were mostly nuclear proteins and cytoplasmic proteins. DP regulated common phosphorylation sites ([SP] and [RxxS]) under dehydration and salt conditions and also individually affected 8 or 11 phosphorylation sites under dehydration or salt stress. DP-regulated DRPPs were mainly rich in glycolysis and glutathione metabolism pathways, RNA splicing, and dynamin family proteins under dehydration stress, whereas DP-regulated salt tolerance was mainly related to chlorophyll metabolism, photosynthesis, MAPK signaling cascade, and ABC transporter I family at the phosphorylation level. In addition, the DP also significantly up-regulated phosphorylation of histones (ATXR3 and SETD1A) in response to subsequent dehydration and salt stress as well as abundances of antioxidant enzymes, dynamin family protein, and KCS6 under dehydration stress or abundances of PETE, HMGA, XTH, and ABCI6 under salt stress, respectively. Transcriptomics analysis further indicated that DP-regulated dehydration or salt tolerance was also related to transcriptional regulation in the early stage. Current results provided better understanding of the role of stress memory in plant adaptability to repeated or crossed stress via post-translational modifications (PTMs). SIGNIFICANCE: Recurrent moderate drought may buffer drought legacies in many plant species. When plants were exposed to repeated drought stress, their adaptability to subsequent stress could be enhanced, which is known as "stress memory". Dehydration priming has been found to be an important approach to induce stress memory. Current results provided better understanding of the role of stress memory in plant adaptability to repeated or crossed stress via post-translational modifications.
Collapse
Affiliation(s)
- Huizhen Yang
- Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Yuan
- Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhou Li
- Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Zhu Y, Zong Y, Wang X, Gong D, Zhang X, Zhang F, Prusky D, Bi Y. Regulation of sucrose metabolism, sugar transport and pentose phosphate pathway by PacC in apple fruit colonized by Penicillium expansum. Food Chem 2024; 461:140863. [PMID: 39153373 DOI: 10.1016/j.foodchem.2024.140863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
A critical transcription factor, PacC, modulates the expression of fungal pH signaling. Although PacC-mediated environmental pH has been reported to regulate the growth and pathogenicity of postharvest pathogens, the involvement of PacC in sucrose metabolism, sugar transport, and the pentose phosphate pathway (PPP) in different zones of decayed fruit remains unclear. Our work showed that the inoculation with a PePacC deletion strain of Penicillium expansum (ΔPePacC) accelerated sucrose catabolism and glucose and fructose accumulation in different zones of apple fruit. This was attributed to an increase in sucrose metabolism enzyme activities and up-regulation of the sugar transporter protein-related gene expression. Moreover, ΔPePacC inoculation increased the PPP-related enzyme activities and the levels of nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+. In conclusion, PacC modulates sucrose metabolism, sugar transport, and the PPP in apple fruit by mediating dynamic changes in environmental pH, thereby enhancing fruit disease resistance.
Collapse
Affiliation(s)
- Yatong Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuexue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Feng Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, the Volcani Center, RishonLeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Gálvez-Ramírez A, González-Valdez A, Hernández-Ochoa B, Canseco-Ávila LM, López-Roblero A, Arreguin-Espinosa R, Pérez de la Cruz V, Hernández-Urzua E, Cárdenas-Rodríguez N, Enríquez-Flores S, De la Mora-De la Mora I, Vidal-Limon A, Gómez-Manzo S. Evaluation of Three Mutations in Codon 385 of Glucose-6-Phosphate Dehydrogenase via Biochemical and In Silico Analysis. Int J Mol Sci 2024; 25:12556. [PMID: 39684266 DOI: 10.3390/ijms252312556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an enzymopathy that affects approximately 500 million people worldwide. A great number of mutations in the G6PD gene have been described. However, three class A G6PD variants known as G6PD Tomah (C385R), G6PD Kangnam (C385G), and G6PD Madrid (C385W) have been reported to be clinically important due to their associations with severe clinical manifestations such as hemolytic anemia. Therefore, this work aimed to perform, for the first time, biochemical and functional characterizations of these variants. The G6PD variants were cloned and purified for this purpose, followed by analyses of their kinetic parameters and thermal stability, as well as in silico studies. The results showed that the mutations induced changes in the proteins. Regarding the kinetic parameters, it was observed that the three variants showed lower affinities for G6P and NADP+, as well as lower thermal stability compared to WT-G6PD. Molecular dynamics simulations showed that C385 mutations induced changes around neighboring amino acids. Metadynamics simulations showed that most remarkable changes account for the binding pocket volumes, particularly in the structural NADP+ binding site, with a concomitant loss of affinity for catalytic processes.
Collapse
Affiliation(s)
- Adriana Gálvez-Ramírez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico
| | - Luis Miguel Canseco-Ávila
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico
| | - Alexander López-Roblero
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Elizabeth Hernández-Urzua
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| |
Collapse
|
8
|
Li H, Ma W, Wang X, Hu H, Cao L, Ma H, Lin J, Zhong M. A WUSCHEL-related homeobox transcription factor, SlWOX4, negatively regulates drought tolerance in tomato. PLANT CELL REPORTS 2024; 43:253. [PMID: 39370470 DOI: 10.1007/s00299-024-03333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
KEY MESSAGE CRISPR/Cas9-mediated knockout of SlWOX4 gene in tomato enhances tolerance to drought stress. Drought stress is one of the major abiotic factors that seriously affects plant growth and crop yield. WUSCHEL-related homeobox (WOX) transcription factors are involved in plant growth, development and stress response. However, little is known about the role of WOX genes in drought tolerance in tomato. Here, SlWOX4, a member of the WOX family in tomato, was functionally characterized in mediating drought tolerance. SlWOX4 was homologous to Nicotiana tabacum NtWOX4 with a conserved HD domain, and was localized in the nucleus. SlWOX4 was significantly down-regulated by drought and abscisic acid (ABA) treatments. The loss-of-function mutations of SlWOX4 produced using the CRISPR-Cas9 system in tomato improved drought tolerance by reducing water loss rate and enhancing stomatal closure. In addition, the wox4 lines exhibited reduced accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), increased antioxidant enzyme activity, proline contents and ABA contents under drought stress. Moreover, gene editing of SlWOX4 in tomato enhanced drought tolerance by regulating the expression of genes encoding antioxidants and ABA signaling molecules. In summary, SlWOX4 gene might negatively regulate drought stress tolerance in tomato and has great potential as a drought-resistant crop-breeding target genes.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wanying Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiao Wang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongling Hu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lina Cao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jingwei Lin
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
9
|
Zhu S, Mi J, Zhao B, Wang Z, Yang Z, Wang M, Liu J. Integrative transcriptome and metabolome analysis reveals the mechanism of fulvic acid alleviating drought stress in oat. FRONTIERS IN PLANT SCIENCE 2024; 15:1439747. [PMID: 39363917 PMCID: PMC11446754 DOI: 10.3389/fpls.2024.1439747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Drought stress inhibits oat growth and yield. The application of fulvic acid (FA) can improve the drought resistance of oats, but the corresponding molecular mechanism of FA-mediated drought resistance remains unclear. Here, we studied the effects of FA on the drought tolerance of oat leaves through physiological, transcriptomic, and metabolomics analyses, and identified FA-induced genes and metabolites related to drought tolerance. Physiological analysis showed that under drought stress, FA increased the relative water and chlorophyll contents of oat leaves, enhanced the activity of antioxidant enzymes (SOD, POD, PAL, CAT and 4CL), inhibited the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and dehydroascorbic acid (DHA), reduced the degree of oxidative damage in oat leaves, improved the drought resistance of oats, and promoted the growth of oat plants. Transcriptome and metabolite analyses revealed 652 differentially expressed genes (DEGs) and 571 differentially expressed metabolites (DEMs) in FA-treated oat leaves under drought stress. These DEGs and DEMs are involved in a variety of biological processes, such as phenylspropanoid biosynthesis and glutathione metabolism pathways. Additionally, FA may be involved in regulating the role of DEGs and DEMs in phenylpropanoid biosynthesis and glutathione metabolism under drought stress. In conclusion, our results suggest that FA promotes oat growth under drought stress by attenuating membrane lipid peroxidation and regulating the antioxidant system, phenylpropanoid biosynthesis, and glutathione metabolism pathways in oat leaves. This study provides new insights into the complex mechanisms by which FA improves drought tolerance in crops.
Collapse
Affiliation(s)
- Shanshan Zhu
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
| | - Junzhen Mi
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
- Oat Engineering Research Center of Inner Mongolia Agricultural University, Oat Engineering Laboratory of Inner Mongolia Autonomous Region, Hohhot, China
| | - Baoping Zhao
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
- Oat Engineering Research Center of Inner Mongolia Agricultural University, Oat Engineering Laboratory of Inner Mongolia Autonomous Region, Hohhot, China
| | - Zhaoming Wang
- National Center of Pratacultural Technology Innovation (under way)/M-Grass Ecology And Environment (Group) Co., Ltd., Hohhot, China
| | - Zhixue Yang
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
| | - Mengxin Wang
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
| | - Jinghui Liu
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
- Oat Engineering Research Center of Inner Mongolia Agricultural University, Oat Engineering Laboratory of Inner Mongolia Autonomous Region, Hohhot, China
| |
Collapse
|
10
|
Azarin K, Usatov A, Minkina T, Duplii N, Fedorenko A, Plotnikov A, Mandzhieva S, Kumar R, Yong JWH, Sehar S, Rajput VD. Evaluating the phytotoxicological effects of bulk and nano forms of zinc oxide on cellular respiration-related indices and differential gene expression in Hordeum vulgare L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116670. [PMID: 38981388 DOI: 10.1016/j.ecoenv.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The increasing use of nanoparticles is driving the growth of research on their effects on living organisms. However, studies on the effects of nanoparticles on cellular respiration are still limited. The remodeling of cellular-respiration-related indices in plants induced by zinc oxide nanoparticles (nnZnO) and its bulk form (blZnO) was investigated for the first time. For this purpose, barley (Hordeum vulgare L.) seedlings were grown hydroponically for one week with the addition of test compounds at concentrations of 0, 0.3, 2, and 10 mg mL-1. The results showed that a low concentration (0.3 mg mL-1) of blZnO did not cause significant changes in the respiration efficiency, ATP content, and total reactive oxygen species (ROS) content in leaf tissues. Moreover, a dose of 0.3 mg mL-1 nnZnO increased respiration efficiency in both leaves (17 %) and roots (38 %). Under the influence of blZnO and nnZnO at medium (2 mg mL-1) and high (10 mg mL-1) concentrations, a dose-dependent decrease in respiration efficiency from 28 % to 87 % was observed. Moreover, the negative effect was greater under the influence of nnZnO. The gene transcription of the subunits of the mitochondria electron transport chain (ETC) changed mainly only under the influence of nnZnO in high concentration. Expression of the ATPase subunit gene, atp1, increased slightly (by 36 %) in leaf tissue under the influence of medium and high concentrations of test compounds, whereas in the root tissues, the atp1 mRNA level decreased significantly (1.6-2.9 times) in all treatments. A dramatic decrease (1.5-2.4 times) in ATP content was also detected in the roots. Against the background of overexpression of the AOX1d1 gene, an isoform of alternative oxidase (AOX), the total ROS content in leaves decreased (with the exception of 10 mg mL-1 nnZnO). However, in the roots, where the pressure of the stress factor is higher, there was a significant increase in ROS levels, with a maximum six-fold increase under 10 mg mL-1 nnZnO. A significant decrease in transcript levels of the pentose phosphate pathway and glycolytic enzymes was also shown in the root tissues compared to leaves. Thus, the disruption of oxidative phosphorylation leads to a decrease in ATP synthesis and an increase in ROS production; concomitantly reducing the efficiency of cellular respiration.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Alexander Usatov
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Nadezhda Duplii
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Aleksei Fedorenko
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Andrey Plotnikov
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Saglara Mandzhieva
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation.
| |
Collapse
|
11
|
Li J, Ackah M, Amoako FK, Cui Z, Sun L, Li H, Tsigbey VE, Zhao M, Zhao W. Metabolomics and physio-chemical analyses of mulberry plants leaves response to manganese deficiency and toxicity reveal key metabolites and their pathways in manganese tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1349456. [PMID: 38911982 PMCID: PMC11192020 DOI: 10.3389/fpls.2024.1349456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
Introduction Manganese (Mn) plays a pivotal role in plant growth and development. Aside aiding in plant growth and development, Mn as heavy metal (HM) can be toxic in soil when applied in excess. Morus alba is an economically significant plant, capable of adapting to a range of environmental conditions and possessing the potential for phytoremediation of contaminated soil by HMs. The mechanism by which M. alba tolerates Mn stresses remains obscure. Methods In this study, Mn concentrations comprising sufficiency (0.15 mM), higher regimes (1.5 mM and 3 mM), and deficiency (0 mM and 0.03 mM), were applied to M. alba in pot treatment for 21 days to understand M. alba Mn tolerance. Mn stress effects on the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), chlorophyll content, plant morphological traits, enzymatic and non-enzymatic parameters were analyzed as well as metabolome signatures via non-targeted LC-MS technique. Results Mn deficiency and toxicity decrease plant biomass, Pn, Ci, Gs, Tr, and chlorophyll content. Mn stresses induced a decline in the activities of catalase (CAT) and superoxide dismutase (SOD), while peroxidase (POD) activity, and leaf Mn content, increased. Soluble sugars, soluble proteins, malondialdehyde (MDA) and proline exhibited an elevation in Mn deficiency and toxicity concentrations. Metabolomic analysis indicates that Mn concentrations induced 1031 differentially expressed metabolites (DEMs), particularly amino acids, lipids, carbohydrates, benzene and derivatives and secondary metabolites. The DEMs are significantly enriched in alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, galactose metabolism, pantothenate and CoA biosynthesis, pentose phosphate pathway, carbon metabolism, etc. Discussion and conclusion The upregulation of Galactinol, Myo-inositol, Jasmonic acid, L-aspartic acid, Coproporphyrin I, Trigonelline, Pantothenol, and Pantothenate and their significance in the metabolic pathways makes them Mn stress tolerance metabolites in M. alba. Our findings reveal the fundamental understanding of DEMs in M. alba's response to Mn nutrition and the metabolic mechanisms involved, which may hold potential significance for the advancement of M. alba genetic improvement initiatives and phytoremediation programs.
Collapse
Affiliation(s)
- Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | | | - Zipei Cui
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - LongWei Sun
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Victor Edem Tsigbey
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
12
|
Cao P, Yang J, Xia L, Zhang Z, Wu Z, Hao Y, Liu P, Wang C, Li C, Yang J, Lai J, Li X, Deng M, Wang S. Two gene clusters and their positive regulator SlMYB13 that have undergone domestication-associated negative selection control phenolamide accumulation and drought tolerance in tomato. MOLECULAR PLANT 2024; 17:579-597. [PMID: 38327054 DOI: 10.1016/j.molp.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Among plant metabolites, phenolamides, which are conjugates of hydroxycinnamic acid derivatives and polyamines, play important roles in plant adaptation to abiotic and biotic stresses. However, the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear. In this study, we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters (BGC7 and BGC11) containing 12 genes involved in phenolamide metabolism, including four biosynthesis genes (two 4CL genes, one C3H gene, and one CPA gene), seven decoration genes (five AT genes and two UGT genes), and one transport protein gene (DTX29). Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters, thereby promoting phenolamide accumulation. Genetic and physiological analyses showed that BGC7, BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato. Natural variation analysis suggested that BGC7, BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement, leading to reduced phenolamide content and drought tolerance of cultivated tomato. Collectively, our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.
Collapse
Affiliation(s)
- Peng Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China
| | - Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China.
| | - Linghao Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Zeyong Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Yingchen Hao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Penghui Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Jie Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Jun Lai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Xianggui Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Meng Deng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China.
| |
Collapse
|
13
|
Madrigal-Trejo D, Sánchez-Pérez J, Espinosa-Asuar L, Valdivia-Anistro JA, Eguiarte LE, Souza V. A Metagenomic Time-Series Approach to Assess the Ecological Stability of Microbial Mats in a Seasonally Fluctuating Environment. MICROBIAL ECOLOGY 2023; 86:2252-2270. [PMID: 37393557 PMCID: PMC10640475 DOI: 10.1007/s00248-023-02231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
Microbial mats are complex ecological assemblages that have been present in the rock record since the Precambrian and can still be found in extant marginalized environments. These structures are considered highly stable ecosystems. In this study, we evaluate the ecological stability of dome-forming microbial mats in a modern, water-level fluctuating, hypersaline pond located in the Cuatro Ciénegas Basin, Mexico. We conducted metagenomic sampling of the site from 2016 to 2019 and detected 2250 genera of Bacteria and Archaea, with only <20 belonging to the abundant taxa (>1%). The microbial community was dominated by Proteobacteria, Euryarchaeota, Bacteroidetes, Firmicutes, and Cyanobacteria, and was compositionally sensitive to disturbances, leading to high taxonomic replacement even at the phylum level, with a significant increase in Archaea from [Formula: see text]1-4% to [Formula: see text]33% throughout the 2016-2019 study period. Although a core community represented most of the microbial community (>75%), relative abundances shifted significantly between samples, as demonstrated by changes in the abundance of Coleofasciculus from 10.2% in 2017 to 0.05% in 2019. Although functional differences between seasons were subtle, co-occurrence networks suggest differential ecological interactions between the seasons, with the addition of a new module during the rainy season and the potential shift in hub taxa. Functional composition was slightly more similar between samples, but basic processes such as carbohydrate, amino acid, and nucleic acid metabolisms were widely distributed among samples. Major carbon fixation processes included sulfur oxidation, nitrogen fixation, and photosynthesis (both oxygenic and anoxygenic), as well as the Wood-Ljundgahl and Calvin cycles.
Collapse
Affiliation(s)
- David Madrigal-Trejo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jazmín Sánchez-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Laura Espinosa-Asuar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jorge A Valdivia-Anistro
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico.
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile.
| |
Collapse
|
14
|
Wang X, Shi C, Hu Y, Ma Y, Yi Y, Jia H, Li F, Sun H, Li T, Wang X, Li T, Li J. Persulfidation maintains cytosolic G6PDs activity through changing tetrameric structure and competing cysteine sulfur oxidation under salt stress in Arabidopsis and tomato. THE NEW PHYTOLOGIST 2023; 240:626-643. [PMID: 37574819 DOI: 10.1111/nph.19188] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Glucose-6-phosphate dehydrogenases (G6PDs) are essential regulators of cellular redox. Hydrogen sulfide (H2 S) is a small gasotransmitter that improves plant adaptation to stress; however, its role in regulating G6PD oligomerization to resist oxidative stress remains unknown in plants. Persulfidation of cytosolic G6PDs was analyzed by mass spectrometry (MS). The structural change model of AtG6PD6 homooligomer was built by chemical cross-linking coupled with mass spectrometry (CXMS). We isolated AtG6PD6C159A and SlG6PDCC155A transgenic lines to confirm the in vivo function of persulfidated sites with the g6pd5,6 background. Persulfidation occurs at Arabidopsis G6PD6 Cystine (Cys)159 and tomato G6PDC Cys155, leading to alterations of spatial distance between lysine (K)491-K475 from 42.0 Å to 10.3 Å within the G6PD tetramer. The structural alteration occurs in the structural NADP+ binding domain, which governs the stability of G6PD homooligomer. Persulfidation enhances G6PD oligomerization, thereby increasing substrate affinity. Under high salt stress, cytosolic G6PDs activity was inhibited due to oxidative modifications. Persulfidation protects these specific sites and prevents oxidative damage. In summary, H2 S-mediated persulfidation promotes cytosolic G6PD activity by altering homotetrameric structure. The cytosolic G6PD adaptive regulation with two kinds of protein modifications at the atomic and molecular levels is critical for the cellular stress response.
Collapse
Affiliation(s)
- Xiaofeng Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Ying Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuying Yi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Fali Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haotian Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuyu Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianjinhong Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
15
|
Muñoz-Vargas MA, González-Gordo S, Taboada J, Palma JM, Corpas FJ. In Silico RNAseq and Biochemical Analyses of Glucose-6-Phosphate Dehydrogenase (G6PDH) from Sweet Pepper Fruits: Involvement of Nitric Oxide (NO) in Ripening and Modulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3408. [PMID: 37836149 PMCID: PMC10574341 DOI: 10.3390/plants12193408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Pepper (Capsicum annuum L.) fruit is a horticultural product consumed worldwide which has great nutritional and economic relevance. Besides the phenotypical changes that pepper fruit undergo during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide (NO) is a recognized signal molecule that can exert regulatory functions in diverse plant processes including fruit ripening, but the relevance of NADPH as a fingerprinting of the crop physiology including ripening has also been proposed. Glucose-6-phosphate dehydrogenase (G6PDH) is the first and rate-limiting enzyme of the oxidative phase of the pentose phosphate pathway (oxiPPP) with the capacity to generate NADPH. Thus far, the available information on G6PDH and other NADPH-generating enzymatic systems in pepper plants, and their expression during the ripening of sweet pepper fruit, is very scarce. Therefore, an analysis at the transcriptomic, molecular and functional levels of the G6PDH system has been accomplished in this work for the first time. Based on a data-mining approach to the pepper genome and fruit transcriptome (RNA-seq), four G6PDH genes were identified in pepper plants and designated CaG6PDH1 to CaG6PDH4, with all of them also being expressed in fruits. While CaG6PDH1 encodes a cytosolic isozyme, the other genes code for plastid isozymes. The time-course expression analysis of these CaG6PDH genes during different fruit ripening stages, including green immature (G), breaking point (BP), and red ripe (R), showed that they were differentially modulated. Thus, while CaG6PDH2 and CaG6PDH4 were upregulated at ripening, CaG6PDH1 was downregulated, and CaG6PDH3 was slightly affected. Exogenous treatment of fruits with NO gas triggered the downregulation of CaG6PDH2, whereas the other genes were positively regulated. In-gel analysis using non-denaturing PAGE of a 50-75% ammonium-sulfate-enriched protein fraction from pepper fruits allowed for identifying two isozymes designated CaG6PDH I and CaG6PDH II, according to their electrophoretic mobility. In order to test the potential modulation of such pepper G6PDH isozymes, in vitro analyses of green pepper fruit samples in the presence of different compounds including NO donors (S-nitrosoglutathione and nitrosocysteine), peroxynitrite (ONOO-), a hydrogen sulfide (H2S) donor (NaHS, sodium hydrosulfide), and reducing agents such as reduced glutathione (GSH) and L-cysteine (L-Cys) were assayed. While peroxynitrite and the reducing compounds provoked a partial inhibition of one or both isoenzymes, NaHS exerted 100% inhibition of the two CaG6PDHs. Taken together these data provide the first data on the modulation of CaG6PDHs at gene and activity levels which occur in pepper fruit during ripening and after NO post-harvest treatment. As a consequence, this phenomenon may influence the NADPH availability for the redox homeostasis of the fruit and balance its active nitro-oxidative metabolism throughout the ripening process.
Collapse
Affiliation(s)
| | | | | | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.T.)
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.T.)
| |
Collapse
|
16
|
Pasandideh Arjmand M, Samizadeh Lahiji H, Mohsenzadeh Golfazani M, Biglouei MH. Evaluation of protein's interaction and the regulatory network of some drought-responsive genes in Canola under drought and re-watering conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1085-1102. [PMID: 37829706 PMCID: PMC10564702 DOI: 10.1007/s12298-023-01345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/14/2023]
Abstract
Drought stress is one of the most important environmental stresses that severely limits the growth and yield of Canola. The re-watering can compensate for the damage caused by drought stress. Investigation of protein's interaction of genes involved in important drought-responsive pathways and their regulatory network by microRNAs (miRNAs) under drought and re-watering conditions are helpful approaches to discovering drought-stress tolerance and recovery mechanisms. In this study, the protein's interaction and functional enrichment analyses of glycolysis, pentose phosphate, glyoxylate cycle, fatty acid biosynthesis, heat shock factor main genes, and the regulatory network of key genes by miRNAs were investigated by in silico analysis. Then, the relative expression of key genes and their related miRNAs were investigated in tolerant and susceptible genotypes of Canola under drought and re-watering conditions by Real-time PCR technique. The bna-miR156b/c/g, bna-miR395d/e/f, bna-miR396a, and all the studied key genes except HSFA1E and PK showed changes in expression levels in one or both genotypes after re-watering. The PPC1 and HSFB2B expression decreased, whereas the MLS and CAC3 expression increased in both genotypes under re-watering treatment after drought stress. It could cause the regulation of oxaloacetate production, the increase of the glyoxylate cycle, lipid biosynthesis, and the reduction of the negative regulation of HSFs under re-watering conditions. It seems that PPC1, G6PD2, MLS, CAC3, and HSFB2B were involved in the recovery mechanisms after drought stress of Canola. They were regulated by drought-responsive miRNAs to respond appropriately to drought stress. Therefore, regulating these genes could be important in plant recovery mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01345-1.
Collapse
Affiliation(s)
- Maryam Pasandideh Arjmand
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | | | - Mohammad Hassan Biglouei
- Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
17
|
Li X, Cai Q, Yu T, Li S, Li S, Li Y, Sun Y, Ren H, Zhang J, Zhao Y, Zhang J, Zuo Y. ZmG6PDH1 in glucose-6-phosphate dehydrogenase family enhances cold stress tolerance in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1116237. [PMID: 36968417 PMCID: PMC10034328 DOI: 10.3389/fpls.2023.1116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is a key enzyme in the pentose phosphate pathway responsible for the generation of nicotinamide adenine dinucleotide phosphate (NADPH), thereby playing a central role in facilitating cellular responses to stress and maintaining redox homeostasis. This study aimed to characterize five G6PDH gene family members in maize. The classification of these ZmG6PDHs into plastidic and cytosolic isoforms was enabled by phylogenetic and transit peptide predictive analyses and confirmed by subcellular localization imaging analyses using maize mesophyll protoplasts. These ZmG6PDH genes exhibited distinctive expression patterns across tissues and developmental stages. Exposure to stressors, including cold, osmotic stress, salinity, and alkaline conditions, also significantly affected the expression and activity of the ZmG6PDHs, with particularly high expression of a cytosolic isoform (ZmG6PDH1) in response to cold stress and closely correlated with G6PDH enzymatic activity, suggesting that it may play a central role in shaping responses to cold conditions. CRISPR/Cas9-mediated knockout of ZmG6PDH1 on the B73 background led to enhanced cold stress sensitivity. Significant changes in the redox status of the NADPH, ascorbic acid (ASA), and glutathione (GSH) pools were observed after exposure of the zmg6pdh1 mutants to cold stress, with this disrupted redox balance contributing to increased production of reactive oxygen species and resultant cellular damage and death. Overall, these results highlight the importance of cytosolic ZmG6PDH1 in supporting maize resistance to cold stress, at least in part by producing NADPH that can be used by the ASA-GSH cycle to mitigate cold-induced oxidative damage.
Collapse
Affiliation(s)
- Xin Li
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Quan Cai
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Tao Yu
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shujun Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Sinan Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yunlong Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan Sun
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Honglei Ren
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jiajia Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianguo Zhang
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yuhu Zuo
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
18
|
Comparison of Tomato Transcriptomic Profiles Reveals Overlapping Patterns in Abiotic and Biotic Stress Responses. Int J Mol Sci 2023; 24:ijms24044061. [PMID: 36835470 PMCID: PMC9961515 DOI: 10.3390/ijms24044061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Until a few years ago, many studies focused on the transcriptomic response to single stresses. However, tomato cultivations are often constrained by a wide range of biotic and abiotic stress that can occur singularly or in combination, and several genes can be involved in the defensive mechanism response. Therefore, we analyzed and compared the transcriptomic responses of resistant and susceptible genotypes to seven biotic stresses (Cladosporium fulvum, Phytophthora infestans, Pseudomonas syringae, Ralstonia solanacearum, Sclerotinia sclerotiorum, Tomato spotted wilt virus (TSWV) and Tuta absoluta) and five abiotic stresses (drought, salinity, low temperatures, and oxidative stress) to identify genes involved in response to multiple stressors. With this approach, we found genes encoding for TFs, phytohormones, or participating in signaling and cell wall metabolic processes, participating in defense against various biotic and abiotic stress. Moreover, a total of 1474 DEGs were commonly found between biotic and abiotic stress. Among these, 67 DEGs were involved in response to at least four different stresses. In particular, we found RLKs, MAPKs, Fasciclin-like arabinogalactans (FLAs), glycosyltransferases, genes involved in the auxin, ET, and JA pathways, MYBs, bZIPs, WRKYs and ERFs genes. Detected genes responsive to multiple stress might be further investigated with biotechnological approaches to effectively improve plant tolerance in the field.
Collapse
|
19
|
Jiang Z, Wang M, Nicolas M, Ogé L, Pérez-Garcia MD, Crespel L, Li G, Ding Y, Le Gourrierec J, Grappin P, Sakr S. Glucose-6-Phosphate Dehydrogenases: The Hidden Players of Plant Physiology. Int J Mol Sci 2022; 23:16128. [PMID: 36555768 PMCID: PMC9785579 DOI: 10.3390/ijms232416128] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes a metabolic hub between glycolysis and the pentose phosphate pathway (PPP), which is the oxidation of glucose-6-phosphate (G6P) to 6-phosphogluconolactone concomitantly with the production of nicotinamide adenine dinucleotide phosphate (NADPH), a reducing power. It is considered to be the rate-limiting step that governs carbon flow through the oxidative pentose phosphate pathway (OPPP). The OPPP is the main supplier of reductant (NADPH) for several "reducing" biosynthetic reactions. Although it is involved in multiple physiological processes, current knowledge on its exact role and regulation is still piecemeal. The present review provides a concise and comprehensive picture of the diversity of plant G6PDHs and their role in seed germination, nitrogen assimilation, plant branching, and plant response to abiotic stress. This work will help define future research directions to improve our knowledge of G6PDHs in plant physiology and to integrate this hidden player in plant performance.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laurent Ogé
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | | | - Laurent Crespel
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - José Le Gourrierec
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Philippe Grappin
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| |
Collapse
|
20
|
Li M, Li H, Sun A, Wang L, Ren C, Liu J, Gao X. Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Front Genet 2022; 13:1060529. [PMID: 36518213 PMCID: PMC9742610 DOI: 10.3389/fgene.2022.1060529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 08/21/2023] Open
Abstract
Drought is the most common environmental stress and has had dramatic impacts on soybean (Glycine max L.) growth and yield worldwide. Therefore, to investigate the response mechanism underlying soybean resistance to drought stress, the drought-sensitive cultivar "Liaodou 15" was exposed to 7 (mild drought stress, LD), 17 (moderate drought stress, MD) and 27 (severe drought stress, SD) days of drought stress at the flowering stage followed by rehydration until harvest. A total of 2214, 3684 and 2985 differentially expressed genes (DEGs) in LD/CK1, MD/CK2, and SD/CK3, respectively, were identified by RNA-seq. Weighted gene co-expression network analysis (WGCNA) revealed the drought-response TFs such as WRKY (Glyma.15G021900, Glyma.15G006800), MYB (Glyma.15G190100, Glyma.15G237900), and bZIP (Glyma.15G114800), which may be regulated soybean drought resistance. Second, Glyma.08G176300 (NCED1), Glyma.03G222600 (SDR), Glyma.02G048400 (F3H), Glyma.14G221200 (CAD), Glyma.14G205200 (C4H), Glyma.19G105100 (CHS), Glyma.07G266200 (VTC) and Glyma.15G251500 (GST), which are involved in ABA and flavonoid biosynthesis and ascorbic acid and glutathione metabolism, were identified, suggesting that these metabolic pathways play key roles in the soybean response to drought. Finally, the soybean yield after rehydration was reduced by 50% under severe drought stress. Collectively, our study deepens the understanding of soybean drought resistance mechanisms and provides a theoretical basis for the soybean drought resistance molecular breeding and effectively adjusts water-saving irrigation for soybean under field production.
Collapse
Affiliation(s)
- Mingqian Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Anni Sun
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chuanyou Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
21
|
Zhang Z, Zhang Y, Yuan L, Zhou F, Gao Y, Kang Z, Li T, Hu X. Exogenous 5-aminolevulinic acid alleviates low-temperature injury by regulating glutathione metabolism and β-alanine metabolism in tomato seedling roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114112. [PMID: 36155340 DOI: 10.1016/j.ecoenv.2022.114112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Food availability represents a major worldwide concern due to climate change and population growth. Low-temperature stress (LTS) severely restricts the growth of tomato seedlings. Exogenous 5-aminolevulinic acid (ALA) can alleviate the harm of abiotic stress including LTS; however, data on its protective mechanism on tomato seedling roots, the effects of organelle structure, and the regulation of metabolic pathways under LTS are lacking. In this study, we hope to fill the above gaps by exploring the effects of exogenous ALA on morphology, mitochondrial ultrastructure, reactive oxygen species (ROS) enrichment, physiological indicators, related gene expression, and metabolic pathway in tomato seedlings root under LTS. Results showed that ALA pretreatment could increase the activity of antioxidant enzymes and the content of antioxidant substances in tomato seedlings roots under LTS to scavenge the massively accumulated ROS, thereby protecting the mitochondrial structure of roots and promoting root development under LTS. Combined transcriptomic and metabolomic analysis showed that exogenous ALA pretreatment activated the glutathione metabolism and β-alanine metabolism of tomato seedling roots under LTS, further enhanced the scavenging ability of tomato seedling roots to ROS, and improved the low-temperature tolerance of tomato seedlings. The findings provide a new insight into the regulation of the low-temperature tolerance of tomato by exogenous ALA.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Fan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Kang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Hernández-Ochoa B, Ortega-Cuellar D, González-Valdez A, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG, Contreras-García IJ, Pichardo-Macías LA, Bandala C, Gómez-Manzo S. COVID-19 in G6PD-deficient patients, oxidative stress, and neuropathology. Curr Top Med Chem 2022; 22:1307-1325. [PMID: 35578850 DOI: 10.2174/1568026622666220516111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that regulates energy metabolism mainly through the pentose phosphate pathway (PPP). It is well known that this enzyme participates in the antioxidant/oxidant balance via the synthesis of energy-rich molecules: nicotinamide adenine dinucleotide phosphate reduced (NADPH), the reduced form of flavin adenine dinucleotide (FADH) and glutathione (GSH), controlling reactive oxygen species generation. Coronavirus disease 19 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is considered a public health problem which has caused approximately 4.5 million deaths since December 2019. In relation to the role of G6PD in COVID-19 development, it is known from the existing literature that G6PD-deficient patients infected with SARS-CoV-2 are more susceptible to thrombosis and hemolysis, suggesting that G6PD deficiency facilitates infection by SARS-CoV-2. In relation to G6PD and neuropathology, it has been observed that deficiency of this enzyme is also present with an increase in oxidative markers. In relation to the role of G6PD and the neurological manifestations of COVID-19, it has been reported that the enzymatic deficiency in patients infected with SARS-CoV-2 exacerbates the disease, and, in some clinical reports, an increase in hemolysis and thrombosis was observed when patients were treated with hydroxychloroquine (OH-CQ), a drug with oxidative properties. In the present work, we summarize the evidence of the role of G6PD in COVID-19 and its possible role in the generation of oxidative stress and glucose metabolism deficits and inflammation present in this respiratory disease and its progression including neurological manifestations.
Collapse
Affiliation(s)
- Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, 06720, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| | | | | | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, 07738, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| |
Collapse
|
23
|
Conti V, Cantini C, Romi M, Cesare MM, Parrotta L, Del Duca S, Cai G. Distinct Tomato Cultivars Are Characterized by a Differential Pattern of Biochemical Responses to Drought Stress. Int J Mol Sci 2022; 23:5412. [PMID: 35628226 PMCID: PMC9141555 DOI: 10.3390/ijms23105412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Future climate scenarios suggest that crop plants will experience environmental changes capable of affecting their productivity. Among the most harmful environmental stresses is drought, defined as a total or partial lack of water availability. It is essential to study and understand both the damage caused by drought on crop plants and the mechanisms implemented to tolerate the stress. In this study, we focused on four cultivars of tomato, an economically important crop in the Mediterranean basin. We investigated the biochemical mechanisms of plant defense against drought by focusing on proteins specifically involved in this stress, such as osmotin, dehydrin, and aquaporin, and on proteins involved in the general stress response, such as HSP70 and cyclophilins. Since sugars are also known to act as osmoprotectants in plant cells, proteins involved in sugar metabolism (such as RuBisCO and sucrose synthase) were also analyzed. The results show crucial differences in biochemical behavior among the selected cultivars and highlight that the most tolerant tomato cultivars adopt quite specific biochemical strategies such as different accumulations of aquaporins and osmotins. The data set also suggests that RuBisCO isoforms and aquaporins can be used as markers of tolerance/susceptibility to drought stress and be used to select tomato cultivars within breeding programs.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy;
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Maria Michela Cesare
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (L.P.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (L.P.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| |
Collapse
|
24
|
Lei D, Lin Y, Luo M, Zhao B, Tang H, Zhou X, Yao W, Zhang Y, Wang Y, Li M, Chen Q, Luo Y, Wang X, Tang H, Zhang Y. Genome-Wide Investigation of G6PDH Gene in Strawberry: Evolution and Expression Analysis during Development and Stress. Int J Mol Sci 2022; 23:4728. [PMID: 35563120 PMCID: PMC9104510 DOI: 10.3390/ijms23094728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the key enzymes in the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PDH) provides NADPH and plays an important role in plant development and stress responses. However, little information was available about the G6PDH genes in strawberry (Fragaria × ananassa). The recent release of the whole-genome sequence of strawberry allowed us to perform a genome-wide investigation into the organization and expression profiling of strawberry G6PDH genes. In the present study, 19 strawberry G6PDH genes (FaG6PDHs) were identified from the strawberry genome database. They were designated as FaG6PDH1 to FaG6PDH19, respectively, according to the conserved domain of each subfamily and multiple sequence alignment with Arabidopsis. According to their structural and phylogenetic features, the 19 FaG6PDHs were further classified into five types: Cy, P1, P1.1, P2 and PO. The number and location of exons and introns are similar, suggesting that genes of the same type are very similar and are alleles. A cis-element analysis inferred that FaG6PDHs possessed at least one stress-responsive cis-acting element. Expression profiles derived from transcriptome data analysis exhibited distinct expression patterns of FaG6PDHs genes in different developmental stages. Real-time quantitative PCR was used to detect the expression level of five types FaG6PDHs genes and demonstrated that the genes were expressed and responded to multiple abiotic stress and hormonal treatments.
Collapse
Affiliation(s)
- Diya Lei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengwen Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Bing Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Honglan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Xuan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Wantian Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| |
Collapse
|
25
|
Conti V, Romi M, Guarnieri M, Cantini C, Cai G. Italian Tomato Cultivars under Drought Stress Show Different Content of Bioactives in Pulp and Peel of Fruits. Foods 2022; 11:foods11030270. [PMID: 35159422 PMCID: PMC8834277 DOI: 10.3390/foods11030270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: This study aims to evaluate the performance, in terms of accumulation of antioxidant compounds in fruits, of nine local and three commercial Italian tomato cultivars subjected to drought stress. The same local cultivars had been previously studied at morpho-physiological level. Methods: The present manuscript analyzes drought stress as a tool to increase the amount of secondary metabolites that can enhance fruit quality. Nutraceutical characterization of the fruits was performed by analyzing the content of antioxidants, phenols, flavonoids, lycopene, ascorbic acid (vitamin C), rutin, caffeic acid, and naringenin. At the same time, plant sensitivity to stress during the reproductive phase was monitored in terms of flower abscission, fruit drop, and seed germination. Results: Perina turns out to be the tomato cultivar with the best nutraceutical properties in the absence of stress while the Quarantino cultivar is so for flavonoid content (control plants) and lycopene and vitamin C content (stressed plants). Perina and Quarantino are the cultivars with the best response to drought and Perina has the highest concentrations of bioactives. Quarantino responds most effectively to stress in the reproductive phase. Conclusions: data confirm that drought stress increases bioactive production in some local cultivars of tomato, which produce higher quality fruits.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-232392
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.G.); (G.C.)
| | - Massimo Guarnieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.G.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.G.); (G.C.)
| |
Collapse
|
26
|
Lopez-Delacalle M, Camejo D, Garcia-Marti M, Lopez-Ramal MJ, Nortes PA, Martinez V, Rivero RM. Deciphering fruit sugar transport and metabolism from tolerant and sensitive tomato plants subjected to simulated field conditions. PHYSIOLOGIA PLANTARUM 2021; 173:1715-1728. [PMID: 33547642 DOI: 10.1111/ppl.13355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
In the current state of climate change, we must assume that abiotic stresses act together under natural field conditions, these will increase in the coming years. Therefore, in this report we investigated how sugar metabolism was affected under simulated field conditions, where plants faced high ambient temperatures and a low-quality water irrigation. Our studies were carried out on fruits of two tomato recombinant lines, a tolerant and a sensitive one exposed to the combination of heat and salinity. Two ripening stages (mature green and red ripe fruits) were used in our analyzes, where the gene expression levels of the main biosynthetic genes and transporters, enzymatic activities and compounds related to the synthesis, accumulation, and degradation of sugars in plants were analyzed. The tolerant line showed highly significant differences in red ripe fruits in comparison to the sensitive one under the simulated field conditions (35°C + 60 mM NaCl), with an overexpression of the genes SlFBP, SlSPS, SlSUS3, and SlNi. These expression patterns correlated with a higher activity of the enzymes FBP, SPS, SUS3, AI, and G6PDH, which resulted in the accumulation of fructose, glucose and UDP-glucose. Our results showed the advantage of using tomato recombinant lines for rescuing important traits, such as the resistance to some abiotic stresses, and for the identification of important molecular and metabolic markers that could be used to determine fruit quality in green or red maturity stages under detrimental environmental field conditions.
Collapse
Affiliation(s)
- Maria Lopez-Delacalle
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Daymi Camejo
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Maria Garcia-Marti
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Maria Jose Lopez-Ramal
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Pedro A Nortes
- CEBAS-CSIC, Department of Irrigation, Campus Universitario Espinardo, Espinardo, Spain
| | - Vicente Martinez
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Rosa M Rivero
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| |
Collapse
|
27
|
Navarro-León E, Paradisone V, López-Moreno FJ, Rios JJ, Esposito S, Blasco B. Effect of CAX1a TILLING mutations on photosynthesis performance in salt-stressed Brassica rapa plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111013. [PMID: 34482916 DOI: 10.1016/j.plantsci.2021.111013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Salinity is an important environmental factor that reduces plant productivity in many world regions. It affects negatively photosynthesis causing a growth reduction. Likewise, calcium (Ca2+) is crucial in plant stress response. Therefore, the modification of Ca2+ cation exchangers (CAX) transporters could be a potential strategy to increase plant tolerance to salinity. Using Targeting Induced Local Lesions in Genomes (TILLING), researchers generated three mutants of Brassica rapa CAX1a transporter: BraA.cax1a-7, BraA.cax1a-4, and BraA.cax1a-12. The aim of this study was to test the effect of those mutations on salt tolerance focusing on the response to the photosynthesis process. Thus, the three BraA.cax1a mutants and the parental line (R-o-18) were grown under salinity conditions, and parameters related to biomass, photosynthesis performance, glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), and soluble carbohydrates were measured. BraA.cax1a-4 provided higher biomass and a better photosynthetic performance manifested by higher water use efficiency (WUE), Fv/Fm, electron fluxes, and Rubisco (EC 4.1.1.39) values. In addition, BraA.cax1a-4 presented increased osmotic protection through myo-inositol accumulation. On the other hand, BraA.cax1a-7 produced some negative effects on photosynthesis performance and lower G6PDH and Rubisco accumulations. Therefore, this study points out BraA.cax1a-4 as a useful mutation to improve photosynthetic performance in plants grown under saline conditions.
Collapse
Affiliation(s)
- Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| | - Valeria Paradisone
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy.
| | | | - Juan José Rios
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| | - Sergio Esposito
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy.
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
28
|
Conti V, Romi M, Parri S, Aloisi I, Marino G, Cai G, Cantini C. Morpho-Physiological Classification of Italian Tomato Cultivars ( Solanum lycopersicum L.) According to Drought Tolerance during Vegetative and Reproductive Growth. PLANTS (BASEL, SWITZERLAND) 2021; 10:1826. [PMID: 34579359 PMCID: PMC8468351 DOI: 10.3390/plants10091826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 01/18/2023]
Abstract
Irrigation is fundamental for agriculture but, as climate change becomes more persistent, there is a need to conserve water and use it more efficiently. It is therefore crucial to identify cultivars that can tolerate drought. For economically relevant crops, such as tomatoes, this purpose takes on an even more incisive role and local agrobiodiversity is a large genetic reservoir of promising cultivars. In this study, nine local Italian cultivars of tomatoes plus four widely used commercial cultivars were considered. These experienced about 20 d of drought, either at vegetative or reproductive phase. Various physio-morphological parameters were monitored, such as stomatal conductance (gs), photosynthesis (A), water use efficiency (WUE), growth (GI) and soil water content (SWC). The different responses and behaviors allowed to divide the cultivars into three groups: tolerant, susceptible, and intermediate. The classification was also confirmed by a principal component analysis (PCA). The study, in addition to deepening the knowledge of local Italian tomato cultivars, reveals how some cultivars perform better under stress condition than commercial ones. Moreover, the different behavior depends on the genotype and on the growth phase of plants. In fact, the Perina cultivar is the most tolerant during vegetative growth while the Quarantino cultivar is mostly tolerant at reproductive stage. The results suggest that selection of cultivars could lead to a more sustainable agriculture and less wasteful irrigation plans.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (S.P.); (G.C.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (S.P.); (G.C.)
| | - Sara Parri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (S.P.); (G.C.)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio, 40126 Bologna, Italy;
| | - Giovanni Marino
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (S.P.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy;
| |
Collapse
|
29
|
Impact of Peels Extracts from an Italian Ancient Tomato Variety Grown under Drought Stress Conditions on Vascular Related Dysfunction. Molecules 2021; 26:molecules26144289. [PMID: 34299564 PMCID: PMC8307906 DOI: 10.3390/molecules26144289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. Methods: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. Results: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). Conclusions: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.
Collapse
|
30
|
Santiago JP, Soltani A, Bresson MM, Preiser AL, Lowry DB, Sharkey TD. Contrasting anther glucose-6-phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. PLANT, CELL & ENVIRONMENT 2021; 44:2185-2199. [PMID: 33783858 PMCID: PMC8360076 DOI: 10.1111/pce.14057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Common beans (Phaseolus vulgaris) are highly sensitive to elevated temperatures, and rising global temperatures threaten bean production. Plants at the reproductive stage are especially susceptible to heat stress due to damage to male (anthers) and female (ovary) reproductive tissues, with anthers being more sensitive to heat. Heat damage promotes early tapetal cell degradation, and in beans this was shown to cause male infertility. In this study, we focus on understanding how changes in leaf carbon export in response to elevated temperature stress contribute to heat-induced infertility. We hypothesize that anther glucose-6-phosphate dehydrogenase (G6PDH) activity plays an important role at elevated temperature and promotes thermotolerance. To test this hypothesis, we compared heat-tolerant and susceptible common bean genotypes using a combination of phenotypic, biochemical, and physiological approaches. Our results identified changes in leaf sucrose export, anther sugar accumulation and G6PDH activity and anther H2 O2 levels and antioxidant-related enzymes between genotypes at elevated temperature. Further, anther respiration rate was found to be lower at high temperature in both bean varieties. Overall, our results support the hypothesis that enhanced male reproductive heat tolerance involves changes in the anther oxidative pentose phosphate pathway, which supplies reductants to critical H2 O2 scavenging enzymes.
Collapse
Affiliation(s)
- James P. Santiago
- Michigan State University‐Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience Institute, Michigan State UniversityEast LansingMichiganUSA
| | - Ali Soltani
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience Institute, Michigan State UniversityEast LansingMichiganUSA
| | - Madeline M. Bresson
- Michigan State University‐Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Alyssa L. Preiser
- Michigan State University‐Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - David B. Lowry
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience Institute, Michigan State UniversityEast LansingMichiganUSA
| | - Thomas D. Sharkey
- Michigan State University‐Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience Institute, Michigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
31
|
Liang W, Chen Y, Li X, Guo F, Sun J, Zhang X, Xu B, Gao W. Label-Free Proteomic Analysis of Smoke-Drying and Shade-Drying Processes of Postharvest Rhubarb: A Comparative Study. FRONTIERS IN PLANT SCIENCE 2021; 12:663180. [PMID: 34140961 PMCID: PMC8205111 DOI: 10.3389/fpls.2021.663180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Postharvest processing plays a very important role in improving the quality of traditional Chinese medicine. According to previous studies, smoke-drying could significantly promote the accumulation of the bioactive components and pharmacological activities of rhubarb, but so far, the molecular mechanism has not been studied yet. In this research, to study the molecular mechanisms of postharvest processing for rhubarb during shade-drying and smoke-drying, label-free proteomic analyses were conducted. In total, 1,927 differentially abundant proteins (DAPs) were identified from rhubarb samples treated by different drying methods. These DAPs were mainly involved in response and defense, signal transduction, starch, carbohydrate and energy metabolism, and anthraquinone and phenolic acid biosynthesis. Smoke-drying significantly enhanced the expression of proteins involved in these metabolic pathways. Accordingly, the molecular mechanism of the accumulation of effective ingredients of rhubarb was clarified, which provided a novel insight into the biosynthesis of active ingredients that occur during the rhubarb dry process.
Collapse
Affiliation(s)
- Wei Liang
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Fengxia Guo
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuemin Zhang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Bo Xu
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
32
|
Tian Y, Peng K, Bao Y, Zhang D, Meng J, Wang D, Wang X, Cang J. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase genes of winter wheat enhance the cold tolerance of transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:86-97. [PMID: 33581622 DOI: 10.1016/j.plaphy.2021.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In this study, winter wheat G6PDH (TaG6PDH) and 6PGDH (Ta6PGDH) were investigated. Both their expression and their activity were upregulated under cold stress, suggesting that TaG6PDH and Ta6PGDH positively respond to cold stress in winter wheat. Exogenous abscisic acid (ABA) treatment markedly increased the expression and activity levels of TaG6PDH and Ta6PGDH in winter wheat under cold stress. Subsequently, TaG6PDH-and Ta6PGDH were overexpressed in Arabidopsis, and showed stronger reactive oxygen species (ROS)-scavenging ability and higher survival rate compared with wild-type (WT) plants under cold stress. In addition, we found that TaG6PDH and Ta6PGDH overexpression can promote the oxidative pentose phosphate pathway (OPPP) in the cytoplasm and peroxisomes of Arabidopsis. In summary, Arabidopsis overexpressing TaG6PDH and Ta6PGDH showed improved cold tolerance.
Collapse
Affiliation(s)
- Yu Tian
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kankan Peng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuzhuo Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Da Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Meng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duojia Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaonan Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
33
|
He Q, Li P, Zhang W, Bi Y. Cytoplasmic glucose-6-phosphate dehydrogenase plays an important role in the silicon-enhanced alkaline tolerance in highland barley. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:119-130. [PMID: 32777198 DOI: 10.1071/fp20084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH), as a key enzyme in the pentose phosphate pathway, extensively responds to the biotic and abiotic stresses. In this study we focussed on the G6PDH role in the alleviation of alkaline stress induced by silicon (Si) in highland barley. Application of Si reduced the water loss and malondialdehyde (MDA) and reactive oxygen species (ROS) contents, improved the fresh weight, photosynthesis, K+ content, and the superoxide dismutase (SOD) and catalase (CAT) activities, thus alleviating the damage caused by alkaline stress. The G6PDH activity, especially the cytoplasmic G6PDH, significantly increased under alkaline stress, and was further stimulated by the addition of exogenous Si. Meanwhile, the levels of NADPH and reduced glutathione (GSH) showed similar profiles to G6PDH activity under NaHCO3 and NaHCO3 + Si treatments. The inhibition of G6PDH activity by glucosamine abolished the relieving effect of Si on alkaline stress, which was manifested in the increase of ROS and the decrease of GSH content. Together, our results suggest that Si-enhanced tolerance of alkaline stress may be related to the regulation of GSH levels by the cytoplasmic G6PDH in highland barley.
Collapse
Affiliation(s)
- Qiang He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ping Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, People's Republic of China
| | - Wenya Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yurong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China; and Corresponding author.
| |
Collapse
|
34
|
Gaete A, Pulgar R, Hodar C, Maldonado J, Pavez L, Zamorano D, Pastenes C, González M, Franck N, Mandakovic D. Tomato Cultivars With Variable Tolerances to Water Deficit Differentially Modulate the Composition and Interaction Patterns of Their Rhizosphere Microbial Communities. FRONTIERS IN PLANT SCIENCE 2021; 12:688533. [PMID: 34326856 PMCID: PMC8313812 DOI: 10.3389/fpls.2021.688533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 05/09/2023]
Abstract
Since drought is the leading environmental factor limiting crop productivity, and plants have a significant impact in defining the assembly of plant-specific microbial communities associated with roots, we aimed to determine the effect of thoroughly selected water deficit tolerant and susceptible Solanum lycopersicum cultivars on their rhizosphere microbiome and compared their response with plant-free soil microbial communities. We identified a total of 4,248 bacterial and 276 fungal different operational taxonomic units (OTUs) in soils by massive sequencing. We observed that tomato cultivars significantly affected the alpha and beta diversity of their bacterial rhizosphere communities but not their fungal communities compared with bulk soils (BSs), showing a plant effect exclusively on the bacterial soil community. Also, an increase in alpha diversity in response to water deficit of both bacteria and fungi was observed in the susceptible rhizosphere (SRz) but not in the tolerant rhizosphere (TRz) cultivar, implying a buffering effect of the tolerant cultivar on its rhizosphere microbial communities. Even though water deficit did not affect the microbial diversity of the tolerant cultivar, the interaction network analysis revealed that the TRz microbiota displayed the smallest and least complex soil network in response to water deficit with the least number of connected components, nodes, and edges. This reduction of the TRz network also correlated with a more efficient community, reflected in increased cooperation within kingdoms. Furthermore, we identified some specific bacteria and fungi in the TRz in response to water deficit, which, given that they belong to taxa with known beneficial characteristics for plants, could be contributing to the tolerant phenotype, highlighting the metabolic bidirectionality of the holobiont system. Future assays involving characterization of root exudates and exchange of rhizospheres between drought-tolerant and susceptible cultivars could determine the effect of specific metabolites on the microbiome community and may elucidate their functional contribution to the tolerance of plants to water deficit.
Collapse
Affiliation(s)
- Alexis Gaete
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Center for Genome Regulation, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LGIB), Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Christian Hodar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Center for Genome Regulation, Santiago, Chile
| | - Jonathan Maldonado
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Laboratorio de Biología de Sistemas de Plantas, Departamento Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo Pavez
- Instituto de Ciencias Naturales, Universidad de Las Américas, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Denisse Zamorano
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile
- Centro de Estudios en Zonas Áridas (CEZA), Universidad de Chile, Coquimbo, Chile
| | - Claudio Pastenes
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Center for Genome Regulation, Santiago, Chile
| | - Nicolás Franck
- Centro de Estudios en Zonas Áridas (CEZA), Universidad de Chile, Coquimbo, Chile
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Dinka Mandakovic
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LGIB), Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Centro de Estudios en Zonas Áridas (CEZA), Universidad de Chile, Coquimbo, Chile
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
- *Correspondence: Dinka Mandakovic,
| |
Collapse
|
35
|
Zhou X, Chen Y, Zhao Y, Gao F, Liu H. The application of exogenous PopW increases the tolerance of Solanum lycopersicum L. to drought stress through multiple mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2521-2535. [PMID: 33424162 PMCID: PMC7772130 DOI: 10.1007/s12298-020-00918-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 05/25/2023]
Abstract
Tomato is a major cultivated vegetable species of great economic importance throughout the world, but its fruit yield is severely impaired by drought stress. PopW, a harpin protein from Ralstonia solanacearum ZJ3721, plays vital roles in various plant defence responses and growth. In this study, we observed that the foliar application of PopW increased tomato drought tolerance. Our results showed that compared with water-treated plants, PopW-treated plants presented a significantly higher recovery rate and leaf relative water content under drought-stress conditions. PopW decreased the malondialdehyde content and relative electrical conductivity by 40.2% and 21%, respectively. Drought disrupts redox homeostasis through the excessive accumulation of reactive oxygen species (ROS). PopW-treated plants displayed an obvious reduction in ROS accumulation due to enhanced activities of the antioxidant enzyme catalase, superoxide dismutase and peroxidase. Moreover, PopW promoted early stomatal closure, thereby minimizing the water loss rate of plants under drought stress. Further investigation revealed that endogenous abscisic acid (ABA) levels and the transcript levels of drought-responsive genes involved in ABA signal transduction pathways increased in response to PopW. These results confirm that PopW increases drought tolerance through multiple mechanisms involving an enhanced water-retention capacity, balanced redox homeostasis, increased osmotic adjustment, reduced membrane damage and decreased stomatal aperture, suggesting that the application of exogenous PopW may be a potential method to enhance tomato drought tolerance.
Collapse
Affiliation(s)
- Xiaosi Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Yu Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Fangyuan Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| |
Collapse
|
36
|
Overexpression of a Cytosolic 6-Phosphogluconate Dehydrogenase Gene Enhances the Resistance of Rice to Nilaparvata lugens. PLANTS 2020; 9:plants9111529. [PMID: 33182659 PMCID: PMC7696191 DOI: 10.3390/plants9111529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
The pentose phosphate pathway (PPP) plays an important role in plant growth and development, and plant responses to biotic and abiotic stresses. Yet, whether the PPP regulates plant defenses against herbivorous insects remains unclear. In this study, we cloned a rice cytosolic 6-phosphogluconate dehydrogenase gene, Os6PGDH1, which encodes the key enzyme catalyzing the third step in the reaction involving the oxidative phase of the PPP, and explored its role in rice defenses induced by brown planthopper (BPH) Nilaparvata lugens. Levels of Os6PGDH1 transcripts were detected in all five examined tissues, with the highest in outer leaf sheaths and lowest in inner leaf sheaths. Os6PGDH1 expression was strongly induced by mechanical wounding, infestation of gravid BPH females, and jasmonic acid (JA) treatment. Overexpressing Os6PGDH1 (oe6PGDH) decreased the height of rice plants and the mass of the aboveground part of plants, but slightly increased the length of plant roots. In addition, the overexpression of Os6PGDH1 enhanced levels of BPH-induced JA, jasmonoyl-isoleucine (JA-Ile), and H2O2, but decreased BPH-induced levels of ethylene. Bioassays revealed that gravid BPH females preferred to feed and lay eggs on wild-type (WT) plants over oe6PGDH plants; moreover, the hatching rate of BPH eggs raised on oe6PGDH plants and the fecundity of BPH females fed on these were significantly lower than the eggs and the females raised and fed on WT plants. Taken together, these results indicate that Os6PGDH1 plays a pivotal role not only in rice growth but also in the resistance of rice to BPH by modulating JA, ethylene, and H2O2 pathways.
Collapse
|
37
|
Pengyan Z, Fuli L, Siqing C, Zhourui L, Wenjun W, Xiutao S. Comparative Ubiquitome Analysis under Heat Stress Reveals Diverse Functions of Ubiquitination in Saccharina japonica. Int J Mol Sci 2020; 21:E8210. [PMID: 33153009 PMCID: PMC7663155 DOI: 10.3390/ijms21218210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
Ubiquitination is a major post-translational modification involved in nearly all aspects of eukaryotic biology. Previous RNA-Seq studies showed that ubiquitination plays essential roles in the heat tolerance of Saccharina japonica, but to date, large-scale profiling of the ubiquitome in S. japonica has not been reported. To better understand the regulatory roles of ubiquitination in heat responses of S. japonica, we investigated its ubiquitome under normal and heat stress by the combination of affinity enrichment and high-resolution liquid chromatography-tandem mass spectroscopy analysis. Altogether, 3305 lysine ubiquitination sites in 1562 protein groups were identified. After normalization, 152 lysine ubiquitination sites in 106 proteins were significantly upregulated and 208 lysine ubiquitination sites in 131 proteins were significantly downregulated in response to heat stress. Protein annotation and functional analysis suggested that ubiquitination modulates a variety of essential cellular and physiological processes, including but not limited to the ubiquitin-26S proteasome system, ribosome, carbohydrate metabolism, and oxidative phosphorylation. Our results provide a global view of the heat response ubiquitome in S. japonica, and could facilitate future studies on the physiological roles of these ubiquitination-related proteins.
Collapse
Affiliation(s)
- Zhang Pengyan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liu Fuli
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Chen Siqing
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liang Zhourui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wang Wenjun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Sun Xiutao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.P.); (C.S.); (L.Z.); (W.W.); (S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
38
|
Zhang Y, Luo M, Cheng L, Lin Y, Chen Q, Sun B, Gu X, Wang Y, Li M, Luo Y, Wang X, Zhang Y, Tang H. Identification of the Cytosolic Glucose-6-Phosphate Dehydrogenase Gene from Strawberry Involved in Cold Stress Response. Int J Mol Sci 2020; 21:ijms21197322. [PMID: 33023038 PMCID: PMC7582851 DOI: 10.3390/ijms21197322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) plays an important role in plant stress responses. Here, five FaG6PDH sequences were obtained in strawberry, designated as FaG6PDH-CY, FaG6PDH-P1, FaG6PDH-P1.1, FaG6PDH-P2 and FaG6PDH-P0, which were divided into cytosolic (CY) and plastidic (P) isoforms based on the bioinformatic analysis. The respective FaG6PDH genes had distinct expression patterns in all tissues and at different stages of fruit development. Notably, FaG6PDH-CY was the most highly expressed gene among five FaG6PDH members, indicating it encoded the major G6PDH isoform throughout the plant. FaG6PDH positively regulated cold tolerance in strawberry. Inhibition of its activity gave rise to greater cold-induced injury in plant. The FaG6PDH-CY transcript had a significant increase under cold stress, similar to the G6PDH enzyme activity, suggesting a principal participant in response to cold stress. Further study showed that the low-temperature responsiveness (LTR) element in FaG6PDH-CY promoter can promote the gene expression when plant encountered cold stimuli. Besides, FaG6PDH-CY was involved in regulating cold-induced activation of antioxidant enzyme genes (FaSOD, FaCAT, FaAPX and FaGR) and RBOH-dependent ROS generation. The elevated FaG6PDH-CY enhanced ROS-scavenging capability of antioxidant enzymes to suppress ROS excessive accumulation and relieved the oxidative damage, eventually improving the strawberry resistance to cold stress.
Collapse
Affiliation(s)
- Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengwen Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Lijuan Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Xianjie Gu
- Mianyang Academy of Agricultural Sciences, Mianyang 621000, China;
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Correspondence: (Y.Z.); (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Correspondence: (Y.Z.); (H.T.)
| |
Collapse
|
39
|
Chaput V, Martin A, Lejay L. Redox metabolism: the hidden player in carbon and nitrogen signaling? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3816-3826. [PMID: 32064525 DOI: 10.1093/jxb/eraa078] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
While decades of research have considered redox metabolism as purely defensive, recent results show that reactive oxygen species (ROS) are necessary for growth and development. Close relationships have been found between the regulation of nitrogen metabolism and ROS in response to both carbon and nitrogen availability. Root nitrate uptake and nitrogen metabolism have been shown to be regulated by a signal from the oxidative pentose phosphate pathway (OPPP) in response to carbon signaling. As a major source of NADP(H), the OPPP is critical to maintaining redox balance under stress situations. Furthermore, recent results suggest that at least part of the regulation of the root nitrate transporter by nitrogen signaling is also linked to the redox status of the plant. This leads to the question of whether there is a more general role of redox metabolism in the regulation of nitrogen metabolism by carbon and nitrogen. This review highlights the role of the OPPP in carbon signaling and redox metabolism, and the interaction between redox and nitrogen metabolism. We discuss how redox metabolism could be an important player in the regulation of nitrogen metabolism in response to carbon/nitrogen interaction and the implications for plant adaptation to extreme environments and future crop development.
Collapse
Affiliation(s)
- Valentin Chaput
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Antoine Martin
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Laurence Lejay
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
40
|
Fulvic acid ameliorates drought stress-induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis. BMC Genomics 2020; 21:411. [PMID: 32552744 PMCID: PMC7301537 DOI: 10.1186/s12864-020-06815-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Fulvic acid (FA) is a kind of plant growth regulator, which can promote plant growth, play an important role in fighting against drought, improve plant stress resistance, increase production and improve quality. However, the function of FA in tea plants during drought stress remain largely unknown. Results Here, we examined the effects of 0.1 g/L FA on genes and metabolites in tea plants at different periods of drought stress using transcriptomics and metabolomics profiles. Totally, 30,702 genes and 892 metabolites were identified. Compared with controlled groups, 604 and 3331 differentially expressed metabolite genes (DEGs) were found in FA-treated tea plants at 4 days and 8 days under drought stress, respectively; 54 and 125 differentially expressed metabolites (DEMs) were also found at two time points, respectively. Bioinformatics analysis showed that DEGs and DEMs participated in diverse biological processes such as ascorbate metabolism (GME, AO, ALDH and L-ascorbate), glutathione metabolism (GST, G6PDH, glutathione reduced form and CYS-GYL), and flavonoids biosynthesis (C4H, CHS, F3’5’H, F3H, kaempferol, quercetin and myricetin). Moreover, the results of co-expression analysis showed that the interactions of identified DEGs and DEMs diversely involved in ascorbate metabolism, glutathione metabolism, and flavonoids biosynthesis, indicating that FA may be involved in the regulation of these processes during drought stress. Conclusion The results indicated that FA enhanced the drought tolerance of tea plants by (i) enhancement of the ascorbate metabolism, (ii) improvement of the glutathione metabolism, as well as (iii) promotion of the flavonoids biosynthesis that significantly improved the antioxidant defense of tea plants during drought stress. This study not only confirmed the main strategies of FA to protect tea plants from drought stress, but also deepened the understanding of the complex molecular mechanism of FA to deal with tea plants to better avoid drought damage.
Collapse
|
41
|
Investigation of Heterologously Expressed Glucose-6-Phosphate Dehydrogenase Genes in a Yeast zwf1 Deletion. Microorganisms 2020; 8:microorganisms8040546. [PMID: 32283834 PMCID: PMC7232176 DOI: 10.3390/microorganisms8040546] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme of the oxidative part of the pentose phosphate pathway and serves as the major source of NADPH for metabolic reactions and oxidative stress response in pro- and eukaryotic cells. We here report on a strain of the model yeast Saccharomyces cerevisiae which lacks the G6PD-encoding ZWF1 gene and displays distinct growth retardation on rich and synthetic media, as well as a strongly reduced chronological lifespan. This strain was used as a recipient to introduce plasmid-encoded heterologous G6PD genes, synthesized in the yeast codon usage and expressed under the control of the native PFK2 promotor. Complementation of the hypersensitivity of the zwf1 mutant towards hydrogen peroxide to different degrees was observed for the genes from humans (HsG6PD1), the milk yeast Kluyveromyces lactis (KlZWF1), the bacteria Escherichia coli (EcZWF1) and Leuconostoc mesenteroides (LmZWF1), as well as the genes encoding three different plant G6PD isoforms from Arabidopsis thaliana (AtG6PD1, AtG6PD5, AtG6PD6). The plastidic AtG6PD1 isoform retained its redox-sensitive activity when produced in the yeast as a cytosolic enzyme, demonstrating the suitability of this host for determination of its physiological properties. Mutations precluding the formation of a disulfide bridge in AtG6PD1 abolished its redox-sensitivity but improved its capacity to complement the yeast zwf1 deletion. Given the importance of G6PD in human diseases and plant growth, this heterologous expression system offers a broad range of applications.
Collapse
|
42
|
Veličković D, Chu RK, Myers GL, Ahkami AH, Anderton CR. An approach for visualizing the spatial metabolome of an entire plant root system inspired by the Swiss-rolling technique. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4363. [PMID: 31018010 DOI: 10.1002/jms.4363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 05/11/2023]
Abstract
The spatial configuration and morphology of roots are commonly monitored for a better understanding of plant health and development. However, this approach provides minimal details about the biochemistry regulating the observable traits. Therefore, the ability to metabolically map the entire root structure would be of major value. Here, we developed a sample preparation approach that enables imaging of the entire root within a restricted space (width of microscope slide), which was influenced by the Swiss-rolling technique. We were able to image and confidently identify molecules along the entire root structure from rolled-root tissue sections using multiple spatially resolved mass spectrometry approaches.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Gabriel L Myers
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
43
|
The role of glucose-6-phosphate dehydrogenase in reactive oxygen species metabolism in apple exocarp induced by acibenzolar-S-methyl. Food Chem 2020; 308:125663. [DOI: 10.1016/j.foodchem.2019.125663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/27/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022]
|
44
|
Zhao Y, Cui Y, Huang S, Yu J, Wang X, Xin D, Li X, Liu Y, Dai Y, Qi Z, Chen Q. Genome-Wide Analysis of the Glucose-6-Phosphate Dehydrogenase Family in Soybean and Functional Identification of GmG6PDH2 Involvement in Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:214. [PMID: 32174950 PMCID: PMC7054389 DOI: 10.3389/fpls.2020.00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/12/2020] [Indexed: 05/31/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is known as a critical enzyme responsible for nicotinamide adenine dinucleotide phosphate (NADPH) generation in the pentose phosphate pathway (PPP), and has an essential function in modulating redox homeostasis and stress responsiveness. In the present work, we characterized the nine members of the G6PDH gene family in soybean. Phylogenic analysis and transit peptide prediction showed that these soybean G6PDHs are divided into plastidic (P) and cytosolic (Cy) isoforms. The subcellular locations of five GmG6PDHs were further verified by confocal microscopy in Arabidopsis mesophyll protoplasts. The respective GmG6PDH genes had distinct expression patterns in various soybean tissues and at different times during seed development. Among them, the Cy-G6PDHs were strongly expressed in roots, developing seeds and nodules, while the transcripts of P-G6PDHs were mainly detected in green tissues. In addition, the activities and transcripts of GmG6PDHs were dramatically stimulated by different stress treatments, including salt, osmotic and alkali. Notably, the expression levels of a cytosolic isoform (GmG6PDH2) were extraordinarily high under salt stress and correlated well with the G6PDH enzyme activities, possibly implying a crucial factor for soybean responses to salinity. Enzymatic assay of recombinant GmG6PDH2 proteins expressed in Escherichia coli showed that the enzyme encoded by GmG6PDH2 had functional NADP+-dependent G6PDH activity. Further analysis indicated overexpression of GmG6PDH2 gene could significantly enhance the resistance of transgenic soybean to salt stress by coordinating with the redox states of ascorbic acid and glutathione pool to suppress reactive oxygen species generation. Together, these results indicate that GmG6PDH2 might be the major isoform for NADPH production in PPP, which is involved in the modulation of cellular AsA-GSH cycle to prevent the oxidative damage induced by high salinity.
Collapse
Affiliation(s)
- Ying Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yifan Cui
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shiyu Huang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jingyao Yu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xinyu Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xin Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yonghui Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuxin Dai
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
45
|
Wang X, Ruan M, Wan Q, He W, Yang L, Liu X, He L, Yan L, Bi Y. Nitric oxide and hydrogen peroxide increase glucose-6-phosphate dehydrogenase activities and expression upon drought stress in soybean roots. PLANT CELL REPORTS 2020; 39:63-73. [PMID: 31535176 DOI: 10.1007/s00299-019-02473-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE Changes in glucose-6-phosphate dehydrogenase (G6PD) isoforms activities and expression were investigated in soybean roots under drought, suggesting that cytosolic G6PD plays a main role by regulating H2O2 signal and redox homeostasis. G6PD acts a vital role in plant growth, development and stress adaptation. Drought (PEG6000 treatment) could markedly increase the enzymatic activities of cytosolic G6PD (Cyt-G6PD) and compartmented G6PD (mainly plastidic P2-G6PD) in soybean roots. Application of G6PD inhibitor upon drought condition dramatically decreased the intracellular NADPH and reduced glutathione levels in soybean roots. Nitric oxide (NO) and hydrogen peroxide (H2O2) participated in the regulation of Cyt-G6PD and P2-G6PD enzymatic activities under drought stress. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, abolished the drought-induced accumulation of H2O2. The exogenous application of H2O2 and its production inhibitor (DPI) could stimulate and inhibit the NO accumulation, respectively, but not vice versa. qRT-PCR analysis confirmed that NO, as the downstream signal of H2O2, positively regulated the transcription of genes encoding Cyt-G6PD (GPD5, G6PD6, G6PD7) under drought stress in soybean roots. Comparatively, NO and H2O2 signals negatively regulated the gene expression of compartmented G6PD (GPD1, G6PD2, G6PD4), indicating that a post-transcriptional mechanism was involved in compartmented G6PD regulation. Taken together, the high Cyt-G6PD activity is essential for maintaining redox homeostasis upon drought condition in soybean roots, and the H2O2-dependent NO cascade signal is differently involved in Cyt-G6PD and compartmented G6PD regulation.
Collapse
Affiliation(s)
- Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Mengjiao Ruan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi Wan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wenliang He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Lei Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xinyuan Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Lili Yan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
46
|
Landi S, Berni R, Capasso G, Hausman JF, Guerriero G, Esposito S. Impact of Nitrogen Nutrition on Cannabis sativa: An Update on the Current Knowledge and Future Prospects. Int J Mol Sci 2019; 20:E5803. [PMID: 31752217 PMCID: PMC6888403 DOI: 10.3390/ijms20225803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022] Open
Abstract
Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.g. alkaloids and glucosinolates. By partaking in the synthesis of phenylalanine, N also directly impacts a central plant metabolic 'hub'-the phenylpropanoid pathway-from which important classes of molecules are formed, notably monolignols, flavonoids and other types of polyphenols. In this review, an updated analysis is provided on the impact that N has on the multipurpose crop hemp (Cannabis sativa L.) due to its renewed interest as a multipurpose crop able to satisfy the needs of a bioeconomy. The hemp stalk provides both woody and cellulosic fibers used in construction and for biocomposites; different organs (leaves/flowers/roots) are sources of added-value secondary metabolites, namely cannabinoids, terpenes, flavonoids, and lignanamides. We survey the available literature data on the impact of N in hemp and highlight the importance of studying those genes responding to both N nutrition and abiotic stresses. Available hemp transcriptomic datasets obtained on plants subjected to salt and drought are here analyzed using Gene Ontology (GO) categories related to N metabolism. The ultimate goal is to shed light on interesting candidate genes that can be further studied in hemp varieties growing under different N feeding conditions and showing high biomass yield and secondary metabolite production, even under salinity and drought.
Collapse
Affiliation(s)
- Simone Landi
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100 Siena, Italy;
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy
| | - Giorgia Capasso
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Sergio Esposito
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| |
Collapse
|
47
|
Conti V, Mareri L, Faleri C, Nepi M, Romi M, Cai G, Cantini C. Drought Stress Affects the Response of Italian Local Tomato ( Solanum lycopersicum L.) Varieties in a Genotype-Dependent Manner. PLANTS (BASEL, SWITZERLAND) 2019; 8:E336. [PMID: 31500309 PMCID: PMC6783988 DOI: 10.3390/plants8090336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/25/2022]
Abstract
Drought stress is one of the most severe conditions for plants, especially in the face of the emerging problem of global warming. This issue is important when considering economically relevant crops, including the tomato. For these plants, a promising solution is the valorization of local agrobiodiversity as a source of genetic variability. In this paper we investigated how six Italian tomato varieties react to a prolonged period of water depletion. We used a multidisciplinary approach, from genetics to plant physiology and cytology, to provide a detailed overview of the response of plants to stress. The varieties analyzed, each characterized by a specific genetic profile, showed a genotype-specific response with the variety 'Fragola' being the most resistant and the variety 'Pisanello' the most susceptible. For all the parameters evaluated, 'Fragola' performed in a manner comparable to that of control plants. On the contrary, 'Pisanello' appeared to be more affected and showed an increase in the number of stomata and a drastic increase in antioxidants, a symptom of acute oxidative stress. Our work suggests the existence of a valuable reservoir of genetic biodiversity with more drought-tolerant tomato genotypes opening the way to further exploitation and use of local germplasm in breeding programs.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, Siena, SI 53100, Italy.
| | - Lavinia Mareri
- Department of Life Sciences, University of Siena, Siena, SI 53100, Italy.
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, SI 53100, Italy.
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, Siena, SI 53100, Italy.
| | - Marco Romi
- Department of Life Sciences, University of Siena, Siena, SI 53100, Italy.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, SI 53100, Italy.
| | - Claudio Cantini
- CNR-IBE (Consiglio Nazionale delle Ricerche-Istituto per la Bioeconomia), Follonica, GR 58022, Italy.
| |
Collapse
|
48
|
Fabiańska I, Bucher M, Häusler RE. Intracellular phosphate homeostasis - A short way from metabolism to signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:57-67. [PMID: 31300142 DOI: 10.1016/j.plantsci.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds. Individual compartments of the cell are surrounded by membranes that are selective barriers to avoid uncontrolled solute exchange. A controlled exchange of phosphate or phosphorylated metabolites is accomplished by specific phosphate transporters (PHTs) and the plastidial phosphate translocator family (PTs) of the inner envelope membrane. Plastids, in particular chloroplasts, are the site of various anabolic sequences of enzyme-catalyzed reactions. Apart from their role in metabolism PHTs and PTs are presumed to be also involved in communication between organelles and plant organs. Here we will focus on the integration of phosphate transport and homeostasis in signaling processes. Recent developments in this field will be critically assessed and potential future developments discussed. In particular, the occurrence of various plastid types in one organ (i.e. the leaf) with different functions with respect to metabolism or sensing, as has been documented recently following a tissue-specific proteomics approach (Beltran et al., 2018), will shed new light on functional aspects of phosphate homeostasis.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Rainer E Häusler
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
49
|
Different Roles of Heat Shock Proteins (70 kDa) During Abiotic Stresses in Barley ( Hordeum vulgare) Genotypes. PLANTS 2019; 8:plants8080248. [PMID: 31357401 PMCID: PMC6724185 DOI: 10.3390/plants8080248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
In this work, the involvement of heat shock proteins (HSP70) in barley (Hordeum vulgare) has been studied in response to drought and salinity. Thus, 3 barley genotypes usually cultivated and/or selected in Italy, 3 Middle East/North Africa landraces and genotypes and 1 improved genotype from ICARDA have been studied to identify those varieties showing the best stress response. Preliminarily, a bioinformatic characterization of the HSP70s protein family in barley has been made by using annotated Arabidopsis protein sequences. This study identified 20 putative HSP70s orthologs in the barley genome. The construction of un-rooted phylogenetic trees showed the partition into four main branches, and multiple subcellular localizations. The enhanced HSP70s presence upon salt and drought stress was investigated by both immunoblotting and expression analyses. It is worth noting the Northern Africa landraces showed peculiar tolerance behavior versus drought and salt stresses. The drought and salinity conditions indicated the involvement of specific HSP70s to counteract abiotic stress. Particularly, the expression of cytosolic MLOC_67581, mitochondrial MLOC_50972, and encoding for HSP70 isoforms showed different expressions and occurrence upon stress. Therefore, genotypes originated in the semi-arid area of the Mediterranean area can represent an important genetic source for the improvement of commonly cultivated high-yielding varieties.
Collapse
|
50
|
Borgohain P, Saha B, Agrahari R, Chowardhara B, Sahoo S, van der Vyver C, Panda SK. SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism. PROTOPLASMA 2019; 256:1065-1077. [PMID: 30919132 DOI: 10.1007/s00709-019-01368-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/18/2019] [Indexed: 05/26/2023]
Abstract
Plant NAC (NAM, ATAF, and CUC) transcription factors (TF) have important roles to play in abiotic stress responses through activation of a battery of functional genes/transcriptional regulators responsible for stress tolerance. Here we report the cloning of a novel Solanum lycopersicum L., NAC2 TF having 960 nucleotides long CDS (GenBank: KT740994.1). Phylogenetic analysis depicted the similarity of SlNAC2 to other orthologs. SlNAC2 was overexpressed in Arabidopsis thaliana to assess and characterize its role in plant abiotic stress responses. The transgenic events were first confirmed by genomic DNA PCR and qRT PCR; then the T3 generation plants were used for stress assays. Soil stress assay depicted better survivability of the transgenic plants under both salt (NaCl) and drought (PEG) stress. The transgenic plants showed enhanced endurance; with better antioxidative response, reduced accumulation of reactive oxygen species (ROS) molecules and better retention of water in tissue. This study for the very first time analyzed the different stakeholders of the glutathione metabolism in SlNAC2 overexpressing transgenic lines on exposure to both salinity and PEG stress. The expression of the two genes (ɤ-ECS, GS) responsible for glutathione biosynthesis increased with SlNAC2 overexpression. Further glutathione reductase responsible for reduction of glutathione disulfide (GSSG) to glutathione (GSH) also increased significantly which suggested the regulation of glutathione metabolism as a mechanism for the osmotic stress tolerance conferred to plants upon NAC overexpression.
Collapse
Affiliation(s)
- Pankaj Borgohain
- Plant Functional Genomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Bedabrata Saha
- Plant Functional Genomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Rajkishan Agrahari
- Plant Functional Genomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Bhaben Chowardhara
- Plant Functional Genomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Smita Sahoo
- Plant Functional Genomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Christell van der Vyver
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Sanjib Kumar Panda
- Plant Functional Genomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India.
| |
Collapse
|