1
|
Gąsiorowski K, Brokos JB, Sochocka M, Ochnik M, Chojdak-Łukasiewicz J, Zajączkowska K, Fułek M, Leszek J. Current and Near-Future Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1144-1157. [PMID: 34856906 PMCID: PMC9886829 DOI: 10.2174/1570159x19666211202124239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Recent findings have improved our understanding of the multifactorial nature of AD. While in early asymptomatic stages of AD, increased amyloid-β synthesis and tau hyperphosphorylation play a key role, while in the latter stages of the disease, numerous dysfunctions of homeostatic mechanisms in neurons, glial cells, and cerebrovascular endothelium determine the rate of progression of clinical symptoms. The main driving forces of advanced neurodegeneration include increased inflammatory reactions in neurons and glial cells, oxidative stress, deficiencies in neurotrophic growth and regenerative capacity of neurons, brain insulin resistance with disturbed metabolism in neurons, or reduction of the activity of the Wnt-β catenin pathway, which should integrate the homeostatic mechanisms of brain tissue. In order to more effectively inhibit the progress of neurodegeneration, combination therapies consisting of drugs that rectify several above-mentioned dysfunctions should be used. It should be noted that many widely-used drugs from various pharmacological groups, "in addition" to the main therapeutic indications, have a beneficial effect on neurodegeneration and may be introduced into clinical practice in combination therapy of AD. There is hope that complex treatment will effectively inhibit the progression of AD and turn it into a slowly progressing chronic disease. Moreover, as the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat AD.
Collapse
Affiliation(s)
| | | | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Michał Fułek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland,Address correspondence to this author at the Department of Psychiatry, Wrocław Medical University, 10 Ludwika Pasteura Str., 50-367 Wrocław, Poland; Tel:+48603880572; E-mail:
| |
Collapse
|
2
|
Eyjolfsdottir H, Koenig T, Karami A, Almqvist P, Lind G, Linderoth B, Wahlberg L, Seiger Å, Darreh-Shori T, Eriksdotter M, Jelic V. Fast Alpha Activity in EEG of Patients With Alzheimer’s Disease Is Paralleled by Changes in Cognition and Cholinergic Markers During Encapsulated Cell Biodelivery of Nerve Growth Factor. Front Aging Neurosci 2022; 14:756687. [PMID: 35557841 PMCID: PMC9085576 DOI: 10.3389/fnagi.2022.756687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Basal forebrain cholinergic neurons are dependent on nerve growth factor (NGF) for growth and survival and these cells are among the first to degenerate in Alzheimer’s disease (AD). Targeted delivery of NGF has been suggested as a potential therapy for AD. This hypothesis was tested in a clinical trial with encapsulated cell biodelivery of NGF (NGF-ECB) in AD patients. Three of six patients showed improved biomarkers for cognition by the end of the study. Here, we report on the effects of targeted delivery of NGF on human resting EEG. Materials and methods NGF-ECB implants were implanted bilaterally in the basal forebrain of six AD patients for 12 months. EEG recordings and quantitative analysis were performed at baseline, 3 and 12 months of NGF delivery, and analyzed for correlation with changes in Mini-mental state examination (MMSE) and levels of the cholinergic marker choline acetyltransferase (ChAT) in cerebrospinal fluid (CSF). Results We found significant correlations between the topographic variance of EEG spectral power at the three study points (baseline, 3 and 12 months) and changes in MMSE and CSF ChAT. This possible effect of NGF was identified in a narrow window of alpha frequency 10–11.5 Hz, where a stabilization in MMSE score during treatment was related to an increase in EEG alpha power. A similar relation was observed between the alpha power and ChAT. More theta power at 6.5 Hz was on the contrary associated with a decrease in CSF ChAT during the trial period. Conclusion In this exploratory study, there was a positive correlative pattern between physiological high-frequency alpha activity and stabilization in MMSE and increase in CSF ChAT in AD patients receiving targeted delivery of NGF to the cholinergic basal forebrain.
Collapse
Affiliation(s)
- Helga Eyjolfsdottir
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University, Stockholm, Sweden
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Azadeh Karami
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Stockholm, Sweden
- Department of Neurosurgery, Theme Neuro, Karolinska University, Stockholm, Sweden
| | - Göran Lind
- Department of Clinical Neuroscience, Stockholm, Sweden
- Department of Neurosurgery, Theme Neuro, Karolinska University, Stockholm, Sweden
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Stockholm, Sweden
- Department of Neurosurgery, Theme Neuro, Karolinska University, Stockholm, Sweden
| | | | - Åke Seiger
- Stiftelsen Stockholms Sjukhem, Stockholm, Sweden
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Eriksdotter
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University, Stockholm, Sweden
| | - Vesna Jelic
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University, Stockholm, Sweden
- *Correspondence: Vesna Jelic,
| |
Collapse
|
3
|
Steiner K, Humpel C. Microcontact Printing of Cholinergic Neurons in Organotypic Brain Slices. Front Neurol 2021; 12:775621. [PMID: 34867765 PMCID: PMC8636044 DOI: 10.3389/fneur.2021.775621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disorder of the brain, characterized by beta-amyloid plaques, tau pathology, and cell death of cholinergic neurons, resulting in loss of memory. The reasons for the damage of the cholinergic neurons are not clear, but the nerve growth factor (NGF) is the most potent trophic factor to support the survival of these neurons. In the present study we aim to microprint NGF onto semipermeable 0.4 μm pore membranes and couple them with organotypic brain slices of the basal nucleus of Meynert and to characterize neuronal survival and axonal growth. The brain slices were prepared from postnatal day 10 wildtype mice (C57BL6), cultured on membranes for 2-6 weeks, stained, and characterized for choline acetyltransferase (ChAT). The NGF was microcontact printed in 28 lines, each with 35 μm width, 35 μm space between them, and with a length of 8 mm. As NGF alone could not be printed on the membranes, NGF was embedded into collagen hydrogels and the brain slices were placed at the center of the microprints and the cholinergic neurons that survived. The ChAT+ processes were found to grow along with the NGF microcontact prints, but cells also migrated. Within the brain slices, some form of re-organization along the NGF microcontact prints occurred, especially the glial fibrillary acidic protein (GFAP)+ astrocytes. In conclusion, we provided a novel innovative microcontact printing technique on semipermeable membranes which can be coupled with brain slices. Collagen was used as a loading substance and allowed the microcontact printing of nearly any protein of interest.
Collapse
Affiliation(s)
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Ning F, Chen L, Chen L, Liu X, Zhu Y, Hu J, Xie G, Xia J, Shi K, Lan Z, Wang P. Combination of Polygoni Multiflori Radix Praeparata and Acori Tatarinowii Rhizoma Alleviates Learning and Memory Impairment in Scopolamine-Treated Mice by Regulating Synaptic-Related Proteins. Front Pharmacol 2021; 12:679573. [PMID: 34393775 PMCID: PMC8360279 DOI: 10.3389/fphar.2021.679573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Polygoni Multiflori Radix Praeparata (ZhiHeShouWu, PMRP) and Acori Tatarinowii Rhizoma (ShiChangPu, ATR) and their traditional combination (PA) are frequently used in traditional Chinese medicine to prevent and treat Alzheimer disease (AD) based on the theory that PMRP tonifies the kidney and ATR dissipates phlegm. However, the components of PA and their mechanisms of action are not known. The present study analyzed the active components of PA, and investigated the protective effect of PA against cognitive impairment induced by scopolamine in mice along with the underlying mechanism.The aqueous extract of PA was analyzed by high-performance liquid chromatography–mass spectrometry (HPLC-MS) and gas chromatography (GC)-MS in order to identify the major components. To evaluate the protective effect of PA against cognitive dysfunction, mice were orally administered PA, PMRP, or ATR for 30 days before treatment with scopolamine. Learning and memory were assessed in mice with the Morris water maze test; neurotransmitter levels in the hippocampus were analyzed by HPLC-MS; and the expression of synapse-related proteins in the hippocampus was detected by western blotting and immunohistochemistry. Eight active compounds in PA and rat plasma were identified by HPLC-MS and GC-MS. Plasma concentrations of 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside, emodin, α-asarone, and asarylaldehyde were increased following PA administration; meanwhile, gallic acid, emodin-8-O-β-d-glucopyranoside, β-asarone, and cis-methyl isoeugenol concentrations were similar in rats treated with PA, PMRP, and ATR. In scopolamine-treated mice, PA increased the concentrations of neurotransmitters in the hippocampus, activated the brain-derived neurotrophic factor (BDNF)/extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) signaling pathway, and increased the expression of p90 ribosomal S6 kinase (p90RSK) and postsynaptic density (PSD)95 proteins. Thus, PA alleviates cognitive deficits by enhancing synaptic-related proteins, suggesting that it has therapeutic potential for the treatment of aging-related diseases such as AD.
Collapse
Affiliation(s)
- Funan Ning
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Department of Pharmacy, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Lvyi Chen
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Linlin Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xin Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yao Zhu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiayi Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guangjing Xie
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaxuan Xia
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kun Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
5
|
Sisti FM, Dos Santos NAG, do Amaral L, Dos Santos AC. The Neurotrophic-Like Effect of Carvacrol: Perspective for Axonal and Synaptic Regeneration. Neurotox Res 2021; 39:886-896. [PMID: 33666886 DOI: 10.1007/s12640-021-00341-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Carvacrol (CARV) is a phytochemical widely used as flavoring, preservative, and fragrance in food and cosmetic industries. CARV is able to cross the blood-brain barrier (BBB) and has demonstrated protective potential against neurodegenerative diseases by several mechanisms, including antioxidant, anti-inflammatory, anticholinesterase, and antiapoptotic effects. However, it is not known whether CARV is able to modulate axonal and synaptic plasticity, crucial events in cognition, memory, and learning. Abnormalities in axonal and synaptic plasticity, low levels of neurotrophins, and bioenergetic failure have been associated with the pathogenesis of neurodegenerative diseases, including Parkinson's (PD) and Alzheimer's diseases (ADs). Small lipophilic molecules with neurotrophic activity might be able to restore the axonal and synaptic networks that are lost in neurodegenerative processes. Therefore, this study investigated the neurotrophic potential of CARV in PC12 cell-based neuronal model. Carvacrol induced neurite outgrowth by activating the NGF high-affinity trkA receptor and the downstream PI3K-AKT and MAPK-ERK pathways, without depending on NGF. In addition, CARV increased the expression of proteins involved in neuronal plasticity (β-tubulin III, F-actin, 200-kDa neurofilament, GAP-43 and synapsin-I) and improved bioenergetics (AMPKα, p-AMPKα, and ATP). Our study showed, for the first time, a promising neurotrophic mechanism of CARV that could be beneficial in neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Flávia Malvestio Sisti
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lilian do Amaral
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Antonio Cardozo Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
6
|
Improved neurocognitive performance in FIV infected cats following treatment with the p75 neurotrophin receptor ligand LM11A-31. J Neurovirol 2021; 27:302-324. [PMID: 33661457 DOI: 10.1007/s13365-021-00956-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
HIV rapidly infects the central nervous system (CNS) and establishes a persistent viral reservoir within microglia, perivascular macrophages and astrocytes. Inefficient control of CNS viral replication by antiretroviral therapy results in chronic inflammation and progressive cognitive decline in up to 50% of infected individuals with no effective treatment options. Neurotrophin based therapies have excellent potential to stabilize and repair the nervous system. A novel non-peptide ligand, LM11A-31, that targets the p75 neurotrophin receptor (p75NTR) has been identified as a small bioavailable molecule capable of strong neuroprotection with minimal side effects. To evaluate the neuroprotective effects of LM11A-31 in a natural infection model, we treated cats chronically infected with feline immunodeficiency virus (FIV) with 13 mg/kg LM11A-31 twice daily over a period of 10 weeks and assessed effects on cognitive functions, open field behaviors, activity, sensory thresholds, plasma FIV, cerebrospinal fluid (CSF) FIV, peripheral blood mononuclear cell provirus, CD4 and CD8 cell counts and general physiology. Between 12 and 18 months post-inoculation, cats began to show signs of neural dysfunction in T maze testing and novel object recognition, which were prevented by LM11A-31 treatment. Anxiety-like behavior was reduced in the open field and no changes were seen in sensory thresholds. Systemic FIV titers were unaffected but treated cats exhibited a log drop in CSF FIV titers. No significant adverse effects were observed under all conditions. The data indicate that LM11A-31 is likely to be a potent adjunctive treatment for the control of neurodegeneration in HIV infected individuals.
Collapse
|
7
|
Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML, Chiaretti A. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res 2021; 16:1740-1750. [PMID: 33510063 PMCID: PMC8328750 DOI: 10.4103/1673-5374.306062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye.
Collapse
Affiliation(s)
- Gemma Eftimiadi
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Lucia Calcagni
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
8
|
Yang W, Sung K, Xu W, Rodriguez MJ, Wu AC, Santos SA, Fang S, Uber RK, Dong SX, Guillory BC, Orain X, Raus J, Jolivalt C, Calcutt N, Rissman RA, Ding J, Wu C. A missense point mutation in nerve growth factor (NGF R100W) results in selective peripheral sensory neuropathy. Prog Neurobiol 2020; 194:101886. [PMID: 32693191 DOI: 10.1016/j.pneurobio.2020.101886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 01/15/2023]
Abstract
The R100W mutation in nerve growth factor is associated with hereditary sensory autonomic neuropathy V in a Swedish family. These patients develop severe loss of perception to deep pain but with apparently normal cognitive functions. To better understand the disease mechanism, we examined a knockin mouse model of HSAN V. The homozygous mice showed significant structural deficits in intra-epidermal nerve fibers (IENFs) at birth. These mice had a total loss of pain perception at ∼2 months of age and often failed to survive to adulthood. Heterozygous mutant mice developed a progressive degeneration of small sensory fibers both behaviorally and functionally: they showed a progressive loss of IENFs starting at the age of 9 months accompanied with progressive loss of perception to painful stimuli such as noxious temperature. Quantitative analysis of lumbar 4/5 dorsal root ganglia revealed a significant reduction in small size neurons, while analysis of sciatic nerve fibers revealed the heterozygous mutant mice had no reduction in myelinated nerve fibers. Significantly, the amount of NGF secreted from mouse embryonic fibroblasts were reduced from both heterozygous and homozygous mice compared to their wild-type littermates. Interestingly, the heterozygous mice showed no apparent structural alteration in the brain: neither the anterior cingulate cortex nor the medial septum including NGF-dependent basal forebrain cholinergic neurons. Accordingly, these animals did not develop appreciable deficits in tests for brain function. Our study has thus demonstrated that the NGFR100W mutation likely affects the structure and function of peripheral sensory neurons.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Neurology, Zhuijiang Hospital, Southern Medical University, Guangzhou, China
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria J Rodriguez
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Andrew C Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Sarai A Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Savannah Fang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Rebecca K Uber
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephanie X Dong
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brandon C Guillory
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Xavier Orain
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jordan Raus
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Corrine Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Hölscher C. Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs 2020; 29:333-348. [PMID: 32175781 DOI: 10.1080/13543784.2020.1738383] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: This review evaluates the novel strategy of treating Alzheimer's and Parkinson's disease (AD and PD) withdrugs that initially have been developed to treat type 2 diabetes. As insulin signalling has been found to be de-sensitized in the brains of patients, drugs that can re-sensitize insulin signalling have been tested to evaluate if this strategy can alter disease progression.Areas covered: The review will give an overview of preclinical and clinical tests in AD and PD of drugs activating insulin receptors, glucagon-like peptide -1 (GLP-1) receptors, and glucose-dependent insulinotropic polypeptide (GIP) receptors.Expert opinion: Insulin, GLP-1 and GIP receptor agonists have shown good effects in preclinical studies. First clinical trials in MCI/AD patients have shown that insulin can improve on key pathological symptoms of AD such as memory impairment, brain activity, neuronal energy utilization, and inflammation markers. A GLP-1 receptor agonist has shown disease-modifying effects in PD patients, and first pilot studies have shown encouraging effects of a GLP-1 receptor agonist in AD patients. Novel dual GLP-1/GIP receptor agonists that cross the blood brain barrier show superior neuroprotective effects compared to single GLP-1 or GIP receptor agonists, and show great promise as novel treatments of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| |
Collapse
|
10
|
Xhima K, Markham-Coultes K, Nedev H, Heinen S, Saragovi HU, Hynynen K, Aubert I. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eaax6646. [PMID: 32010781 PMCID: PMC6976301 DOI: 10.1126/sciadv.aax6646] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 05/24/2023]
Abstract
The degeneration of cholinergic neurons is a prominent feature of Alzheimer's disease (AD). In animal models of injury and aging, nerve growth factor (NGF) enhances cholinergic cell survival and function, contributing to improved memory. In the presence of AD pathology, however, NGF-related therapeutics have yet to fulfill their regenerative potential. We propose that stimulating the TrkA receptor, without p75NTR activation, is key for therapeutic efficacy. Supporting this hypothesis, the selective TrkA agonist D3 rescued neurotrophin signaling in TgCRND8 mice, whereas NGF, interacting with both TrkA and p75NTR, did not. D3, delivered intravenously and noninvasively to the basal forebrain using MRI-guided focused ultrasound (MRIgFUS)-mediated blood-brain barrier (BBB) permeability activated TrkA-related signaling cascades and enhanced cholinergic neurotransmission. Recent clinical trials support the safety and feasibility of MRIgFUS BBB modulation in AD patients. Neuroprotective agents targeting TrkA, combined with MRIgFUS BBB modulation, represent a promising strategy to counter neurodegeneration in AD.
Collapse
Affiliation(s)
- K. Xhima
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K. Markham-Coultes
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - H. Nedev
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - S. Heinen
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - H. U. Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - K. Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - I. Aubert
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Li WP, Ma K, Jiang XY, Yang R, Lu PH, Nie BM, Lu Y. Molecular mechanism of panaxydol on promoting axonal growth in PC12 cells. Neural Regen Res 2018; 13:1927-1936. [PMID: 30233066 PMCID: PMC6183029 DOI: 10.4103/1673-5374.239439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2018] [Indexed: 12/04/2022] Open
Abstract
Nerve growth factor (NGF) promotes axonal growth in PC12 cells primarily by regulating the RTK-RAS-MEK-ERK pathway. Panaxydol, a polyacetylene isolated from Panax notoginseng, can mimic the effects of NGF. Panaxydol promotes neurite outgrowth in PC12 cells, but its molecular mechanism remains unclear. Indeed, although alkynol compounds such as panaxydol can increase intracellular cyclic adenosine 3',5'-monophosphate (cAMP) levels and the ERK inhibitor U0126 inhibits alkynol-induced axonal growth, how pathways downstream of cAMP activate ERK have not been investigated. This study observed the molecular mechanism of panaxydol-, NGF- and forskolin-induced PC12 cell axon growth using specific signaling pathway inhibitors. The results demonstrated that although the RTK inhibitor SU5416 obviously inhibited the growth-promoting effect of NGF, it could not inhibit the promoting effect of panaxydol on axonal growth of PC12 cells. The adenylate cyclase inhibitor SQ22536 and cAMP-dependent protein kinase inhibitor RpcAMPS could suppress the promoting effect of forskolin and panaxydol on axonal growth. The ERK inhibitor U0126 inhibited axonal growth induced by all three factors. However, the PKA inhibitor H89 inhibited the promoting effect of forskolin on axonal growth but could not suppress the promoting effect of panaxydol. A western blot assay was used to determine the effects of stimulating factors and inhibitors on ERK phosphorylation levels. The results revealed that NGF activates the ERK pathway through tyrosine receptors to induce axonal growth of PC12 cells. In contrast, panaxydol and forskolin increased cellular cAMP levels and were inhibited by adenylyl cyclase inhibitors. The protein kinase A inhibitor H89 completely inhibited forskolin-induced axonal outgrowth and ERK phosphorylation, but could not inhibit panaxydol-induced axonal growth and ERK phosphorylation. These results indicated that panaxydol promoted axonal growth of PC12 cells through different pathways downstream of cAMP. Considering that exchange protein directly activated by cAMP 1 (Epac1) plays an important role in mediating cAMP signaling pathways, RNA interference experiments targeting the Epac1 gene were employed. The results verified that Epac1 could mediate the axonal growth signaling pathway induced by panaxydol. These findings suggest that compared with NGF and forskolin, panaxydol elicits axonal growth through the cAMP-Epac1-Rap1-MEK-ERK-CREB pathway, which is independent of PKA.
Collapse
Affiliation(s)
- Wei-Peng Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ke Ma
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yan Jiang
- Key Laboratory of Arrhythmias of Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Rui Yang
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Hua Lu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao-Ming Nie
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Lu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Eriksdotter M, Navarro-Oviedo M, Mitra S, Wahlberg L, Linderoth B, Tjernberg LO, Behbahani H. Cerebrospinal fluid from Alzheimer patients affects cell-mediated nerve growth factor production and cell survival in vitro. Exp Cell Res 2018; 371:175-184. [PMID: 30092220 DOI: 10.1016/j.yexcr.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/06/2018] [Accepted: 08/05/2018] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is characterized by early degeneration of cholinergic neurons and decreased levels of nerve growth factor (NGF). Thus, increasing the NGF levels by for instance encapsulated cell bio-delivery (ECB) is a potential treatment strategy. The results from our previous first-in-human studies on ECB of NGF to the basal forebrain cholinergic neurons were promising, but indicated some variability of long-term viability of the encapsulated cells and associated reduced NGF-release. Here we studied the effect of amyloid beta-peptides (Aβ), interleukin 1-beta (IL-1β), and CSF from AD, Lewy body dementia (LBD) or subjective cognitive impairment (SCI) patients on the NGF overproducing cell line NGC-0295. At physiological concentrations, neither Aβ40 nor Aβ42 had any major impact on cell viability or NGF-production. In contrast, IL-1β dose-dependently affected NGF-production over time. Exposure of NGF-producing cells to CSF from AD patients showed significantly reduced NGF-release as compared to CSF from LBD or SCI patients. By mass spectrometry we found 3 proteins involved in inflammatory pathways to have an altered expression in AD CSF compared to LBD and SCI. Cell survival and NGF-release were not affected by Aβ. NGF-release was affected by IL-1β, suggesting that inflammation has a negative effect on ECB cells.
Collapse
Affiliation(s)
- Maria Eriksdotter
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska University Hospital, Theme Aging, Stockholm, Sweden
| | - Manuel Navarro-Oviedo
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Stockholm, Sweden
| | - Sumonto Mitra
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Stockholm, Sweden
| | | | - Bengt Linderoth
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Neuroscience, Stockholm, Sweden
| | - Lars O Tjernberg
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, Sweden
| | - Homira Behbahani
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, Sweden.
| |
Collapse
|
13
|
Sung K, Ferrari LF, Yang W, Chung C, Zhao X, Gu Y, Lin S, Zhang K, Cui B, Pearn ML, Maloney MT, Mobley WC, Levine JD, Wu C. Swedish Nerve Growth Factor Mutation (NGF R100W) Defines a Role for TrkA and p75 NTR in Nociception. J Neurosci 2018; 38:3394-3413. [PMID: 29483280 PMCID: PMC5895035 DOI: 10.1523/jneurosci.1686-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation leading to a change from arginine to tryptophan at residue 100 in the mature NGFβ sequence (NGFR100W) in patients with hereditary sensory and autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the binding and signaling properties of NGFR100W Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades (i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.SIGNIFICANCE STATEMENT In the present study, we characterized the naturally occurring nerve growth factor NGFR100W mutant that is associated with hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGFR100W retains trophic support capability through TrkA, but fails to engage p75NTR signaling pathways. Furthermore, after intraplantar injection into adult rats, NGFR100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75NTR-mediated signaling appears to regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGFR100W suggests that it is possible to uncouple trophic effect from nociceptive function, both induced by wild-type NGF.
Collapse
Affiliation(s)
| | - Luiz F Ferrari
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Wanlin Yang
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea
| | | | - Yingli Gu
- Department of Neurosciences
- Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China 150001
| | - Suzhen Lin
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - Kai Zhang
- Department of Chemistry
- Department of Biochemistry, Neuroscience Program, Center for Biophysics and Quantitative Biology, Chemistry-Biology Interface Training Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | | - Matthew L Pearn
- Department of Anesthesiology, University of California San Diego, School of Medicine, La Jolla, California 92093
- V.A. San Diego Healthcare System, San Diego, California 92161
| | - Michael T Maloney
- Department of Neurosciences, Stanford University, Stanford, California 94305
| | | | - Jon D Levine
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Chengbiao Wu
- Department of Neurosciences,
- V.A. San Diego Healthcare System, San Diego, California 92161
| |
Collapse
|
14
|
Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT, Calissano P. The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer's Disease Neuropathology. Int J Mol Sci 2017. [PMID: 28632177 PMCID: PMC5486140 DOI: 10.3390/ijms18061319] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and β-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the “routing” proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, β-amyloid peptide (Aβ) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.
Collapse
Affiliation(s)
- Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00137 Rome, Italy.
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Viviana Triaca
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Valentina Sposato
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Veronica Corsetti
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Cinzia Severini
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Pietro Calissano
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
15
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
16
|
Latina V, Caioli S, Zona C, Ciotti MT, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci 2017; 11:68. [PMID: 28360840 PMCID: PMC5350152 DOI: 10.3389/fncel.2017.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Alterations in NGF/TrkA signaling have been suggested to underlie the selective degeneration of the cholinergic basal forebrain neurons occurring in vivo in AD (Counts and Mufson, 2005; Mufson et al., 2008; Niewiadomska et al., 2011) and significant reduction of cognitive decline along with an improvement of cholinergic hypofunction have been found in phase I clinical trial in humans affected from mild AD following therapeutic NGF gene therapy (Tuszynski et al., 2005, 2015). Here, we show that the chronic (10–12 D.I.V.) in vitro treatment with NGF (100 ng/ml) under conditions of low supplementation (0.2%) with the culturing serum-substitute B27 selectively enriches the basal forebrain cholinergic neurons (+36.36%) at the expense of other non-cholinergic, mainly GABAergic (−38.45%) and glutamatergic (−56.25%), populations. By taking advantage of this newly-developed septo-hippocampal neuronal cultures, our biochemical and electrophysiological investigations demonstrate that the early failure in excitatory neurotransmission following NGF withdrawal is paralleled by concomitant and progressive loss in selected presynaptic and vesicles trafficking proteins including synapsin I, SNAP-25 and α-synuclein. This rapid presynaptic dysfunction: (i) precedes the commitment to cell death and is reversible in a time-dependent manner, being suppressed by de novo external administration of NGF within 6 hr from its initial withdrawal; (ii) is specific because it is not accompanied by contextual changes in expression levels of non-synaptic proteins from other subcellular compartments; (ii) is not secondary to axonal degeneration because it is insensible to pharmacological treatment with known microtubule-stabilizing drug such paclitaxel; (iv) involves TrkA-dependent mechanisms because the effects of NGF reapplication are blocked by acute exposure to specific and cell-permeable inhibitor of its high-affinity receptor. Taken together, this study may have important clinical implications in the field of AD neurodegeneration because it: (i) provides new insights on the earliest molecular mechanisms underlying the loss of synaptic/trafficking proteins and, then, of synapes integrity which occurs in vulnerable basal forebrain population at preclinical stages of neuropathology; (ii) offers prime presynaptic-based molecular target to extend the therapeutic time-window of NGF action in the strategy of improving its neuroprotective in vivo intervention in affected patients.
Collapse
Affiliation(s)
- Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Italy
| | | | - Cristina Zona
- IRCCS Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome Tor VergataRome, Italy
| | - Maria T Ciotti
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR)Rome, Italy; NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI)Rome, Italy
| | - Pietro Calissano
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| |
Collapse
|
17
|
Bailey JJ, Schirrmacher R, Farrell K, Bernard-Gauthier V. Tropomyosin receptor kinase inhibitors: an updated patent review for 2010-2016 - Part I. Expert Opin Ther Pat 2017; 27:733-751. [PMID: 28270010 DOI: 10.1080/13543776.2017.1297796] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Tropomyosin receptor kinases (TrkA/B/C) play crucial roles in the development and maintenance of the nervous system, and aberrant expression of Trk has been implicated in neurological disorders as well as neural and non-neural neoplasms. Patent activity encompassing Trk inhibitors has grown substantially over the last 6 years, recognized by a rise in the number of pharmaceutical entrants to the field and the escalation of novel inhibitor chemotypes. Area covered: In Part I of this two part review, a biological and structural overview of Trk is provided in the context of Trk as a therapeutic target for cancer and pain, followed by the report of recent patent literature claiming small molecule inhibitors of Trk family kinases or which describe inhibitors developed for other kinase targets but include noteworthy Trk inhibition/application. The discussion of the patent literature continues in Part II of this review, which includes an in-depth view of the current clinical applications of Trk inhibitors. Expert opinion: Substantial synthetic efforts in Trk inhibitor development has propagated numerous and diverse inhibitor chemotypes, including TrkA-specific inhibitors. While many novel Trk inhibitors remain the original progeny of Trk-specific development programs, kinase inhibitors initially developed for other kinases have also been successfully repositioned for Trk.
Collapse
Affiliation(s)
- Justin J Bailey
- a Faculty of Medicine & Dentistry , University of Alberta, Department of Oncology , Edmonton , AB , Canada
| | - Ralf Schirrmacher
- a Faculty of Medicine & Dentistry , University of Alberta, Department of Oncology , Edmonton , AB , Canada
| | - Kristen Farrell
- a Faculty of Medicine & Dentistry , University of Alberta, Department of Oncology , Edmonton , AB , Canada
| | - Vadim Bernard-Gauthier
- a Faculty of Medicine & Dentistry , University of Alberta, Department of Oncology , Edmonton , AB , Canada
| |
Collapse
|
18
|
Canu N, Pagano I, La Rosa LR, Pellegrino M, Ciotti MT, Mercanti D, Moretti F, Sposato V, Triaca V, Petrella C, Maruyama IN, Levi A, Calissano P. Association of TrkA and APP Is Promoted by NGF and Reduced by Cell Death-Promoting Agents. Front Mol Neurosci 2017; 10:15. [PMID: 28197073 PMCID: PMC5281621 DOI: 10.3389/fnmol.2017.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) interacts with the tropomyosin receptor kinase A (TrkA) in normal rat, mouse, and human brain tissue but not in Alzheimer's disease (AD) brain tissue. However, it has not been reported whether the two proteins interact directly, and if so, which domains are involved. Clarifying these points will increase our understanding of the role and regulation of the TrkA/APP interaction in normal brain functioning as well as in AD. Here we addressed these questions using bimolecular fluorescence complementation (BiFC) and the proximity ligation assay (PLA). We demonstrated that exogenously expressed APP and TrkA associate through their juxtamembrane/transmembrane domains, to form a complex that localizes mainly to the plasma membrane, endoplasmic reticulum (ER) and Golgi. Formation of the complex was inhibited by p75NTR, ShcC and Mint-2. Importantly, we demonstrated that the association between endogenous APP and TrkA in primary septal neurons were modified by NGF, or by drugs that either inhibit ER-to-Golgi transport or perturb microtubules and microfilaments. Interestingly, several agents that induce cell death [amyloid β (Aβ)-peptide, staurosporine and rapamycin], albeit via different mechanisms, all caused dissociation of APP/TrkA complexes and increased production of C-terminal fragment (β-CTF) APP fragment. These findings open new perspectives for investigating the interplay between these proteins during neurodegeneration and AD.
Collapse
Affiliation(s)
- Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata"Rome, Italy; Institute of Cellular Biology and Neurobiology, National Council of Research of RomeRome, Italy
| | - Ilaria Pagano
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Luca Rosario La Rosa
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Marsha Pellegrino
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Delio Mercanti
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Fabiola Moretti
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Valentina Sposato
- Institute of Cellular Biology and Neurobiology, National Council of Research of RomeRome, Italy; European Brain Research InstituteRome, Italy
| | - Viviana Triaca
- Institute of Cellular Biology and Neurobiology, National Council of Research of RomeRome, Italy; European Brain Research InstituteRome, Italy
| | - Carla Petrella
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| | - Andrea Levi
- Institute of Cellular Biology and Neurobiology, National Council of Research of Rome Rome, Italy
| | - Pietro Calissano
- European Brain Research InstituteRome, Italy; Institute of Cellular Biology and Neurobiology, National Council of Research of RomeRome, Italy
| |
Collapse
|
19
|
Norman BH, McDermott JS. Targeting the Nerve Growth Factor (NGF) Pathway in Drug Discovery. Potential Applications to New Therapies for Chronic Pain. J Med Chem 2016; 60:66-88. [DOI: 10.1021/acs.jmedchem.6b00964] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bryan H. Norman
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| | - Jeff S. McDermott
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| |
Collapse
|
20
|
Xie H, Xiao Z, Huang J. C6 Glioma-Secreted NGF and FGF2 Regulate Neuronal APP Processing Through Up-Regulation of ADAM10 and Down-Regulation of BACE1, Respectively. J Mol Neurosci 2015; 59:334-42. [PMID: 26614345 DOI: 10.1007/s12031-015-0690-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023]
Abstract
Excessive accumulation of amyloid-β (Aβ) caused by cleavage of amyloid precursor protein (APP) is thought to be the primary cause of Alzheimer's disease (AD). Two key enzymes ADAM10 and BACE1 are involved in the initial cleavage of APP, resulting in the onset of two pathways, the amyloidogenic pathway and the non-amyloidogenic pathway, respectively. Altering APP metabolism towards the non-amyloidogenic pathway is thought to reduce Aβ production. It has been reported that, in vivo, exogenous neurotrophic factors make APP apt to entering the non-amyloidogenic pathway. Since astrocytes secrete a battery of neurotrophic factors, we investigated the role of astrocyte-derived factors in the dynamics of Aβ generation in neural cells. Results show that C6 glioma cell-conditioned medium (GCM), obtained from cultured astrocyte-derived C6 glioma cells, inhibit Aβ1-42 production and shift APP processing towards the non-amyloidogenic pathway in APPswe-HEK293 cells. Such effect is attributed to two key APP cleavage enzymes, ADAM10 and BACE1. Two neurotrophic factors in the GCM, nerve growth factor and fibroblast growth factor 2, are responsible for the up-regulation of ADAM10 and down-regulation of BACE1, respectively. Our findings enhance our understanding of the relationship between astrocytes and Aβ generation, indicating that stimulation of astrocytic neurotrophic factors could slow AD progression.
Collapse
Affiliation(s)
- Huiping Xie
- College of Life Sciences, Wuhan University, Room 5105, Wuhan, Hubei, 430072, People's Republic of China
| | - Zhimin Xiao
- College of Life Sciences, Wuhan University, Room 5105, Wuhan, Hubei, 430072, People's Republic of China.,Sanofi, Cambridge, MA, 02142, USA
| | - Jian Huang
- College of Life Sciences, Wuhan University, Room 5105, Wuhan, Hubei, 430072, People's Republic of China.
| |
Collapse
|
21
|
Synthesis of GK-2, a Dimeric Dipeptide Nerve Growth Factor Mimetic and Potential Neuroprotective Agent. Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1301-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Li X, Lavigne P, Lavoie C. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival. Mol Biol Cell 2015; 26:4412-26. [PMID: 26446845 PMCID: PMC4666136 DOI: 10.1091/mbc.e15-02-0087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
GGA3 binds directly to the TrkA internal DXXLL motif and mediates TrkA endocytic recycling. This effect is dependent on the activation of Arf6. GGA3 is a key player in a novel DXXLL-mediated recycling machinery for TrkA, where it prolongs the activation of Akt signaling and survival responses. Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses.
Collapse
Affiliation(s)
- Xuezhi Li
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
23
|
Chang PT, Talekar RS, Kung FL, Chern TR, Huang CW, Ye QQ, Yang MY, Yu CW, Lai SY, Deore RR, Lin JH, Chen CS, Chen GS, Chern JW. A newly designed molecule J2326 for Alzheimer's disease disaggregates amyloid fibrils and induces neurite outgrowth. Neuropharmacology 2015; 92:146-57. [DOI: 10.1016/j.neuropharm.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/25/2014] [Accepted: 01/07/2015] [Indexed: 01/23/2023]
|
24
|
Karami A, Eyjolfsdottir H, Vijayaraghavan S, Lind G, Almqvist P, Kadir A, Linderoth B, Andreasen N, Blennow K, Wall A, Westman E, Ferreira D, Kristoffersen Wiberg M, Wahlund LO, Seiger Å, Nordberg A, Wahlberg L, Darreh-Shori T, Eriksdotter M. Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer's disease. Alzheimers Dement 2015; 11:1316-28. [PMID: 25676388 DOI: 10.1016/j.jalz.2014.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/26/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The extensive loss of central cholinergic functions in Alzheimer's disease (AD) brain is linked to impaired nerve growth factor (NGF) signaling. The cardinal cholinergic biomarker is the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), which has recently been found in cerebrospinal fluid (CSF). The purpose of this study was to see if EC-NGF therapy will alter CSF levels of cholinergic biomarkers, ChAT, and acetylcholinesterase. METHOD Encapsulated cell implants releasing NGF (EC-NGF) were surgically implanted bilaterally in the basal forebrain of six AD patients for 12 months and cholinergic markers in CSF were analyzed. RESULTS Activities of both enzymes were altered after 12 months. In particular, the activity of soluble ChAT showed high correlation with cognition, CSF tau and amyloid-β, in vivo cerebral glucose utilization and nicotinic binding sites, and morphometric and volumetric magnetic resonance imaging measures. DISCUSSION A clear pattern of association is demonstrated showing a proof-of-principle effect on CSF cholinergic markers, suggestive of a beneficial EC-NGF implant therapy.
Collapse
Affiliation(s)
- Azadeh Karami
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Helga Eyjolfsdottir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Swetha Vijayaraghavan
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ahmadul Kadir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Niels Andreasen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Kaj Blennow
- Department of Clinical Neuroscience, Clinical Neurochemistry Laboratory, University of Göteborg, Göteborg, Sweden
| | - Anders Wall
- Nuclear medicine and PET, Department of Surgical Sciences, Uppsala University, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kristoffersen Wiberg
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden.
| | - Maria Eriksdotter
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Zhang Q, Descamps O, Hart MJ, Poksay KS, Spilman P, Kane DJ, Gorostiza O, John V, Bredesen DE. Paradoxical effect of TrkA inhibition in Alzheimer's disease models. J Alzheimers Dis 2014; 40:605-617. [PMID: 24531152 DOI: 10.3233/jad-130017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An unbiased screen for compounds that block amyloid-β protein precursor (AβPP) caspase cleavage identified ADDN-1351, which reduced AβPP-C31 by 90%. Target identification studies showed that ADDN-1351 is a TrkA inhibitor, and, in complementary studies, TrkA overexpression increased AβPP-C31 and cell death. TrkA was shown to interact with AβPP and suppress AβPP-mediated transcriptional activation. Moreover, treatment of PDAPP transgenic mice with the known TrkA inhibitor GW441756 increased sAβPPα and the sAβPPα to Aβ ratio. These results suggest TrkA inhibition-rather than NGF activation-as a novel therapeutic approach, and raise the possibility that such an approach may counteract the hyperactive signaling resulting from the accumulation of active NGF-TrkA complexes due to reduced retrograde transport. The results also suggest that one component of an optimal therapy for Alzheimer's disease may be a TrkA inhibitor.
Collapse
Affiliation(s)
- Qiang Zhang
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | - Darci J Kane
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Varghese John
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Dale E Bredesen
- Buck Institute for Research on Aging, Novato, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Xian H, Xian Y, Liu L, Wang Y, He J, Huang J. Expression of β-nerve growth factor and homeobox A10 in experimental cryptorchidism treated with exogenous nerve growth factor. Mol Med Rep 2014; 11:2875-81. [PMID: 25434417 DOI: 10.3892/mmr.2014.3005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
With the exception of standard inguinal orchidopexy, treatment of cryptorchidism with human chorionic gonadotropin has been performed for several years; however, its side effects have limited its application. The β‑nerve growth factor (NGF) and homeobox A10 (HoxA10) genes are closely associated with the development of the testes. To the best of our knowledge, whether exogenous NGF alters the endogenous levels of NGF and HoxA10 in cryptorchidism in rats remains to be elucidated. The aim of the present study was to evaluate the gene and protein expression of NGF and HoxA10 in experimental cryptorchidism following treatment with exogenous NGF. A unilateral mechanical cryptorchidism model in Sprague-Dawley rats was established and different concentrations of exogenous NGF were administered to observe the effects of NGF on cryptorchidism. Changes in the gene and protein expression levels of NGF and HoxA10 in the cryptorchid tissues of each group were identified using one step reverse transcription-quantitative polymerase chain reaction, in situ hybridization with digoxigenin‑labeled‑β‑NGF RNA probes, immunofluorescence and immunohistochemistry, respectively. The expression levels of NGF and HoxA10 were markedly higher in the group treated with a high dose of exogenous NGF compared with the group treated with a low dose of exogenous NGF and the group treated with human chorionic gonadotropin. These results confirmed the potential therapeutic effect of exogenous NGF in human cryptorchidism.
Collapse
Affiliation(s)
- Hua Xian
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yun Xian
- Department of Public Health College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lili Liu
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianghong He
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
27
|
Lv Q, Lan W, Sun W, Ye R, Fan X, Ma M, Yin Q, Jiang Y, Xu G, Dai J, Guo R, Liu X. Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. J Neurol Sci 2014; 345:48-55. [DOI: 10.1016/j.jns.2014.06.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/15/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
|
28
|
Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
29
|
Reduced nerve growth factor levels in stress-related brain regions of folate-deficient mice. Neuroscience 2013; 245:129-35. [DOI: 10.1016/j.neuroscience.2013.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 11/19/2022]
|
30
|
Abstract
LINGO-1 is a leucine-rich repeat and Ig domain-containing, Nogo receptor interacting protein, selectively expressed in the CNS on both oligodendrocytes and neurons. Its expression is developmentally regulated, and is upregulated in CNS diseases and injury. In animal models, LINGO-1 expression is upregulated in rat spinal cord injury, experimental autoimmune encephalomyelitis, 6-hydroxydopamine neurotoxic lesions and glaucoma models. In humans, LINGO-1 expression is increased in oligodendrocyte progenitor cells from demyelinated white matter of multiple sclerosis post-mortem samples, and in dopaminergic neurons from Parkinson's disease brains. LINGO-1 negatively regulates oligodendrocyte differentiation and myelination, neuronal survival and axonal regeneration by activating ras homolog gene family member A (RhoA) and inhibiting protein kinase B (Akt) phosphorylation signalling pathways. Across diverse animal CNS disease models, targeted LINGO-1 inhibition promotes neuron and oligodendrocyte survival, axon regeneration, oligodendrocyte differentiation, remyelination and functional recovery. The targeted inhibition of LINGO-1 function presents a novel therapeutic approach for the treatment of CNS diseases.
Collapse
|
31
|
Trzoss L, Xu J, Lacoske MH, Mobley WC, Theodorakis EA. Illicium sesquiterpenes: divergent synthetic strategy and neurotrophic activity studies. Chemistry 2013; 19:6398-408. [PMID: 23526661 PMCID: PMC3875175 DOI: 10.1002/chem.201300198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Indexed: 01/12/2023]
Abstract
Majucin-type sesquiterpenes from Illicium sp., such as jiadifenolide (2), jiadifenin (3), and (1R,10S)-2-oxo-3,4-dehydroxyneomajucin (4, ODNM), possess a complex caged chemical architecture and remarkable neurotrophic activities. As such, they represent attractive small-molecule leads against various neurodegenerative diseases. We present an efficient, enantioselective, and unified synthesis of 2, 3, and 4 and designed analogues that diverge from tetracyclic key intermediate 7. The synthesis of 7 is highlighted by the use of an enantioselective Robinson annulation reaction (construction of the AB rings), a Pd-mediated carbomethoxylation reaction (construction of the C ring), and a one-pot oxidative reaction cascade (construction of the D ring). Evaluation of the neurotrophic activity of these compounds led to the identification of several highly potent small molecules that significantly enhanced the activity of nerve growth factor (NGF) in PC-12 cells. Moreover, efforts to define the common pharmacophoric motif suggest that substitution at the C-10 center significantly affects bioactivity, while the hemiketal moiety of 2 and 3 and the C-1 substitution might not be critical to the neurotrophic activity.
Collapse
Affiliation(s)
- Lynnie Trzoss
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - Jing Xu
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - William C. Mobley
- Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0752, USA
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| |
Collapse
|
32
|
Pereira PA, Santos D, Neves J, Madeira MD, Paula-Barbosa MM. Nerve growth factor retrieves neuropeptide Y and cholinergic immunoreactivity in the nucleus accumbens of old rats. Neurobiol Aging 2013; 34:1988-95. [PMID: 23540942 DOI: 10.1016/j.neurobiolaging.2013.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/01/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
The nucleus accumbens (NAc) contains high levels of neuropeptide Y (NPY), which is involved in the regulation of functions and behaviors that deteriorate with aging. We sought to determine if aging alters NPY expression in this nucleus and, in the affirmative, if those changes are attributable to the cholinergic innervation of the NAc. The total number and the somatic volume of NPY- and choline acetyltransferase-immunoreactive neurons, and the density of cholinergic varicosities were estimated in the NAc of adult (6 months old) and aged (24 months old) rats. In aged rats, the number of NPY neurons was reduced by 20% and their size was unaltered. The number of cholinergic neurons and the density of the cholinergic varicosities were unchanged, but their somas were hypertrophied. Nerve growth factor administration to aged rats further increased the volume of cholinergic neurons, augmented the density of the cholinergic varicosities, and reversed the age-related decrease in the number of NPY neurons. Our data show that the age-related changes in NPY levels in the NAc cannot be solely ascribed to the cholinergic innervation of the nucleus.
Collapse
Affiliation(s)
- Pedro A Pereira
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.
| | | | | | | | | |
Collapse
|
33
|
Forsell P, Almqvist H, Hillertz P, Akerud T, Otrocka M, Eisele L, Sun K, Andersson H, Trivedi S, Wollberg AR, Dekker N, Rottici D, Sandberg K. The use of TrkA-PathHunter assay in high-throughput screening to identify compounds that affect nerve growth factor signaling. ACTA ACUST UNITED AC 2013; 18:659-69. [PMID: 23458757 DOI: 10.1177/1087057113479401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The TrkA-PathHunter cell-based assay was used in high-throughput screening (HTS) to identify compounds that inhibit nerve growth factor (NGF)/TrkA signaling. The assay was conducted in a 384-well format, and typical Z' values during HTS ranged from 0.3 to 0.8. The reproducibility of IC50 values was good, and the use of cryopreserved cells was well tolerated, as judged by assay parameters such as Z' and S/B and by comparison of IC50 values obtained with cells in culture. During hit deconvolution, TrkA-kinase inhibitors were identified with ATP-competitive as well as non-ATP-competitive mechanisms of action. Furthermore, other mechanisms of action such as NGF and TrkA antagonists were also identified. Because of the different molecular mechanisms identified, it is possible that subsequent optimization work to increase affinity and selectivity might lead to compounds that could have a better chance to evoke clinical efficacy without the adverse effects observed for nonselective TrkA inhibitors.
Collapse
Affiliation(s)
- Pontus Forsell
- AstraZeneca R&D, Neuroscience, iMed CNS&P, Södertälje, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lan Z, Chen L, Fu Q, Ji W, Wang S, Liang Z, Qu R, Kong L, Ma S. Paeoniflorin attenuates amyloid-beta peptide-induced neurotoxicity by ameliorating oxidative stress and regulating the NGF-mediated signaling in rats. Brain Res 2013; 1498:9-19. [PMID: 23295189 DOI: 10.1016/j.brainres.2012.12.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/17/2012] [Accepted: 12/28/2012] [Indexed: 01/18/2023]
Abstract
Paeoniflorin is a monoterpene glycoside isolated from the aqueous extract of the dry root of Paeonia. It has been identified to exhibit many pharmacological effects including enhancing the cognitive ability, producing anti-depressant-like effect and reducing the MTPT-induced toxicity. In our previous study, it has shown that paeoniflorin improved the cognitive ability and attenuated the oxidative stress in the Aβ(1-42)-treated rats. In order to further elucidate the possible molecular mechanisms of paeoniflorin on the cognitive ability, rats were injected with Aβ(1-42) (1 μg/μL) and later with paeoniflorin (15 mg/kg and 30 mg/kg, i.p.) and donepezil hydrochloride (2mg/kg, i.p.) daily for 20 days in this study. The results showed that the long-term treatment of paeoniflorin or donepezil enhanced the cognitive performances in the Morris water maze test, restored the decreased activities of superoxide dismutase and catalase and the increased level of malondialdehyde, and reversed the alterations of matrix metallopeptidase-9 and tissue-inhibitor of metalloproteinase-1 in the hippocampus of Aβ(1-42)-treated rats. Paeoniflorin also up-regulated the activity of choline acetyltrasferase and the expression of tyrosine kinase A receptor, and down-regulated the activity of acetylcholine esterase in the hippocampus of Aβ(1-42)-treated rats. These results demonstrate that paeoniflorin ameliorates the spatial learning and memory deficits by attenuating oxidative stress and regulating the nerve growth factor-mediated signaling to reinforce cholinergic functions in the hippocampus of the Aβ(1-42)-treated rats.
Collapse
Affiliation(s)
- Zhou Lan
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lvyi Chen
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weiwei Ji
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shuyuan Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhaohui Liang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rong Qu
- Department of Pharmacology of Traditional Chinese Medical Formulae, Nanjing University of Traditional Chinese Medicine, Nanjing 210029, PR China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
35
|
Liu Q, Yu Y, Wang P, Li Y. Synthesis of analogues of linckoside B, a new neuritogenic steroid glycoside. NEW J CHEM 2013. [DOI: 10.1039/c3nj00514c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Stranahan AM, Mattson MP. Metabolic reserve as a determinant of cognitive aging. J Alzheimers Dis 2012; 30 Suppl 2:S5-13. [PMID: 22045480 DOI: 10.3233/jad-2011-110899] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mild cognitive impairment (MCI) and Alzheimer's disease (AD) represent points on a continuum of cognitive performance in aged populations. Cognition may be impaired or preserved in the context of brain aging. One theory to account for memory maintenance in the context of extensive pathology involves 'cognitive reserve', or the ability to compensate for neuropathology through greater recruitment of remaining neurons. In this review, we propose a complementary hypothesis of 'metabolic reserve', where a brain with high metabolic reserve is characterized by the presence of neuronal circuits that respond adaptively to perturbations in cellular and somatic energy metabolism and thereby protects against declining cognition. Lifestyle determinants of metabolic reserve, such as exercise, reduced caloric intake, and intake of specific dietary components can promote neuroprotection, while pathological states arising from sedentary lifestyles and excessive caloric intake contribute to neuronal endangerment. This bidirectional relationship between metabolism and cognition may be mediated by alterations in central insulin and neurotrophic factor signaling and glucose metabolism, with downstream consequences for accumulation of amyloid-β and hyperphosphorylated tau. The metabolic reserve hypothesis is supported by epidemiological findings and the spectrum of individual cognitive trajectories during aging, with additional data from animal models identifying potential mechanisms for this relationship. Identification of biomarkers for metabolic reserve could assist in generating a predictive model for the likelihood of cognitive decline with aging.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Physiology Department, Georgia Health Sciences University, Augusta, Georgia, GA 30912, USA.
| | | |
Collapse
|
37
|
Ntelios D, Berninger B, Tzimagiorgis G. Numb and Alzheimer's disease: the current picture. Front Neurosci 2012; 6:145. [PMID: 23060745 PMCID: PMC3463830 DOI: 10.3389/fnins.2012.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022] Open
Abstract
Twenty-three years ago, numb was identified as a critical regulator in Drosophila sensory organ precursor cell asymmetric divisions. Beyond the recently recognized role in carcinogenesis, Numb seems to be important in Alzheimer’s disease. This assertion comes from the involvement in various processes such as synapse morphogenesis, amyloid precursor protein trafficking, notch signaling, and neurogenesis. The purpose of the present mini-review is to provide the current picture of Numb’s participation in mechanisms underlying Alzheimer’s disease pathogenesis and emphasize potential aspects for future research.
Collapse
Affiliation(s)
- Dimitrios Ntelios
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| | | | | |
Collapse
|
38
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
39
|
Indo Y. Nerve growth factor and the physiology of pain: lessons from congenital insensitivity to pain with anhidrosis. Clin Genet 2012; 82:341-50. [DOI: 10.1111/j.1399-0004.2012.01943.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Y Indo
- Department of Pediatrics; Kumamoto University Hospital; Kumamoto; 860-8556; Japan
| |
Collapse
|
40
|
Eriksdotter-Jönhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O, Andreasen N, Blennow K, Bogdanovic N, Jelic V, Kadir A, Nordberg A, Sundström E, Wahlund LO, Wall A, Wiberg M, Winblad B, Seiger A, Almqvist P, Wahlberg L. Encapsulated cell biodelivery of nerve growth factor to the Basal forebrain in patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2012; 33:18-28. [PMID: 22377499 DOI: 10.1159/000336051] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Degeneration of cholinergic neurons in the basal forebrain correlates with cognitive decline in patients with Alzheimer's disease (AD). Targeted delivery of exogenous nerve growth factor (NGF) has emerged as a potential AD therapy due to its regenerative effects on the basal forebrain cholinergic neurons in AD animal models. Here we report the results of a first-in-man study of encapsulated cell (EC) biodelivery of NGF to the basal forebrain of AD patients with the primary objective to explore safety and tolerability. METHODS This was an open-label, 12-month study in 6 AD patients. Patients were implanted stereotactically with EC-NGF biodelivery devices targeting the basal forebrain. Patients were monitored with respect to safety, tolerability, disease progression and implant functionality. RESULTS All patients were implanted successfully with bilateral single or double implants without complications or signs of toxicity. No adverse events were related to NGF or the device. All patients completed the study, including removal of implants at 12 months. Positive findings in cognition, EEG and nicotinic receptor binding in 2 of 6 patients were detected. CONCLUSIONS This study demonstrates that surgical implantation and removal of EC-NGF biodelivery to the basal forebrain in AD patients is safe, well tolerated and feasible.
Collapse
Affiliation(s)
- Maria Eriksdotter-Jönhagen
- Departments of Neurobiology, Caring Sciences and Society, Karolinska Institutet, Stockholm, Sweden. maria.eriksdotter.jonhagen @ ki.se
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lockrow JP, Fortress AM, Granholm ACE. Age-related neurodegeneration and memory loss in down syndrome. Curr Gerontol Geriatr Res 2012; 2012:463909. [PMID: 22545043 PMCID: PMC3318235 DOI: 10.1155/2012/463909] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/21/2011] [Indexed: 01/10/2023] Open
Abstract
Down syndrome (DS) is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD) by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS.
Collapse
Affiliation(s)
- Jason P. Lockrow
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ashley M. Fortress
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ann-Charlotte E. Granholm
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Center on Aging, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
42
|
Kunze A, Valero A, Zosso D, Renaud P. Synergistic NGF/B27 gradients position synapses heterogeneously in 3D micropatterned neural cultures. PLoS One 2011; 6:e26187. [PMID: 22022558 PMCID: PMC3192785 DOI: 10.1371/journal.pone.0026187] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/22/2011] [Indexed: 11/18/2022] Open
Abstract
Native functional brain circuits show different numbers of synapses (synaptic densities) in the cerebral cortex. Until now, different synaptic densities could not be studied in vitro using current cell culture methods for primary neurons. Herein, we present a novel microfluidic based cell culture method that combines 3D micropatterning of hydrogel layers with linear chemical gradient formation. Micropatterned hydrogels were used to encapsulate dissociated cortical neurons in laminar cell layers and neurotrophic factors NGF and B27 were added to influence the formation of synapses. Neurotrophic gradients allowed for the positioning of distinguishable synaptic densities throughout a 3D micropatterned neural culture. NGF and B27 gradients were maintained in the microfluidic device for over two weeks without perfusion pumps by utilizing a refilling procedure. Spatial distribution of synapses was examined with a pre-synaptic marker to determine synaptic densities. From our experiments, we observed that (1) cortical neurons responded only to synergistic NGF/B27 gradients, (2) synaptic density increased proportionally to synergistic NGF/B27 gradients; (3) homogeneous distribution of B27 disturbed cortical neurons in sensing NGF gradients and (4) the cell layer position significantly impacted spatial distribution of synapses.
Collapse
Affiliation(s)
- Anja Kunze
- Microsystems Laboratory (LMIS4), Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
43
|
Fortress AM, Buhusi M, Helke KL, Granholm ACE. Cholinergic Degeneration and Alterations in the TrkA and p75NTR Balance as a Result of Pro-NGF Injection into Aged Rats. J Aging Res 2011; 2011:460543. [PMID: 21785728 PMCID: PMC3140182 DOI: 10.4061/2011/460543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/04/2011] [Indexed: 01/22/2023] Open
Abstract
Learning and memory impairments occurring with Alzheimer's disease (AD) are associated with degeneration of the basal forebrain cholinergic neurons (BFCNs). BFCNs extend their axons to the hippocampus where they bind nerve growth factor (NGF) which is retrogradely transported to the cell body. While NGF is necessary for BFCN survival and function via binding to the high-affinity receptor TrkA, its uncleaved precursor, pro-NGF has been proposed to induce neurodegeneration via binding to the p75NTR and its coreceptor sortilin. Basal forebrain TrkA and NGF are downregulated with aging while pro-NGF is increased. Given these data, the focus of this paper was to determine a mechanism for how pro-NGF accumulation may induce BFCN degeneration. Twenty-four hours after a single injection of pro-NGF into hippocampus, we found increased hippocampal p75NTR levels, decreased hippocampal TrkA levels, and cholinergic degeneration. The data suggest that the increase in p75NTR with AD may be mediated by elevated pro-NGF levels as a result of decreased cleavage, and that pro-NGF may be partially responsible for age-related degenerative changes observed in the basal forebrain. This paper is the first in vivo evidence that pro-NGF can affect BFCNs and may do so by regulating expression of p75NTR neurotrophin receptors.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
44
|
Blalock EM, Buechel HM, Popovic J, Geddes JW, Landfield PW. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer's disease. J Chem Neuroanat 2011; 42:118-26. [PMID: 21756998 DOI: 10.1016/j.jchemneu.2011.06.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that threatens to reach epidemic proportions as our population ages. Although much research has examined molecular pathways associated with AD, relatively few such studies have focused on the disease's critical early stages. In a prior microarray study we correlated gene expression in hippocampus with degree of Alzheimer's disease and found close associations between upregulation of apparent glial transcription factor/epigenetic/tumor suppressor genes and incipient AD. The results suggested a new model in which AD pathology spreads along myelinated axons (Blalock et al., 2004). However, the microarray analyses were performed on RNA extracted from frozen hand-dissected hippocampal CA1 tissue blocks containing both gray and white matter, limiting the confidence with which transcriptional changes in gray matter could be distinguished from those in white matter. Here, we used laser capture microdissection (LCM) to exclude major white matter tracts while selectively collecting CA1 hippocampal gray matter from formalin-fixed, paraffin-embedded (FFPE) hippocampal sections of the same subjects assessed in our prior study. Microarray analyses of this gray matter-enriched tissue revealed many transcriptional changes similar to those seen in our past study and in studies by others, particularly for downregulated neuron-related genes. Additionally, the present analyses identified several previously undetected pathway alterations, including downregulation of molecules that stabilize ryanodine receptor Ca2+ release and upregulation of vasculature development. Conversely, we found a striking paucity of the upregulated changes in the putative glial and growth-related genes that had been strongly overrepresented in the prior mixed-tissue study. We conclude that FFPE tissue can be a reliable resource for microarray studies of brain tissue, that upregulation of growth-related epigenetic/transcription factors during incipient AD is predominantly localized in and around white matter (supporting our prior findings and model), and that novel alterations in vascular and ryanodine receptor-related pathways in gray matter are closely associated with incipient AD.
Collapse
Affiliation(s)
- Eric M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
45
|
Texel SJ, Mattson MP. Impaired adaptive cellular responses to oxidative stress and the pathogenesis of Alzheimer's disease. Antioxid Redox Signal 2011; 14:1519-34. [PMID: 20849373 PMCID: PMC3061199 DOI: 10.1089/ars.2010.3569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As is generally true with other age-related diseases, Alzheimer's disease (AD) involves oxidative damage to cellular components in the affected tissue, in this case the brain. The causes and consequences of oxidative stress in neurons in AD are not fully understood, but considerable evidence points to important roles for accumulation of amyloid β-peptide upstream of oxidative stress and perturbed cellular Ca(2+) homeostasis and energy metabolism downstream of oxidative stress. The identification of mutations in the β-amyloid precursor protein and presenilin-1 as causes of some cases of early onset inherited AD, and the development of cell culture and animal models based on these mutations has greatly enhanced our understanding of the AD process, and has greatly expanded opportunities for preclinical testing of potential therapeutic interventions. In this regard, and of particular interest to us, is the elucidation of adaptive cellular stress response pathways (ACSRP) that can counteract multiple steps in the AD neurodegenerative cascades, thereby limiting oxidative damage and preserving cognitive function. ACSRP can be activated by factors ranging from exercise and dietary energy restriction, to drugs and phytochemicals. In this article we provide an overview of oxidative stress and AD, with a focus on ACSRP and their potential for preventing and treating AD.
Collapse
Affiliation(s)
- Sarah J Texel
- Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | |
Collapse
|
46
|
Stanzione F, Esposito L, Paladino A, Pedone C, Morelli G, Vitagliano L. Role of the conformational versatility of the neurotrophin N-terminal regions in their recognition by Trk receptors. Biophys J 2011; 99:2273-8. [PMID: 20923662 DOI: 10.1016/j.bpj.2010.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/14/2010] [Accepted: 07/23/2010] [Indexed: 01/08/2023] Open
Abstract
Neurotrophins (NTs) represent a family of proteins that play an important role in the survival, development, and function of neurons. Extensive efforts are currently being made to develop small molecules endowed with agonist or antagonist NT activity. The structurally versatile N-termini of these proteins are considered regions of interest for the design of new molecules. By combining experimental and computational approaches, we analyzed the intrinsic conformational preferences of the N-termini of two of the most important NTs: NGF (NGF-Nter) and NT4 (NT4-Nter). Circular dichroism spectra clearly indicate that both peptides show a preference for random coil states. Because this finding does not preclude the possibility that structured forms may occur in solution as minor conformational states, we performed molecular-dynamics simulations to gain insights into the structural features of populated species. In line with the circular dichroism analysis, the simulations show a preference for unstructured states for both peptides. However, the simulations also show that for NT4-Nter, and to a lesser extent for NGF-Nter, helical conformations, which are required for binding to the Trk receptor, are present in the repertoire of structures that are intrinsically accessible to these peptides. Accordingly, molecular recognition of NTs by the Trk receptor is accomplished by the general mechanism known as population shift. These findings provide a structural rationale for the observed activity of synthetic peptides based on these NT regions. They also suggest strategies for the development of biologically active peptide-based compounds.
Collapse
Affiliation(s)
- Francesca Stanzione
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Recerche, Naples, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Gudasheva TA, Antipova TA, Seredenin SB. Novel low-molecular-weight mimetics of the nerve growth factor. DOKL BIOCHEM BIOPHYS 2010; 434:262-5. [PMID: 20960252 DOI: 10.1134/s160767291005011x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Indexed: 11/23/2022]
Affiliation(s)
- T A Gudasheva
- Zakusov Research Institute of Pharmacology, Russian Academy of Medical Sciences, ul. Baltiiskaya 8, Moscow, 125315, Russia
| | | | | |
Collapse
|
48
|
Camandola S, Mattson MP. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:965-73. [PMID: 20950656 DOI: 10.1016/j.bbamcr.2010.10.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 02/06/2023]
Abstract
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
49
|
Calissano P, Matrone C, Amadoro G. Nerve growth factor as a paradigm of neurotrophins related to Alzheimer's disease. Dev Neurobiol 2010; 70:372-83. [PMID: 20186703 DOI: 10.1002/dneu.20759] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Converging lines of evidence on the possible connection between NGF signaling and Alzheimer's diseases (AD) are unraveling new facets which could depict this neurotrophin (NTF) in a more central role. AD animal models have provided evidence that a shortage of NGF supply may induce an AD-like syndrome. In vitro experiments, moreover, are delineating a possible temporal and causal link between APP amiloydogenic processing and altered post-translational tau modifications. After NGF signaling interruption, the pivotal upstream players of the amyloid cascade (APP, beta-secretase, and active form of gamma-secretase) are up-regulated, leading to an increased production of amyloid beta peptide (Abeta) and to its intracellular aggregation in molecular species of different sizes. Contextually, the Abeta released pool generates an autocrine toxic loop in the same healthy neurons. At the same time tau protein undergoes anomalous, GSKbeta-mediated, phosphorylation at specific pathogenetic sites (Ser262 and Thr 231), caspase(s) and calpain- I- mediated truncation, detachment from microtubules with consequent cytoskeleton collapse and axonal transport impairment. All these events are inhibited when the amyloidogenic processing is reduced by beta and gamma secretase inhibitors or anti-Abeta antibodies and appear to be causally correlated to TrkA, p75CTF, Abeta, and PS1 molecular association in an Abeta-mediated fashion. In this scenario, the so-called trophic action exerted by NGF (and possibly also by other neurotrophins) in these targets neurons is actually the result of an anti-amyloidogenic activity.
Collapse
Affiliation(s)
- P Calissano
- Institute of Neurobiology and Molecular Medicine, C.N.R. Fondazione Santa Lucia, Italy.
| | | | | |
Collapse
|
50
|
Aboukhatwa M, Dosanjh L, Luo Y. Antidepressants are a rational complementary therapy for the treatment of Alzheimer's disease. Mol Neurodegener 2010; 5:10. [PMID: 20226030 PMCID: PMC2845130 DOI: 10.1186/1750-1326-5-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/12/2010] [Indexed: 12/17/2022] Open
Abstract
There is a high prevalence rate (30-50%) of Alzheimer's disease (AD) and depression comorbidity. Depression can be a risk factor for the development of AD or it can be developed secondary to the neurodegenerative process. There are numerous documented diagnosis and treatment challenges for the patients who suffer comorbidity between these two diseases. Meta analysis studies have provided evidence for the safety and efficacy of antidepressants in treatment of depression in AD patients. Preclinical and clinical studies show the positive role of chronic administration of selective serotonin reuptake inhibitor (SSRI) antidepressants in hindering the progression of the AD and improving patient performance. A number of clinical studies suggest a beneficial role of combinatorial therapies that pair antidepressants with FDA approved AD drugs. Preclinical studies also demonstrate a favorable effect of natural antidepressants for AD patients. Based on the preclinical studies there are a number of plausible antidepressants effects that may modulate the progression of AD. These effects include an increase in neurogenesis, improvement in learning and memory, elevation in the levels of neurotrophic factors and pCREB and a reduction of amyloid peptide burden. Based on this preclinical and clinical evidence, antidepressants represent a rational complimentary strategy for the treatment of AD patients with depression comorbidity.
Collapse
Affiliation(s)
- Marwa Aboukhatwa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N Pine St, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|