1
|
Hang C, Shao R, Wang X, Zhang L, Cheng W, Jiang Z, Zhong Z, An L, Tang Z. Serum glial fibrillary acidic protein and protein gene product 9.5 for predicting neurological outcomes in cardiac arrest patients with cortical response to somatosensory evoked potentials. Resusc Plus 2025; 23:100931. [PMID: 40226237 PMCID: PMC11986234 DOI: 10.1016/j.resplu.2025.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Aim Predicting neurological prognosis after cardiac arrest remains challenging. Somatosensory evoked potential N20 absence is highly specific but lacks sensitivity. Glial fibrillary acidic protein and protein gene product 9.5 are potential biomarkers for brain injury, yet their roles in cardiac arrest patients with preserved somatosensory evoked potential N20 remain underexplored. Methods From January 2023 to December 2024, 69 cardiac arrest patients were enrolled, of whom 46 had preserved somatosensory evoked potential N20 responses. Serum glial fibrillary acidic protein, protein gene product 9.5 and neuron-specific enolase levels were measured at 72 h post-resuscitation. Patients were evaluated for neurological outcomes at 3 months using the Glasgow-Pittsburgh Classification of Cerebral Function scale. Receiver operating characteristic analysis determined biomarker thresholds for poor prognosis. Results In patients with preserved somatosensory evoked potential N20 responses, glial fibrillary acidic protein and protein gene product 9.5 levels were significantly higher in those with poor outcomes (P < 0.001). Glial fibrillary acidic protein (area under the curve = 0.908) had an optimal cutoff of 64.1 pg/mL (sensitivity 87.5%, specificity 82.4%) and a 100% specificity threshold of 149 pg/mL. Protein gene product 9.5 (area under the curve = 0.864) had an optimal cutoff of 448.4 pg/mL (sensitivity 87.5%, specificity 70.6%) and a 100% specificity threshold of 1253 pg/mL. The prognostic significance of combining serum glial fibrillary acidic protein, protein gene product 9.5, or neuron-specific enolase levels was explored, with glial fibrillary acidic protein + neuron-specific enolase achieving the highest area under the curve of 0.949 (0.882-1.000). Conclusions Serum glial fibrillary acidic protein and protein gene product 9.5 could be valuable predictors of poor neurological outcomes in cardiac arrest patients with cortical response to somatosensory evoked potential, though further studies are required to validate these findings.
Collapse
Affiliation(s)
| | | | - Xingsheng Wang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Luying Zhang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Weijie Cheng
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zihao Jiang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ziqi Zhong
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Le An
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
2
|
Yao H, Su G, Hou H, Wang J, Sun Z, Li Z, Zhai Z, Li Y. Complications of Polyacrylamide Hydrogel Facial Injection: Clinical Studies and Literature Review. Aesthetic Plast Surg 2025; 49:1833-1841. [PMID: 39939475 DOI: 10.1007/s00266-025-04715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Polyacrylamide hydrogel (PAHG) is a new biomaterial that emerged in the last century and has been widely used in human filler procedures, such as injectable breast augmentation and facial contour improvement. However, as the implantation time of the material increases, various complications have been reported, which reflects that the safety of this material has not been adequately studied. Therefore, a more in-depth experimental analysis becomes particularly important. METHODS We collected lesion tissues from six patients with PAHG facial injection. The lesion tissues were examined histologically and molecularly. RESULTS Complications caused by PAHG facial injection included pain, subcutaneous nodules, swelling and gel displacement. Western blot revealed decreased expression of neural tissue markers, and increased expression of macrophage markers and oxidative stress-related factors. The results of this study provide new insights into the mechanism and development of PAHG facial injection complications. CONCLUSION This report explores the possible mechanism of PAHG complications after facial injection from a new perspective of oxidative stress and inflammation for the first time, which provides a reference for researchers and clinicians to further understand the characteristics of materials and strictly control surgical indications to reduce complications. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Haifeng Yao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Gang Su
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Hua Hou
- School of Clinical Medicine, Binzhou Medical College, Binzhou, 256600, China
| | - Jing Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Zhenmin Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Zhaoxin Li
- Affiliated Traditional Chinese Medicine Hospital of Shandong Second Medical University, Weifang, 261053, China
| | - Zhaohui Zhai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China.
| | - Yuli Li
- Qingdao Hospital, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong Province, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
3
|
Allen J, Ermine CM, Lin R, Cloud GC, Shultz SR, Casillas-Espinosa PM. Proteinopathies and the Neurodegenerative Aftermath of Stroke: Potential Biomarkers and Treatment Targets. Stroke 2025. [PMID: 40145137 DOI: 10.1161/strokeaha.124.049279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Stroke remains a predominant cause of death and long-term disability among adults worldwide. Emerging evidence suggests that proteinopathies, characterized by the aggregation and accumulation of misfolded proteins, may play a significant role in the aftermath of stroke and the progression of neurodegenerative disorders. In this review, we explore preclinical and clinical research on key proteinopathies associated with stroke, including tau, Aβ (amyloid-β), TDP-43 (TAR DNA-binding protein 43), α-synuclein, and UCH-L1 (ubiquitin C-terminal hydrolase-L1). We focus on their potential as biomarkers for recovery management and as novel treatment targets that may enhance neuronal repair and mitigate secondary neurodegeneration. The involvement of these proteinopathies in various aspects of stroke, including neuroinflammation, oxidative stress, neuronal damage, and vascular dysfunction, underscores their potential. However, further investigations are essential to validate the clinical utility of these biomarkers, elucidate the mechanisms connecting proteinopathies to poststroke neurodegeneration, and develop targeted interventions. Identifying specific protein signatures associated with stroke outcomes could facilitate the advancement of precision medicine tailored to individual patient needs, significantly enhancing the quality of life for stroke survivors.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia. (C.M.E.)
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Geoffrey C Cloud
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia. (S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia. (S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| |
Collapse
|
4
|
Kraljević I, Marinović Guić M, Budimir Mršić D, Dolić K, Čaljkušić K, Benzon B, Šupe Domić D, Lovrić Kojundžić S. Can Serum GFAP and UCH-L1 Replace CT in Assessing Acute Ischemic Stroke Severity? Life (Basel) 2025; 15:495. [PMID: 40141839 PMCID: PMC11943646 DOI: 10.3390/life15030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
As acute ischemic stroke (AIS) is still a significant cause of morbidity globally, new methods of rapid diagnostics are continually being researched and improved. Still, the only definite way to diagnose AIS is radiological imaging. Lately, serum biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown their usefulness in AIS as potential complementary tools in early recognition. We aimed to investigate if GFAP and UCH-L1 can correlate with comprehensive diagnostic information provided by computed tomography (CT) and several clinical parameters in AIS severity assessment and subsequently with clinical outcomes. Fifty-two patients with AIS and a potential for mechanical thrombectomy (MT) were included in our study. Thirty-seven patients underwent MT. Results showed no correlation of biomarkers with any analyzed CT parameter (thrombus length, volume, and density, clot burden score, collateral score, AIS core and penumbra volume, differences in perfusion between healthy and affected brain tissue). In addition, none of the clinical parameters, such as sex, symptom onset time, or the National Institutes of Health Stroke Scale, correlated with biomarkers. However, lower biomarker levels corresponded with a good clinical outcome, and higher levels to a poor outcome following hospital discharge, irrespective of the performed MT (p = 0.005 for GFAP, p = 0.001 for UCH-L1). In patients with successful MT, there were also differences between patients with a good clinical outcome compared with patients with a poor clinical outcome (p = 0.007 for GFAP, p = 0.004 for UCH-L1). In conclusion, these biomarkers cannot replace imaging modalities but can provide complementary diagnostic information in the setting of AIS.
Collapse
Affiliation(s)
- Ivan Kraljević
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia; (M.M.G.); (D.B.M.); (K.D.)
| | - Maja Marinović Guić
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia; (M.M.G.); (D.B.M.); (K.D.)
- Department of Diagnostic and Interventional Radiology, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Danijela Budimir Mršić
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia; (M.M.G.); (D.B.M.); (K.D.)
- Department of Diagnostic and Interventional Radiology, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Krešimir Dolić
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia; (M.M.G.); (D.B.M.); (K.D.)
- Department of Diagnostic and Interventional Radiology, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Krešimir Čaljkušić
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
- Department of Neurology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia;
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Daniela Šupe Domić
- Department of Health Studies, University of Split, 21000 Split, Croatia;
- Medical Laboratory Diagnostic Division, University Hospital of Split, 21000 Split, Croatia
| | - Sanja Lovrić Kojundžić
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia; (M.M.G.); (D.B.M.); (K.D.)
- Department of Diagnostic and Interventional Radiology, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| |
Collapse
|
5
|
Jansen C, McAdams J, Kim C, De La Cruz P, Salaverria A, DaSilva NA, Grive K, James NE. Small molecule inhibition of ubiquitin C-terminal hydrolase L1 alters cell metabolism proteins and exerts anti- or pro-tumorigenic effects contingent upon chemosensitivity status in high grade serous ovarian cancer. Front Pharmacol 2025; 16:1547164. [PMID: 40078282 PMCID: PMC11897294 DOI: 10.3389/fphar.2025.1547164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
High grade serous ovarian cancer (HGSOC) is the most lethal of all gynecologic malignancies in which the majority of patients eventually develop chemoresistant recurrent disease. Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme canonically known for its involvement in neurodegeneration, but recently has been shown to play a key role in tumorigenesis. Furthermore, UCHL1 has garnered attention across a multitude of cancer subtypes as it has the ability to be targeted through small molecule inhibition. Therefore, the goal of this present study was to elucidate mechanistic consequences of small molecule UCHL1 inhibition in HGSOC. Comparative label-free proteomic analysis of HGSOC cell line, OVCAR8 revealed prominent changes in cell metabolism proteins upon treatment with UCHL1 small molecule inhibitor, LDN-57444. Further validation via Western blot analysis revealed that changes in cell metabolism proteins differed in matched chemosensitive versus chemoresistant HGSOC cells. Finally, cell viability analysis demonstrated that a combinatorial carboplatin and LDN-57444 blockade produced a promotion or conversely, inhibition of cell death, in chemoresistant, and chemosensitve HGSOC cells, respectively. This phenomenon was further corroborated by respective differences in activation levels of common tumor cell growth pathways STAT3, MAPK/ERK, and AKT in chemoresistant versus chemosensitive HGSOC cells. Overall, this investigation established that pharmacologic targeting of UCHL1 produces differential effects according to HGSOC chemosensitivity status.
Collapse
Affiliation(s)
- Corinne Jansen
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Julia McAdams
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Chloe Kim
- School of Public Health, Brown University, Providence, RI, United States
| | - Payton De La Cruz
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Angelica Salaverria
- Therapeutic Sciences Graduate Program, Brown University, Providence, RI, United States
| | - Nicholas A. DaSilva
- Division of Biology and Medicine, Proteomics Facility, Brown University, Providence, RI, United States
| | - Kathryn Grive
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Nicole E. James
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Yang JJ, Liu HJ, Wang YX, Wang LP, Gu JJ, Gao JY, Ren KQ, Min LF. Oxidative Stress and Epithelial-Mesenchymal Transition: The Impact of Ubiquitin C-terminal Hydrolase L1 in Cigarette Smoke-Induced COPD. Lung 2025; 203:36. [PMID: 40000498 DOI: 10.1007/s00408-025-00790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Cigarette smoke (CS) has been demonstrated to mediate oxidative stress (OS) and epithelial-mesenchymal transition (EMT) in bronchial epithelial cells, thereby contributing to airway remodeling in chronic obstructive pulmonary disease (COPD). Studies have shown upregulation of Ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, in the airway epithelium of smokers. Many studies indicate that UCHL1's regulation of EMT and OS has a complex role in various cell types, including respiratory epithelium. Thus, we aimed to investigate UCHL1's regulation of EMT, OS, and related mechanisms in cigarette smoke-exposed airway epithelium. METHODS Exposure to cigarette smoke (CS) or cigarette smoke extract (CSE) was employed to establish both animal and cellular models. Protein expression was analyzed using immunohistochemistry, immunofluorescence, and Western blotting. Lentiviral UCHL1 or GPX1-siRNA was used to modulate UCHL1 or GPX1 expression, respectively. Transwell assays were employed to evaluate cell migration and EMT-related alterations. Oxidative stress levels were assessed using specific assay kits. RESULTS This study validated that exposure to CS induces UCHL1 expression in bronchial epithelial cells both in vitro and in vivo, a phenomenon positively correlated with increased OS and EMT in the airway. Notably, UCHL1 overexpression counteracted CSE's impact on EMT markers, cell migration, and oxidative stress in BEAS-2B cells, while UCHL1 knockdown exacerbated these effects. Furthermore, in BEAS-2B cells treated with CSE, upregulation of UCHL1 was found to enhance the expression of glutathione peroxidase 1 (GPX1), an antioxidant enzyme. The effect of UCHL1 overexpression on EMT-related protein markers and cell migration was reversed upon GPX1 silencing via siRNA. CONCLUSIONS These findings suggest that UCHL1-mediated regulation of GPX1 expression alleviates cigarette smoke-induced EMT-related protein markers change and cell migration in BEAS-2B cell.
Collapse
Affiliation(s)
- Jing Jing Yang
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Jun Liu
- Department of Respiratory Medicine, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Yu Xiu Wang
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Ping Wang
- Biospecimen Library, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jian Jun Gu
- Department of Cardiology, Institute of Translational Medicine, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Yin Gao
- Pulmonary and Critical Care Medicine, Yancheng No.1 People's Hospital, 224000, Yancheng, Jiangsu, China
| | - Kai Qi Ren
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ling Feng Min
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
7
|
Zhang H, Wang J, Qu Y, Yang Y, Guo ZN. Brain injury biomarkers and applications in neurological diseases. Chin Med J (Engl) 2025; 138:5-14. [PMID: 38915214 PMCID: PMC11717530 DOI: 10.1097/cm9.0000000000003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 06/26/2024] Open
Abstract
ABSTRACT Neurological diseases are a major health concern, and brain injury is a typical pathological process in various neurological disorders. Different biomarkers in the blood or the cerebrospinal fluid are associated with specific physiological and pathological processes. They are vital in identifying, diagnosing, and treating brain injuries. In this review, we described biomarkers for neuronal cell body injury (neuron-specific enolase, ubiquitin C-terminal hydrolase-L1, αII-spectrin), axonal injury (neurofilament proteins, tau), astrocyte injury (S100β, glial fibrillary acidic protein), demyelination (myelin basic protein), autoantibodies, and other emerging biomarkers (extracellular vesicles, microRNAs). We aimed to summarize the applications of these biomarkers and their related interests and limits in the diagnosis and prognosis for neurological diseases, including traumatic brain injury, status epilepticus, stroke, Alzheimer's disease, and infection. In addition, a reasonable outlook for brain injury biomarkers as ideal detection tools for neurological diseases is presented.
Collapse
Affiliation(s)
- Han Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jing Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
8
|
Mi Z, Povysheva N, Rose ME, Ma J, Zeh DJ, Harikumar N, Bhuiyan MIH, Graham SH. Abolishing UCHL1's hydrolase activity exacerbates ischemia-induced axonal injury and functional deficits in mice. J Cereb Blood Flow Metab 2024; 44:1349-1361. [PMID: 38833565 PMCID: PMC11542126 DOI: 10.1177/0271678x241258809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 06/06/2024]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) is a neuronal protein important in maintaining axonal integrity and motor function and may be important in the pathogenesis of many neurological disorders. UCHL1 may ameliorate acute injury and improve recovery after cerebral ischemia. In the current study, the hypothesis that UCHL1's hydrolase activity underlies its effect in maintaining axonal integrity and function is tested after ischemic injury. Hydrolase activity was inhibited by treatment with a UCHL1 hydrolase inhibitor or by employing knockin mice bearing a mutation in the hydrolase active site (C90A). Ischemic injury was induced by oxygen-glucose deprivation (OGD) in brain slice preparations and by transient middle cerebral artery occlusion (tMCAO) surgery in mice. Hydrolase activity inhibition increased restoration time and decreased the amplitude of evoked axonal responses in the corpus callosum after OGD. Mutation of the hydrolase active site exacerbated white matter injury as detected by SMI32 immunohistochemistry, and motor deficits as detected by beam balance and cylinder testing after tMCAO. These results demonstrate that UCHL1 hydrolase activity ameliorates white matter injury and functional deficits after acute ischemic injury and support the hypothesis that UCHL1 activity plays a significant role in preserving white matter integrity and recovery of function after cerebral ischemia.
Collapse
Affiliation(s)
- Zhiping Mi
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marie E Rose
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Ma
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dennis J Zeh
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikitha Harikumar
- Department of Neuroscience, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad Iqbal H Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA
| | - Steven H Graham
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Chen M, Karimpour PA, Elliott A, He D, Knifley T, Liu J, Wang C, O’Connor KL. Integrin α6β4 Upregulates PTPRZ1 Through UCHL1-Mediated Hif-1α Nuclear Accumulation to Promote Triple-Negative Breast Cancer Cell Invasive Properties. Cancers (Basel) 2024; 16:3683. [PMID: 39518121 PMCID: PMC11545476 DOI: 10.3390/cancers16213683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Integrin α6β4 drives triple-negative breast cancer (TNBC) aggressiveness through the transcriptional regulation of key genes. Here, we investigated how integrin α6β4 regulates protein tyrosine phosphatase receptor type Z1 (PTPRZ1). Using stable re-expression of integrin β4 (ITGB4) in cells naturally devoid of integrin α6β4 or knockdown or knockout (KO) of ITGB4, we found that integrin α6β4 regulates PTPRZ1 expression. To gain mechanistic insight, we focused on Hif-1α due to the impact of integrin α6β4 on a hypoxia-associated signature. We found that nuclear localization of Hif-1α, but not Hif-2α, was substantially enhanced with integrin α6β4 signaling. Hif-1α knockdown by shRNA or chemical inhibition decreased PTPRZ1 expression, while chemical activation of Hif-1α increased it. Upstream of Hif-1α, integrin α6β4 upregulates UCHL1 to stabilize Hif-1α and ultimately regulate PTPRZ1. Inhibition of UCHL1 and PTPRZ1 dramatically decreases integrin α6β4-mediated cell migration and three-dimensional invasive growth. Finally, public breast cancer database analyses demonstrated that ITGB4 correlates with PTPRZ1 and that high expression of ITGB4, UCHL1, HIF1A, and PTPRZ1 associated with decreased overall survival, distant metastasis free survival, post progression survival, and relapse-free survival. In summary, these findings provide a novel function of integrin α6β4 in promoting tumor invasive phenotypes through UCHL1-Hif-1α-mediated regulation of PTPRZ1.
Collapse
Affiliation(s)
- Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Parvanee A. Karimpour
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew Elliott
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen L. O’Connor
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Pan H, Song J, An Q, Chen J, Zheng W, Zhang L, Gu J, Deng C, Yang B. Inhibition of Ubiquitin C-Terminal Hydrolase L1 Facilitates Cutaneous Wound Healing via Activating TGF-β/Smad Signalling Pathway in Fibroblasts. Exp Dermatol 2024; 33:e15186. [PMID: 39367569 DOI: 10.1111/exd.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/27/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) plays vital roles in cell proliferation, angiogenesis, inflammation and oxidative stress. Nevertheless, it is unclear whether UCHL1 could regulate the biologic behaviour of cells and ultimately influences wound healing. We aim to illustrate the roles and the underlying mechanism of UCHL1 in cutaneous wound healing. Murine full-thickness excisional wound model was utilised to study the effects of UCHL1 on wound healing through topical administration of the UCHL1 inhibitor LDN57444, followed by assessment of wound areas and histological alterations. Subsequently, ethynyldeoxyuridine, scratch and transwell assays were performed to examine fibroblast migration and proliferation. The extracellular matrix (ECM)-related genes expression and transforming growth factor-β (TGF-β)/Smad signalling pathways activation were investigated by immuno-fluorescent staining, Western blots and quantitative reverse transcription polymerase chain reaction. We identified elevated UCHL1 expression in non-healing wound tissues. The UCHL1 expression displayed a dynamic change and reached a peak on Day-7 post-wounding during the healing process in mice. Cutaneous administration of LDN57444 promoted wound healing by facilitating collagen deposition, myofibroblast activation and angiogenesis. In vitro experiments demonstrated that UCHL1 concentration dependently inhibited migration, ECM synthesis and activation of human dermal fibroblasts, which was mechanistically related to downregulation of TGF-β/Smad signalling. Furthermore, these effects could be reversed by TGF-β inhibitor SB431542. Our findings reveal that UCHL1 is a negative regulator of cutaneous wound healing and considered as a novel prospective therapeutic target for effective wound healing.
Collapse
Affiliation(s)
- Huihui Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinru Song
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qing An
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenyue Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Gu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chengcheng Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Li K, Yang W, Chen X, Yu Y, Liu Y, Ni F, Xiao Y, Qing X, Liu S, He Y, Wang B, Xu L, Shao Z, Zhao L, Peng Y, Lin H. A structured biomimetic nanoparticle as inflammatory factor sponge and autophagy-regulatory agent against intervertebral disc degeneration and discogenic pain. J Nanobiotechnology 2024; 22:486. [PMID: 39143545 PMCID: PMC11323362 DOI: 10.1186/s12951-024-02715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Lower back pain (LBP) is a common condition closely associated with intervertebral disc degeneration (IDD), causing a significant socioeconomic burden. Inflammatory activation in degenerated discs involves pro-inflammatory cytokines, dysregulated regulatory cytokines, and increased levels of nerve growth factor (NGF), leading to further intervertebral disc destruction and pain sensitization. Macrophage polarization is closely related to autophagy. Based on these pathological features, a structured biomimetic nanoparticle coated with TrkA-overexpressing macrophage membranes (TMNP@SR) with a rapamycin-loaded mesoporous silica core is developed. TMNP@SR acted like sponges to adsorbe inflammatory cytokines and NGF and delivers the autophagy regulator rapamycin (RAPA) into macrophages through homologous targeting effects of the outer engineered cell membrane. By regulating autophagy activation, TMNP@SR promoted the M1-to-M2 switch of macrophages to avoid continuous activation of inflammation within the degenerated disc, which prevented the apoptosis of nucleus pulposus cells. In addition, TMNP@SR relieved mechanical and thermal hyperalgesia, reduced calcitonin gene-related peptide (CGRP) and substance P (SP) expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat IDD model. In summary, TMNP@SR spontaneously inhibits the aggravation of disc inflammation to alleviate disc degeneration and reduce the ingress of sensory nerves, presenting a promising treatment strategy for LBP induced by disc degeneration.
Collapse
Affiliation(s)
- Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yihan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiran Liu
- Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430030, China
| | - Feifei Ni
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - YuXin He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Emergency, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Antony R, Aby K, Montgomery M, Li Y. Skeletal Muscle UCHL1 Negatively Regulates Muscle Development and Recovery after Muscle Injury. Int J Mol Sci 2024; 25:7330. [PMID: 39000437 PMCID: PMC11242864 DOI: 10.3390/ijms25137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme originally found in the brain. Our previous work revealed that UCHL1 was also expressed in skeletal muscle and affected myoblast differentiation and metabolism. In this study, we further tested the role of UCHL1 in myogenesis and muscle regeneration following muscle ischemia-reperfusion (IR) injury. In the C2C12 myoblast, UCHL1 knockdown upregulated MyoD and myogenin and promoted myotube formation. The skeletal muscle-specific knockout (smKO) of UCHL1 increased muscle fiber sizes in young mice (1 to 2 months old) but not in adult mice (3 months old). In IR-injured hindlimb muscle, UCHL1 was upregulated. UCHL1 smKO ameliorated tissue damage and injury-induced inflammation. UCHL1 smKO also upregulated myogenic factors and promoted functional recovery in IR injury muscle. Moreover, UCHL1 smKO increased Akt and Pink1/Parkin activities. The overall results suggest that skeletal muscle UCHL1 is a negative factor in skeletal muscle development and recovery following IR injury and therefore is a potential therapeutic target to improve muscle regeneration and functional recovery following injuries.
Collapse
Affiliation(s)
| | | | | | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (R.A.); (K.A.); (M.M.)
| |
Collapse
|
13
|
Jae J, Li Y, Sun C, Allan A, Basmaji J, Chilton S, Simsam MH, Kao R, Owen A, Parry N, Priestap F, Rochwerg B, Smith S, Turgeon AF, Vogt K, Walser E, Iansavitchene A, Ball I. Preclinical Studies on Mechanisms Underlying the Protective Effects of Propranolol in Traumatic Brain Injury: A Systematic Review. J Neuroimmune Pharmacol 2024; 19:33. [PMID: 38900343 DOI: 10.1007/s11481-024-10121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/21/2024] [Indexed: 06/21/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity amongst trauma patients. Its treatment is focused on minimizing progression to secondary injury. Administration of propranolol for TBI maydecrease mortality and improve functional outcomes. However, it is our sense that its use has not been universally adopted due to low certainty evidence. The literature was reviewed to explore the mechanism of propranolol as a therapeutic intervention in TBI to guide future clinical investigations. Medline, Embase, and Scopus were searched for studies that investigated the effect of propranolol on TBI in animal models from inception until June 6, 2023. All routes of administration for propranolol were included and the following outcomes were evaluated: cognitive functions, physiological and immunological responses. Screening and data extraction were done independently and in duplicate. The risk of bias for each individual study was assessed using the SYCLE's risk of bias tool for animal studies. Three hundred twenty-three citations were identified and 14 studies met our eligibility criteria. The data suggests that propranolol may improve post-TBI cognitive and motor function by increasing cerebral perfusion, reducing neural injury, cell death, leukocyte mobilization and p-tau accumulation in animal models. Propranolol may also attenuate TBI-induced immunodeficiency and provide cardioprotective effects by mitigating damage to the myocardium caused by oxidative stress. This systematic review demonstrates that propranolol may be therapeutic in TBI by improving cognitive and motor function while regulating T lymphocyte response and levels of myocardial reactive oxygen species. Oral or intravenous injection of propranolol following TBI is associated with improved cerebral perfusion, reduced neuroinflammation, reduced immunodeficiency, and cardio-neuroprotection in preclinical studies.
Collapse
Affiliation(s)
- James Jae
- Department of Medicine, Western University, London, ON, Canada
| | - Yilong Li
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Clara Sun
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison Allan
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - John Basmaji
- Department of Medicine, Western University, London, ON, Canada
| | | | | | - Raymond Kao
- Department of Medicine, Western University, London, ON, Canada
- London Health Sciences Trauma Program, London, ON, Canada
- Office of Academic Military Medicine, Western University, London, ON, Canada
| | - Adrian Owen
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Neil Parry
- London Health Sciences Trauma Program, London, ON, Canada
- Office of Academic Military Medicine, Western University, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
| | - Fran Priestap
- London Health Sciences Trauma Program, London, ON, Canada
| | - Bram Rochwerg
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Shane Smith
- London Health Sciences Trauma Program, London, ON, Canada
- Office of Academic Military Medicine, Western University, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
| | - Alexis F Turgeon
- CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Québec City, Québec, Canada
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, Québec City, Québec, Canada
| | - Kelly Vogt
- London Health Sciences Trauma Program, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
| | - Eric Walser
- Department of Medicine, Western University, London, ON, Canada
- Office of Academic Military Medicine, Western University, London, ON, Canada
| | - Alla Iansavitchene
- Health Sciences Library, London Health Sciences Center, London, ON, Canada
| | - Ian Ball
- Department of Medicine, Western University, London, ON, Canada.
- London Health Sciences Trauma Program, London, ON, Canada.
- Office of Academic Military Medicine, Western University, London, ON, Canada.
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada.
| |
Collapse
|
14
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
15
|
Aspegren O, Pourhamidi K. Reliable Method for Estimating Nerve Fiber Density in Epidermis Using Routine Histopathologic Tissue Preparation: A Promising Diagnostic Tool for Small Fiber Neuropathy. Appl Immunohistochem Mol Morphol 2024; 32:215-221. [PMID: 38650330 DOI: 10.1097/pai.0000000000001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Practical yet reliable diagnostic tools for small-fiber neuropathy are needed. We aimed to establish a histopathologic protocol for estimating intraepidermal nerve fiber density (eIENFD) on formalin-fixed, paraffin-embedded tissue (FFPE), evaluate its reliability through intraobserver and interobserver analyses, and provide normative reference values for clinical use. Sixty-eight healthy participants underwent nerve conduction studies and quantitative sensory testing. Skin biopsies from the distal and proximal leg were taken and processed using routine immunohistochemistry (anti-PGP9.5 antibodies) on thin 5 µm sections. eIENFD was assessed with a modified counting protocol. Interobserver and intraobserver reliabilities were excellent (ICC=0.9). eIENFD was higher in females than males (fibers/mm, 14.3±4.4 vs. 11.6±5.8, P <0.05), decreased with age ( r s =-0.47, P <0.001), and was higher proximally than distally (15.0±5.5 vs. 13.0±5.3, P =0.002). Quantile regression equations for the fifth percentile of distal and proximal eIENFD were presented: 13.125-0.161×age (y)-0.932×sex (male=1; female=0) and 17.204-0.192×age (y)-3.313×sex (male=1; female=0), respectively. This study introduces a reliable and reproducible method for estimating epidermal nerve fiber density through immunostaining on 5-µm thin FFPE tissue samples. Normative data on eIENFD is provided. Regression equations help identify abnormal decreases in small nerve fiber density.
Collapse
Affiliation(s)
- Oskar Aspegren
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital
| | - Kaveh Pourhamidi
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Zhang L, Li Y, Wu Z, Shen Q, Zeng C, Liu H, Zhang X, Yang J, Liu Q, Tang D, Ou K, Fang Y. Metrnl inhibits choroidal neovascularization by attenuating the choroidal inflammation via inactivating the UCHL-1/NF-κB signaling pathway. Front Immunol 2024; 15:1379586. [PMID: 38745648 PMCID: PMC11091344 DOI: 10.3389/fimmu.2024.1379586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Choroidal neovascularization (CNV) represents the predominant form of advanced wet Age-related Macular Degeneration (wAMD). Macrophages play a pivotal role in the pathological progression of CNV. Meteorin-like (Metrnl), a novel cytokine known for its anti-inflammatory properties in macrophages, is the focus of our investigation into its mechanism of action and its potential to impede CNV progression. Methods Cell viability was evaluated through CCK-8 and EdU assays following Metrnl treatment. Expression levels of inflammatory cytokines and proteins were assessed using quantitative reverse-transcription polymerase chain reaction(qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot techniques. Protein-protein interactions were identified through protein mass spectrometry and co-immunoprecipitation (Co-IP). Additionally, in vivo and in vitro neovascularization models were employed to evaluate angiogenesis. Results Our results revealed downregulated Metrnl levels in the choroid-sclera complex of CNV mice, the aqueous humor of wAMD patients, and activated macrophages. Metrnl overexpression demonstrated a reduction in pro-inflammatory cytokine production, influenced endothelial cell function, and suppressed angiogenesis in choroid explants and CNV models. Through protein mass spectrometry and Co-IP, we confirmed Metrnl binds to UCHL-1 to modulate the NF-κB signaling pathway. This interaction inhibited the transcription and expression of pro-inflammatory cytokines, ultimately suppressing angiogenesis. Conclusion In summary, our findings indicate that Metrnl down-regulates macrophage pro-inflammatory cytokine secretion via the UCHL-1/NF-κB signaling pathway. This mechanism alleviates the inflammatory microenvironment and effectively inhibits choroidal neovascularization.
Collapse
Affiliation(s)
- Lanyue Zhang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhengyu Wu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Qiang Shen
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Chunqin Zeng
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Han Liu
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Xuedong Zhang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxing Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Qiaoling Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Dianyong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Yanhong Fang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
17
|
Kim YJ, Jeong IH, Ha JH, Kim YS, Sung S, Jang JH, Choung YH. The Suppression of Ubiquitin C-Terminal Hydrolase L1 Promotes the Transdifferentiation of Auditory Supporting Cells into Hair Cells by Regulating the mTOR Pathway. Cells 2024; 13:737. [PMID: 38727276 PMCID: PMC11083094 DOI: 10.3390/cells13090737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
| | - In Hye Jeong
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; (I.H.J.); (S.S.)
| | - Jung Ho Ha
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; (I.H.J.); (S.S.)
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
| | - Siung Sung
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; (I.H.J.); (S.S.)
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; (I.H.J.); (S.S.)
| |
Collapse
|
18
|
Imhoff RD, Patel R, Safdar MH, Jones HBL, Pinto-Fernandez A, Vendrell I, Chen H, Muli CS, Krabill AD, Kessler BM, Wendt MK, Das C, Flaherty DP. Covalent Fragment Screening and Optimization Identifies the Chloroacetohydrazide Scaffold as Inhibitors for Ubiquitin C-terminal Hydrolase L1. J Med Chem 2024; 67:4496-4524. [PMID: 38488146 DOI: 10.1021/acs.jmedchem.3c01661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Dysregulation of the ubiquitin-proteasome systems is a hallmark of various disease states including neurodegenerative diseases and cancer. Ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is expressed primarily in the central nervous system under normal physiological conditions, however, is considered an oncogene in various cancers, including melanoma, lung, breast, and lymphoma. Thus, UCHL1 inhibitors could serve as a viable treatment strategy against these aggressive cancers. Herein, we describe a covalent fragment screen that identified the chloroacetohydrazide scaffold as a covalent UCHL1 inhibitor. Subsequent optimization provided an improved fragment with single-digit micromolar potency against UCHL1 and selectivity over the closely related UCHL3. The molecule demonstrated efficacy in cellular assays of metastasis. Additionally, we report a ligand-bound crystal structure of the most potent molecule in complex with UCHL1, providing insight into the binding mode and information for future optimization.
Collapse
Affiliation(s)
- Ryan D Imhoff
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
| | - Rishi Patel
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammad Hassan Safdar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hannah B L Jones
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Hao Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christine S Muli
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Michael K Wendt
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Wang Y, Zhang Q, Ma Q, Wang Q, Huang D, Ji X. Intermittent hypoxia preconditioning can attenuate acute hypoxic injury after a sustained normobaric hypoxic exposure: A randomized clinical trial. CNS Neurosci Ther 2024; 30:e14662. [PMID: 38477221 PMCID: PMC10934266 DOI: 10.1111/cns.14662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Intermittent hypoxia (IH) is emerging as a cost-effective nonpharmacological method for vital organ protection. We aimed to assess the effects of a short-term moderate intermittent hypoxia preconditioning protocol (four cycles of 13% hypoxia lasting for 10 min with 5-min normoxia intervals) on acute hypoxic injury induced by sustained hypoxic exposure (oxygen concentration of 11.8% for 6 h). METHODS One hundred healthy volunteers were recruited and randomized to the IH group and the control group to receive IH or sham-IH preconditioning for 5 days, respectively, and then were sent to a hypoxic chamber for simulated acute high-altitude exposure (4500 m). RESULTS The overall incidence of acute mountain sickness was 27% (27/100), with 14% (7/50) in the IH group and 40% (20/50) in the control group (p = 0.003). After 6-h simulated high-altitude exposure, the mean Lake Louise Score was lower in the IH group as compared to controls (1.30 ± 1.27 vs. 2.04 ± 1.89, p = 0.024). Mean peripheral oxygen saturations (SpO2 ) and intracranial pressure (ICP) measures after acute hypoxic exposure exhibited significant differences, with the IH group showing significantly greater SpO2 values (85.47 ± 5.14 vs. 83.10 ± 5.15%, p = 0.026) and lower ICP levels than the control group (115.59 ± 32.15 vs. 130.36 ± 33.83 mmH2 O, p = 0.028). IH preconditioning also showed greater effects on serum protein gene product 9.5 (3.89 vs. 29.16 pg/mL; p = 0.048) and C-reactive protein (-0.28 vs. 0.41 mg/L; p = 0.023). CONCLUSION The short-term moderate IH improved the tolerance to hypoxia and exerted protection against acute hypoxic injury induced by exposure to sustained normobaric hypoxia, which provided a novel method and randomized controlled trial evidence to develop treatments for hypoxia-related disease.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qihan Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qingfeng Ma
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dan Huang
- Development Coordination OfficeBeijing Xiaotangshan HospitalBeijingChina
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
20
|
Mi Z, Ma J, Zeh DJ, Rose ME, Henchir JJ, Liu H, Ma X, Cao G, Dixon CE, Graham SH. Systemic treatment with ubiquitin carboxy terminal hydrolase L1 TAT protein ameliorates axonal injury and reduces functional deficits after traumatic brain injury in mice. Exp Neurol 2024; 373:114650. [PMID: 38092186 PMCID: PMC10939891 DOI: 10.1016/j.expneurol.2023.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Traumatic brain injury (TBI) is often associated with axonal injury that leads to significant motor and cognitive deficits. Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is highly expressed in neurons and loss of its activity plays an important role in the pathogenesis of TBI. Fusion protein was constructed containing wild type (WT) UCHL1 and the HIV trans-activator of transcription capsid protein transduction domain (TAT-UCHL1) that facilitates transport of the protein into neurons after systemic administration. Additional mutant proteins bearing cysteine to alanine UCHL1 mutations at cysteine 152 (C152A TAT-UCHL1) that prevents nitric oxide and reactive lipid binding of C152, and at cysteine 220 (C220A TAT-UCHL1) that inhibits farnesylation of the C220 site were also constructed. WT, C152A, and C220A TAT-UCHL1 proteins administered to mice systemically after controlled cortical impact (CCI) were detectable in brain at 1 h, 4 h and 24 h after CCI by immunoblot. Mice treated with C152A or WT TAT-UCHL1 decreased axonal injury detected by NF200 immunohistochemistry 24 h after CCI, but C220A TAT-UCHL1 treatment had no significant effect. Further study indicated that WT TAT-UCHL1 treatment administered 24 h after CCI alleviated axonal injury as detected by SMI32 immunoreactivity 7 d after CCI, improved motor and cognitive deficits, reduced accumulation of total and K48-linked poly-Ub proteins, and attenuated the increase of the autophagy marker Beclin-1. These results suggest that UCHL1 activity contributes to the pathogenesis of white matter injury, and that restoration of UCHL1 activity by systemic treatment with WT TAT-UCHL1 after CCI may improve motor and cognitive deficits. These results also suggest that farnesylation of the C220 site may be required for the protective effects of UCHL1.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis J Zeh
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeremy J Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Xiecheng Ma
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Guodong Cao
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Guo Y, Cheng R, Wang Y, Gonzalez ME, Zhang H, Liu Y, Kleer CG, Xue L. Regulation of EZH2 protein stability: new mechanisms, roles in tumorigenesis, and roads to the clinic. EBioMedicine 2024; 100:104972. [PMID: 38244292 PMCID: PMC10835131 DOI: 10.1016/j.ebiom.2024.104972] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The importance of EZH2 as a key methyltransferase has been well documented theoretically. Practically, the first EZH2 inhibitor Tazemetostat (EPZ6438), was approved by FDA in 2020 and is used in clinic. However, for most solid tumors it is not as effective as desired and the scope of clinical indications is limited, suggesting that targeting its enzymatic activity may not be sufficient. Recent technologies focusing on the degradation of EZH2 protein have drawn attention due to their potential robust effects. This review focuses on the molecular mechanisms that regulate EZH2 protein stability via post-translational modifications (PTMs), mainly including ubiquitination, phosphorylation, and acetylation. In addition, we discuss recent advancements of multiple proteolysis targeting chimeras (PROTACs) strategies and the latest degraders that can downregulate EZH2 protein. We aim to highlight future directions to expand the application of novel EZH2 inhibitors by targeting both EZH2 enzymatic activity and protein stability.
Collapse
Affiliation(s)
- Yunyun Guo
- Cancer Center of Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Rui Cheng
- Cancer Center of Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yuqing Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hongshan Zhang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yang Liu
- Cancer Center of Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
22
|
Espinosa-Oliva AM, Ruiz R, Soto MS, Boza-Serrano A, Rodriguez-Perez AI, Roca-Ceballos MA, García-Revilla J, Santiago M, Serres S, Economopoulus V, Carvajal AE, Vázquez-Carretero MD, García-Miranda P, Klementieva O, Oliva-Martín MJ, Deierborg T, Rivas E, Sibson NR, Labandeira-García JL, Machado A, Peral MJ, Herrera AJ, Venero JL, de Pablos RM. Inflammatory bowel disease induces pathological α-synuclein aggregation in the human gut and brain. Neuropathol Appl Neurobiol 2024; 50:e12962. [PMID: 38343067 DOI: 10.1111/nan.12962] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
AIMS According to Braak's hypothesis, it is plausible that Parkinson's disease (PD) originates in the enteric nervous system (ENS) and spreads to the brain through the vagus nerve. In this work, we studied whether inflammatory bowel diseases (IBDs) in humans can progress with the emergence of pathogenic α-synuclein (α-syn) in the gastrointestinal tract and midbrain dopaminergic neurons. METHODS We have analysed the gut and the ventral midbrain from subjects previously diagnosed with IBD and form a DSS-based rat model of gut inflammation in terms of α-syn pathology. RESULTS Our data support the existence of pathogenic α-syn in both the gut and the brain, thus reinforcing the potential role of the ENS as a contributing factor in PD aetiology. Additionally, we have analysed the effect of a DSS-based rat model of gut inflammation to demonstrate (i) the appearance of P-α-syn inclusions in both Auerbach's and Meissner's plexuses (gut), (ii) an increase in α-syn expression in the ventral mesencephalon (brain) and (iii) the degeneration of nigral dopaminergic neurons, which all are considered classical hallmarks in PD. CONCLUSION These results strongly support the plausibility of Braak's hypothesis and emphasise the significance of peripheral inflammation and the gut-brain axis in initiating α-syn aggregation and transport to the substantia nigra, resulting in neurodegeneration.
Collapse
Affiliation(s)
- Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Sarmiento Soto
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
| | - Antonio Boza-Serrano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Health Research Institute (IDIS), Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María A Roca-Ceballos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Juan García-Revilla
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sébastien Serres
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Vasiliki Economopoulus
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ana E Carvajal
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | | | - Pablo García-Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Oxana Klementieva
- Dementia Research Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - María J Oliva-Martín
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Eloy Rivas
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
| | - José L Labandeira-García
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Health Research Institute (IDIS), Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Machado
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - María J Peral
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio J Herrera
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - José L Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
23
|
Li B, Zhao X, Jin T, Wu Z, Yang H. Efficient isolation and purification of spermatogonia, spermatocytes, and spermatids from mice, piglets, and adult boars using an optimized STA-PUT method. Theriogenology 2024; 213:97-108. [PMID: 37820498 DOI: 10.1016/j.theriogenology.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Spermatogenesis is a delicate and complex biological process in which spermatogonial stem cells continue to proliferate and differentiate into mature spermatozoa, maintaining sperm production in male mammals throughout the lifetime. To study the molecular mechanism of spermatogenesis, researchers had to isolate different germ cell subpopulations for in vitro culture and characterization. However, due to the existence of several stages of germ cells and a variety of populations of somatic cells in the testis of male mammals, it is a challenge for us to obtain high-purity germ cell subpopulations for further research. Here, we optimized the STA-PUT device and successfully applied it to isolate and purify spermatogonia populations in piglets, and multiple germ cell populations at different developmental stages in testes of adult mice and boars. This work provides a simple platform for germ cell fractionation to facilitate the molecular mechanistic study of animal spermatogenesis in vitro.
Collapse
Affiliation(s)
- Bin Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Taili Jin
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Psochias F, Mavrovounis G, Stranjalis G, Kalamatianos T. GFAP and UCHL1 in Non-traumatic SAH: The Story thus Far. A Systematic Review of the Literature. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1328-1344. [PMID: 38213168 DOI: 10.2174/0118715273276472231116104549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE Non-traumatic subarachnoid hemorrhage (SAH) is associated with a high percentage of misdiagnosis and poor prognosis. Biomarkers could be useful in the identification, treatment/management guidance, and outcome improvement of SAH patients. The current systematic review aims to investigate the potential role of biomarkers GFAP (Glial Fibrillary Acidic Protein) and UCH-L1 (Ubiquitin C-Terminal Hydrolase L1) in the diagnosis and prognosis of non-traumatic SAH. METHODS A systematic search of PubMed, Scopus, and Web of Science databases was conducted from their inception through February 2023. RESULTS 17 studies met the inclusion criteria and were included in this review. The vast majority of the included studies (82%) were on GFAP. Most studies used blood and/or CSF samples and incorporated multiple measurements through the initial hospitalization days. The majority of identified studies reported significantly higher levels of GFAP and UCHL1 in SAH patients with poor outcomes. There was notable variation in the specimen type and the timing of sampling. CONCLUSION Quantification of GFAP and UCHL1 through the initial days of hospitalization shows promise in the prediction of SAH patient outcomes. Further research is nevertheless warranted to confirm these findings and further clarify the use of the two biomarkers in SAH diagnosis and the prediction of severity and secondary events.
Collapse
Affiliation(s)
- Filippos Psochias
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
- Clinical and Experimental Neuroscience Research Group, Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Mavrovounis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
- Clinical and Experimental Neuroscience Research Group, Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodosis Kalamatianos
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
- Clinical and Experimental Neuroscience Research Group, Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Hovhannisyan AH, Lindquist KA, Belugin S, Mecklenburg J, Ibrahim T, Tram M, Corey TM, Salmon AB, Perez D, Ruparel S, Akopian AN. Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets. Sci Rep 2023; 13:23062. [PMID: 38155190 PMCID: PMC10754842 DOI: 10.1038/s41598-023-49882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Myogenous temporomandibular disorders is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate-common marmosets. Sensory nerves were localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were primarily innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and lowest in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD and CHRNA3, a silent nociceptive marker. TrpV1 was register in 17% of LPM nerves. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. MM, TM and LPM NFH+ fibers contained different percentages of trkC+ and parvalbumin+, but not trkB+ fibers. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have similarities and differences in innervation patterns.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sergei Belugin
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Tarek Ibrahim
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tatiana M Corey
- Departments of Laboratory Animal Resources, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Adam B Salmon
- Departments of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center San Antonio, San Antonio, TX, 78229, USA
| | - Daniel Perez
- Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
26
|
Ataka K, Asakawa A, Iwai H, Kato I. Musclin prevents depression-like behavior in male mice by activating urocortin 2 signaling in the hypothalamus. Front Endocrinol (Lausanne) 2023; 14:1288282. [PMID: 38116320 PMCID: PMC10728487 DOI: 10.3389/fendo.2023.1288282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Physical activity is recommended as an alternative treatment for depression. Myokines, which are secreted from skeletal muscles during physical activity, play an important role in the skeletal muscle-brain axis. Musclin, a newly discovered myokine, exerts physical endurance, however, the effects of musclin on emotional behaviors, such as depression, have not been evaluated. This study aimed to access the anti-depressive effect of musclin and clarify the connection between depression-like behavior and hypothalamic neuropeptides in mice. Methods We measured the immobility time in the forced swim (FS) test, the time spent in open arm in the elevated-plus maze (EPM) test, the mRNA levels of hypothalamic neuropeptides, and enumerated the c-Fos-positive cells in the paraventricular nucleus (PVN), arcuate nucleus (ARC), and nucleus tractus solitarii (NTS) in mice with the intraperitoneal (i.p.) administration of musclin. Next, we evaluated the effects of a selective corticotropin-releasing factor (CRF) type 1 receptor antagonist, selective CRF type 2 receptor antagonist, melanocortin receptor (MCR) agonist, and selective melanocortin 4 receptor (MC4R) agonist on changes in behaviors induced by musclin. Finally we evaluated the antidepressant effect of musclin using mice exposed to repeated water immersion (WI) stress. Results We found that the i.p. and i.c.v. administration of musclin decreased the immobility time and relative time in the open arms (open %) in mice and increased urocortin 2 (Ucn 2) levels but decreased proopiomelanocortin levels in the hypothalamus. The numbers of c-Fos-positive cells were increased in the PVN and NTS but decreased in the ARC of mice with i.p. administration of musclin. The c-Fos-positive cells in the PVN were also found to be Ucn 2-positive. The antidepressant and anxiogenic effects of musclin were blocked by central administration of a CRF type 2 receptor antagonist and a melanocortin 4 receptor agonist, respectively. Peripheral administration of musclin also prevented depression-like behavior and the decrease in levels of hypothalamic Ucn 2 induced by repeated WI stress. Discussion These data identify the antidepressant effects of musclin through the activation of central Ucn 2 signaling and suggest that musclin and Ucn 2 can be new therapeutic targets and endogenous peptides mediating the muscle-brain axis.
Collapse
Affiliation(s)
- Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuo Kato
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
27
|
Lee SG, Kim J, Lee YI, Kim J, Choi YS, Ham S, Lee JH. Cutaneous neurogenic inflammation mediated by TRPV1-NGF-TRKA pathway activation in rosacea is exacerbated by the presence of Demodex mites. J Eur Acad Dermatol Venereol 2023; 37:2589-2600. [PMID: 37606610 DOI: 10.1111/jdv.19449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Rosacea is a common chronic inflammatory skin condition that is often refractory to treatment, with frequent relapses. Alterations in the skin immunological response and Demodex mite infestation are the primary aetiologic factors targeted for treatment. Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a nociceptive cation channel that plays a role in cutaneous neurogenic pain and can be activated by various rosacea triggers. OBJECTIVES We investigated the effects of TRPV1 modulation in rosacea, focussing on Demodex mite colonization and cutaneous neurogenic inflammation. METHODS We examined mRNA expression levels according to Demodex population counts. An in vitro study using capsazepine as a TRPV1 antagonist was performed to assess the influence of TRPV1 in keratinocytes. A rosacea-like mouse model was generated by the injection of the 37-amino acid C-terminal cathelicidin peptide (LL37), and changes in the skin, dorsal root ganglion (DRG) and ears were examined. RESULTS Increased Demodex mite population counts were associated with increased expression levels of TRPV1, tropomyosin receptor kinase A (TrkA) and nerve growth factor (NGF), and these levels could be reduced by capsazepine treatment in keratinocytes. In an in vivo study, the downstream effects of TRPV1 activation were investigated in the skin, DRG and ears of the rosacea-like mouse model. CONCLUSIONS The findings of this study are instrumental for understanding the underlying causes of rosacea and could potentially lead to the development of new treatments targeting the NGF-TrkA-TRPV1 pathway. The identification of this pathway as a therapeutic target could represent a major breakthrough for rosacea research, potentially resulting in more effective and targeted rosacea treatments. This study contributes to an improved understanding of rosacea pathophysiology, which may lead to the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Sang Gyu Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihee Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, South Korea
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, South Korea
| | - Jemin Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, South Korea
| | - Ye Seul Choi
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Seoyoon Ham
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, South Korea
| |
Collapse
|
28
|
Yang D, Zhang M, Chen W, Lu Q, Wan S, Du X, Li Y, Li B, Wu W, Wang C, Li N, Peng S, Tang H, Hua J. UCHL1 maintains microenvironmental homeostasis in goat germline stem cells. FASEB J 2023; 37:e23306. [PMID: 37934018 DOI: 10.1096/fj.202301674rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in mammalian spermatogenesis and maintain the stable inheritance of the germline in livestock. However, stress and bacterial or viral infections can disrupt immune homeostasis of the testes, thereby leading to spermatogenesis destruction and infertility, which severely affects the health and productivity of mammals. This study aimed to explore the effect of ubiquitin C-terminal hydrolase L1 (UCHL1) knockdown (KD) in goat SSCs and mouse testes and investigate the potential anti-inflammatory function of UCHL1 in a poly(I:C)-induced inflammation model to maintain microenvironmental homeostasis. In vitro, the downregulation of UCHL1 (UCHL1 KD) in goat SSCs increased the expression levels of apoptosis and inflammatory factors and inhibited the self-renewal and proliferation of SSCs. In vivo, the structure of seminiferous tubules and spermatogenic cells was disrupted after UCHL1 KD, and the expression levels of apoptosis- and inflammation-related proteins were significantly upregulated. Furthermore, UCHL1 inhibited the TLR3/TBK1/IRF3 pathway to resist poly(I:C)-induced inflammation in SSCs by antagonizing HSPA8 and thus maintaining SSC autoimmune homeostasis. Most importantly, the results of this study showed that UCHL1 maintained immune homeostasis of SSCs and spermatogenesis. UCHL1 KD not only inhibited the self-renewal and proliferation of goat SSCs and spermatogenesis but was also involved in the inflammatory response of goat SSCs. Additionally, UCHL1 has an antiviral function in SSCs by antagonizing HSPA8, which provides an important basis for exploring the specific mechanisms of UCHL1 in goat spermatogenesis.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenbo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shicheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xiaomin Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, China
| | - Yunxiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Congliang Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Jimenez-Andrade JM, Ramírez-Rosas MB, Hee Park S, Parker R, Eber MR, Cain R, Newland M, Hsu FC, Kittel CA, Martin TJ, Muñoz-Islas E, Shiozawa Y, Peters CM. Evaluation of pain related behaviors and disease related outcomes in an immunocompetent mouse model of prostate cancer induced bone pain. J Bone Oncol 2023; 43:100510. [PMID: 38075938 PMCID: PMC10701434 DOI: 10.1016/j.jbo.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and devastating symptom of bone metastatic cancer that substantially disrupts patients' quality of life. Currently, there are few effective analgesic treatments for CIBP other than opioids which come with severe side effects. In order to better understand the factors and mechanisms responsible for CIBP it is essential to have clinically relevant animal models that mirror pain-related symptoms and disease progression observed in patients with bone metastatic cancer. In the current study, we characterize a syngeneic mouse model of prostate cancer induced bone pain. We transfected a prostate cancer cell line (RM1) with green fluorescent protein (GFP) and luciferase reporters in order to visualize tumor growth longitudinally in vivo and to assess the relationship between sensory neurons and tumor cells within the bone microenvironment. Following intra-femoral injection of the RM1 prostate cancer cell line into male C57BL/6 mice, we observed a progressive increase in spontaneous guarding of the inoculated limb between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. Daily running wheel performance was evaluated as a measure of functional impairment and potentially movement evoked pain. We observed a progressive reduction in the distance traveled and percentage of time at optimal velocity between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. We utilized histological, radiographic and μCT analysis to examine tumor induced bone remodeling and observed osteolytic lesions as well as extra-periosteal aberrant bone formation in the tumor bearing femur, similar to clinical findings in patients with bone metastatic prostate cancer. Within the tumor bearing femur, we observed reorganization of blood vessels, macrophage and nerve fibers within the intramedullary space and periosteum adjacent to tumor cells. Tumor bearing mice displayed significant increases in the injury marker ATF3 and upregulation of the neuropeptides SP and CGRP in the ipsilateral DRG as well as increased measures of central sensitization and glial activation in the ipsilateral spinal cord. This immunocompetent mouse model will be useful when combined with cell type selective transgenic mice to examine tumor, immune cell and sensory neuron interactions in the bone microenvironment and their role in pain and disease progression associated with bone metastatic prostate cancer.
Collapse
Affiliation(s)
| | - Martha B. Ramírez-Rosas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Sun Hee Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Renee Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Matthew R. Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rebecca Cain
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mary Newland
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carol A. Kittel
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Enriqueta Muñoz-Islas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Christopher M. Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
30
|
Ider M, Naseri A, Ok M, Erturk A, Durgut MK, Iyigun SS. Surveilling brain damage using brain biomarkers in hypoglycemic neonatal calves with diarrhea. Front Vet Sci 2023; 10:1240846. [PMID: 38026658 PMCID: PMC10644661 DOI: 10.3389/fvets.2023.1240846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Hypoglycemia is a condition associated with neonatal diarrhea in calves, leading to increased mortality and neurological clinical signs. The aim of the present study was to determine the development of brain damage in hypoglycemic calves with neonatal diarrhea and the diagnostic and prognostic significance of these biomarkers. Ten healthy and 50 hypoglycemic calves with diarrhea were included in the study. Clinical examination, blood gases and complete blood count were performed at admission. Blood serum calcium-binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolysis isoenzyme-1 (UCHL-1), activitin A (ACT), adrenomodullin (AM) concentrations, and creatine kinase-BB (CK-BB) enzyme activity were measured using commercial bovine-specific ELISA kits to assess brain damage. Of the hypoglycemic calves enrolled in the study, 13 (26%) survived and 37 (74%) died. In addition, 32 (64%) of the calves had severe acidosis and 24 (48%) had sepsis. S100B, GFAP, UCHL-1, CK-BB (p < 0.001) and NSE (p < 0.05) concentrations were significantly higher in hypoglycemic calves compared to healthy calves, while ACT concentrations were lower. Blood glucose concentration was negatively correlated with serum S100B, GFAP, UCHL-1, and CK-BB enzyme activity and positively correlated with ACT in hypoglycemic calves (p < 0.01). Brain injury biomarkers were not predictive of mortality (p > 0.05). Morever, severe hypoglycemia, severe acidosis and sepsis variables were not found to have sufficient capacity to predict mortality when considered alone or together (p > 0.05). In conclusion, brain damage may develop as a consequence of hypoglycemia in calves. S100B, NSE, GFAP, UCHL-1, ACT, and CK-BB concentrations can be used to diagnose brain damage in hypoglycemic calves. However, the variables of severe hypoglycemia, severe acidosis, and sepsis together with the biomarkers of brain injury have a limited value in predicting the prognosis of neonatal calves with diarrhea.
Collapse
Affiliation(s)
- Merve Ider
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Amir Naseri
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Mahmut Ok
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Alper Erturk
- Faculty of Veterinary Medicine, Department of Internal Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Murat Kaan Durgut
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Suleyman Serhat Iyigun
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
31
|
Filipović N, Marinović Guić M, Košta V, Vukojević K. Cardiac innervations in diabetes mellitus-Anatomical evidence of neuropathy. Anat Rec (Hoboken) 2023; 306:2345-2365. [PMID: 36251628 DOI: 10.1002/ar.25090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
The extensive innervations of the heart include a complex network of sympathetic, parasympathetic, and sensory nerves connected in loops that serve to regulate cardiac output. Metabolic dysfunction in diabetes affects many different organ systems, including the cardiovascular system; it causes cardiac arrhythmias, silent myocardial ischemia, and sudden cardiac death, among others. These conditions are associated with damage to the nerves that innervate the heart, cardiac autonomic neuropathy (CAN), which is caused by various pathophysiological mechanisms. In this review, the main facts about the anatomy of cardiac innervations and the current knowledge of CAN, its pathophysiological mechanisms, and its diagnostic approach are discussed. In addition, anatomical evidence for CAN from human and animal studies has been summarized.
Collapse
Affiliation(s)
- Natalija Filipović
- Department of Anatomy, Histology and Embryology, Laboratory for Experimental Neurocardiology, University of Split School of Medicine, Split, Croatia
| | - Maja Marinović Guić
- Department of Diagnostic and Interventional Radiology, University Hospital of Split, Split, Croatia
- University Department of Health Studies, University of Split, Split, Croatia
| | - Vana Košta
- Department of Neurology, University Hospital of Split, Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, Laboratory for Experimental Neurocardiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
32
|
Guo C, Liang L, Zheng J, Xie Y, Qiu X, Tan G, Huang J, Wang L. UCHL1 aggravates skin fibrosis through an IGF-1-induced Akt/mTOR/HIF-1α pathway in keloid. FASEB J 2023; 37:e23015. [PMID: 37256780 DOI: 10.1096/fj.202300153rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Keloid is a heterogeneous disease featured by the excessive production of extracellular matrix. It is a great challenge for both clinicians and patients regarding the exaggerated and uncontrolled outgrowth and the therapeutic resistance of the disease. In this study, we verified that UCHL1 was drastically upregulated in keloid fibroblasts. UCHL1 had no effects on cell proliferation and migration, but instead promoted collagen I and α-SMA expression that was inhibited by silencing UCHL1 gene and by adding in LDN-57444, a pharmacological inhibitor for UCHL1 activity as well. The pathological process was mediated by IGF-1 promoted Akt/mTOR/HIF-1α signaling pathway because inhibition of any of them could reduce the expression of collagen I and α-SMA driven by UCHL1 in fibroblasts. Also, we found that UCHL1 expression in keloid fibroblasts was promoted by M2 macrophages via TGF-β1. These findings extend our understanding of the pathogenesis of keloid and provide potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Chipeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Liang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingbin Zheng
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangchun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Eagle SR, Puccio AM, Agoston DV, Soose R, Mancinelli M, Nwafo R, McIntyre P, Agnone A, Tollefson S, Collins M, Kontos AP, Schneider W, Okonkwo DO. Evaluating Targeted Therapeutic Response With Predictive Blood-Based Biomarkers in Patients With Chronic Mild Traumatic Brain Injury. Neurotrauma Rep 2023; 4:404-409. [PMID: 37360545 PMCID: PMC10288300 DOI: 10.1089/neur.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Chronic consequences of mild traumatic brain injury (mTBI) are heterogeneous, but may be treatable with targeted medical and rehabilitation interventions. A biological signature for the likelihood of response to therapy (i.e., "predictive" biomarkers) would empower personalized medicine post-mTBI. The purpose of this study was to correlate pre-intervention blood biomarker levels and the likelihood of response to targeted interventions for patients with chronic issues attributable to mTBI. Patients with chronic symptoms and/or disorders secondary to mTBI >3 months previous (104 days to 15 years; n = 74) were enrolled. Participants completed pre-intervention assessments of symptom burden, comprehensive clinical evaluation, and blood-based biomarker measurements. Multi-domain targeted interventions for specific symptoms and impairments across a 6-month treatment period were prescribed. Participants completed a follow-up testing after the treatment period. An all-possible model's backward logistic regression was built to identify predictors of improvement in relation to blood biomarker levels before intervention. The minimum clinically important difference (MCID) of the change score (post-intervention subtracted from pre-intervention) for the Post-Concussion Symptom Scale (PCSS) to identify treatment responders from non-responders was the primary outcome. The MCID for total PCSS score was 10. The model to predict change in PCSS score over the 6-month intervention was significant (R2 = 0.09; p = 0.01) and identified ubiquitin C-terminal hydrolase L1 (odds ratio [OR] = 2.53; 95% confidence interval [CI], 1.18-5.46; p = 0.02) and hyperphosphorylated tau (p-tau; OR = 0.70; 95% CI, 0.51-0.96; p = 0.03) as significant predictors of symptom improvement beyond the PCSS MCID. In this cohort of chronic TBI subjects, blood biomarkers before rehabilitation intervention predicted the likelihood of response to targeted therapy for chronic disorders post-TBI.
Collapse
Affiliation(s)
- Shawn R. Eagle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Denes V. Agoston
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ryan Soose
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Mancinelli
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel Nwafo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peyton McIntyre
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Allison Agnone
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Collins
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Walter Schneider
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
35
|
Rentsendorj A, Raedschelders K, Fuchs DT, Sheyn J, Vaibhav V, Porritt RA, Shi H, Dagvadorj J, de Freitas Germano J, Koronyo Y, Arditi M, Black KL, Gaire BP, Van Eyk JE, Koronyo-Hamaoui M. Osteopontin depletion in macrophages perturbs proteostasis via regulating UCHL1-UPS axis and mitochondria-mediated apoptosis. Front Immunol 2023; 14:1155935. [PMID: 37325640 PMCID: PMC10266348 DOI: 10.3389/fimmu.2023.1155935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Osteopontin (OPN; also known as SPP1), an immunomodulatory cytokine highly expressed in bone marrow-derived macrophages (BMMΦ), is known to regulate diverse cellular and molecular immune responses. We previously revealed that glatiramer acetate (GA) stimulation of BMMΦ upregulates OPN expression, promoting an anti-inflammatory, pro-healing phenotype, whereas OPN inhibition triggers a pro-inflammatory phenotype. However, the precise role of OPN in macrophage activation state is unknown. Methods Here, we applied global proteome profiling via mass spectrometry (MS) analysis to gain a mechanistic understanding of OPN suppression versus induction in primary macrophage cultures. We analyzed protein networks and immune-related functional pathways in BMMΦ either with OPN knockout (OPNKO) or GA-mediated OPN induction compared with wild type (WT) macrophages. The most significant differentially expressed proteins (DEPs) were validated using immunocytochemistry, western blot, and immunoprecipitation assays. Results and discussion We identified 631 DEPs in OPNKO or GA-stimulated macrophages as compared to WT macrophages. The two topmost downregulated DEPs in OPNKO macrophages were ubiquitin C-terminal hydrolase L1 (UCHL1), a crucial component of the ubiquitin-proteasome system (UPS), and the anti-inflammatory Heme oxygenase 1 (HMOX-1), whereas GA stimulation upregulated their expression. We found that UCHL1, previously described as a neuron-specific protein, is expressed by BMMΦ and its regulation in macrophages was OPN-dependent. Moreover, UCHL1 interacted with OPN in a protein complex. The effects of GA activation on inducing UCHL1 and anti-inflammatory macrophage profiles were mediated by OPN. Functional pathway analyses revealed two inversely regulated pathways in OPN-deficient macrophages: activated oxidative stress and lysosome-mitochondria-mediated apoptosis (e.g., ROS, Lamp1-2, ATP-synthase subunits, cathepsins, and cytochrome C and B subunits) and inhibited translation and proteolytic pathways (e.g., 60S and 40S ribosomal subunits and UPS proteins). In agreement with the proteome-bioinformatics data, western blot and immunocytochemical analyses revealed that OPN deficiency perturbs protein homeostasis in macrophages-inhibiting translation and protein turnover and inducing apoptosis-whereas OPN induction by GA restores cellular proteostasis. Taken together, OPN is essential for macrophage homeostatic balance via the regulation of protein synthesis, UCHL1-UPS axis, and mitochondria-mediated apoptotic processes, indicating its potential application in immune-based therapies.
Collapse
Affiliation(s)
- Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vineet Vaibhav
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rebecca A. Porritt
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | | | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Moshe Arditi
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jennifer E. Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
36
|
Hovhannisyan AH, Lindquist K, Belugin S, Mecklenburg J, Ibrahim T, Tram M, Corey T, Salmon A, Ruparel S, Ruparel S, Akopian A. Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528062. [PMID: 36798270 PMCID: PMC9934658 DOI: 10.1101/2023.02.10.528062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Myogenous temporomandibular disorders (TMDM) is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), medial pterygoid (MPM) and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate - common marmosets. Sensory nerves are localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were predominantly innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and minimal (6-8%) in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD, trpV1 and CHRNA3, a silent nociceptive marker. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. Almost all A-fibers in MM expressed trkC, with some of them having trkB and parvalbumin. In contrast, a lesser number of TM and LPM nerves expressed trkC, and lacked trkB. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have distinct and different innervation patterns.
Collapse
|
37
|
Oh S, Jang Y, Na CH. Discovery of Biomarkers for Amyotrophic Lateral Sclerosis from Human Cerebrospinal Fluid Using Mass-Spectrometry-Based Proteomics. Biomedicines 2023; 11:biomedicines11051250. [PMID: 37238921 DOI: 10.3390/biomedicines11051250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons, which eventually may lead to death. Critical to the mission of developing effective therapies for ALS is the discovery of biomarkers that can illuminate mechanisms of neurodegeneration and have diagnostic, prognostic, or pharmacodynamic value. Here, we merged unbiased discovery-based approaches and targeted quantitative comparative analyses to identify proteins that are altered in cerebrospinal fluid (CSF) from patients with ALS. Mass spectrometry (MS)-based proteomic approaches employing tandem mass tag (TMT) quantification methods from 40 CSF samples comprising 20 patients with ALS and 20 healthy control (HC) individuals identified 53 proteins that are differential between the two groups after CSF fractionation. Notably, these proteins included both previously identified ones, validating our approach, and novel ones that have the potential for expanding biomarker repertoire. The identified proteins were subsequently examined using parallel reaction monitoring (PRM) MS methods on 61 unfractionated CSF samples comprising 30 patients with ALS and 31 HC individuals. Fifteen proteins (APOB, APP, CAMK2A, CHI3L1, CHIT1, CLSTN3, ERAP2, FSTL4, GPNMB, JCHAIN, L1CAM, NPTX2, SERPINA1, SERPINA3, and UCHL1) showed significant differences between ALS and the control. Taken together, this study identified multiple novel proteins that are altered in ALS, providing the foundation for developing new biomarkers for ALS.
Collapse
Affiliation(s)
- Sungtaek Oh
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70170, USA
| | - Yura Jang
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Bashawat M, Braun B, Müller K, Hermann B. Molecular phenotyping of domestic cat ( Felis catus) testicular cells across postnatal development - A model for wild felids. THERIOGENOLOGY WILD 2023; 2:100031. [PMID: 37461433 PMCID: PMC10350788 DOI: 10.1016/j.therwi.2023.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Molecular characterisation of testicular cells is a pivotal step towards a profound understanding of spermatogenesis and developing assisted reproductive techniques (ARTs) based on germline preservation. To enable the identification of testicular somatic and spermatogenic cell types in felids, we investigated the expression of five molecular markers at the protein level in testes from domestic cats (Felis catus) at different developmental phases (prepubertal, pubertal I and II, postpubertal I and II) classified by single-cell ploidy analysis. Our findings indicate a prominent co-labelling for two spermatogonial markers, UCHL1 and FOXO1, throughout postnatal testis development. Smaller subsets of UCHL1 or FOXO1 single-positive spermatogonia were also evident, with the FOXO1 single-positive spermatogonia predominantly observed in prepubertal testes. As expected, DDX4+ germ cells increased in numbers beginning in puberty, reaching a maximum at adulthood (post-pubertal phase), corresponding to the sequential appearance of labelled spermatogonia, spermatocytes and spermatids. Furthermore, we identified SOX9+ Sertoli cells and CYP17A1+ Leydig cells in all of the developmental groups. Importantly, testes of African lion (Panthera leo), Sumatran tiger (Panthera tigris sumatrae), Chinese leopard (Panthera pardus japonesis) and Sudan cheetah (Acinonyx jubatus soemmeringii) exhibited conserved labelling for UCHL1, FOXO1, DDX4, SOX9 and CYP17A1. The present study provides fundamental information about the identity of spermatogenic and somatic testicular cell types across felid development that will be useful for developing ART approaches to support endangered felid conservation.
Collapse
Affiliation(s)
- M. Bashawat
- Department of Biology, Humboldt University of Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - B.C. Braun
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - K. Müller
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - B.P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
39
|
Chen J, Liu Z, Xu Y, Liu Z, Zheng Z, Zhang Z, Fan C, Li Q, Zhao Q. Anatomic zone division and clinical significance of the lumbar sinuvertebral nerves. Spine J 2023:S1529-9430(23)00153-5. [PMID: 37031892 DOI: 10.1016/j.spinee.2023.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND CONTEXT Discogenic low-back pain (DLBP) is one of the primary causes of low back pain (LBP) and is associated with internal disk disruptions and is mainly transmitted by the sinuvertebral nerve (SVN). The lack of a universal understanding of the anatomical characteristics of the SVN has compromised surgical treatment for DLPB. PURPOSE This study aims to elaborate on the anatomical characteristics of the SVN and to discuss their possible clinical significance. STUDY DESIGN The SVNs were dissected and immunostained in ten human lumbar specimens. METHODS The SVNs at the segments from L1-L2 to L5-S1 in ten human cadavers were studied, and the number, origin, course, diameter, anastomotic branches, and branching points of the SVNs were documented. Three longitudinal and five transverse zones were defined in the dorsal coronal plane of the vertebral body and disc. The vertebrae were divided longitudinally as follows: the region between the medial edges of the bilateral pedicles is divided into three equal parts, the middle third is zone I and the lateral third on both sides are zones II; the areas lateral to the medial margin of the pedicle were zones Ⅲ.The transverse zones were designated as follows: a)superior margin of the vertebral body to superior margin of the pedicle; b) between superior and inferior margins of the pedicle; c) inferior margin of the pedicle to inferior margin of the vertebral body; d) superior margin of the disc to the midline of the disc; and e) midline of the disc to the inferior margin of the disc. The distribution characteristics of SVNs in various zones were recorded, and tissue sections were immunostained with anti-NF 200 and anti-PGP 9.5. RESULTS The SVNs are divided into main trunks and deputy branches, with 109 main trunks and 451 deputy branches identified in the 100 lumbar intervertebral foramens (IVFs). The main trunks of the SVN originate from the spinal nerve and/or the communicating branch, but the deputy branch originating from both roots was not observed. All the main trunks and deputy branches of the SVNs originate from the posterolateral disc (Ⅲ d and Ⅲ e). The deputy branches of the SVN primarily innervate the posterolateral aspect of the intervertebral disc (Ⅲ d 46.78%, Ⅲ e 36.36%) and the subpedicular vertebral body (Ⅲ c 16.85%). The main trunk of the SVNs passes primarily through the subpedicular vertebral body (Ⅲ c 96.33%) and divides into ascending, transverse, and descending branches in the IVF: Ⅲ c (23/101, 22.77%) or spinal canal: Ⅱ c (73/101, 72.28%), Ⅱ d (3/101, 2.97%), Ⅱ b (2/101, 1.98%). The main trunk possesses extensive innervation, and except for the most medial discs (Ⅰ d and Ⅰ e), it almost dominates all other zones of the spinal canal. At the segments from L1-L2 to L5-S1, 39 ipsilateral anastomoses connecting the ascending branch to the main trunk or spinal nerve at the upper level were observed, with one contralateral anastomosis observed at L5. CONCLUSION The zone distribution characteristics of SVNs are similar across all levels. Comparatively, the proportion of double-root origin and the number of insertion points of the SVNs increased at the lower level. The three types of anastomosis offer connections between SVNs at the same level and at different levels. The posteromedial disc is innervated by corresponding and subjacent main trunks, with the posterolateral disc mainly innervated by the deputy branch. CLINICAL SIGNIFICANCE Detailed information and zone distribution characteristics of the lumbar SVNs can help improve clinicians' understanding of DLBP and improve the effectiveness of treatments targeting the SVNs.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Zexian Liu
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Yejie Xu
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Zezheng Liu
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Zhiyang Zheng
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Zhenfeng Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Chaohui Fan
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Qingchu Li
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China..
| | - Qinghao Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China..
| |
Collapse
|
40
|
Mi Z, Graham SH. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res Rev 2023; 86:101856. [PMID: 36681249 PMCID: PMC9992267 DOI: 10.1016/j.arr.2023.101856] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
UCHL1 is a multifunctional protein expressed at high concentrations in neurons in the brain and spinal cord. UCHL1 plays important roles in regulating the level of cellular free ubiquitin and redox state as well as the degradation of select proteins. This review focuses on the potential role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury and recovery. Subjects addressed in the review include 1) Normal physiological functions of UCHL1. 2) Posttranslational modification sites and splice variants that alter the function of UCHL1 and mouse models with mutations and deletions of UCHL1. 3) The hypothesized role and pathogenic mechanisms of UCHL1 in neurodegenerative diseases and brain injury. 4) Potential therapeutic strategies targeting UCHL1 in these disorders.
Collapse
Affiliation(s)
- Zhiping Mi
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| | - Steven H Graham
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| |
Collapse
|
41
|
Hu Y, Qi C, Shi J, Tan W, Adiljan Abdurusul, Zhao Z, Xu Y, Wu H, Zhang Z. Podocyte-specific deletion of ubiquitin carboxyl-terminal hydrolase L1 causes podocyte injury by inducing endoplasmic reticulum stress. Cell Mol Life Sci 2023; 80:106. [PMID: 36952018 PMCID: PMC11073152 DOI: 10.1007/s00018-023-04747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a unique component of the ubiquitin-proteasome system (UPS), which has multiple activities in maintaining intracellular ubiquitin levels. We previously reported the aberrant low expression of UCHL1 in podocytes of non-immune complex-mediated glomerulonephritis, and recent studies indicate that anti-UCHL1 antibody was responsible for the refractory minimal change disease (MCD), but the specific effect of UCHL1 to the podocytopathy has not been determined. Therefore, we generated podocyte-specific UCHL1 gene knockout (UCHL1cre/cre) rats model. Podocyte-specific UCHL1 knockout rats exhibited severe kidney damage, including segmental/global glomerulosclerosis, kidney function damage and severe proteinuria, compared with littermate control. Subsequently, by carrying out mass spectrometry analysis of isolated glomeruli of rats, abnormal protein accumulation of ECM-receptor Interaction was found in UCHL1cre/cre rats. Mechanistic studies in vivo and in vitro revealed that aberrant protein accumulation after UCHL1 deficiency induced endoplasmic reticulum (ER) stress, unfolded protein reaction (UPR) to reduce the protein level of podocyte skeleton proteins, and CHOP mediated apoptosis as well, which related to the dysfunction of the ubiquitin-proteasome system with decreased free monomeric ubiquitin level, thereby affecting protein ubiquitination and degradation. In addition, inhibition of ER stress by 4-PBA could attenuate the degree of ER stress and podocyte dysfunction. Our study indicates that UCHL1 is a potential target for preventing podocytes injury in some non-immune complex-mediated glomerulopathy.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenyang Qi
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jiaoyu Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Weiqiang Tan
- Department of Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Adiljan Abdurusul
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China.
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
42
|
Akiyama T, Curtis E, Carstens MI, Carstens E. Enhancement of allyl isothiocyanate-evoked responses of mouse trigeminal ganglion cells by the kokumi substance γ-glutamyl-valyl-glycine (γ-EVG) through activation of the calcium-sensing receptor (CaSR). Physiol Behav 2023; 260:114063. [PMID: 36563734 DOI: 10.1016/j.physbeh.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Some γ-glutamyl peptides including glutathione (γ-Glu-Cys-Gly) and γ-glutamyl-valyl-glycine (γ-Glu-Val-Gly= γ-EVG) are reported to increase the intensity of basic tastes, such as salty, sweet, and umami, although they have no taste themselves at tested concentrations. The mechanism of action of γ-glutamyl peptides is not clearly understood, but the calcium sensing receptor (CaSR) may be involved. Glutathione and γ-EVG enhance the pungency of some spices, and the present study investigated the effects of γ-EVG on the responses of trigeminal ganglion (TG) cells to thermosensitiveTRP channel agonists. Single-cell RT-PCR revealed that most CaSR-expressing cells co-expressed TRPV1 (sensitive to capsaicin) and TRPA1 (sensitive to allyl isothiocyanate= AITC). Intracellular Ca2+ imaging showed that pretreatment with γ-EVG excited 7% of trigeminal ganglion (TG) cells and increased the amplitude of their responses to AITC, but not to capsaicin or menthol. The enhancing effect of γ-EVG was prevented by a CaSR inhibitor. The results indicate that γ-EVG increases AITC pungency by activating a subset of trigeminal ganglion cells that co-express CaSR and TRPA1.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Dept. of Dermatology & Cutaneous Surgery, Univ. of Miami Miller School of Medicine, Miami FL United States of America
| | - Eric Curtis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America
| | - M Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America.
| |
Collapse
|
43
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
44
|
Wolfmeier H, Heindl S, Platzl C, Kaser-Eichberger A, Nematian-Ardestani E, Strohmaier C, Pruszak J, Schroedl F. Targeted surface marker screening on neuronal structures in the human choroid. Exp Eye Res 2023; 227:109368. [PMID: 36586549 DOI: 10.1016/j.exer.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface. Since the neuronal surface molecular expression patterns in the choroid are currently unknown, we sought to determine the presence of various cluster-of-differentiation (CD) antigens in choroidal neuronal structures with a particular focus on ICN. Human choroids were prepared for immunohistochemistry and the pan-neuronal marker PGP9.5 was combined with CD15, CD24, CD29, CD34, CD46, CD49b, CD49e, CD56, CD58, CD59, CD71, CD81, CD90, CD146, CD147, CD151, CD165, CD171, CD184, CD200, CD271 and fluorescence- and confocal laser scanning-microscopy was used for documentation. The following antigens were found to be co-localized in PGP.9.5+ nerve fibers and ICN perikarya: CD29, CD34, CD56, CD81, CD90, CD146, CD147, CD151, CD171, CD200 and CD271, while all other CD markers where not detectable. Whereas CD24- and CD59- immunoreactivity was clearly absent in ICN perikarya, some neural processes of the choroidal stroma displayed CD24 and CD59 immunopositivity. While a multitude of the aforementioned CD-markers were indeed detected in nervous structures of the choroid, the CD24+ and CD59+ nerve fibers most likely have extrinsic origin from cranial ganglia since ICN cell bodies were found to lack both markers. These findings illustrate how the detailed analysis of CD molecules described here opens novel avenues for future functional studies on choroidal innervation and its control.
Collapse
Affiliation(s)
- H Wolfmeier
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - S Heindl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - C Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - A Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - E Nematian-Ardestani
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - C Strohmaier
- Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - J Pruszak
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - F Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
45
|
Kusumoto J, Ataka K, Iwai H, Oga Y, Yamagata K, Marutani K, Ishikawa T, Asakawa A, Miyawaki S. Malocclusion impairs cognitive behavior via AgRP signaling in adolescent mice. Front Neurosci 2023; 17:1156523. [PMID: 37168929 PMCID: PMC10164942 DOI: 10.3389/fnins.2023.1156523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Occlusal disharmony induced by deteriorating oral health conditions, such as tooth loss and decreased masticatory muscle due to sarcopenia, is one of the causes of cognitive impairment. Chewing is an essential oral function for maintaining cognitive function not only in the elderly but also in young people. Malocclusion is an occlusal disharmony that commonly occurs in children. The connection between a decline in cognitive function and malocclusion in children has been shown with chronic mouth breathing, obstructive sleep apnea syndrome, and thumb/digit sucking habits. However, the mechanism of malocclusion-induced cognitive decline is not fully understood. We recently reported an association between feeding-related neuropeptides and cognitive decline in adolescent mice with activity-based anorexia. The aim of the present study was to assess the effects of malocclusion on cognitive behavior and clarify the connection between cognitive decline and hypothalamic feeding-related neuropeptides in adolescent mice with malocclusion. Methods Four-week-old mice were randomly assigned to the sham-operated solid diet-fed (Sham/solid), sham-operated powder diet-fed (Sham/powder), or malocclusion-operated powder diet-fed (Malocclusion/powder) group. We applied composite resin to the mandibular anterior teeth to simulate malocclusion. We evaluated cognitive behavior using a novel object recognition (NOR) test, measured hypothalamic feeding-related neuropeptide mRNA expression levels, and enumerated c-Fos-positive cells in the hypothalamus 1 month after surgery. We also evaluated the effects of central antibody administration on cognitive behavior impairment in the NOR test. Results The NOR indices were lower and the agouti-related peptide (AgRP) mRNA levels and number of c-Fos-positive cells were higher in the malocclusion/powder group than in the other groups. The c-Fos-positive cells were also AgRP-positive. We observed that the central administration of anti-AgRP antibody significantly increased the NOR indices. Discussion The present study suggests that elevated cerebral AgRP signaling contributes to malocclusion-induced cognitive decline in adolescents, and the suppression of AgRP signaling can be a new therapeutic target against cognitive decline in occlusal disharmony.
Collapse
Affiliation(s)
- Junya Kusumoto
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- *Correspondence: Koji Ataka,
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuhiko Oga
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keita Yamagata
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Kanako Marutani
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Takanori Ishikawa
- Department of Orthodontics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
46
|
Meklef RA, Siemers F, Rein S. Development of a 3D-immunofluorescence analysis for sensory nerve endings in human ligaments. J Neurosci Methods 2022; 382:109724. [PMID: 36207004 DOI: 10.1016/j.jneumeth.2022.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The analysis of ligamentous mechanoreceptors is difficult due to a high amount of unclassifiable mechanoreceptors, which result from incomplete visualization through limited microscopic techniques. NEW METHOD The method was developed using dorsal intercarpal ligaments and dorsal regions of the scapholunate interosseous ligament from human cadaver wrists. Consecutive 70 µm thick cryosections were stained with immunofluorescence markers for protein S100B, neurotrophin receptor p75 (p75), protein gene product 9.5 (PGP 9.5) and 4',6-diamidino-2-phenylindole (DAPI). 3D images of sensory nerve endings were obtained using a confocal laser scanning microscope. Experimental point spread functions (PSF) were used to deconvolve images. Sensory nerve endings were localised in each section plane and classified according to Freeman and Wyke. Finally, confocal data was visualized as 3D-images. RESULTS The method produced excellent image quality, revealing detailed three-dimensional structures. The created 3D-model of sensory nerve endings could be analyzed in all three dimensions, augmenting visualization of the form and immunoreactive pattern of sensory nerve endings. Deconvolution with experimentally measured PSFs aided in enhancing image quality. COMPARISON WITH EXISTING METHODS Using a triple immunofluorescent staining method allows to visualize the structure of sensory nerve endings more precisely than techniques with serial analysis of different monostaining of neural markers. Imaging in three dimensions enhances morphologic details, which are limited in 2D-microscopy. CONCLUSION 3D-triple immunofluorescence produces high quality visualization of mechanoreceptors, thereby improving their analysis. As an elaborate technique, it is ideal for defined research questions concerning the microstructure of sensory nerve endings.
Collapse
Affiliation(s)
- Rami Al Meklef
- Department of Plastic and Hand Surgery, Burn Unit, Klinikum Sankt Georg, Delitzscher Straße 141, 04129 Leipzig, Germany; Martin-Luther-University Halle-Wittenberg, Germany
| | - Frank Siemers
- Martin-Luther-University Halle-Wittenberg, Germany; Department of Plastic and Hand Surgery with Burn Unit, Trauma Center Bergmannstrost, 06112 Halle, Germany
| | - Susanne Rein
- Department of Plastic and Hand Surgery, Burn Unit, Klinikum Sankt Georg, Delitzscher Straße 141, 04129 Leipzig, Germany; Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
47
|
Vuković D, Ogorevc M, Tripković I, Puizina-Ivić N, Saraga-Babić M, Mardešić S. The Distribution of Innervation and Immune Cell Infiltration Is Different in Genital and Extragenital Variants of Lichen Sclerosus. Biomolecules 2022; 12:1767. [PMID: 36551194 PMCID: PMC9775107 DOI: 10.3390/biom12121767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Lichen sclerosus (LS) is a progressive skin disease that is characterized by chronic inflammation of either genital or extragenital skin, and it disproportionately affects women. We analyzed the distribution of nerve fibers, vanilloid receptors, cell proliferation, mast cells and macrophages in genital and extragenital LS samples, as well as in healthy skin, by using immunohistochemistry. The total amount of intraepidermal nerve fibers was lower in LS samples compared to healthy controls, while the total amount of subepidermal nerve fibers and calcitonin gene-related peptide (CGRP) positive fibers was higher in genital LS samples compared to both extragenital LS and healthy controls. Cell proliferation, macrophage and mast cell density were increased in LS samples compared to healthy controls. Genital LS had a higher macrophage density compared to the extragenital variant. Mast cell distribution significantly differed between genital and extragenital LS samples, even though their total mast cell densities were similar. These findings could explain the differences between pruritic symptoms of genital and extragenital LS and provide targets for the research of novel therapeutic strategies for LS management.
Collapse
Affiliation(s)
- Dubravka Vuković
- Department of Dermatovenerology, University Hospital Split, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Ivo Tripković
- Department of Plastic Surgery, University Hospital Split, 21000 Split, Croatia
| | - Neira Puizina-Ivić
- Department of Dermatovenerology, University Hospital Split, 21000 Split, Croatia
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Snježana Mardešić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
48
|
Meng XL, Lu JC, Zeng HY, Chen Z, Guo XJ, Gao C, Pei YZ, Hu SY, Ye M, Sun QM, Yang GH, Cai JB, Huang PX, Yv L, Zhang L, Shi YH, Ke AW, Zhou J, Fan J, Chen Y, Huang XY, Shi GM. The clinical implications and molecular features of intrahepatic cholangiocarcinoma with perineural invasion. Hepatol Int 2022; 17:63-76. [PMID: 36418844 PMCID: PMC9895046 DOI: 10.1007/s12072-022-10445-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Perineural invasion (PNI) is associated with metastasis in malignancies, including intrahepatic cholangiocarcinoma (ICC), and is correlated with poor prognosis. METHODS The study included three large cohorts: ZS-ICC and TMA cohorts from our team, MSK cohort from a public database, and a small cohort named cohort 4. Prognostic implications of PNI were investigated in MSK cohort and TMA cohort. PNI-related genomic and transcriptomic profiles were analyzed in MSK and ZS-ICC cohorts. GO, KEGG, and ssGSEA analyses were performed. Immunohistochemistry was used to investigate the relationship between PNI and markers of neurons, hydrolases, and immune cells. The efficacy of adjuvant therapy in ICC patients with PNI was also assessed. RESULTS A total of 30.6% and 20.7% ICC patients had PNI in MSK and TMA cohorts respectively. Patients with PNI presented with malignant phenotypes such as high CA19-9, the large bile duct type, lymph node invasion, and shortened overall survival (OS) and relapse-free survival (RFS). Nerves involved in PNI positively express tyrosine hydroxylase (TH), a marker of sympathetic nerves. Patients with PNI showed high mutation frequency of KRAS and an immune suppressive metastasis prone niche of decreased NK cell, increased neutrophil, and elevated PD-L1, CD80, and CD86 expression. Patients with PNI had an extended OS after adjuvant therapy with TEGIO, GEMOX, or capecitabine. CONCLUSION Our study deciphered the genomic features and the immune suppressive metastasis-prone niche in ICC with PNI. Patients with PNI showed a poor prognosis after surgery but a good response to adjuvant chemotherapy.
Collapse
Affiliation(s)
- Xian-Long Meng
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen Chen
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Xiao-Jun Guo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Chao Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan-Zi Pei
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shu-Yang Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mu Ye
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi-Man Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guo-Huang Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pei-Xin Huang
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Lei Yv
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Lv Zhang
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Ai-Wu Ke
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Yi Chen
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China.
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China.
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
49
|
Zhang H, Merkus D, Zhang P, Zhang H, Wang Y, Du L, Kottu L. Predicting protective gene biomarker of acute coronary syndrome by the circRNA-associated competitive endogenous RNA regulatory network. Front Genet 2022; 13:1030510. [PMID: 36339005 PMCID: PMC9627163 DOI: 10.3389/fgene.2022.1030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 10/26/2023] Open
Abstract
Background: The mortality and disability rates of acute coronary syndrome (ACS) are quite high. Circular RNA (circRNA) is a competitive endogenous RNA (ceRNA) that plays an important role in the pathophysiology of ACS. Our goal is to screen circRNA-associated ceRNA networks for biomarker genes that are conducive to the diagnosis or exclusion of ACS, and better understand the pathology of the disease through the analysis of immune cells. Materials and methods: RNA expression profiles for circRNAs (GSE197137), miRNAs (GSE31568), and mRNAs (GSE95368) were obtained from the GEO database, and differentially expressed RNAs (DEcircRNAs, DEmiRNAs, and DEmRNAs) were identified. The circRNA-miRNA and miRNA-mRNA regulatory links were retrieved from the CircInteractome database and TargetScan databases, respectively. As a final step, a regulatory network has been designed for ceRNA. On the basis of the ceRNA network, hub mRNAs were verified by quantitative RT-PCR. Hub genes were validated using a third independent mRNA database GSE60993, and ROC curves were used to evaluate their diagnostic values. The correlation between hub genes and immune cells associated with ACS was then analyzed using single sample gene set enrichment analysis (ssGSEA). Results: A total of 17 DEcircRNAs, 229 DEmiRNAs, and 27 DEmRNAs were found, as well as 52 circRNA-miRNA pairings and 10 miRNA-mRNA pairings predicted. The ceRNA regulatory network (circRNA-miRNA-mRNA) was constructed, which included 2 circRNA (hsa_circ_0082319 and hsa_circ_0005654), 4 miRNA (hsa-miR-583, hsa-miR-661, hsa-miR-671-5p, hsa-miR-578), and 5 mRNA (XPNPEP1, UCHL1, DBNL, GPC6, and RAD51). The qRT-PCR analysis result showed that the XPNPEP1, UCHL1, GPC6 and RAD51 genes had a significantly decreased expression in ACS patients. Based on ROC curve analysis, we found that XPNPEP1 has important significance in preventing ACS occurrence and excluding ACS diagnosis. ACS immune infiltration analysis revealed significant correlations between the other 3 hub genes (UCHL1, GPC6, RAD51) and the immune cells (Eosinophils, T folliculars, Type 2 T helper cells, and Imumature dendritic cells). Conclusion: Our study constructed a circRNA-related ceRNA network in ACS. The XPNPEP1 gene could be a protective gene biomarker for ACS. The UCHL1, GPC6 and RAD51 genes were significantly correlated with immune cells in ACS.
Collapse
Affiliation(s)
- Hengliang Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University München, Munich, Germany
| | - Daphne Merkus
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University München, Munich, Germany
- Department of Experimental Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pei Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huifeng Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanyu Wang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Laijing Du
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lakshme Kottu
- Department of Experimental Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
50
|
Zhang D, Hao W, Niu Q, Xu D, Duan X. Identification of the co-differentially expressed hub genes involved in the endogenous protective mechanism against ventilator-induced diaphragm dysfunction. Skelet Muscle 2022; 12:21. [PMID: 36085166 PMCID: PMC9461262 DOI: 10.1186/s13395-022-00304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In intensive care units (ICU), mechanical ventilation (MV) is commonly applied to save patients' lives. However, ventilator-induced diaphragm dysfunction (VIDD) can complicate treatment by hindering weaning in critically ill patients and worsening outcomes. The goal of this study was to identify potential genes involved in the endogenous protective mechanism against VIDD. METHODS Twelve adult male rabbits were assigned to either an MV group or a control group under the same anesthetic conditions. Immunostaining and quantitative morphometry were used to assess diaphragm atrophy, while RNA-seq was used to investigate molecular differences between the groups. Additionally, core module and hub genes were analyzed using WGCNA, and co-differentially expressed hub genes were subsequently discovered by overlapping the differentially expressed genes (DEGs) with the hub genes from WGCNA. The identified genes were validated by western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS After a VIDD model was successfully built, 1276 DEGs were found between the MV and control groups. The turquoise and yellow modules were identified as the core modules, and Trim63, Fbxo32, Uchl1, Tmprss13, and Cst3 were identified as the five co-differentially expressed hub genes. After the two atrophy-related genes (Trim63 and Fbxo32) were excluded, the levels of the remaining three genes/proteins (Uchl1/UCHL1, Tmprss13/TMPRSS13, and Cst3/CST3) were found to be significantly elevated in the MV group (P < 0.05), suggesting the existence of a potential antiproteasomal, antiapoptotic, and antiautophagic mechanism against diaphragm dysfunction. CONCLUSION The current research helps to reveal a potentially important endogenous protective mechanism that could serve as a novel therapeutic target against VIDD.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China.
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi, 046012, China
| | - Qi Niu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| | - Dongdong Xu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| | - Xuejiao Duan
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| |
Collapse
|