1
|
Tian X, Li HD, Lin H, Li C, Wang YP, Bai HX, Lan W, Liu J. Inspired by pathogenic mechanisms: A novel gradual multi-modal fusion framework for mild cognitive impairment diagnosis. Neural Netw 2025; 187:107343. [PMID: 40081274 DOI: 10.1016/j.neunet.2025.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/06/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), and its progression involves complex pathogenic mechanisms. Specifically, disturbed by gene variants, the regulation of gene expression ultimately changes brain structure, resulting in the progression of brain diseases. However, the existing works rarely take these mechanisms into account when designing their diagnosis methods. Therefore, we propose a novel gradual multi-modal fusion framework to fuse representative data from each stage of disease progression in hybrid feature space, including single nucleotide polymorphism (SNP), gene expression (GE), and magnetic resonance imaging (MRI). Specifically, to integrate genetic sequence and expression data, we design a SNP-GE fusion module, which performs multi-modal fusion to obtain genetic embedding by considering the relation between SNP and GE. Compared with SNP-GE fusion, representation of genetic embedding and MRI have more obvious heterogeneity, especially correlation with disease. Therefore, we propose to align the manifold of genetic and imaging representations, which can explore the high-order relationship between imaging and genetic data in the presence of modal heterogeneity. Our proposed framework was validated using the Alzheimer's Disease Neuroimaging Initiative dataset, and achieved diagnosis accuracy of 76.88%, 72.84%, 87.72%, and 95.00% for distinguishing MCI from control normal, lately MCI from early MCI, MCI from AD, and AD from control normal, respectively. Additionally, our proposed framework helps to identify some multi-modal biomarkers related to MCI progression. In summary, our proposed framework is effective not only for MCI diagnosis but also for guiding the further development of genetic and imaging-based brain studies. Our code is published at https://github.com/tianxu8822/workflow_MCI/tree/main/.
Collapse
Affiliation(s)
- Xu Tian
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Hong-Dong Li
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Hanhe Lin
- School of Science and Engineering, School of Medicine, University of Dundee, Dundee, DD1 4HN, United Kingdom
| | - Chao Li
- School of Science and Engineering, School of Medicine, University of Dundee, Dundee, DD1 4HN, United Kingdom; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Harrison X Bai
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wei Lan
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
| | - Jin Liu
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China; Xinjiang Engineering Research Center of Big Data and Intelligent Software, School of software, Xinjiang University, Urumqi, 830008, China.
| |
Collapse
|
2
|
Augusto-Oliveira M, Arrifano GDP, Leal-Nazaré CG, Chaves-Filho A, Santos-Sacramento L, Lopes-Araujo A, Tremblay MÈ, Crespo-Lopez ME. Morphological diversity of microglia: Implications for learning, environmental adaptation, ageing, sex differences and neuropathology. Neurosci Biobehav Rev 2025; 172:106091. [PMID: 40049541 DOI: 10.1016/j.neubiorev.2025.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Microglia are the brain resident macrophages that respond rapidly to any insult. These non-neuroectodermal cells are decorated with plenty of receptors allowing them to recognise and respond precisely to a multitude of stimuli. To do so, microglia undergo structural and functional changes aiming to actively keep the brain's homeostasis. However, some microglial responses, when sustained or exacerbated, can contribute to neuropathology and neurodegeneration. Many microglial molecular and cellular changes were identified that display a strong correlation with neuronal damage and neuroinflammation/disease status, as well as present key sex-related differences that modulate microglial outcomes. Nevertheless, the relationship between microglial structural and functional features is just beginning to be unravelled. Several reports show that microglia undergo soma and branch remodelling in response to environmental stimuli, ageing, neurodegenerative diseases, trauma, and systemic inflammation, suggesting a complex form and function link. Also, it is reasonable overall to suppose that microglia diminishing their process length and ramification also reduce their monitoring activity of synapses, which is critical for detecting any synaptic disturbance and performing synaptic remodelling. Elucidating the complex interactions between microglial morphological plasticity and its functional implications appears essential for the understanding of complex cognitive and behavioural processes in health and neuropathological conditions.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Amanda Lopes-Araujo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec, Qubec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada; College Member of the Royal Society of Canada, Canada.
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| |
Collapse
|
3
|
Peitz K, Bittner N, Heim S, Caspers S. Bilingualism and "brain reserve" in subregions of the hippocampal formation. GeroScience 2025:10.1007/s11357-025-01639-0. [PMID: 40199796 DOI: 10.1007/s11357-025-01639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/30/2025] [Indexed: 04/10/2025] Open
Abstract
With aging, the hippocampal formation shows variable structural atrophy, which is associated with a decline in cognitive performance. Bilingualism is related to higher hippocampal gray matter volume (GMV), potentially representing a form of brain reserve in aging. However, the differential influence of bilingualism on hippocampal subregions remains unclear. Thus, we investigated GMV differences and differences in age-GMV relationships between mono- and bilinguals in the hippocampal formation and its subregions, hippocampus proper and subicular complex. We included 661 adults aged 19 to 85 years (257 monolinguals, 404 sequential bilinguals, predominantly native German speakers with variable second language background) from the population-based 1000BRAINS cohort. GMV differences in mono- vs. bilinguals were assessed for six regions of interest (hippocampal formation, hippocampus proper, and subicular complex; each left and right) using analyses of covariance. Effects of bilingualism on age-GMV relationships were investigated via moderation analyses. We found higher GMV in bilinguals in the bilateral subicular complex, while only a trend towards this effect existed for the hippocampal formation. Moderation analyses revealed similar age-GMV relationships between mono- and bilinguals for all regions of interest. Higher GMV in bilinguals' hippocampal formation seems specifically attributable to the subicular complex rather than the hippocampus proper. With similar age-GMV relationships for mono- and bilinguals, bilingual brain reserve in the subicular complex may persist over time. This may be particularly beneficial since subicular atrophy has previously been associated with higher risk for dementia. Altogether, a differential impact of bilingualism on hippocampal subregions has been demonstrated.
Collapse
Affiliation(s)
- Katharina Peitz
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Nora Bittner
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
4
|
Lim MJ, Tan J, Robert C, Tan WY, Venketasubramanian N, Chen C, Hilal S. The effect of hippocampal subfield volumes on cognitive decline and incident dementia in a memory clinic cohort. J Alzheimers Dis 2025:13872877251329574. [PMID: 40183347 DOI: 10.1177/13872877251329574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundThe hippocampus plays a central role in cognition and hippocampal atrophy is a key hallmark of Alzheimer's disease. Evidence has suggested associations between hippocampal subfield volumes and specific cognitive domains and dementia risk. However, to our knowledge, no study has examined the role of hippocampal subfield volumes in cognitive decline across different domains over time.ObjectiveWe investigated associations between hippocampal subfield volumes and changes in cognitive domains together with incident dementia in a memory clinic cohort.MethodsAssociations between hippocampal subfield volumes and cognitive decline over three years (n = 443) were analyzed using generalized estimating equations, and associations with incident dementia (n = 283) using multiple logistic regression.ResultsAt baseline, all hippocampal subfield volumes were associated with diagnosis of dementia, while the CA4-dentate gyrus, molecular layer, subicular complex, and fimbria volumes were associated with diagnosis of CIND. Over three years, all subfields except the hippocampal fissure were associated with memory. Decreased molecular layer (OR:2.26, 95%CI:1.50;3.50) size was associated with increased risk of dementia.ConclusionsOur findings suggest that hippocampal atrophy of the cornu ammonis, CA4-dentate gyrus, and molecular layer may first manifest with cognitive impairment in memory before other subfields of the hippocampus, and that molecular layer volume may be an early biomarker of dementia. Further research demonstrating the biological role of hippocampal subfields in specific cognitive domains is required.
Collapse
Affiliation(s)
- Mervyn Jr Lim
- Division of Neurosurgery, University Surgical Centre, National University Health System, Singapore
- Memory Ageing and Cognition Center, National University Health System, Singapore
| | - Jaclyn Tan
- Division of Neurosurgery, University Surgical Centre, National University Health System, Singapore
| | - Caroline Robert
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Ying Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Christopher Chen
- Memory Ageing and Cognition Center, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Memory Ageing and Cognition Center, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
5
|
Andersson P, Schrooten MGS, Persson J. Age Differences in Brain Functional Connectivity Underlying Proactive Interference in Working Memory. Hum Brain Mapp 2025; 46:e70189. [PMID: 40195237 PMCID: PMC11975615 DOI: 10.1002/hbm.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Aging is typically accompanied by a decline in working memory (WM) capacity, even in the absence of pathology. Proficient WM requires cognitive control processes that can retain goal-relevant information for easy retrieval and resolve interference from irrelevant information. Aging has been associated with a reduced ability to resolve proactive interference (PI) in WM, leading to impaired retrieval of goal-relevant information. It remains unclear how age-related differences in the ability to resolve PI in WM are related to patterns of resting-state functional connectivity (rsFC) in the brain. Here, we investigated the association between PI in WM and rsFC cross-sectionally (n = 237) and 5 years longitudinally (n = 134) across the adult life span by employing both seed-based and data-driven approaches. Results revealed that the ability to resolve PI was associated with differential patterns of inferior frontal gyrus (IFG) rsFC in younger/middle-aged adults (25-60 years) and older adults (65-80 years) in two clusters centered in the vermis and caudate. Specifically, more PI was associated with stronger inferior frontal gyrus-vermis connectivity and weaker inferior frontal gyrus-caudate connectivity in older adults, while younger/middle-aged adults showed associations in the opposite directions with the identified clusters. Longitudinal analyses revealed that a reduced ability to control PI was associated with reduced inferior frontal gyrus-insula and inferior frontal gyrus-anterior cingulate cortex connectivity in older adults, while younger/middle-aged adults showed associations in the opposite direction with these clusters. Whole brain multivariate pattern analyses showed age-differential patterns of rsFC indicative of age-related structural decline and age-related compensation. The current results show that rsFC is associated with the ability to control PI in WM and that these associations are modulated by age.
Collapse
Affiliation(s)
- P. Andersson
- Center for Life‐Span Developmental Research (LEADER), School of Behavioral, Social and Legal SciencesÖrebro UniversitySweden
| | - M. G. S. Schrooten
- Center for Health and Medical Psychology (CHAMP), School of Behavioral, Social and Legal SciencesÖrebro UniversitySweden
| | - J. Persson
- Center for Life‐Span Developmental Research (LEADER), School of Behavioral, Social and Legal SciencesÖrebro UniversitySweden
- Aging Research Center (ARC)Karolinska Institute and Stockholm UniversitySweden
| |
Collapse
|
6
|
Palix C, Chauveau L, Felisatti F, Chocat A, Coulbault L, Hébert O, Mézenge F, Landeau B, Haudry S, Fauvel S, Collette F, Klimecki O, Marchant NL, De La Sayette V, Vivien D, Chételat G, Poisnel G. Allostatic load, a measure of cumulative physiological stress, impairs brain structure but not β-accumulation in older adults: an exploratory study. Front Aging Neurosci 2025; 17:1508677. [PMID: 40230487 PMCID: PMC11994863 DOI: 10.3389/fnagi.2025.1508677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Allostatic load (AL) is a composite score of progressive physiological dysregulations in response to long-term exposure to everyday stress. Despite growing interest, limited research has focused on links with cerebral and cognitive aspects of aging and with markers sensitive to Alzheimer's disease (AD) in a healthy elderly population and with a multimodal approach. Methods At baseline, 111 older adults (without cognitive impairment) from the Age-Well trial completed blood and anthropometric markers collection, cognitive assessments and multimodal neuroimaging within 3 months. Results AL was negatively associated with gray matter volume and white matter integrity within frontal and temporal regions and poorer attentional performance. Discussion AL is linked to structural brain integrity in aging- and stress-sensitive regions but not with AD-related markers (β-amyloid load) and only in two AD-sensitive brain regions in older adults. These results highlight the potential interest of AL as a sensitive index of stress-induced brain aging.
Collapse
Affiliation(s)
- Cassandre Palix
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Léa Chauveau
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Francesca Felisatti
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Anne Chocat
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Laurent Coulbault
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
- Department of Biochemistry, Caen Normandy Hospital (CHU de Caen), Caen, France
| | - Oriane Hébert
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Florence Mézenge
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Brigitte Landeau
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Sacha Haudry
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Séverine Fauvel
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Fabienne Collette
- GIGA-CRC In Vivo Imaging and Psychology, Cognitive Neuroscience Research Unit, Liège University, Liège, Belgium
| | - Olga Klimecki
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, German Center for Neurodegenerative Disease, Dresden, Germany
| | | | | | - Denis Vivien
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
- Department of Clinical Research, CHU de Caen, Caen, France
| | - Gaël Chételat
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | - Géraldine Poisnel
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | | |
Collapse
|
7
|
Vidal-Piñeiro D, Sørensen Ø, Strømstrad M, Amlien IK, Baaré W, Bartrés-Faz D, Brandmaier AM, Cattaneo G, Düzel S, Ghisletta P, Henson RN, Kühn S, Lindenberger U, Mowinckel AM, Nyberg L, Pascual-Leone A, Roe JM, Solana-Sánchez J, Solé-Padullés C, Watne LO, Wolfers T, Walhovd KB, Fjell AM. Vulnerability to memory decline in aging - a mega-analysis of structural brain change. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.642988. [PMID: 40196574 PMCID: PMC11974904 DOI: 10.1101/2025.03.27.642988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Brain atrophy is a key factor behind episodic memory loss in aging, but the nature and ubiquity of this relationship remains poorly understood. This study leveraged 13 longitudinal datasets, including 3,737 cognitively healthy adults (10,343 MRI scans; 13,460 memory assessments), to determine whether brain change-memory change associations are more pronounced with age and genetic risk for Alzheimer's Disease. Both factors are associated with accelerated brain decline, yet it remains unclear whether memory loss is exacerbated beyond what atrophy alone would predict. Additionally, we assessed whether memory decline aligns with a global pattern of atrophy or stems from distinct regional contributions. Our mega-analysis revealed a nonlinear relationship between memory decline and brain atrophy, primarily affecting individuals with above-average brain structural decline. The associations were stronger in the hippocampus but also spread across diverse cortical and subcortical regions. The associations strengthened with age, reaching moderate associations in participants in their eighties. While APOE ε4 carriers exhibited steeper brain and memory loss, genetic risk had no effect on the change-change associations. These findings support the presence of common biological macrostructural substrates underlying memory function in older age which are vulnerable to multiple age-related factors, even in the absence of overt pathological changes.
Collapse
Affiliation(s)
- Didac Vidal-Piñeiro
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Marie Strømstrad
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Inge K. Amlien
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - William Baaré
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berling, Germany, and London, UK
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Richard N. Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Germany
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berling, Germany, and London, UK
| | - Athanasia M. Mowinckel
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars Nyberg
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Sweden
- Department of Diagnostics and Intervention, Umeå University, Sweden
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Deanna and Sidney Wolk Center for Memory Health, Harvard Medical School, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - James M. Roe
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Institute of Clinical Medicine, Campus Ahus, University of Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Norway
| | - Thomas Wolfers
- Department of Psychiatry and Psychotherapy, German Center for Mental Health, University Clinic Tübingen, Tübingen, Germany
| | | | | | - Kristine B Walhovd
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Anders M. Fjell
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| |
Collapse
|
8
|
Fjell AM, Sneve MH, Amlien IK, Grydeland H, Mowinckel AM, Vidal-Piñeiro D, Sørensen Ø, Walhovd KB. Stable hippocampal correlates of high episodic memory function across adulthood. Sci Rep 2025; 15:8816. [PMID: 40087328 PMCID: PMC11909197 DOI: 10.1038/s41598-025-92278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Some older adults show high episodic memory performance compared to same-age peers. It is not known whether their high function is caused by special brain features in aging, or whether superior memory has the same brain foundation throughout adult life. To address this, we measured hippocampal volume and atrophy, microstructural integrity by diffusion tensor imaging, and activity during an episodic memory encoding and retrieval task in cognitively healthy adults (n = 277, age 20.1-81.5 years). Atrophy was quantified by repeated MRIs (2-7 examinations, mean max follow-up time 9.3 years). Superior memory was associated with higher retrieval activity in the anterior hippocampus and less hippocampal atrophy. There were no significant age-interactions, suggesting stable correlates of superior memory function. Age-memory performance curves across the full age-range were similar for participants with high memory performance compared to those with normal and low performance. These trajectories were based on cross-sectional data but did not indicate preserved memory among the superior functioning older adults. In conclusion, the results confirm that aspects of hippocampal structure and function are related to superior memory, without evidence to suggest that the best performing older adults are characterized by special hippocampal features compared to their younger counterparts.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway.
- Center for Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424, Oslo, Norway.
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
- Center for Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|
9
|
Chu C, Santini T, Liou J, Cohen AD, Maki PM, Marsland AL, Thurston RC, Gianaros PJ, Ibrahim TS. Brain Morphometrics Correlations With Age Among 350 Participants Imaged With Both 3T and 7T MRI: 7T Improves Statistical Power and Reduces Required Sample Size. Hum Brain Mapp 2025; 46:e70195. [PMID: 40083197 PMCID: PMC11907059 DOI: 10.1002/hbm.70195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/07/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Magnetic resonance imaging (MRI) at 7T has a superior signal-to-noise ratio to 3T but also presents higher signal inhomogeneities and geometric distortions. A key knowledge gap is to robustly investigate the sensitivity and accuracy of 3T and 7T MRI in assessing brain morphometrics. This study aims to (a) aggregate a large number of paired 3T and 7T scans to evaluate their differences in quantitative brain morphological assessment using a widely available brain segmentation tool, FreeSurfer, as well as to (b) examine the impact of normalization methods for subject variability and smaller sample sizes on data analysis. A total of 401 healthy participants aged 29-68 were imaged at both 3T and 7T. Structural T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) images were processed and segmented using FreeSurfer. To account for head size variability, the brain volumes underwent intracranial volume (ICV) correction using the Residual (regression model) and Proportional (simple division to ICV) methods. The resulting volumes and thicknesses were correlated with age using Pearson's correlation and false discovery rate correction. The correlations were also calculated in increasing sample size from three to the whole sample to estimate the sample size required to detect aging-related brain variation. Three hundred and fifty subjects (208 females) passed the image quality control, with 51 subjects excluded due to excessive motion artifacts on 3T, 7T, or both. 7T MRI showed an overall stronger correlation between morphometrics and age and a larger number of significantly correlated brain volumes and cortical thicknesses. While the ICV is consistent between both field strengths, the Residual normalization method shows markedly higher correlation with age for 3T when compared with the Proportional normalization method. The 7T results are consistent regardless of the normalization method used. In a large cohort of healthy participants with paired 3T and 7T scans, we compared the statistical performance in assessing age-related brain morphological changes. Our study reaffirmed the inverse correlation between brain volumes and cortical thicknesses and age and highlighted varying correlations in different brain regions and normalization methods at 3T and 7T. 7T imaging significantly improves statistical power and thus reduces the required sample size.
Collapse
Affiliation(s)
- Cong Chu
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tales Santini
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jr‐Jiun Liou
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ann D. Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Pauline M. Maki
- Departments of Psychiatry, Psychology and Obstetrics & GynecologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Anna L. Marsland
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rebecca C. Thurston
- Departments of Psychiatry, Clinical and Translational Science, Epidemiology and PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Peter J. Gianaros
- Departments of Psychology and PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tamer S. Ibrahim
- Departments of Bioengineering, Psychiatry, and RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
10
|
Wei P, Lin K, Chen X, Fang C, Qiu L, Hu J, Chang J. Sequential Proteomic Analysis Reveals the Key APOE4-Induced Pathological and Molecular Features at the Presymptomatic Stage in Alzheimer's Disease Mice. CNS Neurosci Ther 2025; 31:e70306. [PMID: 40075551 PMCID: PMC11903334 DOI: 10.1111/cns.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
AIMS Alzheimer's disease (AD) involves a prolonged presymptomatic or preclinical stage with subtle pathological changes. Apolipoprotein E4 (APOE4) is a significant genetic risk factor for AD, yet its specific role at the presymptomatic stage is not fully understood. This study aimed to elucidate the cellular and molecular effects of APOE4 compared to APOE3 on AD progression during the presymptomatic stage. METHODS We generated 5xFAD AD mice carrying human APOE3 or APOE4 and their non-AD controls. Behavioral tests, immunostaining, quantitative proteomics and phosphoproteomics, Golgi staining, and Western blotting were conducted at 3 or 10 months of age, respectively. Cell culture experiments were performed to assess APOE4's direct impact on neuronal mitochondrial function. RESULTS APOE4 significantly increased β-amyloid (Aβ) deposition and microglial activation compared to APOE3 in 5xFAD mice at the presymptomatic stage, without aggravating the blood-brain barrier disruption. Proteomic and biochemical analysis revealed strong molecular features of synaptic degeneration and mitochondrial dysfunction associated with APOE4. Notably, APOE4 promoted mitochondrial fusion and mitophagy while inhibiting fission, leading to impaired neuronal energy supply and increased reactive oxygen species. CONCLUSION Our findings indicate that APOE4 accelerates AD pathologies at the presymptomatic stage by exacerbating Aβ deposition, neuroinflammation, and synaptic degeneration. The study highlights mitochondrial dysfunction as a critical mediator of APOE4-induced AD progression, providing potential targets for early intervention.
Collapse
Affiliation(s)
- Pengju Wei
- State Key Laboratory of Biomedical Imaging Science and SystemInstitute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Kaihua Lin
- Shantou University Medical CollegeShantouGuangdongChina
- Department of NeurologyPeking University Shenzhen HospitalShenzhenGuangdongChina
| | - Xuhui Chen
- Department of NeurologyPeking University Shenzhen HospitalShenzhenGuangdongChina
| | - Cheng Fang
- State Key Laboratory of Biomedical Imaging Science and SystemInstitute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Linhui Qiu
- State Key Laboratory of Biomedical Imaging Science and SystemInstitute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Jun Hu
- Shantou University Medical CollegeShantouGuangdongChina
- Department of NeurologyPeking University Shenzhen HospitalShenzhenGuangdongChina
| | - Junlei Chang
- State Key Laboratory of Biomedical Imaging Science and SystemInstitute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| |
Collapse
|
11
|
Tort‐Merino A, Pérez‐Millan A, Falgàs N, Borrego‐Écija S, Esteller D, Bosch B, Castellví M, Juncà‐Parella J, del Val‐Guardiola A, Fernández‐Villullas G, Antonell A, Sanchez‐Saudinós MB, Rubio‐Guerra S, Zhu N, García‐Martínez M, Pozueta A, Estanga A, Ecay‐Torres M, de Luis CL, Tainta M, Altuna M, Rodríguez‐Rodríguez E, Sánchez‐Juan P, Martínez‐Lage P, Lleó A, Fortea J, Illán‐Gala I, Balasa M, Lladó A, Rami L, Sánchez‐Valle R. Decreased practice effects in cognitively unimpaired amyloid betapositive individuals: a multicenter, longitudinal, cohort study. Alzheimers Dement 2025; 21:e70016. [PMID: 40133248 PMCID: PMC11936764 DOI: 10.1002/alz.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION We aimed to determine whether cognitively unimpaired (CU) amyloid- beta-positive (Aβ+) individuals display decreased practice effects on serial neuropsychological testing. METHODS We included 209 CU participants from three research centers, 157 Aβ- controls and 52 Aβ+ individuals. Participants underwent neuropsychological assessment at baseline and annually during a 2-year follow-up. We used linear mixed-effects models to analyze cognitive change over time between the two groups, including time from baseline, amyloid status, their interaction, age, sex, and years of education as fixed effects and the intercept and time as random effects. RESULTS The Aβ+ group showed reduced practice effects in verbal learning (β = -1.14, SE = 0.40, p = 0.0046) and memory function (β = -0.56, SE = 0.19, p = 0.0035), as well as in language tasks (β = -0.59, SE = 0.19, p = 0.0027). DISCUSSION Individuals with normal cognition who are in the Alzheimer's continuum show decreased practice effects over annual neuropsychological testing. Our findings could have implications for the design and interpretation of primary prevention trials. HIGHLIGHTS This was a multicenter study on practice effects in asymptomatic Aβ+ individuals. We used LME models to analyze cognitive trajectories across multiple domains. Practice-effects reductions might be an indicator of subtle cognitive decline. Implications on clinical and research settings within the AD field are discussed.
Collapse
Affiliation(s)
- Adrià Tort‐Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Agnès Pérez‐Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- eHealth Center, Faculty of Computer ScienceMultimedia and Telecommunications, Universitat Oberta de CatalunyaBarcelonaSpain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Sergi Borrego‐Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Diana Esteller
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
| | - Bea Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Magdalena Castellví
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
| | - Jordi Juncà‐Parella
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Andrea del Val‐Guardiola
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
| | - Guadalupe Fernández‐Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - María Belén Sanchez‐Saudinós
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau and Institute of Biomedical ResearchBarcelonaCataloniaSpain
| | - Sara Rubio‐Guerra
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau and Institute of Biomedical ResearchBarcelonaCataloniaSpain
| | - Nuole Zhu
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau and Institute of Biomedical ResearchBarcelonaCataloniaSpain
| | - María García‐Martínez
- Hospital Universitario Marqués de ValdecillaInstituto de Investigación Marqués de Valdecilla – IDIVALSantanderCantabriaSpain
| | - Ana Pozueta
- Hospital Universitario Marqués de ValdecillaInstituto de Investigación Marqués de Valdecilla – IDIVALSantanderCantabriaSpain
| | - Ainara Estanga
- Fundación CITA‐Alzhéimer FundazioaCentro de Investigación y Terapias AvanzadasDonostiaBasque CountrySpain
| | - Mirian Ecay‐Torres
- Fundación CITA‐Alzhéimer FundazioaCentro de Investigación y Terapias AvanzadasDonostiaBasque CountrySpain
| | - Carolina López de Luis
- Fundación CITA‐Alzhéimer FundazioaCentro de Investigación y Terapias AvanzadasDonostiaBasque CountrySpain
| | - Mikel Tainta
- Fundación CITA‐Alzhéimer FundazioaCentro de Investigación y Terapias AvanzadasDonostiaBasque CountrySpain
| | - Miren Altuna
- Fundación CITA‐Alzhéimer FundazioaCentro de Investigación y Terapias AvanzadasDonostiaBasque CountrySpain
| | - Eloy Rodríguez‐Rodríguez
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Hospital Universitario Marqués de ValdecillaInstituto de Investigación Marqués de Valdecilla – IDIVALSantanderCantabriaSpain
- Medicine and Psychiatry DepartmentUniversity of CantabriaSantanderCantabriaSpain
| | | | - Pablo Martínez‐Lage
- Fundación CITA‐Alzhéimer FundazioaCentro de Investigación y Terapias AvanzadasDonostiaBasque CountrySpain
| | - Alberto Lleó
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau and Institute of Biomedical ResearchBarcelonaCataloniaSpain
| | - Juan Fortea
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau and Institute of Biomedical ResearchBarcelonaCataloniaSpain
| | - Ignacio Illán‐Gala
- Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau and Institute of Biomedical ResearchBarcelonaCataloniaSpain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Lorena Rami
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Raquel Sánchez‐Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Fundació de Recerca Clínic Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
12
|
Ji KH, Yun CH. Emerging Technologies to Track and Improve Sleep Health. Sleep Med Clin 2025; 20:47-55. [PMID: 39894598 DOI: 10.1016/j.jsmc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This review explores cutting-edge advancements, including wearable sleep trackers, brain age assessments, transcranial electrical stimulation (TES), acoustic stimulation, and glymphatic system modulation. Sleep trackers provide continuous monitoring of sleep patterns, while brain age estimation offers insights into brain health and early detection of accelerated aging. TES shows promise in improving mood, memory, and sleep. Acoustic stimulation during slow-wave sleep has been demonstrated to enhance memory consolidation. Additionally, optimizing the glymphatic system may facilitate brain waste clearance, crucial in preventing neurodegenerative diseases like Alzheimer's. However, significant challenges remain, including the need for rigorous longitudinal studies to validate these technologies' efficacy and safety.
Collapse
Affiliation(s)
- Ki-Hwan Ji
- Department of Neurology, Inje University Busan Paik Hospital, College of Medicine, Inje University, 75 Bokjiro, Busanjin-gu, Busan 47392, Republic of Korea
| | - Chang-Ho Yun
- Deparment of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi 13620, Republic of Korea.
| |
Collapse
|
13
|
Capogna E, Sørensen Ø, Watne LO, Roe J, Strømstad M, Idland AV, Halaas NB, Blennow K, Zetterberg H, Walhovd KB, Fjell AM, Vidal-Piñeiro D. Subtypes of brain change in aging and their associations with cognition and Alzheimer's disease biomarkers. Neurobiol Aging 2025; 147:124-140. [PMID: 39740372 DOI: 10.1016/j.neurobiolaging.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Structural brain changes underlie cognitive changes and interindividual variability in cognition in older age. By using structural MRI data-driven clustering, we aimed to identify subgroups of cognitively unimpaired older adults based on brain change patterns and assess how changes in cortical thickness, surface area, and subcortical volume relate to cognitive change. We tested (1) which brain structural changes predict cognitive change (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease biomarkers, and (3) the degree of overlap between clusters derived from different structural modalities in 1899 cognitively healthy older adults followed up to 16 years. We identified four groups for each brain feature, based on the degree of a main longitudinal component of decline. The minimal overlap between features suggested that each contributed uniquely and independently to structural brain changes in aging. Cognitive change and baseline cognition were associated with cortical area change, whereas higher baseline levels of phosphorylated tau and amyloid-β related to changes in subcortical volume. These results may contribute to a better understanding of different aging trajectories.
Collapse
Affiliation(s)
- Elettra Capogna
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway.
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - James Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Ane Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Campus Ullevål, University of Oslo, Oslo, Norway.
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Center for Neurodegenerative Diseases, Hong Kong; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| |
Collapse
|
14
|
Pan N, Liu S, Ge X, Zheng Y. Association of hippocampal atrophy with tau pathology of temporal regions in preclinical Alzheimer's disease. J Alzheimers Dis 2025; 104:191-199. [PMID: 39956951 DOI: 10.1177/13872877251314785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BackgroundHippocampal atrophy is linked to memory and cognitive deficits, preceding clinical diagnosis of mild cognitive impairment (MCI) by decades. Morphometry changes in the hippocampal formation (HF) and their relationship to tau deposition in non-demented individuals remains unclear.ObjectiveTo investigate morphometry changes in the HF and their association with tau deposition in a non-demented cohort.MethodsEighty-three subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) underwent T1-weighted MRI and Tau-PET scans at baseline and longitudinal follow-up. Participants were divided into amyloid-negative (Aβ-) and amyloid-positive (Aβ+) groups. Hippocampal volume/thickness were measured, and associations with tau deposition in temporal regions were examined using multivariable linear regression.ResultsNo significant association was found between the hippocampal volume/thickness and tau deposition of temporal regions for the Aβ- group. For the Aβ+ group, the hippocampal thickness was significantly associated with tau deposition of entorhinal cortex (ERC) for both hemispheres, and temporal pole, inferior temporal, and middle temporal regions for right hippocampi with the longitudinal follow up scans, while no significant association with the baseline scans. It was interesting that there was strong association between the baseline tau deposition of ERC and temporal pole and the longitudinal follow up thickness of left hippocampi, while the associated regions for the right hemisphere were ERC, temporal pole, and inferior temporal regions.ConclusionsHippocampal atrophy may precede cognitive symptoms, with tau deposition in adjacent temporal regions contributing to hippocampal changes. The right HF appears more vulnerable than the left, indicating hemispheric differences in pathology.
Collapse
Affiliation(s)
- Ningning Pan
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China
| | - Shujuan Liu
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
15
|
Shi J, Song C, Zhang P, Wang J, Huang W, Yu T, Wei Z, Wang L, Zhao L, Zhang R, Hou L, Zhang Y, Chen H, Wang H. Microglial circDlg1 modulates neuroinflammation by blocking PDE4B ubiquitination-dependent degradation associated with Alzheimer's disease. Theranostics 2025; 15:3401-3423. [PMID: 40093898 PMCID: PMC11905123 DOI: 10.7150/thno.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Abnormal activation of microglia occurs in the early stage of Alzheimer's disease (AD) and leads to subsequent neuroinflammation and major AD pathologies. Circular RNAs (circRNAs) are emerging as great potential therapeutic targets in AD. However, the extent of circRNAs entwined and the underlying mechanism in microglia-driven neuroinflammation in AD remain elusive. Methods: The circular RNA Dlg1 (circDlg1) was identified using circRNA microarray screening in magnetic-isolated microglia of APP/PS1 mice. CircDlg1 expression in microglia of APP/PS1 mice and AD patients was validated by FISH. Flow cytometry and immunostaining were conducted to explore the roles of circDlg1 in microglia. Adeno-associated virus 9 preparations for interfering with microglial circDlg1 were microinjected into mouse lateral ventricle to explore influences on microglial response, neuroinflammation and AD pathologies. Y-maze, novel object recognition and Morris water maze tasks were performed to assess cognitive performance. RNA pulldown assays, mass spectrometry analysis, RNA immunoprecipitation, and co-immunoprecipitation were performed to validate the underlying regulatory mechanisms of circDlg1. Results: A novel circular RNA circDlg1 was observed elevated using circRNA microarray screening in microglia isolated from APP/PS1 mice and validated increased in intracerebral microglia of AD patients. Microglia-specific knockdown of circDlg1 remarkably ameliorated microglial recruitment and envelopment of amyloid-β (Aβ), mitigated neuroinflammation, and prevented cognitive decline in APP/PS1 mice. Mechanistically, circDlg1 interfered with the interaction between phosphodiesterase 4b (PDE4B) and Smurf2, an E3 ubiquitin ligase of PDE4B. The formed ternary complex protected PDE4B from ubiquitination-dependent degradation via unique N-terminal targeting domain, thus consequently decreasing cAMP levels. We further confirmed that microglial circDlg1 downregulation significantly activated PKA/CREB anti-inflammatory pathway by decreasing PDE4B protein levels in APP/PS1 mice. Conclusion: The novel microglia-upregulated circDlg1 tightly involves in neuroinflammation in APP/PS1 mice via determining the protein fate of PDE4B. Microglial loss of circDlg1 promotes microglial protective response to Aβ deposition and relieves neuroinflammation, thus suggesting a potential therapeutic strategy that specifically targets the microglial response in AD.
Collapse
Affiliation(s)
- Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zijie Wei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Hou
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shuguang Lab of Future Health, Shanghai Frontiers Science Center of TCM Chemical Biology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Fjell A, Rogeberg O, Sørensen Ø, Amlien I, Bartres-Faz D, Brandmaier A, Cattaneo G, Duzel S, Grydeland H, Henson R, Kühn S, Lindenberger U, Lyngstad T, Mowinckel A, Nyberg L, Pascual-Leone A, Sole-Padulles C, Sneve M, Solana J, Stromstad M, Watne L, Walhovd KB, Vidal D. Reevaluating the Role of Education in Cognitive Decline and Brain Aging: Insights from Large-Scale Longitudinal Cohorts across 33 Countries. RESEARCH SQUARE 2025:rs.3.rs-5938408. [PMID: 39989967 PMCID: PMC11844660 DOI: 10.21203/rs.3.rs-5938408/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Why education is linked to higher cognitive function in aging is fiercely debated. Leading theories propose that education reduces brain decline in aging, enhances tolerance to brain pathology, or that it does not affect cognitive decline but rather reflects higher early-life cognitive function. To test these theories, we analyzed 407.356 episodic memory scores from 170.795 participants > 50 years, alongside 15.157 brain MRIs from 6.472 participants across 33 Western countries. More education was associated with better memory, larger intracranial volume and slightly larger volume of memory-sensitive brain regions. However, education did not protect against age-related decline or weakened effects of brain decline on cognition. The most parsimonious explanation for the results is that the associations reflect factors present early in life, including propensity of individuals with certain traits to pursue more education. While education has numerous benefits, the notion that it provides protection against cognitive or brain decline is not supported.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development
| | | | | | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jung M, Kim H, Patrick Z, Lee S. Health Behaviors and Executive Function in Late Adulthood: A Time-Varying Effect Modeling Analysis. J Aging Health 2025:8982643251319089. [PMID: 39901312 DOI: 10.1177/08982643251319089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
OBJECTIVE Cognitive decline in older adults is a public health issue, with modifiable factors like obesity and sleep potentially influencing this trajectory. Previous research on their relationship with executive function has shown mixed results, particularly across older adulthood. METHODS This study utilized time-varying effect modeling (TVEM) to assess the impact of body mass index (BMI) and sleep on executive function in older adults aged 60 to 79, using data from the National Health and Nutrition Examination Survey (NHANES) 2011-2012 and 2013-2014 cycles (N = 2543). Executive function was evaluated using the Digit Symbol Substitution Test (DSST). RESULTS Findings indicated that while BMI did not significantly affect cognition, adequate sleep (7-8 hours) was linked to better executive function, especially in individuals aged 63 to 65. CONCLUSION These results highlight sleep's importance for cognitive health and suggest interventions focusing on sleep and weight management to mitigate age-related cognitive decline.
Collapse
Affiliation(s)
- Myungjin Jung
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, TX, USA
| | - Heontae Kim
- School of Community Health Sciences, Counseling, and Counseling Psychology, Oklahoma State University, Stillwater, OK, USA
| | - Zakary Patrick
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, University of Mississippi, Oxford, MS, USA
| | - Seomgyun Lee
- Department of Sport Science, Jeonbuk National University, Jeonju, Jeonbuk-do, Republic of Korea
| |
Collapse
|
18
|
Kalpouzos G, Persson J. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Cortex 2025; 183:274-289. [PMID: 39756333 DOI: 10.1016/j.cortex.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
19
|
Fjell AM, Røgeberg O, Sørensen Ø, Amlien IK, Bartrés-Faz D, Brandmaier AM, Cattaneo G, Düzel S, Grydeland H, Henson RN, Kühn S, Lindenberger U, Lyngstad TH, Mowinckel AM, Nyberg L, Pascual-Leone A, Solé-Padullés C, Sneve MH, Solana J, Strømstad M, Watne LO, Walhovd KB, Vidal-Piñeiro D. Reevaluating the Role of Education in Cognitive Decline and Brain Aging: Insights from Large-Scale Longitudinal Cohorts across 33 Countries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.29.25321305. [PMID: 39974127 PMCID: PMC11838635 DOI: 10.1101/2025.01.29.25321305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Why education is linked to higher cognitive function in aging is fiercely debated. Leading theories propose that education reduces brain decline in aging, enhances tolerance to brain pathology, or that it does not affect cognitive decline but rather reflects higher early-life cognitive function. To test these theories, we analyzed 407.356 episodic memory scores from 170.795 participants >50 years, alongside 15.157 brain MRIs from 6.472 participants across 33 Western countries. More education was associated with better memory, larger intracranial volume and slightly larger volume of memory-sensitive brain regions. However, education did not protect against age-related decline or weakened effects of brain decline on cognition. The most parsimonious explanation for the results is that the associations reflect factors present early in life, including propensity of individuals with certain traits to pursue more education. While education has numerous benefits, the notion that it provides protection against cognitive or brain decline is not supported.
Collapse
Affiliation(s)
- Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Ole Røgeberg
- Ragnar Frisch Centre for Economic Research, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Inge K. Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany
- Department of Psychology, MSB Medical School Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Germany
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Richard N. Henson
- MRC Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, United Kingdom
| | - Simone Kühn
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Germany
- Center for Environmental Neuroscience, Max Planck Institute for Human Development
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Germany
| | | | | | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Sweden
- Department of Diagnostics and Intervention, Umeå University, Sweden
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Markus H. Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Javier Solana
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Institute of Clinical Medicine, Campus Ahus, University of Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Norway
| | | | | | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| |
Collapse
|
20
|
Wang EHJ, Lai FHY, Leung WM, Shiu TY, Wong H, Tao Y, Zhao X, Zhang TYT, Yee BK. Assessing rapid spatial working memory in community-living older adults in a virtual adaptation of the rodent water maze paradigm. Behav Brain Res 2025; 476:115266. [PMID: 39341462 DOI: 10.1016/j.bbr.2024.115266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Aging often leads to a decline in various cognitive domains, potentially contributing to spatial navigation challenges among older individuals. While the Morris water maze is a common tool in rodents research for evaluating allocentric spatial memory function, its translation to studying aging in humans, particularly its association with hippocampal dysfunction, has predominantly focused on spatial reference memory assessments. This study expanded the adaptation of the Morris water maze for older adults to assess flexible, rapid, one-trial working memory. This adaptation involved a spatial search task guided by allocentric cues within a 3-D virtual reality (VR) environment. The sensitivity of this approach to aging was examined in 146 community-living adults from three Chinese cities, categorized into three age groups. Significant performance deficits were observed in participants over 60 years old compared to younger adults aged between 18 and 43. However, interpreting these findings was complicated by factors such as psychomotor slowness and potential variations in task engagement, except during the probe tests. Notably, the transition from the 60 s to the 70 s was not associated with a substantial deterioration of performance. A distinction only emerged when the pattern of spatial search over the entire maze was examined in the probe tests when the target location was never revealed. The VR task's sensitivity to overall cognitive function in older adults was reinforced by the correlation between Montreal Cognitive Assessment (MoCA) scores and probe test performance, demonstrating up to 17 % shared variance beyond that predicted by chronological age alone. In conclusion, while implementing a VR-based adaptation of rodent water maze paradigms in older adults was feasible, our experience highlighted specific interpretative challenges that must be addressed before such a test can effectively supplement traditional cognitive assessment tools in evaluating age-related cognitive decline.
Collapse
Affiliation(s)
- Eileen H J Wang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Frank H Y Lai
- Department of Social Work, Education & Community Wellbeing, Northumbria University, Newcastle, UK; The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Wing Man Leung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Tsz Yan Shiu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Hiuyan Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Yingxia Tao
- School of Rehabilitation Science, Hangzhou Medical College, Hangzhou, China.
| | - Xinlei Zhao
- School of Rehabilitation Science, Hangzhou Medical College, Hangzhou, China.
| | - Tina Y T Zhang
- Department of Rehabilitation Science, West China Medical School, Sichuan University, Chengdu, China.
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
21
|
Yoshinaga K, Matsushima T, Abe M, Takamura T, Togo H, Wakasugi N, Sawamoto N, Murai T, Mizuno T, Matsuoka T, Kanai K, Hoshino H, Sekiguchi A, Fuse N, Mugikura S, Hanakawa T. Age-disproportionate atrophy in Alzheimer's disease and Parkinson's disease spectra. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70048. [PMID: 39886323 PMCID: PMC11780112 DOI: 10.1002/dad2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
INTRODUCTION Brain age gap (BAG), defined as the difference between MRI-predicted 'brain age' and chronological age, can capture information underlying various neurological disorders. We investigated the pathophysiological significance of the BAG across neurodegenerative disorders. METHODS We developed a brain age estimator using structural MRIs of healthy-aged individuals from one cohort study. Subsequently, we applied this estimator to people with Alzheimer's disease spectra (AD) and Parkinson's disease (PD) from another cohort study. We investigated brain sources responsible for BAGs among these groups. RESULTS Both AD and PD exhibited a positive BAG. Brain sources showed overlapping, yet partially segregated, neuromorphological differences between these groups. Furthermore, employing with t-distributed stochastic neighbor embedding on the brain sources, we subclassified PD into two groups with and without cognitive impairment. DISCUSSION Our findings suggest that brain age estimation becomes a clinically relevant method for finely stratifying neurodegenerative disorders. Highlights Brain age estimated from structure MRI data was greater than chronological age in patients with Alzheimer's disease/mild cognitive impairment or Parkinson's disease.Brain regions attributed to brain age estimation were located mainly in the fronto-temporo-parietal cortices but not in the motor cortex or subcortical regions.Brain sources responsible for the brain age gaps revealed roughly overlapping, yet partially segregated, neuromorphological differences between participants with Alzheimer's disease/mild cognitive impairment and Parkinson's disease.Participants with Parkinson's disease were subclassified into two groups (with and without cognitive impairment) based on brain sources responsible for the brain age gaps.
Collapse
Affiliation(s)
- Kenji Yoshinaga
- Department of Integrated Neuroanatomy and NeuroimagingKyoto University Graduate School of MedicineKyotoJapan
- Department of Advanced Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Toma Matsushima
- Department of Advanced Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryKodairaTokyoJapan
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and TechnologyBunkyo‐kuTokyoJapan
| | - Mitsunari Abe
- Department of Advanced Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Tsunehiko Takamura
- Department of Advanced Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryKodairaTokyoJapan
- Department of Behavioral Medicine, National Institute of Mental HealthNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Hiroki Togo
- Department of Integrated Neuroanatomy and NeuroimagingKyoto University Graduate School of MedicineKyotoJapan
- Department of Advanced Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Noritaka Wakasugi
- Department of Advanced Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Nobukatsu Sawamoto
- Department of Human Health SciencesKyoto University Graduate School of MedicineKyotoJapan
- Department of NeurologyKyoto University Graduate School of MedicineKyotoJapan
| | - Toshiya Murai
- Department of PsychiatryKyoto University Graduate School of MedicineKyotoJapan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of PsychiatryNHO Maizuru Medical CenterMaizuruKyotoJapan
| | - Kazuaki Kanai
- Department of NeurologyFukushima Medical UniversityFukushimaJapan
| | - Hiroshi Hoshino
- Department of NeuropsychiatryFukushima Medical UniversityFukushimaJapan
| | - Atsushi Sekiguchi
- Department of Advanced Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryKodairaTokyoJapan
- Department of Behavioral Medicine, National Institute of Mental HealthNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Nobuo Fuse
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Shunji Mugikura
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | | | - Takashi Hanakawa
- Department of Integrated Neuroanatomy and NeuroimagingKyoto University Graduate School of MedicineKyotoJapan
- Department of Advanced Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryKodairaTokyoJapan
| |
Collapse
|
22
|
Tarumi T, Tomoto T, Sugawara J, Zhang R. Aerobic Exercise Training for the Aging Brain: Effective Dosing and Vascular Mechanism. Exerc Sport Sci Rev 2025; 53:31-40. [PMID: 39254652 DOI: 10.1249/jes.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This article presents evidence supporting the hypothesis that starting aerobic exercise in early adulthood and continuing it throughout life leads to significant neurocognitive benefits compared with starting exercise later in life. Regular aerobic exercise at moderate-to-vigorous intensity during midlife is associated with significant improvement in cardiorespiratory fitness, which may create a favorable brain microenvironment promoting neuroplasticity through enhanced vascular function.
Collapse
|
23
|
Gonzalez-Cano SI, Peña-Rosas U, Muñoz-Arenas G, Torres-Cinfuentes DM, Treviño S, Moran-Raya C, Flores G, Guevara J, Diaz A. Neuroprotective Effect of Curcumin-Metavanadate in the Hippocampus of Aged Rats. Synapse 2025; 79:e70008. [PMID: 39748146 DOI: 10.1002/syn.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Brain aging is a multifactorial process that includes a reduction in the biological and metabolic activity of individuals. Oxidative stress and inflammatory processes are characteristic of brain aging. Given the current problems, the need arises to implement new therapeutic approaches. Polyoxidovanadates (POV), as well as curcumin, have stood out for their participation in a variety of biological activities. This work aimed to evaluate the coupling of metavanadate and curcumin (Cuma-MV) on learning, memory, redox balance, neuroinflammation, and cell death in the hippocampal region (CA1 and CA3) and dentate gyrus (DG) of aged rats. Rats 18 months old were administered a daily dose of curcumin (Cuma), sodium metavanadate (MV), or Cuma-MV for two months. The results demonstrated that administration of Cuma-MV for 60 days in aged rats improved short- and long-term recognition memory, decreased reactive oxygen species, and substantially improved lipoperoxidation in the hippocampus. Furthermore, the activity of superoxide dismutase and catalase increased in animals treated with Cuma-MV. It is important to highlight that the treatment with Cuma-MV exhibited a significantly greater effect than the treatments with MV or Cuma in all the parameters evaluated. Finally, we conclude that Cuma-MV represents a potential therapeutic option in the prevention and treatment of cognitive decline associated with aging.
Collapse
Affiliation(s)
| | - Ulises Peña-Rosas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Guadalupe Muñoz-Arenas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | | | - Samuel Treviño
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Carolina Moran-Raya
- Institute of Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
24
|
Hasanzadeh F, Habeck C, Gazes Y, Stern Y. A neural implementation of cognitive reserve: Insights from a longitudinal fMRI study of set-switching in aging. Neurobiol Aging 2025; 145:76-83. [PMID: 39509918 DOI: 10.1016/j.neurobiolaging.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Aging is often accompanied by changes in brain structure and executive functions, particularly in tasks involving cognitive flexibility, such as task-switching. However, substantial individual differences in the degree of cognitive impairment indicate that some individuals can cope with brain changes more effectively than others, suggesting higher cognitive reserve (CR). This study identified a neural basis for CR by examining the longitudinal relationship between task-related brain activation, structural brain changes, and changes in cognitive performance during an executive task-switching paradigm including single and dual conditions. Fifty-two older individuals were assessed at baseline and followed up after five years. Structural brain changes related to task-switching performance were analyzed using elastic net regression. Task-related functional brain activation was measured using ordinal trends canonical variate analysis (OrT CVA), capturing patterns of activation increasing from single to dual conditions. A differential task-related expression score (dOrT) was calculated as the difference in pattern expression scores between single and dual conditions at baseline. A linear regression model tested whether dOrT moderated the impact of brain changes on changes in switch cost over five years. Results showed a significant interaction between changes in brain structure and dOrT activation on switch cost change, indicating a moderation effect of task-related activation. Higher dOrT buffered the impact of brain structural decline on switch costs, enabling older adults to better cope with age-related brain structural changes and preserve cognitive flexibility. These findings suggest that these task-related activation patterns represent a neural basis for CR.
Collapse
Affiliation(s)
- Fatemeh Hasanzadeh
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Montclair State University, Department of Psychology, Montclair, NJ, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States.
| |
Collapse
|
25
|
Han Z, Zhang L, Ma M, Keshavarzi M. Effects of MicroRNAs and Long Non-coding RNAs on Beneficial Action of Exercise on Cognition in Degenerative Diseases: A Review. Mol Neurobiol 2025; 62:485-500. [PMID: 38869810 DOI: 10.1007/s12035-024-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Recent research has exposed a growing body of proof underscoring the importance of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in maintaining the physical composition of neurons and influencing cognitive functioning in both standard and atypical circumstances. Extensive research has been conducted on the possible application of miRNAs and lncRNAs as biomarkers for various diseases, with a particular focus on brain disorders, as they possess remarkable durability in cell-free surroundings and can endure repeated freezing and thawing processes. It is intriguing to note that miRNAs and lncRNAs have the ability to function through paracrine mechanisms, thereby playing a role in communication between different organs. Recent research has proposed that the improvement of cognitive abilities through physical exercise in mentally healthy individuals is a valuable method for uncovering potential connections between miRNAs, or microRNAs, and lncRNAs, and human cognitive function. The process of cross-correlating data from disease models and patients with existing data will be crucial in identifying essential miRNAs and lncRNAs, which can potentially act as biomarkers or drug targets in the treatment of cognitive disorders. By combining this method with additional research in animal models, we can determine the function of these molecules and their potential impact on therapy. This article discusses the latest research about the primary miRNAs, lncRNAs, and their exosomes that are affected by physical activity in terms of human cognitive function.
Collapse
Affiliation(s)
- Zhen Han
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Lei Zhang
- Institute of Physical Education and Sports, Capital University Of Physical Education And Sports, Beijing, 100191, China.
| | - Minhang Ma
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Smith RL, Sawiak SJ, Dorfschmidt L, Dutcher EG, Jones JA, Hahn JD, Sporns O, Swanson LW, Taylor PA, Glen DR, Dalley JW, McMahon FJ, Raznahan A, Vértes PE, Bullmore ET. Development and early life stress sensitivity of the rat cortical microstructural similarity network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629759. [PMID: 39803427 PMCID: PMC11722359 DOI: 10.1101/2024.12.20.629759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40). MIND as a metric of cortical similarity and connectivity was validated by cortical cytoarchitectonics and axonal tract-tracing data. The normative rat MIND network had high between-study reliability and complex topological properties including a rich club. Similarity changed during post-natal and adolescent development, including a phase of fronto-hippocampal convergence, or increasing inter-areal similarity. An inverse process of increasing fronto-hippocampal dissimilarity was seen with post-adult aging. Exposure to ELS in the form of maternal separation appeared to accelerate the normative trajectory of brain development - highlighting embedding of stress in the dynamic rat brain network. Our work provides novel tools for systems-level study of the rat brain that can now be used to understand network-based underpinnings of complex lifespan behaviors and experimental manipulations that this model organism allows.
Collapse
Affiliation(s)
- Rachel L. Smith
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Stephen J. Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Ethan G. Dutcher
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jolyon A. Jones
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Joel D. Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA 90089
| | - Olaf Sporns
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA 47405
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA 47405
| | - Larry W. Swanson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA 90089
| | - Paul A. Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, USA 20892
| | - Daniel R. Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, USA 20892
| | - Jeffrey W. Dalley
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Francis J. McMahon
- Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Armin Raznahan
- Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Petra E. Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Edward T. Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| |
Collapse
|
27
|
Hamza Y, Yang Y, Vu J, Abdelmalek A, Malekifar M, Barnes CA, Zeng FG. Auditory brainstem responses as a biomarker for cognition. Commun Biol 2024; 7:1653. [PMID: 39702841 DOI: 10.1038/s42003-024-07346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
A non-invasive, accessible and effective biomarker is critical to the diagnosis, monitoring and treatment of age-related cognitive decline. Recent work has suggested a strong association between auditory brainstem responses (ABR) and cognitive function in aging macaques. Here we show in 118 human participants (66 females; age range=18-92 years; hearing loss = -5 to 70 dB HL) that cognition is associated with both age and hearing level, but this triad relationship is mainly driven by the age factor. After adjusting for age, cognition is still significantly associated with both the ABR wave V amplitude (B, 0.110, 95% CI, 0.018- 0.202; p = 0.020) and latency (B, -0.101, 95% CI, -0.186- -0.016; p = 0.021). Importantly, this age-adjusted ABR-cognition association is primarily driven by older individuals and language-dependent cognitive functions. We also perform the area under the curve (AUC) of the receiver-operating-characteristic analysis and find that the ABR wave V amplitude is best for detecting good cognitive performers (AUC = 0.96) whereas the wave V latency is best for detecting poor ones (AUC = 0.86). The present result not only confirms the previous animal work in humans but also shows the clinical potential of using auditory brainstem responses to improve diagnosis and treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Yasmeen Hamza
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA.
- Institute of Sound and Vibration Research, School of Engineering, University of Southampton, Southampton, UK.
| | - Ye Yang
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Janie Vu
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Antoinette Abdelmalek
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Mobina Malekifar
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Carol A Barnes
- Psychology, Neurology and Neuroscience, and Evelyn F. McKnight Brain Institute, University of Arizona, Tuscan, AZ, USA
| | - Fan-Gang Zeng
- Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
28
|
Moodie JE, Buchanan C, Furtjes A, Conole E, Stolicyn A, Corley J, Ferguson K, Hernandez MV, Maniega SM, Russ TC, Luciano M, Whalley H, Bastin ME, Wardlaw J, Deary I, Cox S. Brain maps of general cognitive function and spatial correlations with neurobiological cortical profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628670. [PMID: 39764021 PMCID: PMC11702631 DOI: 10.1101/2024.12.17.628670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In this paper, we attempt to answer two questions: 1) which regions of the human brain, in terms of morphometry, are most strongly related to individual differences in domain-general cognitive functioning (g)? and 2) what are the underlying neurobiological properties of those regions? We meta-analyse vertex-wise g-cortical morphometry (volume, surface area, thickness, curvature and sulcal depth) associations using data from 3 cohorts: the UK Biobank (UKB), Generation Scotland (GenScot), and the Lothian Birth Cohort 1936 (LBC1936), with the meta-analytic N = 38,379 (age range = 44 to 84 years old). These g-morphometry associations vary in magnitude and direction across the cortex (|β| range = -0.12 to 0.17 across morphometry measures) and show good cross-cohort agreement (mean spatial correlation r = 0.57, SD = 0.18). Then, to address (2), we bring together existing - and derive new - cortical maps of 33 neurobiological characteristics from multiple modalities (including neurotransmitter receptor densities, gene expression, functional connectivity, metabolism, and cytoarchitectural similarity). We discover that these 33 profiles spatially covary along four major dimensions of cortical organisation (accounting for 65.9% of the variance) and denote aspects of neurobiological scaffolding that underpin the spatial patterning of MRI-cognitive associations we observe (significant |r| range = 0.21 to 0.56). Alongside the cortical maps from these analyses, which we make openly accessible, we provide a compendium of cortex-wide and within-region spatial correlations among general and specific facets of brain cortical organisation and higher order cognitive functioning, which we hope will serve as a framework for analysing other aspects of behaviour-brain MRI associations.
Collapse
Affiliation(s)
- Joanna E. Moodie
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Colin Buchanan
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Anna Furtjes
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Eleanor Conole
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Aleks Stolicyn
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Karen Ferguson
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Maria Valdes Hernandez
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Row Fogo Centre for Research into Small Vessel Diseases
| | - Susana Munoz Maniega
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Tom C. Russ
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, UK
- Dementia Network, NHS Research Scotland
| | | | - Heather Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Mark E. Bastin
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- UK Dementia Research Institute
- Row Fogo Centre for Research into Small Vessel Diseases
| | - Ian Deary
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Simon Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| |
Collapse
|
29
|
Bower AE, Chung JW, Burciu RG. Assessing age-related changes in brain activity during isometric upper and lower limb force control tasks. Brain Struct Funct 2024; 230:6. [PMID: 39688714 PMCID: PMC11652581 DOI: 10.1007/s00429-024-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Despite the widespread use of older adults (OA) as controls in movement disorder studies, the specific effects of aging on the neural control of upper and lower limb movements remain unclear. While functional MRI paradigms focusing on hand movements are widely used to investigate age-related brain changes, research on lower limb movements is limited due to technical challenges in an MRI environment. This study addressed this gap by examining both upper and lower limb movements in healthy young adults (YA) vs. OA. Sixteen YA and 20 OA, matched for sex, dominant side, and cognitive status, performed pinch grip and ankle dorsiflexion tasks, each requiring 15% of their maximum voluntary contraction. While both groups achieved the target force and exhibited similar force variability and accuracy, OA displayed distinct differences in force control dynamics, with a slower rate of force increase in the hand task and a greater rate of force decrease in the foot task. Imaging results revealed that OA exhibited more widespread activation, extending beyond brain regions typically involved in movement execution. In the hand task, OA showed increased activity in premotor and visuo-motor integration regions, as well as in the cerebellar hemispheres. During the foot task, OA engaged the cerebellar hemispheres more than YA. Collectively, results suggest that OA may recruit additional brain regions to manage motor tasks, possibly to achieve similar performance. Future longitudinal studies that track changes over time could help clarify if declines in motor performance lead to corresponding changes in brain activation.
Collapse
Affiliation(s)
- Abigail E Bower
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Jae Woo Chung
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Roxana G Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
30
|
Roe JM, Vidal-Piñeiro D, Sørensen Ø, Grydeland H, Leonardsen EH, Iakunchykova O, Pan M, Mowinckel A, Strømstad M, Nawijn L, Milaneschi Y, Andersson M, Pudas S, Bråthen ACS, Kransberg J, Falch ES, Øverbye K, Kievit RA, Ebmeier KP, Lindenberger U, Ghisletta P, Demnitz N, Boraxbekk CJ, Drevon CA, Penninx B, Bertram L, Nyberg L, Walhovd KB, Fjell AM, Wang Y. Brain change trajectories in healthy adults correlate with Alzheimer's related genetic variation and memory decline across life. Nat Commun 2024; 15:10651. [PMID: 39690174 DOI: 10.1038/s41467-024-53548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/16/2024] [Indexed: 12/19/2024] Open
Abstract
Throughout adulthood and ageing our brains undergo structural loss in an average pattern resembling faster atrophy in Alzheimer's disease (AD). Using a longitudinal adult lifespan sample (aged 30-89; 2-7 timepoints) and four polygenic scores for AD, we show that change in AD-sensitive brain features correlates with genetic AD-risk and memory decline in healthy adults. We first show genetic risk links with more brain loss than expected for age in early Braak regions, and find this extends beyond APOE genotype. Next, we run machine learning on AD-control data from the Alzheimer's Disease Neuroimaging Initiative using brain change trajectories conditioned on age, to identify AD-sensitive features and model their change in healthy adults. Genetic AD-risk linked with multivariate change across many AD-sensitive features, and we show most individuals over age ~50 are on an accelerated trajectory of brain loss in AD-sensitive regions. Finally, high genetic risk adults with elevated brain change showed more memory decline through adulthood, compared to high genetic risk adults with less brain change. Our findings suggest quantitative AD risk factors are detectable in healthy individuals, via a shared pattern of ageing- and AD-related neurodegeneration that occurs along a continuum and tracks memory decline through adulthood.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway.
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Esten H Leonardsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olena Iakunchykova
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Athanasia Mowinckel
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura Nawijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Micael Andersson
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Sara Pudas
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anne Cecilie Sjøli Bråthen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Jonas Kransberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie Sogn Falch
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Knut Øverbye
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klaus P Ebmeier
- Department of Psychiatry and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Carl-Johan Boraxbekk
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Sciences, Diagnostic Radiology, and Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo Science Park, Oslo, Norway
| | - Brenda Penninx
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Xu J, Yu J, Li G, Wang Y. Exercise intervention on the brain structure and function of patients with mild cognitive impairment: systematic review based on magnetic resonance imaging studies. Front Psychiatry 2024; 15:1464159. [PMID: 39691788 PMCID: PMC11650209 DOI: 10.3389/fpsyt.2024.1464159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Objective This systematic review evaluates the impact of exercise intervention in MCI patients and discusses the potential neural mechanisms. Methods A systematic search and screening of relevant literature was conducted in English and Chinese databases. Based on predefined keywords and criteria, 24 articles were assessed and analyzed. Results Structurally, a significant increase was observed in the hippocampal and gray matter volumes of MCI patients following exercise intervention, with a trend of improvement in cortical thickness and white matter integrity. Functionally, after the exercise intervention, there were significant changes in the local spontaneous brain activity levels, cerebral blood flow, and functional connectivity during rest and memory encoding and retrieval tasks in MCI patients. Conclusion Exercise may contribute to delaying neurodegenerative changes in brain structure and function in patients with MCI. However, the underlying neural mechanisms require further research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023482419.
Collapse
Affiliation(s)
| | | | | | - Yanqiu Wang
- Department of Physical Education and Sports, Central China Normal University, Wuhan, China
| |
Collapse
|
32
|
Wang D, Li X, Dang M, Zhao S, Sang F, Zhang Z. Frontotemporal structure preservation underlies the protective effect of lifetime intellectual cognitive reserve on cognition in the elderly. Alzheimers Res Ther 2024; 16:255. [PMID: 39580450 PMCID: PMC11585141 DOI: 10.1186/s13195-024-01613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Cognitive decline with age has heterogeneous, which might be related to the accumulation of protective factors called cognitive reserve, especially intellectual engagement factors over the life course. However, how lifetime intellectual cognitive reserve (LICR) protects cognitive function in the elderly remains unclear. We aimed to examine the relationship between LICR and cognition and the mild cognitive impairment (MCI) risk, as well as the neural mechanism of LICR on cognition. METHODS A total of 5126 participants completed extensive neuropsychological tests, with LICR indicator encompassing early education, midlife occupational complexity, and mental leisure activities after retirement. Confirmatory factor analysis was performed to derive LICR score and cognitive function scores, then the hierarchical regression analysis was used to explore the relationship between LICR and cognitive functions and the risk of MCI. We further explored the macro- and micro-structural preservation underly LICR in 1117 participants. Multiple regressions and tract-based spatial statistics were used to explore the relationship between LICR and gray matter volume and white matter microstructure (FA value). Finally, using the mediation model to explore the relationship of "LICR-brain-cognition". RESULT The new LICR index, which was more protective than its single indexes, could protect widespread cognitive functions and was associated with a reduction in MCI risk (Odds Ratio, 0.52; 95% CI, 0.47-0.57). For the structure basis of LICR, the higher LICR score was associated with the greater gray matter volume in right fusiform gyrus (t = 4.62, FDR corrected, p < 0.05) and left orbital superior frontal gyrus (t = 4.56, FDR corrected, p < 0.05), and the higher FA values in the frontotemporal related white matter fiber tracts. Furthermore, the right fusiform gyrus partially mediated the relationship between LICR and executive processing ability (β = 0.01, p = 0.02) and general cognitive ability (β = 0.01, p = 0.03). CONCLUSIONS The new comprehensive cognitive reserve index could promote the temporal macro-structural preservation and thus contribute to maintain better cognitive function. These findings highlight the importance of intellectual CR accumulation over the life course in successful cognitive aging and MCI prevention, thereby contributing to improve the quality of life in the elderly.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Faculty of Education, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
33
|
Zhang Y, Guo Y, He Y, You J, Zhang Y, Wang L, Chen S, He X, Yang L, Huang Y, Kang J, Ge Y, Dong Q, Feng J, Cheng W, Yu J. Large-scale proteomic analyses of incident Alzheimer's disease reveal new pathophysiological insights and potential therapeutic targets. Mol Psychiatry 2024:10.1038/s41380-024-02840-x. [PMID: 39562718 DOI: 10.1038/s41380-024-02840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Pathophysiological evolutions in early-stage Alzheimer's disease (AD) are not well understood. We used data of 2923 Olink plasma proteins from 51,296 non-demented middle-aged adults. During a follow-up of 15 years, 689 incident AD cases occurred. Cox-proportional hazard models were applied to identify AD-associated proteins in different time intervals. Through linking to protein categories, changing sequences of protein z-scores can reflect pathophysiological evolutions. Mendelian randomization using blood protein quantitative loci data provided causal evidence for potentially druggable proteins. We identified 48 AD-related proteins, with CEND1, GFAP, NEFL, and SYT1 being top hits in both near-term (HR:1.15-1.77; P:9.11 × 10-65-2.78 × 10-6) and long-term AD risk (HR:1.20-1.54; P:2.43 × 10-21-3.95 × 10-6). These four proteins increased 15 years before AD diagnosis and progressively escalated, indicating early and sustained dysfunction in synapse and neurons. Proteins related to extracellular matrix organization, apoptosis, innate immunity, coagulation, and lipid homeostasis showed early disturbances, followed by malfunctions in metabolism, adaptive immunity, and final synaptic and neuronal loss. Combining CEND1, GFAP, NEFL, and SYT1 with demographics generated desirable predictions for 10-year (AUC = 0.901) and over-10-year AD (AUC = 0.864), comparable to full model. Mendelian randomization supports potential genetic link between CEND1, SYT1, and AD as outcome. Our findings highlight the importance of exploring the pathophysiological evolutions in early stages of AD, which is essential for the development of early biomarkers and precision therapeutics.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - YaRu Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - LinBo Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - ShiDong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - XiaoYu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - YuYuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - JuJiao Kang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - YiJun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - JianFeng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - JinTai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Wu D, Li Y, Zhang S, Chen Q, Fang J, Cho J, Wang Y, Yan S, Zhu W, Lin J, Wang Z, Zhang Y. Trajectories and sex differences of brain structure, oxygenation and perfusion functions in normal aging. Neuroimage 2024; 302:120903. [PMID: 39461605 DOI: 10.1016/j.neuroimage.2024.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Brain structure, oxygenation and perfusion are important factors in aging. Coupling between regional cerebral oxygen consumption and perfusion also reflects functions of neurovascular unit (NVU). Their trajectories and sex differences during normal aging important for clinical interpretation are still not well defined. In this study, we aim to investigate the relationship between brain structure, functions and age, and exam the sex disparities. METHOD A total of 137 healthy subjects between 20∼69 years old were enrolled with conventional MRI, structural three-dimensional T1-weighted imaging (3D-T1WI), 3D multi-echo gradient echo sequence (3D-mGRE), and 3D pseudo-continuous arterial spin labeling (3D-pCASL). Oxygen extraction fraction (OEF) and cerebral blood flow (CBF) were respectively reconstructed from 3D-mGRE and 3D-pCASL images. Cerebral metabolic rate of oxygen (CMRO2) were calculated as follows: CMRO2=CBF·OEF·[H]a, [H]a=7.377 μmol/mL. Brains were segmented into global gray matter (GM), global white matter (WM), and 148 cortical subregions. OEF, CBF, CMRO2, and volumes of GM/WM relative to intracranial volumes (rel_GM/rel_WM) were compared between males and females. Generalized additive models were used to evaluate the aging trajectories of brain structure and functions. The coupling between OEF and CBF was analyzed by correlation analysis. P or PFDR < 0.05 was considered statistically significant. RESULTS Females had larger rel_GM, higher CMRO2 and CBF of GM/WM than males (P < 0.05). With control of sex, CBF of GM significantly declined between 20 and 32 years, CMRO2 of GM declined subsequently from 33 to 41 years and rel_GM decreased significantly at all ages (R2 = 0.27, P < 0.001; R2 = 0.17, P < 0.001; R2 = 0.52, P < 0.001). In subregion analysis, CBF declined dispersedly while CMRO2 declined widely across most subregions of the cortex during aging. Robust negative coupling between OEF and CBF was found in most of the subregions (r range = -0.12∼-0.48, PFDR < 0.05). CONCLUSION The sex disparities, age trajectories of brain structure and functions as well as the coupling of NVU in healthy individuals provide insights into normal aging which are potential targets for study of pathological conditions.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jiayu Fang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Lin
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhenxiong Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
35
|
Schwabe MR, Fleischer AW, Kuehn RK, Chaudhury S, York JM, Sem DS, Donaldson WA, LaDu MJ, Frick KM. The novel estrogen receptor beta agonist EGX358 and APOE genotype influence memory, vasomotor, and anxiety outcomes in an Alzheimer's mouse model. Front Aging Neurosci 2024; 16:1477045. [PMID: 39629477 PMCID: PMC11613887 DOI: 10.3389/fnagi.2024.1477045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Alzheimer's disease (AD) prevalence and severity are associated with increased age, female sex, and apolipoprotein E4 (APOE4) genotype. Although estrogen therapy (ET) effectively reduces symptoms of menopause including hot flashes and anxiety, and can reduce dementia risk, it is associated with increased risks of breast and uterine cancer due to estrogen receptor alpha (ERα)-mediated increases in cancer cell proliferation. Because ERβ activation reduces this cell proliferation, selective targeting of ERβ may provide a safer method of improving memory and reducing hot flashes in menopausal women, including those with AD. APOE genotype influences the response to ET, although it is unknown whether effects of ERβ activation vary by genotype. Methods Here, we tested the ability of long-term oral treatment with a novel highly selective ERβ agonist, EGX358, to enhance object recognition and spatial recognition memory, reduce drug-induced hot flashes, and influence anxiety-like behaviors in female mice expressing 5 familial AD mutations (5xFAD-Tg) and human APOE3 (E3FAD) or APOE3 and APOE4 (E3/4FAD). Mice were ovariectomized at 5 months of age and were then treated orally with vehicle (DMSO) or EGX358 (10 mg/kg/day) via hydrogel for 8 weeks. Spatial and object recognition memory were tested in object placement (OP) and object recognition (OR) tasks, respectively, and anxiety-like behaviors were tested in the open field (OF) and elevated plus maze (EPM). Hot flash-like symptoms (change in tail skin temperature) were measured following injection of the neurokinin receptor agonist senktide (0.5 mg/kg). Results EGX358 enhanced object recognition memory in E3FAD and E3/4FAD mice but did not affect spatial recognition memory. EGX358 also reduced senktide-induced tail temperature elevations in E3FAD, but not E3/4FAD, females. EGX358 did not influence anxiety-like behaviors or body weight. Discussion These data indicate that highly selective ERβ agonism can facilitate object recognition memory in both APOE3 homozygotes and APOE3/4 heterozygotes, but only reduce the magnitude of a drug-induced hot flash in APOE3 homozygotes, suggesting that APOE4 genotype may blunt the beneficial effects of ET on hot flashes. Collectively, these data suggest a potentially beneficial effect of selective ERβ agonism for memory and hot flashes in females with AD-like pathology, but that APOE genotype plays an important role in responsiveness.
Collapse
Affiliation(s)
- M. R. Schwabe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - A. W. Fleischer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - R. K. Kuehn
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - S. Chaudhury
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - J. M. York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - D. S. Sem
- Department of Pharmaceutical Sciences Wisconsin and Concordia University Center for Structure-Based Drug Design and Development, Concordia University Wisconsin, Mequon, WI, United States
| | - W. A. Donaldson
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - M. J. LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - K. M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
36
|
Lorenzon G, Poulakis K, Mohanty R, Kivipelto M, Eriksdotter M, Ferreira D, Westman E. Frontoparietal atrophy trajectories in cognitively unimpaired elderly individuals using longitudinal Bayesian clustering. Comput Biol Med 2024; 182:109190. [PMID: 39357135 DOI: 10.1016/j.compbiomed.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Frontal and/or parietal atrophy has been reported during aging. To disentangle the heterogeneity previously observed, this study aimed to uncover different clusters of grey matter profiles and trajectories within cognitively unimpaired individuals. METHODS Structural magnetic resonance imaging (MRI) data of 307 Aβ-negative cognitively unimpaired individuals were modelled between ages 60-85 from three cohorts worldwide. We applied unsupervised clustering using a novel longitudinal Bayesian approach and characterized the clusters' cerebrovascular and cognitive profiles. RESULTS Four clusters were identified with different grey matter profiles and atrophy trajectories. Differences were mainly observed in frontal and parietal brain regions. These distinct frontoparietal grey matter profiles and longitudinal trajectories were differently associated with cerebrovascular burden and cognitive decline. DISCUSSION Our findings suggest a conciliation of the frontal and parietal theories of aging, uncovering coexisting frontoparietal GM patterns. This could have important future implications for better stratification and identification of at-risk individuals.
Collapse
Affiliation(s)
- G Lorenzon
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo 7th floor, SE-141 83, Huddinge, Sweden.
| | - K Poulakis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo 7th floor, SE-141 83, Huddinge, Sweden
| | - R Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo 7th floor, SE-141 83, Huddinge, Sweden
| | - M Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo 7th floor, SE-141 83, Huddinge, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, SE-141 86, Huddinge, Sweden; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Ageing Epidemiology Research Unit, School of Public Health, Room 10L05, 10th Floor Lab Block, UK; Imperial College London, Charing Cross Hospital, St Dunstan's Road, W6 8RP, London, UK
| | - M Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo 7th floor, SE-141 83, Huddinge, Sweden
| | - D Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo 7th floor, SE-141 83, Huddinge, Sweden; Department of Radiology, Mayo Clinic, Mayo Building West, 2nd Floor, 200 First St. SW, Rochester, MN, 55905, USA
| | - E Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Neo 7th floor, SE-141 83, Huddinge, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience: King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
37
|
El Gedaily M, Spatzier H, Srinivasan M. Oral health, treatment burden and demographics of elders with care-resistant behavior: A cross-sectional study. SPECIAL CARE IN DENTISTRY 2024; 44:1793-1803. [PMID: 39230355 DOI: 10.1111/scd.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
AIMS To assess oral health, treatment burden, mortality risk, and demographics in elders with care-resistant behaviors (CRB) in nursing homes (NH) and compare them with those without CRB. METHODS AND RESULTS 503 participants from eight NH who received dental treatment through a mobile dental clinic were included. Their medical and dental records were screened regarding oral/dental health, treatment history, general health, demographics, and CRB. Statistical analysis was performed to show correlations between CRB and the measured parameters. Data were verified for normal distribution; a point-biserial correlation model was used (95% CI: α = 0.05). No correlation was found between CRB and Decayed Missing Filled Teeth (DMF-T) (rpb = -0.061, p = .177), as well as periodontal status (rpb = 0.004, p = .946). A negative correlation was observed between CRB and the required number of treatment procedures (rpb = -0.181, p < .0001), time (rpb = -0.118, p = .010), and costs (rpb = -0.100, p = .028). Sex predilection for men regarding CRB was evident (rpb = -0.155, p = .01). No correlation appeared between CRB and vital status (rpb = -0.41, p = .355). CONCLUSION Oral health seems to be similar in institutionalized elders with or without CRB. Treatment burden was not elevated, but even reduced in elders with CRB, evincing that few/no treatment procedures were performed in those elders. CRB demonstrated a sex predilection for men. An association between CRB and increased mortality was not evident.
Collapse
Affiliation(s)
- Mohamed El Gedaily
- Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Hansmartin Spatzier
- Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Murali Srinivasan
- Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Wang C, Lei Y, Chen T, Zhang J, Li Y, Shan H. HOPE: Hybrid-Granularity Ordinal Prototype Learning for Progression Prediction of Mild Cognitive Impairment. IEEE J Biomed Health Inform 2024; 28:6429-6440. [PMID: 38261490 DOI: 10.1109/jbhi.2024.3357453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Mild cognitive impairment (MCI) is often at high risk of progression to Alzheimer's disease (AD). Existing works to identify the progressive MCI (pMCI) typically require MCI subtype labels, pMCI vs. stable MCI (sMCI), determined by whether or not an MCI patient will progress to AD after a long follow-up. However, prospectively acquiring MCI subtype data is time-consuming and resource-intensive; the resultant small datasets could lead to severe overfitting and difficulty in extracting discriminative information. Inspired by that various longitudinal biomarkers and cognitive measurements present an ordinal pathway on AD progression, we propose a novel Hybrid-granularity Ordinal PrototypE learning (HOPE) method to characterize AD ordinal progression for MCI progression prediction. First, HOPE learns an ordinal metric space that enables progression prediction by prototype comparison. Second, HOPE leverages a novel hybrid-granularity ordinal loss to learn the ordinal nature of AD via effectively integrating instance-to-instance ordinality, instance-to-class compactness, and class-to-class separation. Third, to make the prototype learning more stable, HOPE employs an exponential moving average strategy to learn the global prototypes of NC and AD dynamically. Experimental results on the internal ADNI and the external NACC datasets demonstrate the superiority of the proposed HOPE over existing state-of-the-art methods as well as its interpretability.
Collapse
|
39
|
Chu C, Santini T, Liou JJ, Cohen AD, Maki PM, Marsland AL, Thurston RC, Gianaros PJ, Ibrahim TS. Brain morphometrics correlations with age among 352 participants imaged with both 3T and 7T MRI: 7T improves statistical power and reduces required sample size. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.28.24316292. [PMID: 39574870 PMCID: PMC11581096 DOI: 10.1101/2024.10.28.24316292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Introduction Magnetic resonance imaging (MRI) at 7 Telsa (7T) has superior signal-to-noise ratio to 3 Telsa (3T) but also presents higher signal inhomogeneities and geometric distortions. A key knowledge gap is to robustly investigate the sensitivity and accuracy of 3T and 7T MRI in assessing brain morphometrics. This study aims to (a) aggregate a large number of paired 3T and 7T scans to evaluate their differences in quantitative brain morphological assessment using a widely available brain segmentation tool, FreeSurfer, as well as to (b) examine the impact of normalization methods for subject variability and smaller sample sizes on data analysis. Methods A total of 452 healthy participants aged 29 to 68 were imaged at both 3T and 7T. Structural T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) images were processed and segmented using FreeSurfer. To account for head size variability, the brain volumes underwent intracranial volume (ICV) correction using the Residual (regression model) and Proportional (simple division to ICV) methods. The resulting volumes and thicknesses were correlated with age using Pearson correlation and false discovery rate correction. The correlations were also calculated in increasing sample size from 3 to the whole sample to estimate the sample size required to detect aging-related brain variation. Results 352 subjects (210 females) passed the image quality control with 100 subjects excluded due to excessive motion artifacts on 3T, 7T, or both. 7T MRI showed an overall stronger correlation between morphometrics and age and a larger number of significantly correlated brain volumes and cortical thicknesses. While the ICV is consistent between both field strengths, the Residual normalization method shows markedly higher correlation with age for 3T when compared with the Proportional normalization method. The 7T results are consistent regardless of the normalization method used. Conclusion In a large cohort of healthy participants with paired 3T and 7T scans, we compared the statistical performance in assessing age-related brain morphological changes. Our study reaffirmed the inverse correlation between brain volumes and cortical thicknesses and age and highlighted varying correlations in different brain regions and normalization methods at 3T and 7T. 7T imaging significantly improves statistical power and thus reduces required sample size.
Collapse
Affiliation(s)
- Cong Chu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jr-Jiun Liou
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pauline M. Maki
- Departments of Psychiatry, Psychology and Obstetrics & Gynecology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Anna L. Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca C. Thurston
- Departments of Psychiatry, Clinical and Translational Science, Epidemiology and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter J. Gianaros
- Departments of Psychology and Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tamer S. Ibrahim
- Departments of Bioengineering, Psychiatry, and Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Soni AG, Verma A, Joshi R, Shah K, Soni D, Kaur CD, Saraf S, Chauhan NS. Phytoactive drugs used in the treatment of Alzheimer's disease and dementia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8633-8649. [PMID: 38940847 DOI: 10.1007/s00210-024-03243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
The prevalence of Alzheimer's disease and other forms of dementia is increasing worldwide, and finding effective treatments for these conditions is a major public health challenge. Natural bioactive drugs have been identified as a promising source of potential treatments, due to their ability to target multiple pathways and their low toxicity. This paper reviews the current state of research on natural bioactive drugs used in the treatment of Alzheimer's disease and other dementias. The paper summarizes the findings of studies on various natural compounds, including curcumin, resveratrol, caffeine, genistein, quercetin, GinkoBiloba, Withaniasomnifera, Ginseng Brahmi, Giloy, and huperzine, and their effects on cognitive function, neuroinflammation, and amyloid-beta accumulation. In this review, we discuss the mechanism of action involved in the treatment of Alzheimer's disease. The paper also discusses the challenges associated with developing natural bioactive drugs for dementia treatment, including issues related to bioavailability and standardization. Finally, the paper suggests directions for future research in this area, including the need for more rigorous clinical trials and the development of novel delivery systems to improve the efficacy of natural bioactive drugs. Overall, this review highlights the potential of natural bioactive drugs as a promising avenue for the development of safe and effective treatments for Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Anshita Gupta Soni
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Astha Verma
- ShriRawatpuraSarkar Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Renjil Joshi
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, (U.P.), India
| | - Deependra Soni
- Faculty of Pharmacy, MATS University Campus, Aarang, Raipur, Chhattisgarh, India
| | - Chanchal Deep Kaur
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | |
Collapse
|
41
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
43
|
Sun J, Wang L, Gao Y, Hui Y, Chen S, Wu S, Wang Z, Jiang J, Lv H. Discovery of High-Risk Clinical Factors That Accelerate Brain Aging in Adults: A Population-Based Machine Learning Study. RESEARCH (WASHINGTON, D.C.) 2024; 7:0500. [PMID: 39434838 PMCID: PMC11491671 DOI: 10.34133/research.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Introduction: Brain age prediction using neuroimaging data and machine learning algorithms holds significant promise for gaining insights into the development of neurodegenerative diseases. The estimation of brain age may be influenced not only by the imaging modality but also by multidomain clinical factors. However, the degree to which various clinical factors in individuals are associated with brain structure, as well as the comprehensive relationship between these factors and brain aging, is not yet clear. Methods: In this study, multimodal brain magnetic resonance imaging data and longitudinal clinical information were collected from 964 participants in a population-based cohort with 16 years of follow-up in northern China. We developed a machine learning-based algorithm to predict multimodal brain age and compared the estimated brain age gap (BAG) differences among the 5 groups characterized by varying exposures to these high-risk clinical factors. We then estimated modality-specific brain age in the hypertension group based on hypertension-related regional imaging metrics. Results: The results revealed a significantly larger BAG estimated from multimodal neuroimaging in subjects with 4 or 5 risk factors compared to other groups, suggesting an acceleration of brain aging under cumulative exposure to multiple risk factors. The estimated T1-based BAG exhibited a significantly higher level in the hypertensive subjects compared to the normotensive individuals. Conclusion: Our study provides valuable insights into a range of health factors across lifestyle, metabolism, and social context that are reflective of brain aging and also contributes to the advancement of interventions and public health initiatives targeted at the general population aimed at promoting brain health.
Collapse
Affiliation(s)
- Jing Sun
- Department of Radiology, Beijing Friendship Hospital,
Capital Medical University, Beijing, China
| | - Luyao Wang
- Institute of Biomedical Engineering, School of Life Sciences,
Shanghai University, Shanghai, China
| | - Yiwen Gao
- Institute of Biomedical Engineering, School of Life Sciences,
Shanghai University, Shanghai, China
| | - Ying Hui
- Department of Radiology,
Kailuan General Hospital, Hebei, Tangshan, China
| | - Shuohua Chen
- Department of Cardiology,
Kailuan General Hospital, Hebei, Tangshan, China
| | - Shouling Wu
- Department of Cardiology,
Kailuan General Hospital, Hebei, Tangshan, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital,
Capital Medical University, Beijing, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences,
Shanghai University, Shanghai, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital,
Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Ferrari RR, Fantini V, Garofalo M, Di Gerlando R, Dragoni F, Rizzo B, Spina E, Rossi M, Calatozzolo C, Profka X, Ceroni M, Guaita A, Davin A, Gagliardi S, Poloni TE. A Map of Transcriptomic Signatures of Different Brain Areas in Alzheimer's Disease. Int J Mol Sci 2024; 25:11117. [PMID: 39456899 PMCID: PMC11508373 DOI: 10.3390/ijms252011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that progressively involves brain regions with an often-predictable pattern. Damage to the brain appears to spread and worsen with time, but the molecular mechanisms underlying the region-specific distribution of AD pathology at different stages of the disease are still under-investigated. In this study, a whole-transcriptome analysis was carried out on brain samples from the hippocampus (HI), temporal and parietal cortices (TC and PC, respectively), cingulate cortex (CG), and substantia nigra (SN) of six subjects with a definite AD diagnosis and three healthy age-matched controls in duplicate. The transcriptomic results showed a greater number of differentially expressed genes (DEGs) in the TC (1571) and CG (1210) and a smaller number of DEGs in the HI (206), PC (109), and SN (60). Furthermore, the GSEA showed a difference between the group of brain areas affected early (HI and TC) and the group of areas that were subsequently involved (PC, CG, and SN). Notably, in the HI and TC, there was a significant downregulation of shared DEGs primarily involved in synaptic transmission, while in the PC, CG, and SN, there was a significant downregulation of genes primarily involved in protein folding and trafficking. The course of AD could follow a definite time- and severity-related pattern that arises from protein misfolding, as observed in the PC, CG, and SN, and leads to synaptic impairment, as observed in the HI and TC. Therefore, a map of the molecular and biological processes involved in AD pathogenesis may be traced. This could aid in the discovery of novel biological targets in order to develop effective and well-timed therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Rocco Ferrari
- Department of Brain and Behavioral Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Valentina Fantini
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
- Laboratory of Translational Research, Azienda USL-IRCCS of Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Rosalinda Di Gerlando
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy
| | - Francesca Dragoni
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Erica Spina
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Michele Rossi
- Unity of Biostatistics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Mauro Ceroni
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Antonio Guaita
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Annalisa Davin
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Stella Gagliardi
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
- Department of Rehabilitation, ASP Golgi-Redaelli, Piazza E. Samek Lodovici 5, 20081 Abbiategrasso, Italy
| |
Collapse
|
45
|
Decker KP, Sanjana F, Rizzi N, Kramer MK, Cerjanic AM, Johnson CL, Martens CR. Comparing single- and multi-post labeling delays for the measurements of resting cerebral and hippocampal blood flow for cerebrovascular testing in midlife adults. Front Physiol 2024; 15:1437973. [PMID: 39416381 PMCID: PMC11480070 DOI: 10.3389/fphys.2024.1437973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives To assess the reliability and validity of measuring resting cerebral blood flow (CBF) and hippocampal CBF using a single-post-labeling delay (PLD) and a multi-PLD pseudo-continuous arterial spin labeling (pCASL) protocol for cerebrovascular reactivity (CVR) testing. Methods 25 healthy, midlife adults (57 ± 4 years old) were imaged in a Siemens Prisma 3T magnetic resonance imaging (MRI) scanner. Resting CBF and hippocampal CBF were assessed using two pCASL protocols, our modified single-PLD protocol (pCASL-MOD) to accommodate the needs for CVR testing and the multi-PLD Human Connectome Project (HCP) Lifespan protocol to serve as the reference control (pCASL-HCP). During pCASL-MOD, CVR was calculated as the change in CBF from rest to hypercapnia (+9 mmHg increase in end-tidal partial pressure of carbon dioxide [PETCO2]) and then normalized for PETCO2. The reliability and validity in resting gray matter (GM) CBF, white matter (WM) CBF, and hippocampal CBF between pCASL-MOD and pCASL-HCP protocols were examined using correlation analyses, paired t-tests, and Bland Altman plots. Results The pCASL-MOD and pCASL-HCP protocols were significantly correlated for resting GM CBF [r = 0.72; F (1, 23) = 25.24, p < 0.0001], WM CBF [r = 0.57; F (1, 23) = 10.83, p = 0.003], and hippocampal CBF [r = 0.77; F (1, 23) = 32.65, p < 0.0001]. However, pCASL-MOD underestimated resting GM CBF (pCASL-MOD: 53.7 ± 11.1 v. pCASL-HCP: 69.1 ± 13.1 mL/100 g/min; p < 0.0001), WM CBF (pCASL-MOD: 32.4 ± 4.8 v. pCASL-HCP: 35.5 ± 6.9 mL/100 g/min; p = 0.01), and hippocampal CBF (pCASL-MOD: 50.5 ± 9.0 v. pCASL-HCP: 68.1 ± 12.5 mL/100 g/min; p < 0.0001). PETCO2 increased by 8.0 ± 0.7 mmHg to induce CVR (GM CBF: 4.8% ± 2.6%; WM CBF 2.9% ± 2.5%; and hippocampal CBF: 3.4% ± 3.8%). Conclusion Our single-PLD pCASL-MOD protocol reliably measured CBF and hippocampal CBF at rest given the significant correlation with the multi-PLD pCASL-HCP protocol. Despite the lower magnitude relative to pCASL-HCP, we recommend using our pCASL-MOD protocol for CVR testing in which an exact estimate of CBF is not required such as the assessment of relative change in CBF to hypercapnia.
Collapse
Affiliation(s)
- Kevin P. Decker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Nick Rizzi
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Mary K. Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alexander M. Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Christopher R. Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
46
|
Hou B, Wen Z, Bao J, Zhang R, Tong B, Yang S, Wen J, Cui Y, Moore JH, Saykin AJ, Huang H, Thompson PM, Ritchie MD, Davatzikos C, Shen L. Interpretable deep clustering survival machines for Alzheimer's disease subtype discovery. Med Image Anal 2024; 97:103231. [PMID: 38941858 PMCID: PMC11365808 DOI: 10.1016/j.media.2024.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/04/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
Collapse
Affiliation(s)
- Bojian Hou
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zixuan Wen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Richard Zhang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Boning Tong
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Junhao Wen
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Yuhan Cui
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heng Huang
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Paul M Thompson
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Marylyn D Ritchie
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
48
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
49
|
McKiernan EC, Herrera-Valdez MA, Marrone DF. A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity. PLoS One 2024; 19:e0308809. [PMID: 39231135 PMCID: PMC11373847 DOI: 10.1371/journal.pone.0308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Marco A Herrera-Valdez
- Laboratorio de Dinámica, Biofísica y Fisiología de Sistemas, Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
- McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
50
|
Bischoff-Grethe A, Stoner SA, Riley EP, Moore EM. Subcortical volume in middle-aged adults with fetal alcohol spectrum disorders. Brain Commun 2024; 6:fcae273. [PMID: 39229493 PMCID: PMC11369821 DOI: 10.1093/braincomms/fcae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Studies of youth and young adults with prenatal alcohol exposure (PAE) have most consistently reported reduced volumes of the corpus callosum, cerebellum and subcortical structures. However, it is unknown whether this continues into middle adulthood or if individuals with PAE may experience premature volumetric decline with aging. Forty-eight individuals with fetal alcohol spectrum disorders (FASD) and 28 healthy comparison participants aged 30 to 65 participated in a 3T MRI session that resulted in usable T1-weighted and T2-weighted structural images. Primary analyses included volumetric measurements of the caudate, putamen, pallidum, cerebellum and corpus callosum using FreeSurfer software. Analyses were conducted examining both raw volumetric measurements and subcortical volumes adjusted for overall intracranial volume (ICV). Models tested for main effects of age, sex and group, as well as interactions of group with age and group with sex. We found the main effects for group; all regions were significantly smaller in participants with FASD for models using raw volumes (P's < 0.001) as well as for models using volumes adjusted for ICV (P's < 0.046). Although there were no significant interactions of group with age, females with FASD had smaller corpus callosum volumes relative to both healthy comparison females and males with FASD (P's < 0.001). As seen in children and adolescents, adults aged 30 to 65 with FASD showed reduced volumes of subcortical structures relative to healthy comparison adults, suggesting persistent impact of PAE. Moreover, the observed volumetric reduction of the corpus callosum in females with FASD could suggest more rapid degeneration, which may have implications for cognition as these individuals continue to age.
Collapse
Affiliation(s)
| | - Susan A Stoner
- Department of Psychiatry and Behavioral Sciences, Fetal Alcohol and Drug Unit, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | - Edward P Riley
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| | - Eileen M Moore
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| |
Collapse
|