1
|
Zhang X, Li D, Zeng W, Huang Y, Zhan Z, Zhang Y, Hu Q, Huang L, Yu M. Synapses and dendritic spines are eliminated in the primary visual cortex of mice subjected to chronic intraocular pressure elevation. Neural Regen Res 2026; 21:1236-1248. [PMID: 39589168 DOI: 10.4103/nrr.nrr-d-24-00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/28/2024] [Indexed: 11/27/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202603000-00046/figure1/v/2025-06-16T082406Z/r/image-tiff Synaptic plasticity is essential for maintaining neuronal function in the central nervous system and serves as a critical indicator of the effects of neurodegenerative disease. Glaucoma directly impairs retinal ganglion cells and their axons, leading to axonal transport dysfuntion, subsequently causing secondary damage to anterior or posterior ends of the visual system. Accordingly, recent evidence indicates that glaucoma is a degenerative disease of the central nervous system that causes damage throughout the visual pathway. However, the effects of glaucoma on synaptic plasticity in the primary visual cortex remain unclear. In this study, we established a mouse model of unilateral chronic ocular hypertension by injecting magnetic microbeads into the anterior chamber of one eye. We found that, after 4 weeks of chronic ocular hypertension, the neuronal somas were smaller in the superior colliculus and lateral geniculate body regions of the brain contralateral to the affected eye. This was accompanied by glial cell activation and increased expression of inflammatory factors. After 8 weeks of ocular hypertension, we observed a reduction in the number of excitatory and inhibitory synapses, dendritic spines, and activation of glial cells in the primary visual cortex contralateral to the affected eye. These findings suggest that glaucoma not only directly damages the retina but also induces alterations in synapses and dendritic spines in the primary visual cortex, providing new insights into the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Xinyi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Deling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Weiting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
- Department of Ophthalmology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, China
| | - Yiru Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
- Department of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong Province, China
| | - Yuning Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Qinyuan Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Lianyan Huang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Chen H, Li N, Cai Y, Ma C, Ye Y, Shi X, Guo J, Han Z, Liu Y, Wei X. Exosomes in neurodegenerative diseases: Therapeutic potential and modification methods. Neural Regen Res 2026; 21:478-490. [PMID: 40326981 DOI: 10.4103/nrr.nrr-d-24-00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 05/07/2025] Open
Abstract
In recent years, exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research. Exosomes are small and can effectively cross the blood-brain barrier, allowing them to target deep brain lesions. Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines, mRNAs, and disease-related proteins, thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects. However, exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells. This limitation can lead to side effects and toxicity when they interact with non-specific cells. Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases. In this review, we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases. Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases. We introduce the strategies being used to enhance exosome targeting, including genetic engineering, chemical modifications (both covalent, such as click chemistry and metabolic engineering, and non-covalent, such as polyvalent electrostatic and hydrophobic interactions, ligand-receptor binding, aptamer-based modifications, and the incorporation of CP05-anchored peptides), and nanomaterial modifications. Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases. However, several challenges remain in the clinical application of exosomes. Improvements are needed in preparation, characterization, and optimization methods, as well as in reducing the adverse reactions associated with their use. Additionally, the range of applications and the safety of exosomes require further research and evaluation.
Collapse
Affiliation(s)
- Hongli Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Na Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuanhao Cai
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
- School of Intelligent Information Engineering, Medicine & Technology College of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Chunyan Ma
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Yutong Ye
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Xinyu Shi
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Zhibo Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Department of Biomedical Engineering, Peking University, Beijing, China
| |
Collapse
|
3
|
Wang H, Xu X, Yang Z, Zhang T. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Cogn Neurodyn 2025; 19:2. [PMID: 39749102 PMCID: PMC11688264 DOI: 10.1007/s11571-024-10185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Adolescent brain development is characterized by significant anatomical and physiological alterations, but little is known whether and how these alterations impact the neural network. Here we investigated the development of functional networks by measuring synaptic plasticity and neural synchrony of local filed potentials (LFPs), and further explored the underlying mechanisms. LFPs in the hippocampus were recorded in young (21 ~ 25 days), adolescent (1.5 months) and adult (3 months) rats. Long term potentiation (LTP) and neural synchrony were analyzed. The results showed that the LTP was the lowest in adolescent rats. During development, the theta coupling strength was increased progressively but there was no significant change of gamma coupling between young rats and adolescent rats. The density of dendrite spines was decreased progressively during development. The lowest levels of NR2A, NR2B and PSD95 were detected in adolescent rats. Importantly, it was found that the expression levels of autophagy markers were the highest during adolescent compared to that in other developmental stages. Moreover, there were more co-localization of autophagosome and PSD95 in adolescent rats. It suggests that autophagy is possibly involved in synaptic elimination during adolescence, and further impacts synaptic plasticity and neural synchrony.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| | - Xiaxia Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| | - Zhuo Yang
- College of Medicine Science, Nankai University, Tianjin, 300071 PR China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| |
Collapse
|
4
|
Akif A, Nguyen TTM, Liu L, Xu X, Kulkarni A, Jiang J, Zhang Y, Hao J. Targeting NLRP3 signaling with a novel sulfonylurea compound for the treatment of vascular cognitive impairment and dementia. Fluids Barriers CNS 2025; 22:55. [PMID: 40462117 PMCID: PMC12131594 DOI: 10.1186/s12987-025-00665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/13/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD. METHODS In this study, we investigated the therapeutic effects of a synthetic sulfonylurea NLRP3 inhibitor, AMS-17, in a VaD mouse model using bilateral common carotid artery stenosis (BCAS) and elucidated the underlying mechanisms. All mice were randomly divided into three groups: Sham, VaD + Vehicle, and VaD + AMS-17. Cognitive function was assessed using the Y-maze and Morris water maze (MWM) on the 50th day after BCAS. Brain sections and blood serum samples were collected for biomarker analysis and immunohistochemistry. Neurodegeneration, expressions of the molecules involved in the NLRP3 signaling pathways, tight junction proteins, and myelination were assessed using western blotting and immunofluorescence (IF). The levels of Interleukin-1 beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-4 (IL-4) in the blood were measured using ELISA. RESULTS AMS-17 treatment improved cognitive function, enhanced blood-brain barrier (BBB) integrity, and promoted remyelination in VaD mice. Additionally, AMS-17 reduced neurodegeneration and decreased the expression of NLRP3 and its associated proteins, Apoptosis-associated speck-like protein (ASC), and cleaved caspase-1 in the brain. It also lowered pro-inflammatory TNF-α and IL-1β levels, while increasing the anti-inflammatory IL-4 level in the blood. CONCLUSIONS The findings of this study provide the first promising evidence for the use of AMS-17 in VaD treatment in mice. This study introduces AMS-17 as a novel chemical scaffold with NLRP3 inhibitory activity, which can be further developed for the treatment of VaD in humans. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Adnan Akif
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Thi Thanh My Nguyen
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Langni Liu
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Xiaotian Xu
- Department of Neurology, The Affiliated Hospital of Yangzhou University, Jiangsu Province, Xiaotian Xu, 225000, Yangzhou, China
| | - Amol Kulkarni
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.
| |
Collapse
|
5
|
Angel D, Tsutiya A, Hayani H, Madencioglu D, Kul E, Caliskan G, Demiray YE, Dityatev A, Stork O. The Serine/Threonine Kinase NDR2 Regulates Integrin Signaling, Synapse Formation, and Synaptic Plasticity in the Hippocampus. J Neurochem 2025; 169:e70094. [PMID: 40439020 PMCID: PMC12120816 DOI: 10.1111/jnc.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/03/2025] [Accepted: 05/11/2025] [Indexed: 06/02/2025]
Abstract
Nuclear Dbf2-related (NDR) kinases are core components of the Hippo pathway, which controls neuronal polarity and neurite growth in the central nervous system (CNS). NDR2 is the principal NDR kinase in the mouse CNS, where it has been shown to regulate integrin-dependent dendritic branching as well as growth and plasticity in hippocampal mossy fibers. Given the well-established involvement of integrins in plasticity, we hypothesized that NDR2 might regulate synapse formation and plasticity through integrin-mediated mechanisms. In this study, using constitutive NDR2 null mutant mice, we demonstrate that Ndr2 deficiency leads to a reduction of T788/789 phosphorylated β1 integrin expression at synaptic sites both in the hippocampal area CA1 and in primary hippocampal neurons in vitro. This reduction is associated with decreased synaptic density in both conditions and accompanied by reduced long-term potentiation in the synapses between Schaffer collaterals/commissural fibers and CA1 pyramidal cells, which could be restored by activation of integrins with an arginine-glycine-aspartate-containing peptide, as well as with mild spatial memory deficits. Together, our results suggest that NDR2 is involved in integrin-dependent synapse formation and plasticity in the mouse hippocampus.
Collapse
Affiliation(s)
- Del Angel
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Atsuhiro Tsutiya
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Hussam Hayani
- Molecular Neuroplasticity GroupGerman Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Deniz Madencioglu
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Emre Kul
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Gürsel Caliskan
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
- Center for Behavioural Brain SciencesMagdeburgGermany
| | - Yunus Emre Demiray
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Alexander Dityatev
- Molecular Neuroplasticity GroupGerman Center for Neurodegenerative DiseasesMagdeburgGermany
- Center for Behavioural Brain SciencesMagdeburgGermany
- Medical FacultyOtto‐Von‐Guericke UniversityMagdeburgGermany
| | - Oliver Stork
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
- Center for Behavioural Brain SciencesMagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Jena‐Magdeburg‐HalleGermany
- German Center for Mental Health (DZPG)Site Jena‐Magdeburg‐HalleGermany
| |
Collapse
|
6
|
Yang R, Meng X, Zhao W, Xu SQ, Wang SY, Li MM, Guan W, Chen QS, Zhang LL, Kuang HX, Li H, Yang BY, Liu Y. Phenylpropanoids of Eleutherococcus senticosus (Rupr. & maxim.) maxim. Alleviate oxidative stress in Alzheimer's disease in vitro and in vivo models by regulating Mst1 and affecting the Nrf2/Sirt3 pathway. Bioorg Chem 2025; 159:108347. [PMID: 40081261 DOI: 10.1016/j.bioorg.2025.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder, and oxidative stress plays a significant role in its progression. Owing to its nourishing effects, Eleutherococcus senticosus (Rupr. & maxim.) maxim. (ES) has gained widespread popularity globally as a functional food and long-term consumption has been shown to enhance memory. The phenylpropanoid components extracted from Eleutherococcus senticosus (Rupr. & maxim.) maxim. (ESP) exhibit a diverse array of bioactivities and are commonly employed in the treatment of central nervous system (CNS) disorders. Nonetheless, the exact mechanisms by which ESP alleviates oxidative stress in AD models require further investigation. Therefore, this study utilized SAMP8 mice as models for AD and employed L-glutamate (L-Glu)-induced HT22 cells to establish an in vitro AD model. The effects of ESP on cognitive function were evaluated using the Morris water maze (MWM) test. Additionally, various techniques such as pathology, immunofluorescence staining (IF), ROS staining, cellular thermal shift assay (CETSA), Mst1 inhibitor analysis, and western blotting (WB) were conducted to further investigate the pharmacological efficacy and potential molecular mechanisms of ESP. In vivo, ESP was found to improve cognitive function in SAMP8 mice and alleviate AD-like pathological features. In vitro, ESP reduced intracellular ROS levels. Mechanistically, CETSA analysis confirmed the binding affinity between ESP and Mst1, demonstrated that ESP modulated the Mst1 signaling pathway to mitigate oxidative stress and decrease ROS levels. These findings suggested that ESP holded significant potential for developing therapeutic strategies for AD.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xin Meng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zhao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shi-Qi Xu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Si-Yi Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Meng-Meng Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qing-Shan Chen
- Traditional Chinese medicine biological genetics (Heilongjiang province double first-class construction interdiscipline, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Li-Li Zhang
- Traditional Chinese medicine biological genetics (Heilongjiang province double first-class construction interdiscipline, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hua Li
- Fujian University of Traditional Chinese Medicine, Fujian 350122, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
7
|
D’Alessandris N, Santoro A, Valente M, Scaglione G, Angelico G, Urtueta BP, Narducci N, Duranti S, Addante F, Minucci A, Zannoni GF. A Case Report to Reflect on the Origins of MMRd Mesonephric-like Ovarian Adenocarcinoma: Can It Be Defined as a Mϋllerian Neoplasm? Int J Mol Sci 2025; 26:5245. [PMID: 40508054 PMCID: PMC12154508 DOI: 10.3390/ijms26115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/27/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Mesonephric-like adenocarcinoma (MLA) of ovaries is a new and rare neoplastic entity, recently classified by the World Health Organization. Its morphological and immunohistochemical profile is similar to primitive cervical mesonephric adenocarcinoma, but its origin has not been determined yet. Some authors believe that this neoplasm originates from Wolffian remnants in the ovarian hilum, while others suggest an origin from the Mϋllerian epithelium, followed by a mesonephric trans-differentiation. Starting from a recently diagnosed mismatch repair-deficient ovarian MLA, we try to further develop this line of research. A detailed molecular analysis of the studied tumor helps clarify our ideas. In fact, the typical KRAS mutation was not present. We found mutations in numerous other genes, which are rarely described in the literature or are already described in the endometrioid histotype. We reached some interesting conclusions, which, if supported by future studies, will clarify the true nature of these tumors, allowing for better stratification and a better therapeutic framework.
Collapse
Affiliation(s)
- Nicoletta D’Alessandris
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.); (A.S.); (M.V.); (G.S.); (B.P.U.); (N.N.); (F.A.)
- Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Angela Santoro
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.); (A.S.); (M.V.); (G.S.); (B.P.U.); (N.N.); (F.A.)
- Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Michele Valente
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.); (A.S.); (M.V.); (G.S.); (B.P.U.); (N.N.); (F.A.)
| | - Giulia Scaglione
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.); (A.S.); (M.V.); (G.S.); (B.P.U.); (N.N.); (F.A.)
- Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Belen Padial Urtueta
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.); (A.S.); (M.V.); (G.S.); (B.P.U.); (N.N.); (F.A.)
| | - Nadine Narducci
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.); (A.S.); (M.V.); (G.S.); (B.P.U.); (N.N.); (F.A.)
| | - Simona Duranti
- Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesca Addante
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.); (A.S.); (M.V.); (G.S.); (B.P.U.); (N.N.); (F.A.)
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Gian Franco Zannoni
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.); (A.S.); (M.V.); (G.S.); (B.P.U.); (N.N.); (F.A.)
- Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
8
|
Liang P, Wang Y, Liu J, Huang H, Li Y, Kang J, Li G, Wu H. Identification and Exploration of Immunity-Related Genes and Natural Products for Alzheimer's Disease Based on Bioinformatics, Molecular Docking, and Molecular Dynamics. Immun Inflamm Dis 2025; 13:e70166. [PMID: 40192032 PMCID: PMC11973734 DOI: 10.1002/iid3.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/14/2025] [Accepted: 02/23/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Recent research highlights the immune system's role in AD pathogenesis and promising prospects of natural compounds in treatment. This study explores immunity-related biomarkers and potential natural products using bioinformatics, machine learning, molecular docking, and kinetic simulation. METHODS Differentially expressed genes (DEGs) in AD were analyzed using GSE5281 and GSE132903 datasets. Important AD module genes were identified using a weighted co-expression algorithm (WGCNA), and immune-related genes (IRGs) were obtained from the ImmPortPortal database. Intersecting these genes yielded important IRGs. Then, the least absolute shrinkage and selection operator (LASSO) and other methods screened common immune-related AD markers. Biological pathways were explored through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The accuracy of these markers was assessed by subject operator signature (ROC) curves and validated in the GSE122063 dataset. The datasets was then subjected to immunoinfiltration analysis. Multiple compound databases were used to analyze core Chinese medicines and components. Molecular docking and kinetic simulation verification were used for further verification. RESULTS A total of 1360 differential genes and 5 biomarkers (PGF, GFAP, GPI, SST, NFKBIA) were identified, showing excellent diagnostic efficiency. GSEA revealed markers associated with Oxidative phosphorylation, Nicotine addiction, and Hippo signaling pathway. Immune infiltration analysis showed dysregulation in multiple immune cell types in AD brains, with significant interactions between markers and 5 immune cell types. A total of 27 possible herbs and 7 core compounds were eventually identified. The binding environment of GPI-luteolin and GPI-stigasterol was relatively stable and showed good affinity. CONCLUSIONS PGF, GFAP, SST, GPI, and NFKBIA were identified for early AD diagnosis, associated with immune cells and pathways in AD brains. 7 promising natural compounds, including luteolin and stigmasterol, were screened for targeting these biomarkers.
Collapse
Affiliation(s)
- Pengpeng Liang
- Shenzhen HospitalShanghai University of Traditional Chinese MedicineShenzhenChina
| | - Yale Wang
- Shenzhen Longgang Second People's HospitalShenzhenChina
| | - Jiamin Liu
- Shenzhen HospitalShanghai University of Traditional Chinese MedicineShenzhenChina
| | - Hai Huang
- Shenzhen HospitalShanghai University of Traditional Chinese MedicineShenzhenChina
| | - Yue Li
- Shenzhen HospitalShanghai University of Traditional Chinese MedicineShenzhenChina
| | - Jinhua Kang
- Shenzhen HospitalShanghai University of Traditional Chinese MedicineShenzhenChina
| | - Guiyun Li
- Shenzhen HospitalShanghai University of Traditional Chinese MedicineShenzhenChina
| | - Hongyan Wu
- Shenzhen HospitalShanghai University of Traditional Chinese MedicineShenzhenChina
| |
Collapse
|
9
|
Zhang T, Liu M. Cytokines in age-related eye diseases: pathogenesis and potential targets for innovative therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03926-1. [PMID: 40021512 DOI: 10.1007/s00210-025-03926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Age-related eye diseases (AREDs), such as dry eye disease (DED), age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), are significant worldwide health concerns due to their rising prevalence and debilitating effects. Despite substantial research on the pathobiology of AREDs, the impact of immune-related alterations caused by aging is still not well understood. Tissue-resident cells and invading immune cells in the eye control innate responses in the event of damage or infection. However, as cells age, they gradually lose their ability to perform their protective duties and develop abnormal characteristics. Therefore, the disrupted regulation of immune responses in the eyes of older individuals enhances their vulnerability to and the intensity of eye disorders. Cytokines, immune system components, have a role in developing AREDs by contributing to inflammation. This paper examines the deficiencies in the pathogenic and therapeutic aspects of pro-inflammatory cytokines in AREDs that require further investigation in future studies.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, 710004, China
| | - Ming Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, 710004, China.
| |
Collapse
|
10
|
Thanh ND, Toan VN, Trang VM. D-glucose-conjugated thioureas containing 2-aminopyrimidine as potential multitarget inhibitors for type 2 diabetes mellitus: Synthesis and biological activity study. Comput Biol Med 2025; 186:109715. [PMID: 39862470 DOI: 10.1016/j.compbiomed.2025.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC50 = 11.32 ± 0.34 μM for α-amylase), 8g (IC50 = 10.35 ± 0.88 μM for α-glucosidase), 8e (IC50 = 2.53 ± 0.03 nM for DPP-4), and 8c (IC50 = 3.93 ± 0.03 nM for PTP1B). The inhibitors 8g, 8e, and 8c were competitive α-glucosidase, non-competitive DDP-4, and non-competitive PTP1B inhibitors, respectively. In addition, compounds 8a, 8c, 8e, 8f, 8g, 8h, and 8j were noncytotoxic for 3T3 cell line. Induced fit docking study showed the key active interactions of each ligand with residues in the active site of each of these enzymes. Molecular dynamics simulation study on the representative complexes 8f/4W93 and 8e/3W2T in enzymes 4W93 and 3W2T, respectively, displayed the bioactive interactions between the residues and the corresponding potent inhibitor in the active site. Some of the various effects of the electron-donating and electron-withdrawing substituents on benzene of pyrimidine ring to inhibitory activities against enzymes related to T2DM were discussed. The calculations based on MM-GBSA showed the effects of the solvation to the active binding of the specific ligand in the active pocket of an enzyme.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam.
| | - Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; Institute of New Technology, Academy of Military Science and Technology, Ministry of Defence, 17 Hoang Sam, Cau Giay, Ha Noi, Viet Nam
| | - Vu Minh Trang
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam
| |
Collapse
|
11
|
Pradhan B, Ki JS. Seaweed-derived laminarin and alginate as potential chemotherapeutical agents: An updated comprehensive review considering cancer treatment. Int J Biol Macromol 2025; 293:136593. [PMID: 39426775 DOI: 10.1016/j.ijbiomac.2024.136593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Seaweed-derived bioactive substances such as polysaccharides have proven to be effective chemotherapeutic and chemopreventive agents. Laminarin and alginate antioxidant properties aid in the prevention of cancer through dynamic modulation of critical intracellular signaling pathways via apoptosis which produce low cytotoxicity and potential chemotherapeutic effects. Understanding the effects of laminarin and alginate on human cancer cells and their molecular roles in cell death pathways can help to develop a novel chemoprevention strategy. This review emphasizes the importance of apoptosis-modulating laminarin and alginate in a range of malignancies as well as their extraction, molecular structure, and weight. In addition, future nano-formulation enhancements for greater clinical efficacy are discussed. Laminarin and alginate are perfect ingredients because of their distinct physicochemical and biological characteristics and their use-based delivery systems in cancer. The effectiveness of laminarin and alginate against cancer and more preclinical and clinical trials will open up as new chemotherapeutic natural drugs which lead to established as potential cancer drugs.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea; Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
12
|
Sati A, Kyllait P, Gahtori P, Bhat HR, Hussain MS, Gupta G, Gahtori A. Behavioral and histopathological insights into phenylthiazolyl-1,3,5-triazines: potential antidepressant candidates in a rat model of depression. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0417. [PMID: 39957105 DOI: 10.1515/jcim-2024-0417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025]
Abstract
OBJECTIVES To evaluate the antidepressant-like effects of Phenylthiazolyl-1,3,5-triazine derivatives through behavioral tests, molecular docking, and histopathological analysis in a rat brain model of depression. METHODS Phenylthiazolyl-1,3,5-triazine derivatives were synthesized and administered at a dose of 30 mg/kg in albino rats. Behavioral effects were assessed using the Forced Swim Test and Tail Suspension Test. Molecular docking with MD simulations via CDocker was employed to analyze ligand-receptor interactions. Histological analysis of brain tissues was conducted to assess structural and vascular changes. RESULTS Among the derivatives, PS1 and PS5 showed significant antidepressant-like activity compared to standard imipramine. Molecular docking revealed that hydrogen bonding, pi-pi interactions, and intermolecular neighbor effects stabilized the ligand-receptor complexes. Histopathological analysis of PS1-treated rats demonstrated preserved vascular integrity, reduced edema, and the absence of hydrophobic alterations. CONCLUSIONS Phenylthiazolyl-1,3,5-triazines, particularly PS1, exhibit promising potential as antidepressant agents. Their behavioral efficacy and protective histological effects suggest therapeutic relevance. Further studies integrating biomarkers and gene expression analyses are needed to optimize these derivatives for clinical application.
Collapse
Affiliation(s)
- Aarti Sati
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, 621876 Shri Guru Ram Rai University , Dehradun, Uttarakhand, India
| | - Pynshngainlang Kyllait
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, 621876 Shri Guru Ram Rai University , Dehradun, Uttarakhand, India
| | - Prashant Gahtori
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University Dibrugarh, Dibrugarh, Assam, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Archana Gahtori
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, 621876 Shri Guru Ram Rai University , Dehradun, Uttarakhand, India
| |
Collapse
|
13
|
Hassan N, Miah ASM, Suzuki K, Okuyama Y, Shin J. Stacked CNN-based multichannel attention networks for Alzheimer disease detection. Sci Rep 2025; 15:5815. [PMID: 39962097 PMCID: PMC11832778 DOI: 10.1038/s41598-025-85703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's Disease (AD) is a progressive condition of a neurological brain disorder recognized by symptoms such as dementia, memory loss, alterations in behaviour, and impaired reasoning abilities. Recently, many researchers have been working to develop an effective AD recognition system using deep learning (DL) based convolutional neural network (CNN) model aiming to deploy the automatic medical image diagnosis system. The existing system is still facing difficulties in achieving satisfactory performance in terms of accuracy and efficiency because of the lack of feature ineffectiveness. This study proposes a lightweight Stacked Convolutional Neural Network with a Channel Attention Network (SCCAN) for MRI based on AD classification to overcome the challenges. In the procedure, we sequentially integrate 5 CNN modules, which form a stack CNN aiming to generate a hierarchical understanding of features through multi-level extraction, effectively reducing noise and enhancing the weight's efficacy. This feature is then fed into a channel attention module to select the practical features based on the channel dimension, facilitating the selection of influential features. . Consequently, the model exhibits reduced parameters, making it suitable for training on smaller datasets. Addressing the class imbalance in the Kaggle MRI dataset, a balanced distribution of samples among classes is emphasized. Extensive experiments of the proposed model with the ADNI1 Complete 1Yr 1.5T, Kaggle, and OASIS-1 datasets showed 99.58%, 99.22%, and 99.70% accuracy, respectively. The proposed model's high performance surpassed state-of-the-art (SOTA) models and proved its excellence as a significant advancement in AD classification using MRI images.
Collapse
Affiliation(s)
- Najmul Hassan
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan
| | - Abu Saleh Musa Miah
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan
| | - Kota Suzuki
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan
| | - Yuichi Okuyama
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan
| | - Jungpil Shin
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan.
| |
Collapse
|
14
|
Liu J, Zhao W, Wang Y. Lights and shadows of clozapine on the immune system in schizophrenia: a narrative literature review. Metab Brain Dis 2025; 40:128. [PMID: 39954151 DOI: 10.1007/s11011-025-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Schizophrenia is a chronic mental disorder and one of the main causes of disability in the world. Approximately 1% of the general population suffers from this disorder, and almost 30% of cases are unresponsive to antipsychotic therapies. Clozapine is a Food and Drug Administration (FDA)-approved antipsychotic drug for treatment-resistant schizophrenia (TRS). Clozapine is also approved for the prevention of suicide associated with schizophrenia. However, clozapine is not the preferred first-line medication because of its potential AEs, including agranulocytosis, metabolic syndromes, and myocarditis. Clozapine prescription requires weekly absolute neutrophil count (ANC) monitoring for the first six months, followed by biweekly monitoring until the patient has finished one year of treatment. Several psychiatric disorders have been reported to be associated with inflammatory biomarkers. Dysregulation of the immune system and the elevation of pro-inflammatory cytokines were also reported to be associated with schizophrenia, highlighting the necessity of further research into the etiology of the disease and the relationship between the immune system and clozapine-responsiveness to support better management of symptoms and potential AEs. In this framework, we searched PubMed using the medical subject headings (MeSH) terms "clozapine", "antipsychotics", "schizophrenia", "treatment-resistant schizophrenia", "immune system", "inflammation", "neuroinflammation", "biomarker", "cytokine", and "chemokine" with the aim of overview the impact of clozapine on the immune system in individuals with treatment-responsive and treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Jian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Weimin Zhao
- Department of Preventive Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China.
| | - Yitong Wang
- Dermatology Department of Changchun Traditional Chinese Medicine Hospital, Jilin, China
| |
Collapse
|
15
|
Golpour-Hamedani S, Askari G, Khorvash F, Kesharwani P, Bagherniya M, Sahebkar A. The potential protective effects and mechanisms of fasting on neurodegenerative disorders: A narrative review. Brain Res 2025; 1849:149348. [PMID: 39581525 DOI: 10.1016/j.brainres.2024.149348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to review the potential neuroprotective effects and underlying mechanisms of fasting in neurodegenerative disorders by synthesizing the existing literature. Research indicates that fasting may induce substantial modifications in both brain structure and function through diverse metabolic and cellular pathways. Preclinical studies utilizing animal models have elucidated several key mechanisms mediating these effects. The other significant proposed mechanism involves the modulation of gut microbiota during fasting periods. The intestinal microbiome functions as a crucial intermediary in the complex interplay between feeding patterns, circadian rhythms, and immune responses. These microbiome alterations may subsequently exert considerable influence on central nervous system functionality. Moreover, by reducing glucose availability, fasting has been shown to enhance the survival and resistance of healthy cells to adjuvant treatments in central nervous system tumors. Fasting presents a promising non-pharmacological intervention for neurodegenerative disorders, potentially offering both preventive and therapeutic benefits. However, the current evidence base remains preliminary, warranting extensive further investigation to validate these initial findings and establish robust clinical protocols for both efficacy and safety.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Sadat Razavi Z, Sina Alizadeh S, Sadat Razavi F, Souri M, Soltani M. Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration. Int J Pharm 2025; 670:125186. [PMID: 39788400 DOI: 10.1016/j.ijpharm.2025.125186] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) plays a vital role in protecting the central nervous system (CNS) by preventing the entry of harmful pathogens from the bloodstream. However, this barrier also presents a significant obstacle when it comes to delivering drugs for the treatment of neurodegenerative diseases and brain cancer. Recent breakthroughs in nanotechnology have paved the way for the creation of a wide range of nanoparticles (NPs) that can serve as carriers for diagnosis and therapy. Regarding their promising properties, organic NPs have the potential to be used as effective carriers for drug delivery across the BBB based on recent advancements. These remarkable NPs have the ability to penetrate the BBB using various mechanisms. This review offers a comprehensive examination of the intricate structure and distinct properties of the BBB, emphasizing its crucial function in preserving brain balance and regulating the transport of ions and molecules. The disruption of the BBB in conditions such as stroke, Alzheimer's disease, and Parkinson's disease highlights the importance of developing creative approaches for delivering drugs. Through the encapsulation of therapeutic molecules and the precise targeting of transport processes in the brain vasculature, organic NP formulations present a hopeful strategy to improve drug transport across the BBB. We explore the changes in properties of the BBB in various pathological conditions and investigate the factors that affect the successful delivery of organic NPs into the brain. In addition, we explore the most promising delivery systems associated with NPs that have shown positive results in treating neurodegenerative and ischemic disorders. This review opens up new possibilities for nanotechnology-based therapies in cerebral diseases.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
17
|
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK, Malik T. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med (Lausanne) 2025; 12:1522223. [PMID: 39963432 PMCID: PMC11831571 DOI: 10.3389/fmed.2025.1522223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal loss and cognitive impairments, pose a significant global health challenge. This study explores the potential of nanotherapeutics as a promising approach to enhance drug delivery across physiological barriers, particularly the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSFB). By employing nanoparticles, this research aims to address critical challenges in the diagnosis and treatment of conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. The multifactorial nature of these disorders necessitates innovative solutions that leverage nanomedicine to improve drug solubility, circulation time, and targeted delivery while minimizing off-target effects. The findings underscore the importance of advancing nanomedicine applications to develop effective therapeutic strategies that can alleviate the burden of neurodegenerative diseases on individuals and healthcare systems.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mukul Jain
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology, Parul University, Vadodara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research & Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
18
|
Xia D, Zhang L, Mei R, Wu C, Liu Y, Chen H, Chen L. Increased Expression of MST1 in Patients With Epilepsy and in a Rat Model of Epilepsy. Synapse 2025; 79:e70002. [PMID: 39729046 DOI: 10.1002/syn.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures. The most common pathological discoveries in patients and animal models with epilepsy are neuronal death, inflammation, neurodegeneration, neurogenesis, and axonal regrowth. The purpose of this study was to assess the levels of MST1 in serum and cerebrospinal fluid (CSF) specimens obtained from individuals diagnosed with epilepsy. In addition, it aimed to explore the expression pattern of MST1 in brain tissues of epileptic rats. We used enzyme-linked immunosorbent assay to measure the levels of CSF and serum MST1 in 10 epilepsy patients and 9 control patients. After creation of epilepsy models with healthy male Sprague-Dawley rats using lithium and pilocarpine, the expression of MST1 in the temporal cortex and hippocampus was evaluated at different time points (6 h, 24 h, 3 days, 7 days, 14 days, and 30 days after seizures) using immunofluorescence, immunohistochemistry, and Western blotting. In patients with epilepsy, the levels of CSF-MST1 were elevated (593.90 ± 16.28 vs. 560.40 ± 19.42 pg/mL, p < 0.05) compared to the control group. Accordingly, the serum-MST1 levels were 583.40 ± 19.70 pg/mL in the epilepsy group and 555.70 ± 20.14 pg/mL in the control group, demonstrating a statistically significant distinction (p < 0.05). Levels of MST1 in CSF and serum could be of diagnostic help. Neuronal apoptosis in temporal cortex and hippocampus of epileptic rats was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. MST1 was expressed in the neuronal membrane and cytoplasm of the temporal cortex and hippocampus. The expression of MST1 increased after seizures, showing a relatively high level within 30 days and reaching its highest point on the seventh day after status epilepticus. The findings of this study indicate that the increased expression of MST1 protein in patients with epilepsy and epileptic rats might play a role in the development of epilepsy.
Collapse
Affiliation(s)
- Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Chunhua Wu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyu Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| |
Collapse
|
19
|
Zheng Y, Gu H, Kong Y. Targeting PTEN in ischemic stroke: From molecular mechanisms to therapeutic potentials. Exp Neurol 2025; 383:115023. [PMID: 39461709 DOI: 10.1016/j.expneurol.2024.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Ischemic stroke remains a leading cause of mortality and disability worldwide, driven by complex pathophysiological mechanisms, including excitotoxicity, oxidative stress, apoptosis, and neuroinflammation. PTEN (Phosphatase and tensin homolog deleted on chromosome 10) plays a crucial role in these processes, influencing key signaling pathways such as PI3K/Akt and mTOR. This review aims to explore PTEN's multifaceted functions in ischemic stroke, examining its interactions with non-coding RNAs, involvement in mitophagy and immune suppression, and overall impact on cellular homeostasis. We will investigate various therapeutic strategies targeting PTEN, including synthetic drugs, natural products, and exosome-based therapies enriched with specific miRNAs. Additionally, we will assess the potential of non-pharmaceutical interventions such as electroacupuncture, exercise, transcranial direct current stimulation (tDCS), and therapeutic hypothermia in modulating PTEN activity to enhance cererbroprotection and functional recovery. By elucidating these aspects, this review aims to inspire and motivate the audience in their research and clinical practice, highlighting PTEN as a promising therapeutic target and paving the way for developing effective treatments for ischemic stroke.
Collapse
Affiliation(s)
- Yane Zheng
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai 200083, China.
| | - Huiying Gu
- Department of Internal Medicine, Tangqiao Community Health Service Center, Shanghai 200127, China
| | - Yuming Kong
- Department of Neurology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200438, China
| |
Collapse
|
20
|
Nabizadeh F, Sheykhlou S, Mahmoodi S, Khalili E, Zafari R, Hosseini H. Neuroimaging Findings of Psychosis in Alzheimer's Disease: A Systematic Review. Brain Behav 2025; 15:e70205. [PMID: 39740792 DOI: 10.1002/brb3.70205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Previous studies on neuroimaging findings in Alzheimer's disease (AD) patients with hallucinations and delusions have yielded inconsistent results. We aimed to systematically review neuroimaging findings of delusions and hallucinations in AD patients to describe the most prominent neuroimaging features. METHODS We performed a comprehensive search in three online databases, including PubMed, Scopus, and Web of Science in June 2023. We included studies that reported neuroimaging features of AD patients with delusion, hallucination, or psychosis. RESULTS After the screening, 34 studies with 2241 AD patients were eligible to be included in our qualitative synthesis. On the basis of the included studies, there are significant changes in the volume and perfusion levels of broad brain areas, including the hippocampus, amygdala, insula, cingulate, occipital, frontal, prefrontal, orbitofrontal, temporal, and parietal cortices in these patients. Moreover, AD patients with psychosis, hallucinations, or delusions reflected different EEG waves compared to AD patients without these disorders. CONCLUSION The results of our review provided evidence about the neuroimaging alterations in AD patients suffering from psychosis, hallucinations, and delusions using different imaging methods. AD patients with psychosis, hallucinations, or delusions have significant differences in the volume and perfusion levels of various brain regions along with alterations in EEG waves and biological molecules compared to patients with only AD.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Alzheimer's Disease Institute, Tehran, Iran
| | - Shadi Sheykhlou
- Medical Laboratory Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Mahmoodi
- Medical Laboratory Department, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Khalili
- Universal Scientific Education and Research Network (USERN), Bandar Abbas, Hormozgan, Iran
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Helia Hosseini
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Guo X, Feng Y, Ji X, Jia N, Maimaiti A, Lai J, Wang Z, Yang S, Hu S. Shared genetic architecture and bidirectional clinical risks within the psycho-metabolic nexus. EBioMedicine 2025; 111:105530. [PMID: 39731856 PMCID: PMC11743124 DOI: 10.1016/j.ebiom.2024.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a complex interplay between psychiatric disorders and metabolic dysregulations. However, most research has been limited to specific disorder pairs, leaving a significant gap in our understanding of the broader psycho-metabolic nexus. METHODS This study leveraged large-scale cohort data and genome-wide association study (GWAS) summary statistics, covering 8 common psychiatric disorders and 43 metabolic traits. We introduced a comprehensive analytical strategy to identify shared genetic bases sequentially, from key genetic correlation regions to local pleiotropy and pleiotropic genes. Finally, we developed polygenic risk score (PRS) models to translate these findings into clinical applications. FINDINGS We identified significant bidirectional clinical risks between psychiatric disorders and metabolic dysregulations among 310,848 participants from the UK Biobank. Genetic correlation analysis confirmed 104 robust trait pairs, revealing 1088 key genomic regions, including critical hotspots such as chr3: 47588462-50387742. Cross-trait meta-analysis uncovered 388 pleiotropic single nucleotide variants (SNVs) and 126 shared causal variants. Among variants, 45 novel SNVs were associated with psychiatric disorders and 75 novel SNVs were associated with metabolic traits, shedding light on new targets to unravel the mechanism of comorbidity. Notably, RBM6, a gene involved in alternative splicing and cellular stress response regulation, emerged as a key pleiotropic gene. When psychiatric and metabolic genetic information were integrated, PRS models demonstrated enhanced predictive power. INTERPRETATION The study highlights the intertwined genetic and clinical relationships between psychiatric disorders and metabolic dysregulations, emphasising the need for integrated approaches in diagnosis and treatment. FUNDING The National Key Research and Development Program of China (2023YFC2506200, SHH). The National Natural Science Foundation of China (82273741, SY).
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Feng
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne, Carlton South, VIC, Australia
| | - Xiaolong Ji
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Sheng Yang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China; Brain Research Institute of Zhejiang University, Hangzhou, 310058, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Chakraborty S, Karmakar V, Chatterjee K, Chatterjee A, Dwivedi M, Gorain B. Chitosan nanoparticle-mediated nose-to-brain delivery of naringenin: Attenuating memory decline in experimental animals via behavioural assessment and modulation of biochemical parameters. Int J Biol Macromol 2025; 286:138336. [PMID: 39638217 DOI: 10.1016/j.ijbiomac.2024.138336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Naringenin, a flavonoid with potent antioxidant properties, faces low bioavailability, limiting its clinical application in Alzheimer's disease. This study developed naringenin-loaded chitosan nanoparticles (NAR-CNPs) for nose-to-brain delivery using the ionic gelation method. The NAR-CNPs exhibited an average particle size of 112.35 ± 1.55 nm, zeta potential of 15.36 ± 2.05 mV, and entrapment efficiency of 69.49 ± 1.88 %, with a sustained release profile (65.80 % over 8 h). Ex vivo permeation studies showed a 1.91-fold higher steady-state flux for NAR-CNPs compared to naringenin suspension, indicating enhanced brain penetration. The NAR-CNPs were safe for goat nasal mucosa and improved cognitive function in scopolamine-induced demented mice, whereas significantly reducing acetylcholinesterase activity (p < 0.001) and increasing antioxidant enzyme activities in the brain of experimental mice. Concurrently, the level of malondialdehyde was decreased in the brain, indicating reduced lipid peroxidation. Histopathological analysis showed a significant increase in neuronal count in NAR-CNPs treated animals compared to control group. These findings suggest that intranasally administered NAR-CNPs hold promise for treating cognitive impairment, though further studies are needed for clinical translation.
Collapse
Affiliation(s)
- Swarup Chakraborty
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Amrita Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
23
|
Akif A, My Nguyen TT, Liu L, Xu X, Kulkarni A, Jiang J, Zhang Y, Hao J. Targeting NLRP3 signaling with a novel sulfonylurea compound for the treatment of vascular cognitive impairment and dementia. RESEARCH SQUARE 2024:rs.3.rs-5611378. [PMID: 39764140 PMCID: PMC11702818 DOI: 10.21203/rs.3.rs-5611378/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Background As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD. Methods In this study, we investigated the therapeutic effects of a synthetic sulfonylurea NLRP3 inhibitor, AMS-17, in a VaD mouse model using bilateral common carotid artery stenosis (BCAS) and elucidated the underlying mechanisms. All mice were randomly divided into three groups: Sham, VaD + Vehicle, and VaD + AMS-17. Cognitive function was assessed using the Y-maze and Morris water maze (MWM) on the 50th day after BCAS. Brain sections and blood serum samples were collected for biomarker analysis and immunohistochemistry. Neurodegeneration, expressions of the molecules involved in the NLRP3 signaling pathways, tight junction proteins, and myelination were assessed using western blotting and immunofluorescence (IF). The levels of Interleukin-1 beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-4 (IL-4) in the blood were measured using ELISA. Results AMS-17 treatment improved cognitive function, enhanced blood-brain barrier (BBB) integrity, and promoted remyelination in VaD mice. Additionally, AMS-17 reduced neurodegeneration and decreased the expression of NLRP3 and its associated proteins, Apoptosis-associated speck-like protein (ASC), and cleaved caspase-1 in the brain. It also lowered pro-inflammatory TNF-α and IL-1β levels, while increasing the anti-inflammatory IL-4 level in the blood. Conclusions The findings of this study provide the first promising evidence for the use of AMS-17 in VaD treatment in mice. This study introduces AMS-17 as a novel chemical scaffold with NLRP3 inhibitory activity, which can be further developed for the treatment of VaD in humans.
Collapse
Affiliation(s)
| | | | - Langni Liu
- The University of Texas Health Science Center at Houston
| | - Xiaotian Xu
- The Affiliated Hospital of Yangzhou University
| | | | | | | | | |
Collapse
|
24
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
25
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
26
|
Zhang QY, Wang Q, Fu JX, Xu XX, Guo DS, Pan YC, Zhang T, Wang H. Multi Targeted Therapy for Alzheimer's Disease by Guanidinium-Modified Calixarene and Cyclodextrin Co-Assembly Loaded with Insulin. ACS NANO 2024; 18:33032-33041. [PMID: 39499644 DOI: 10.1021/acsnano.4c05693] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Amyloid-β (Aβ) is considered a primary therapeutic target for Alzheimer's disease (AD). However, just eliminating Aβ in patients with AD has exhibited restricted clinical efficacy, possibly failing to address the metabolic abnormalities caused by AD, such as insulin resistance. To address this concern, our research has employed two types of macrocyclic amphiphiles, guanidinium-modified calixarene and cyclodextrin coassembly (GCD), as delivery systems for insulin. This approach aimed to tackle the metabolic dysregulation characteristic of AD in an innovative manner by exploring beyond the conventional strategy of Aβ removal. As a result, GCD and insulin coassembly could effectively improve plaque deposition and insulin resistance. The coassembly could also reduce abnormal neuronal apoptosis and synaptic damage and improve cognitive impairment in 5xFAD mice. Therefore, the GCD and insulin coassembly shows promise as a viable therapeutic option for AD.
Collapse
Affiliation(s)
- Qi-Yue Zhang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, P. R. China
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiang Wang
- Department of Anaesthesiology, Peking University First Hospital, Beijing 100034, China
| | - Jing-Xuan Fu
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xin-Xin Xu
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Tao Zhang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
27
|
Wang H, Shi C, Jiang L, Liu X, Tang R, Tang M. Neuroimaging techniques, gene therapy, and gut microbiota: frontier advances and integrated applications in Alzheimer's Disease research. Front Aging Neurosci 2024; 16:1485657. [PMID: 39691161 PMCID: PMC11649678 DOI: 10.3389/fnagi.2024.1485657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder marked by cognitive decline, for which effective treatments remain elusive due to complex pathogenesis. Recent advances in neuroimaging, gene therapy, and gut microbiota research offer new insights and potential intervention strategies. Neuroimaging enables early detection and staging of AD through visualization of biomarkers, aiding diagnosis and tracking of disease progression. Gene therapy presents a promising approach for modifying AD-related genetic expressions, targeting amyloid and tau pathology, and potentially repairing neuronal damage. Furthermore, emerging evidence suggests that the gut microbiota influences AD pathology through the gut-brain axis, impacting inflammation, immune response, and amyloid metabolism. However, each of these technologies faces significant challenges, including concerns about safety, efficacy, and ethical considerations. This article reviews the applications, advantages, and limitations of neuroimaging, gene therapy, and gut microbiota research in AD, with a particular focus on their combined potential for early diagnosis, mechanistic insights, and therapeutic interventions. We propose an integrated approach that leverages these tools to provide a multi-dimensional framework for advancing AD diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Haitao Wang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chen Shi
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Jiang
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaozhu Liu
- Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rui Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxi Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
28
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Pant K, Singh TG, Singh SK, Ali H. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res Rev 2024; 102:102545. [PMID: 39423873 DOI: 10.1016/j.arr.2024.102545] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, has emerged as a key regulator of cellular processes linked to ageing and neurodegeneration. SIRT1 modulates various signalling pathways, including those involved in autophagy, oxidative stress, and mitochondrial function, which are critical in the pathogenesis of neurodegenerative diseases. This review explores the therapeutic potential of SIRT1 in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Preclinical studies have demonstrated that SIRT1 activators, such as resveratrol, SRT1720, and SRT2104, can alleviate disease symptoms by reducing oxidative stress, enhancing autophagic flux, and promoting neuronal survival. Ongoing clinical trials are evaluating the efficacy of these SIRT1 activators, providing hope for future therapeutic strategies targeting SIRT1 in neurodegenerative diseases. This review explores the role of SIRT1 in ageing and neurodegenerative diseases, with a particular focus on its molecular mechanisms, therapeutic potential, and clinical applications.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
29
|
Imran M, Altamimi ASA, Babu MA, Goyal K, Kaur I, Kumar S, Sharma N, Kumar MR, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H. Non-coding RNAs (ncRNAs) as therapeutic targets and biomarkers in oligodendroglioma. Pathol Res Pract 2024; 264:155708. [PMID: 39531874 DOI: 10.1016/j.prp.2024.155708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Oligodendrogliomas (ODGs) are neuroepithelial tumors that need personalized treatment plans because of their unique molecular and histological features. Non-coding RNAs form an epigenetic class of molecules that act as the first steps in gene regulation. They consist of microRNAs, long non-coding RNAs, and circular RNAs. These molecules significantly participate in ODG pathogenesis by regulating ODG initiation, progression, and treatment response. This review is designated to analyze the literature and describe the genomic profile of ODGs, the complex actions of ncRNAs in ODGs pathogenesis and treatment, and their roles as appropriate biomarkers and as one of the precision mechanisms action targets, such as antisense oligonucleotides, small interfering RNAs, gene therapy vectors, peptide nucleic acids, and small molecule inhibitors. Overall, ncRNAs considerably alter the pathological spectrum of ODGs by influencing fundamental processes in tumor biology. Applying ncRNAs in a clinical context exhibits promise for enhanced diagnosis and individualized therapeutic interventions. Nevertheless, the delivery efficacy and potential adverse "off-target" sequels retain the main obstacles undermining clinical potential. Continuous research and technological advancements in ncRNAs offer new insights and promising prospects for revolutionizing oligodendroglioma care, leading to better, personalized treatment outcomes.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadiyah Jadid Alanazi
- Center for Health Research, Northern Border University, Arar, Saudi Arabia; Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf City 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Division of Translational Health Research, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
30
|
Singh M, Ali H, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Siva Prasad GV, Pramanik A, Hassan Almalki W, Imran M. Tau proteins and senescent Cells: Targeting aging pathways in Alzheimer's disease. Brain Res 2024; 1844:149165. [PMID: 39155034 DOI: 10.1016/j.brainres.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-β, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.
Collapse
Affiliation(s)
- Mahaveer Singh
- School of Pharmacy and Technology Management, SVKMs NMIMS University, Shirpur campus, Maharastra India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
31
|
Hussain MS, Sharma S, Kumari A, Kamran A, Bahl G, Bisht AS, Sultana A, Ashique S, Ramalingam PS, Arumugam S. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: pathogenesis and therapeutic potential. Epigenomics 2024; 16:1453-1464. [PMID: 39601046 PMCID: PMC11622780 DOI: 10.1080/17501911.2024.2430170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofibromatosis (NF) is identified as genetic disorder characterized by multiple tumors on nerve tissues. NF1 is the most prevalent form, identified by neurofibromas and skin changes. NF1 is the most prevalent neurofibromatosis disorder, distinct from the rarer NF2 and schwannomatosis (SWN) conditions. NF2, including NF2-related SWN (NF2-SWN), predominantly involves schwannoma formation and differs from NF1 in its genetic basis and clinical presentation. Despite the established genetic basis of NF, effective treatments remain scarce. Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression, impacting pathways vital to tumor biology. This review explores the lncRNAs role in NF pathogenesis along with their potential as therapeutic targets. LncRNAs such as ANRIL and H19 show dysregulated expression in NF, influencing signaling pathways like Ras/MAPK and JAK/STAT, thereby contributing to tumor development. Understanding these interactions sheds light on the molecular mechanisms underlying NF and highlights lncRNAs as potential biomarkers of diagnosis and prognosis of NF. Additionally, therapeutic strategies targeting lncRNAs with antisense oligonucleotides (ASOs) or CRISPR-Cas9 offer promising treatment options. The present review emphasizes crucial role of lncRNAs in NF pathogenesis and their promise to create innovative treatments, aiming to improve patient outcomes and meet the urgent need for effective NF therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Somya Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Chandigarh, India
| | | | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University (Deemed to be University), Mangalore, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| | | | - Sivakumar Arumugam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
32
|
Cui D, Liu H, Cao L, Du X, Liu D, Liu Z, Wang T, Yang H, Zheng X, Xie Z, Xu S, Bi J, Wang P. MST1, a novel therapeutic target for Alzheimer's disease, regulates mitochondrial homeostasis by mediating mitochondrial DNA transcription and the PI3K-Akt-ROS pathway. J Transl Med 2024; 22:1056. [PMID: 39578795 PMCID: PMC11583452 DOI: 10.1186/s12967-024-05852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent irreversible neurodegenerative condition marked by gradual cognitive deterioration and neuronal loss. The mammalian Ste20-like kinase (MST1)-Hippo pathway is pivotal in regulating cell apoptosis, immune response, mitochondrial function, and oxidative stress. However, the association between MST1 and mitochondrial function in AD remains unknown. Therefore, this study investigates the effect of MST1 on neuronal damage and cognitive impairment by regulating mitochondrial homeostasis in AD. METHODS In this study, 4- and 7-month-old 5xFAD mice were selected to simulate the early and middle stages of AD, respectively; age-matched wild-type mice served as controls for comparative analysis. Adeno-associated virus (AAV) was injected into the hippocampus of mice. Four weeks post-injection, cognitive function, neuronal damage indicators, and mitochondrial morphology, dynamics, oxidative stress, ATP, and apoptosis-related indicators were evaluated. Additionally, RNA-sequencing was performed on the hippocampal tissue of 5xFAD mice and MST1-knockdown 5xFAD mice. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on differentially expressed genes to elucidate the potential mechanism of MST1. In vitro studies were performed to investigate the effects of MST1 on SH-SY5Y model cell viability and mitochondrial function and validate the potential underlying molecular mechanisms. RESULTS MST1 overexpression accelerated neuronal degeneration and cognitive deficits in vivo while promoting oxidative stress and mitochondrial damage. Similarly, in vitro, MST1 overexpression facilitated apoptosis and mitochondrial dysfunction. MST1 knockdown and chemical inactivation reduced cognitive decline, mitochondrial dysfunction, and neuronal degeneration. Mechanistically, MST1 regulated the transcription of mitochondrial genes, including MT-ND4L, MT-ATP6, and MT-CO2, by binding to PGC1α. Moreover, MST1 influenced cellular oxidative stress through the PI3K-Akt-ROS pathway, ultimately disrupting mitochondrial homeostasis and mediating cell damage. CONCLUSIONS Cumulatively, these results suggest that MST1 primarily regulates mitochondrial DNA transcription levels by interacting with PGC1α and modulates cellular oxidative stress through the PI3K-Akt-ROS pathway, disrupting mitochondrial homeostasis. This discovery can be exploited to potentially enhance mitochondrial energy metabolism pathways by targeting MST1, offering novel potential therapeutic targets for treating AD.
Collapse
Affiliation(s)
- Dongqing Cui
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Haixia Liu
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Lili Cao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaowei Du
- The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Dingxin Liu
- The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Zhiping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Tong Wang
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Hui Yang
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Xiaolei Zheng
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Zhaohong Xie
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, China.
| |
Collapse
|
33
|
Qi Z, Deng S, Wu Y, Ye B. The effects of Ganoderma leucocontextum triterpenoids treatment on the D-galactose and aluminum chloride-induced Alzheimer-like pathology in mouse brain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118530. [PMID: 38977221 DOI: 10.1016/j.jep.2024.118530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ganoderma leucocontextum T.H. Li, W. Q. Deng M. Wang & H.P.Hu. is a highland herbal medicine that has been shown to nourish the nervesand prolong life. Nevertheless, there is no evidence to indicate that Ganoderma leucocontextum triterpenoids (GLTs) reduce the damage triggered by Alzheimer's disease (AD). AIM OF THE STUDY The aim of this investigation was to ascertain the protective effects of GLTs on AD mice models and cells, as well as to look into potential pathways. MATERIALS AND METHODS In this study, the phytochemical characterization of GLTs was performed by High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The AD mouse model was induced by injecting intraperitoneally with D-galactose (120 mg/kg) and administering orally with aluminum chloride (20 mg/kg) daily for 28 days. After that, donepezil (5 mg/kg) and GLTs (0.4, 0.8, and 1.6 g/kg) were administered orally for 35 days. During the treatment period, aluminum chloride (20 mg/kg) and D-galactose (120 mg/kg) were continuously administered. And the behavior of the animals and the molecular changes of the hippocampus were determined after the whole experimental procedure. Furthermore, BV-2 cells were employed to validate GLTs' anti-neuroinflammatory properties. RESULTS The total triterpenoids content was 443.12 ± 0.21 g/kg and was inferred to contain 19 classes of substances such as organic acids, amino acids, vitamins, flavonoids, and other chemicals in GLTs. Treatment of D-galactose/aluminum chloride-induced mouse with GLTs can ameliorate AD symptoms, counteract cognitive decline, improve Aβ1-42 deposition, reduce the expression level of pro-apoptotic proteins, and attenuate the activation of hippocampal microglia and astrocytes. GLTs significantly increased the expression of antioxidant enzymes and significantly reduced the expression of inflammatory factors. GLTs inhibits nuclear factor kappa B (NF-κB) nuclear translocation and preserves myd88/traf6-mediated mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, GLTs (2 and 5 mg/mL) inhibited the generation of nitric oxide and protected lipopolysaccharide (1 mg/L)-induced neuroinflammation in BV-2 cells. CONCLUSIONS Taken together, Ganoderma leucocontextum triterpenoids can improve cognitive functions, including learning and memory, by reducing neuroinflammation and oxidative stress, preventing apoptosis, and controlling amyloid genesis.
Collapse
Affiliation(s)
- Zhongzhi Qi
- Nuclear Medicine Department of West China Hospital of Sichuan University, China.
| | - Shizhan Deng
- Medical College of Tibet University, Lasa, 850002, China.
| | - Yexin Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610041, China.
| | - Bengui Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610041, China; Medical College of Tibet University, Lasa, 850002, China.
| |
Collapse
|
34
|
Ye Y, Fu C, Li Y, Sun J, Li X, Chai S, Li S, Hou M, Cai H, Wang Z, Wu M. Alternate-day fasting improves cognitive and brain energy deficits by promoting ketone metabolism in the 3xTg mouse model of Alzheimer's disease. Exp Neurol 2024; 381:114920. [PMID: 39142368 DOI: 10.1016/j.expneurol.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is characterized by disorders in brain energy. The lack of sufficient energy for nerve function leads to cognitive dysfunction and massive neuronal loss in AD. Ketone bodies are an alternative to glucose as a source of energy in the brain, and alternate-day fasting (ADF) promotes the production of the ketone body β-hydroxybutyric acid (βOHB). In this study, 7-month-old male WT mice and 3xTg mice underwent dietary control for 20 weeks. We found that ADF increased circulating βOHB concentrations in 3xTg mice, improved cognitive function, reduced anxiety-like behaviors, improved hippocampal synaptic plasticity, and reduced neuronal loss, Aβ oligomers and tau hyperphosphorylation. In addition, ADF improved mitochondrial bioenergetic function by promoting brain ketone metabolism and rescued brain energy deficits in 3xTg mice. A safety evaluation showed that ADF improved exercise endurance and liver and kidney function in 3xTg mice without negatively affecting muscle motor and heart functions. This study provides a theoretical basis and strong support for the application of ADF as a non-drug strategy for preventing and treating brain energy defects in the early stage of AD.
Collapse
Affiliation(s)
- Yucai Ye
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Chaojing Fu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Yan Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Junli Sun
- School of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xinru Li
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shifan Chai
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shuo Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Meng Hou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Hongyan Cai
- Department of Microbiology and Immunology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaojun Wang
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| | - Meina Wu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| |
Collapse
|
35
|
Shaik MR, Ramasamy M, Jain D, Muthu K, Marunganathan V, Manivannan C, Hussain SA, Deepak P, Thiyagarajulu N, Guru A, Venkatesan D. Synergistic Action of Rutin-Coated Zinc Oxide Nanoparticles: Targeting Biofilm Formation Receptors of Dental Pathogens and Modulating Apoptosis Genes for Enhanced Oral Anticancer Activity. J Biochem Mol Toxicol 2024; 38:e70030. [PMID: 39470147 DOI: 10.1002/jbt.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Oral diseases are often associated with bacterial and fungal pathogens such as Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, and Candida albicans. This research explored a novel approach to addressing these pathogens by synthesizing zinc oxide nanoparticles (ZnO NPs) coated with rutin (RT), a plant-derived compound. The synthesized ZnO-RT NPs were comprehensively characterized using UV-Vis spectrophotometer, SEM, and EDAX techniques to confirm their structural composition. The antioxidant potential was assessed through free radical scavenging assays. Additionally, the antimicrobial activity of ZnO-RT NPs was evaluated using a zone of inhibition assay against oral pathogens. Molecular docking studies with the Autodock tool were performed to elucidate the interactions between RT and the receptors of oral pathogens. The findings demonstrated that ZnO-RT NPs exhibited robust free radical scavenging activity. Furthermore, they showed significant antimicrobial activity with a minimal inhibitory concentration of 40 μg/mL against oral pathogens. ZnO-RT NPs also displayed dose-dependent anticancer effects on human oral cancer cells at concentrations of 10, 20, 40, and 80 μg/mL. Mechanistic insights into the anticancer activity on KB cells revealed the upregulation of apoptotic genes. This study underscores the promising potential of ZnO-RT NPs for dental applications due to their strong antioxidant, anticancer, and antimicrobial properties. These nanoparticles offer a hopeful prospect for addressing oral pathogen challenges and enhancing overall oral health.
Collapse
Affiliation(s)
- Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohankumar Ramasamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, India
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vanitha Marunganathan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Chandrakumar Manivannan
- Division of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirapalli, Tamil Nadu, India
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Paramasivam Deepak
- Department of Life sciences, Kristu Jayanti College (Autonomous) K. Narayanapura, Kothanur, Bengaluru, India
| | - Nathiya Thiyagarajulu
- Department of Life sciences, Kristu Jayanti College (Autonomous) K. Narayanapura, Kothanur, Bengaluru, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Dhivya Venkatesan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
36
|
Imran M, Abida, Kamal M, Al Fares MA, Hazazi A, Sabour AA, Alshiekheid MA, Sulaiman T, Abdulkhaliq AA, Al Kaabi NA, Alfaresi M, Rabaan AA. Non-coding RNAs in meningitis: Key regulators of immune response and inflammation. Pathol Res Pract 2024; 263:155626. [PMID: 39353323 DOI: 10.1016/j.prp.2024.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Non-coding RNAs (ncRNAs) contain circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and micro-ribonucleic acids (miRNAs). These RNAs receive good functionality in modulation of gene expressions & cellular roles. Recent research is shedding light on their pivotal roles in the pathophysiology of inflammatory meningitis, such as viral, fungal, or bacterial infections. This review addresses the intricate roles of non-coding RNAs (ncRNAs) that transcribe code-independent mRNA and other biological elements that control inflammation and immunological events extant during meningitis. ncRNAs, acting on a myriad of immune cell development, cytokine production, pathogen recognition, and so forth, finely orchestrate the host's immune response. Although lncRNAs and circRNAs are associated with gene networks regulating immune responses, miRNAs can precisely modulate the expression of pro- and anti-inflammatory cytokines. Moreover, ncRNAs have unique expression patterns in disease states and are stable in bio-fluids; therefore, they can serve as specific molecular biomarkers for meningitis concerning the diagnosis and prognosis. It might also be helpful to target ncRNAs as a therapeutic strategy to impact immune regulation and inflammation. Here, we review the current knowledge of how ncRNAs function in meningitis and discuss adopted approaches and perspectives and their implications for therapeutic strategies.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Altaf A Abdulkhaliq
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi 92323, United Arab Emirates; Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
37
|
Madesh S, Sudhakaran G, Meenatchi R, Manikandan K, Dhayanithi NB, Almutairi MH, Almutairi BO, Guru A, Arockiaraj J. Neurobehavioral and bioaccumulative toxicity in adult in-vivo zebrafish model due to prolonged cadmium exposure in the presence of ketoprofen. J Biochem Mol Toxicol 2024; 38:e70005. [PMID: 39403942 DOI: 10.1002/jbt.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 01/12/2025]
Abstract
Increasing industrial activity causes the release of chemical compounds into aquatic habitats, including toxic heavy metals like cadmium and medications like ketoprofen, posing considerable ecological concerns. Although previous studies have shown that cadmium and ketoprofen individually cause cognitive impairment, there is a lack of information on the combined neurological effects of the two substances. We investigated the neurological consequences of persistent cadmium exposure in the presence of ketoprofen on adult zebrafish, providing an essential model for understanding cumulative impacts on vertebrate organisms. Behavioral assessments, bioaccumulation rates, biochemical studies, and histopathological exams were conducted over 42 days in authentic environmental settings. The results of our study show that cadmium (10 µg/L) and ketoprofen (10 and 100 µg/L) at environmentally relevant concentrations had a significant impact on locomotor activity, social interactions, and cognitive responses, indicating cumulative neurotoxicity in co-exposure groups compared to single pollutant groups. Biochemical tests show disturbances in antioxidant defense systems, while histological examinations reveal structural changes in zebrafish brain regions. Ketoprofen influences cadmium accumulation in the brain, underscoring the importance of conducting complete evaluations to understand the intricate interactions between environmental pollutants. This study improves our understanding of the complex interactions between heavy metals and medications, stressing the need to consider combined exposure when assessing the neurological effects on vertebrate models.
Collapse
Affiliation(s)
- S Madesh
- Department of Biotechnology, Toxicology and Pharmacology Laboratory, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Department of Biotechnology, Toxicology and Pharmacology Laboratory, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | | | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Toxicology and Pharmacology Laboratory, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
38
|
Alharbi KS. Non-coding RNAs as therapeutic targets in Parkinson's Disease: A focus on dopamine. Pathol Res Pract 2024; 263:155641. [PMID: 39395297 DOI: 10.1016/j.prp.2024.155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Parkinson's Disease is a highly complicated neurological disorder, with a key manifestation of loss of dopaminergic neurons. Despite the plethora of medicines that alleviate the symptoms, there is an urgent need for new treatments acting on the fundamental pathology of PD. Non-coding RNAs are becoming increasingly important in gene regulation and various cellular processes and are found to play a role in PD pathophysiology. This review analyzes the cross-talk of distinct ncRNAs with dopamine signaling. We attempt to constrain the various ncRNA networks that can activate dopamine production. First, we describe the deregulation of miRNAs that target dopamine receptors and have been implicated in PD. Next, we turn to the functions of lncRNAs in dopaminergic neurons and the connections to susceptibility genes for PD. Finally, we will analyze the novel circRNAs, such as ciRS-7, which may modulate dopamine-linked processes and serve as possible PD biomarkers. In this review, we describe recent progress in dopamine neuron revival to treat PD and the therapeutic potential of ncRNA. This review critically evaluates the available data, and we predict the role of some ncRNAs, such as PTBP1, to become candidate treatment targets in the future. Thus, this review aims to summarize the molecular causes for the deficit in dopamine signaling in PD and point to novel ncRNAs-linked therapeutic directions in neuroscience.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, AL Qassim 51452, Saudi Arabia.
| |
Collapse
|
39
|
Shao L, Li Y, Yuan Z, Guo X, Zeng G, Liu J. The effect of clozapine on immune-related biomarkers in schizophrenia patients. Brain Res Bull 2024; 218:111104. [PMID: 39424000 DOI: 10.1016/j.brainresbull.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Globally, schizophrenia is one of the main causes of disability. Approximately 1 % of the general population suffers from schizophrenia, and 30 % of cases are unresponsive to therapy. Clozapine is the gold standard for therapy-resistant schizophrenia (TRS), yet it has limited effectiveness and serious adverse events in some patients. Because of the possibility of severe neutropenia, clozapine administration requires monthly hematological monitoring in the first four months. Previous investigations have demonstrated the immune system alteration after clozapine treatment in schizophrenia patients. Besides, it has been proposed that clozapine changes the cytokines profile in schizophrenia patients. These findings highlighted the need to learn more about the disease's etiology and investigate the relationship between peripheral immune system markers and clozapine response to support strategies for better treatment outcomes. The time decision-making to start clozapine could be significantly decreased if some biomarkers were developed to assist physicians in anticipating whether a particular patient will respond to the medication. Therefore, this study aimed to comprehensively review the effect of clozapine on immune-related biomarkers in schizophrenia patients.
Collapse
Affiliation(s)
- Lu Shao
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - Yu Li
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - ZhiYao Yuan
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - XiYu Guo
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - GuoJi Zeng
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - JunPeng Liu
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| |
Collapse
|
40
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
41
|
Thapa R, Bhat AA, Gupta G, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Prasad GVS, Pramanik A, Ali H. CRBN-PROTACs in Cancer Therapy: From Mechanistic Insights to Clinical Applications. Chem Biol Drug Des 2024; 104:e70009. [PMID: 39496477 DOI: 10.1111/cbdd.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
Cereblon (CRBN), a member of the E3 ubiquitin ligase complex, has gained significant attention as a therapeutic target in cancer. CRBN regulates the degradation of various proteins in cancer progression, including transcription factors and signaling molecules. PROTACs (proteolysis-targeting chimeras) are a novel approach that uses the cell's degradation system to remove disease-causing proteins selectively. CRBN-dependent PROTACs work by tagging harmful proteins for destruction through the ubiquitin-proteasome system. This strategy offers several advantages over traditional protein inhibition methods, including the potential to overcome drug resistance. Recent progress in developing CRBN-based PROTACs has shown promising preclinical results in both hematologic malignancies and solid tumors. Additionally, CRBN-based PROTACs have enhanced our understanding of CRBN's role in cancer, potentially serving as biomarkers for patient stratification and predicting therapeutic responses. In this review, we delineate the mechanisms of action for CRBN-dependent PROTACs (CRBN-PROTACs), summarize recent advances in preclinical and clinical applications, and provide our perspective on future development.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
42
|
Almalki WH, Almujri SS. Therapeutic approaches to microglial dysfunction in Alzheimer's disease: Enhancing phagocytosis and metabolic regulation. Pathol Res Pract 2024; 263:155614. [PMID: 39342887 DOI: 10.1016/j.prp.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Microglia are essential in neurogenesis, synaptic pruning, and homeostasis. Nevertheless, aging, and cellular senescence may modify their role, causing them to shift from being shields to being players of neurodegeneration. In the aging brain, the population of microglia increases, followed by enhanced activity of genes related to neuroinflammation. This change increases their ability to cause inflammation, resulting in a long-lasting state of inflammation in the brain that harms the condition of neurons. In Alzheimer's Disease (AD), microglia are located inside amyloid plaques and exhibit an inflammatory phenotype characterized by a diminished ability to engulf and remove waste material, worsening the illness's advancement. Genetic polymorphisms in TREM2, APOE, and CD33 highlight the significant impact of microglial dysfunction in AD. This review examines therapeutic approaches that aim to address microglial dysfunction, such as enhancing the microglial capability to engulf and remove amyloid-β clumps and regulating microglial metabolism and mitochondrial activity. Microglial transplanting and reprogramming advancements show the potential to restore their ability to reduce inflammation. Although there has been notable advancement, there are still voids in our knowledge of microglial biology, including their relationships with other brain cells. Further studies should prioritize the improvement of human AD models, establish standardized methods for characterizing microglia, and explore how various factors influence microglial responses. It is essential to tackle these problems to create effective treatment plans that focus on reducing inflammation in the brain and protecting against damage in age-related neurodegenerative illnesses.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
43
|
Sardar A, Abid OUR, Rehman W, Rasheed L, Alanazi MM, Daud S, Rafiq M, Wadood A, Shakeel M. Synthesis and biological evaluation of diclofenac acid derivatives as potential lipoxygenase and α-glucosidase inhibitors. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240543. [PMID: 39569345 PMCID: PMC11576109 DOI: 10.1098/rsos.240543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 09/17/2024] [Indexed: 11/22/2024]
Abstract
Inflammation is a complex physiological response associated with the onset and progression of various disorders, including diabetes. In this study, we synthesized a series of diclofenac acid derivatives and evaluated their potential anti-diabetic and anti-inflammatory activities. The compounds were specifically assessed for their ability to inhibit 15-lipoxygenase (15-LOX) and α-glucosidase enzymes. The structures of synthesized derivatives were confirmed through 1H nuclear magnetic resonance (NMR), 13C-NMR and high-resolution mass spectrometry (electron ionization) analysis. All these synthesized derivatives exhibited varying degrees of inhibitory activity against LOX, when compared with standard drugs, compounds 5a (half-maximal inhibitory concentration (IC50) 14 ± 1 µM), 5b (IC50 61 ± 1 µM) and 7c (IC50 67 ± 1 µM) showed good activity against the LOX enzyme. While the α-glucosidase inhibitory results revealed that most of the compounds exhibited significant activity when compared with the standard drug acarbose (376 ± 1 µM). The most potent compounds as α-glucosidase inhibitors were 7b (3 ± 1 µM), 4b (5 ± 1 µM), 7a (7 ± 1 µM) and 8b (11 ± 1 µM). All these active compounds were found to be least toxic and maintained the mononuclear cells viability at 96-97% compared with that of controls as determined by multi-transaction translator assay. Molecular docking studies further reiterated the significance of these 'lead' compounds with great potential against the target enzymes in the process of drug discovery.
Collapse
Affiliation(s)
- Asma Sardar
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | | | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Liaqat Rasheed
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saima Daud
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Muhammad Rafiq
- South China University of Technology School of Chemistry and Chemical Engineering, Guangzhou, People's Republic of China
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammed Shakeel
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
44
|
Sun J, Ren H, Wang J, Xiao X, Zhu L, Wang Y, Yang L. CHAC1: a master regulator of oxidative stress and ferroptosis in human diseases and cancers. Front Cell Dev Biol 2024; 12:1458716. [PMID: 39534397 PMCID: PMC11554486 DOI: 10.3389/fcell.2024.1458716] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
CHAC1, an essential regulator of oxidative stress and ferroptosis, is increasingly recognized for its significant roles in these cellular processes and its impact on various human diseases and cancers. This review aims to provide a comprehensive overview of CHAC1's molecular functions, regulatory mechanisms, and effects in different pathological contexts. Specifically, the study objectives are to elucidate the biochemical pathways involving CHAC1, explore its regulatory network, and discuss its implications in disease progression and potential therapeutic strategies. As a γ-glutamyl cyclotransferase, CHAC1 degrades glutathione, affecting calcium signaling and mitochondrial function. Its regulation involves transcription factors like ATF4 and ATF3, which control CHAC1 mRNA expression. CHAC1 is crucial for maintaining redox balance and regulating cell death pathways in cancer. Its elevated levels are associated with poor prognosis in many cancers, indicating its potential as a biomarker and therapeutic target. Additionally, CHAC1 influences non-cancerous diseases such as neurodegenerative and cardiovascular disorders. Therapeutically, targeting CHAC1 could increase cancer cell sensitivity to ferroptosis, aiding in overcoming resistance to standard treatments. This review compiles current knowledge and recent discoveries, emphasizing CHAC1's vital role in human diseases and its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Jiasen Sun
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Hui Ren
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Jiawen Wang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Xiang Xiao
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Lin Zhu
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yanyan Wang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Lili Yang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| |
Collapse
|
45
|
Wang X, Wang Q, Wang X, Zhao H, Zhao C, Jiao Y, Shi H, Chen C, Chen H, Wang P, Song T. Early intervention using long-term rhythmic pulsed magnetic stimulation alleviates cognitive decline in a 5xFAD mouse model of Alzheimer's disease. Exp Neurol 2024; 383:115002. [PMID: 39419435 DOI: 10.1016/j.expneurol.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent form of dementia, but no effective therapeutic strategy is available to date. Rhythmic magnetic stimulation is an attractive means of neuron modulation that could be beneficial for restoring learning and memory abilities. OBJECTIVE To assess the effect of a compound pulsed rhythmic magnetic field (cPMF) on cognition during AD progression and to explore the appropriate cPMF intervention period. METHODS Female 5xFAD mice aged 10 weeks and 18 weeks were exposed to cPMF with a carrier frequency of 40 Hz, repeated at 5 Hz for 1 h/d for 8 consecutive weeks. The Morris water maze (MWM) test was used for cognitive behavioral assessment. Furthermore, changes in molecular pathology within the brain were detected using immunofluorescence staining and real-time PCR. RESULTS 10-week-old AD mice treated with cPMF explored the target quadrant more frequently than sham-exposed AD mice in MWM test, exhibiting improved learning and memory abilities. Additionally, cPMF exposure alleviated Aβ plaque deposition and astrogliosis in the AD brain. Moreover, neurotrophic factor fibroblast growth factor 1 (FGF1) in the AD brain was upregulated by cPMF treatment. However, in 18-week-old AD mice treated with cPMF, cognitive performance and Fgf1 gene expression were not significantly improved, although Aβ plaque deposition and astrogliosis were alleviated. CONCLUSION Early intervention via long-term rhythmic cPMF stimulation may alleviate the histopathological features and enhance neuroprotective gene Fgf1 expression, thereby improving the cognitive performance of 5xFAD mice, which should provide promising insight for the clinical treatment of patients with AD.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmeng Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Zhao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuncheng Zhao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongkai Shi
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
47
|
Sahu MR, Ahmad MH, Mondal AC. MST1 selective inhibitor Xmu-mp-1 ameliorates neuropathological changes in a rat model of sporadic Alzheimer's Disease by modulating Hippo-Wnt signaling crosstalk. Apoptosis 2024; 29:1824-1851. [PMID: 38760516 DOI: 10.1007/s10495-024-01975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by progressive cognitive impairment accompanied by aberrant neuronal apoptosis. Reports suggest that the pro-apoptotic mammalian set20-like kinase 1/2 (MST1/2) instigates neuronal apoptosis via activating the Hippo signaling pathway under various stress conditions, including AD. However, whether inhibiting MST1/2 has any therapeutic benefits in AD remains unknown. Thus, we tested the therapeutic effects of intervening MST1/2 activation via the pharmacological inhibitor Xmu-mp-1 in a sporadic AD rat model. Sporadic AD was established in adult rats by intracerebroventricular streptozotocin (ICV-STZ) injection (3 mg/kg body weight). Xmu-mp-1 (0.5 mg/kg/body weight) was administered once every 48 h for two weeks, and Donepezil (5 mg/kg body weight) was used as a reference standard drug. The therapeutic effects of Xmu-mp-1 on ICV-STZ rats were determined through various behavioral, biochemical, histopathological, and molecular tests. At the behavioral level, Xmu-mp-1 improved cognitive deficits in sporadic AD rats. Further, Xmu-mp-1 treatment reduced STZ-associated tau phosphorylation, amyloid-beta deposition, oxidative stress, neurotoxicity, neuroinflammation, synaptic dysfunction, neuronal apoptosis, and neurodegeneration. Mechanistically, Xmu-mp-1 exerted these neuroprotective actions by inactivating the Hippo signaling while potentiating the Wnt/β-Catenin signaling in the AD rats. Together, the results of the present study provide compelling support that Xmu-mp-1 negated the neuronal dysregulation in the rat model of sporadic AD. Therefore, inhibiting MST/Hippo signaling and modulating its crosstalk with the Wnt/β-Catenin pathway can be a promising alternative treatment strategy against AD pathology. This is the first study providing novel mechanistic insights into the therapeutic use of Xmu-mp-1 in sporadic AD.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
48
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
49
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
50
|
Thangavelu L, Moglad E, Afzal M, Almalki WH, Malathi H, Bansal P, Rani B, Walia C, Sivaprasad GV, Rajput P, Imran M. Non-coding RNAs in Parkinson's disease: Regulating SNCA and alpha-synuclein aggregation. Pathol Res Pract 2024; 261:155511. [PMID: 39094523 DOI: 10.1016/j.prp.2024.155511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Parkinson's disease is one of the vital neurodegenerative ailments attributed to a rise in Alpha-synuclein proteins leading to the advancement of motor and cognitive deterioration. Interestingly, in PD lncRNAs, miRNAs and siRNAs are also key regulators of SNCA and alpha-synuclein aggregation. This review will focus on the roles of these three types of small RNAs in trebling the development of PD through regulating SNCA expression or alpha-synuclein protein mediating the RNA from acting. Parkinson's disease is defined by the build-up of alpha-synuclein protein resulting predominantly from the elevated expression level of the SNCA gene. Non-coding RNAs have gained broad appeal as fundamental modulators of gene expression and protein aggregation dynamics, with significant implications on the aetiology of PD. LncRNAs modulate SNCA transcription and edit epigenetic modifications, while miRNA target mRNA is involved in the stability and translation of count alpha-synuclein. Considering all these data, siRNAs can achieve the precise gene silencing effect that directly induces the downregulation of SNCA mRNA. This review also summarizes some recent reports about the interaction between these ncRNAs with the SNCA gene and alpha-synuclein protein, each through its independent in addition to synergistic mechanisms. This review highlights the possibility of therapeutic interventions to perturb SNCA expression to prevent alpha-synuclein aggregation via targeting ncRNAs that might be spun off novel drug development for PD.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|