1
|
Horvath G, Ducza E, Adlan LG, Büki A, Kekesi G. Distinct Effects of Olanzapine Depot Treatment on Behavior and Muscarinic M1 Receptor Expression in the Triple-Hit Wisket Rat Model of Schizophrenia. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70015. [PMID: 39844699 PMCID: PMC11754962 DOI: 10.1111/gbb.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to characterize the triple-hit schizophrenia-like model rats (Wisket) by the assessment of (1) behavioral parameters in different test conditions (reward-based Ambitus test and HomeManner system) for a prolonged period, (2) cerebral muscarinic M1 receptor (M1R) expression, and (3) the effects of olanzapine treatment on these parameters. Wistar (control) and Wisket rats were injected for three consecutive weeks with olanzapine depot (100 mg/kg) and spent 4 weeks in large cages with environmental enrichment (HomeManner). The vehicle-treated Wisket rats spent longer time awake with decreased grooming activity compared to controls, without changes in their active social behavior (sniffing, playing, fighting) obtained in HomeManner. Olanzapine treatment decreased most of these parameters, only the passive social interaction (huddling during sleeping) enhanced mostly in the Wisket rats on the injection day, which recovered within 4 days. In the Ambitus test, vehicle-treated Wisket rats showed lower locomotor and exploratory activities and impaired cognition compared to control rats, deteriorating by olanzapine in both groups. In Wisket brain samples, the M1R mRNA expression was significantly lower in the cerebral cortex and elevated in the hippocampus, with no difference in the prefrontal cortex versus control. Olanzapine normalized the hippocampal M1R expression, but enhanced it in the prefrontal cortex. The triple-hit Wisket model rats had impaired behavioral characteristics in both acute reward-based test and undisturbed circumstances investigated for prolonged periods, and altered cerebral M1R expression. Chronic olanzapine treatment resulted deterioration of some parameters in control group, and could restore only few negative signs in model rats.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of PharmacyUniversity of SzegedSzegedHungary
| | | | - Alexandra Büki
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| | - Gabriella Kekesi
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| |
Collapse
|
2
|
Shan W, Zhou Z, Wang G, Peng X. Prevalence of and factors associated with overweight and obesity in patients with severe mental disorders in Shenzhen: results from the urban Chinese population. Public Health Nutr 2024; 27:e227. [PMID: 39508091 PMCID: PMC11645123 DOI: 10.1017/s1368980024001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To determine the prevalence of overweight and obesity in patients with severe mental disorders (SMD) and the factors associated with their socio-demographic and disease characteristics in a cross-sectional population-based study. DESIGN This analysis examined the prevalence of overweight and obesity in 14 868 managed SMD patients in an urban area of Shenzhen city based on data from the health information monitoring system in 2021. Multivariate logistic regression were used to identify the factors associated with the prevalence of overweight and obesity in patients with SMD. SETTING China. PARTICIPANTS 14 868 patients with SMD. RESULTS The prevalence of overweight and obesity in patients with SMD in this study was 32·6 % and 16·1 %, respectively. In multivariate analysis, married status, Shenzhen household registration, management durations of 5-10 years and >10 years, participation in family physician services, taking clozapine or aripiprazole, FPG > 6·1 mmol/l, hypertension, TC ≥ 5·2 mmol/l, TG ≥ 1·7 mmol/l, and more frequent follow-ups in the past year were associated with higher odds of overweight and obesity. Compared to their respective reference categories, living with parents, spouse and children, taking risperidone, aripiprazole, amisulpride and perphenazine, FPG > 6·1 mmol/l, hypertension, TC ≥ 5·2 mmol/l, TG ≥ 1·7 mmol/l, and more frequent follow-ups in the past year were associated with higher odds of obesity. CONCLUSION We observed a high prevalence of overweight and obesity in patients with SMD in this study. The findings highlight the need for integrated management of overweight and obesity risk factors among patients with SMD.
Collapse
Affiliation(s)
- Wei Shan
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Public Health, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Zhijian Zhou
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Public Health, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Guojun Wang
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Public Health, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Xiaodong Peng
- Department of Public Health, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Burghardt KJ, Burghardt PR, Howlett BH, Dass SE, Zahn B, Imam AA, Mallisho A, Msallaty Z, Seyoum B, Yi Z. Alterations in Skeletal Muscle Insulin Signaling DNA Methylation: A Pilot Randomized Controlled Trial of Olanzapine in Healthy Volunteers. Biomedicines 2024; 12:1057. [PMID: 38791018 PMCID: PMC11117943 DOI: 10.3390/biomedicines12051057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Antipsychotics are associated with severe metabolic side effects including insulin resistance; however, the mechanisms underlying this side effect are not fully understood. The skeletal muscle plays a critical role in insulin-stimulated glucose uptake, and changes in skeletal muscle DNA methylation by antipsychotics may play a role in the development of insulin resistance. A double-blind, placebo-controlled trial of olanzapine was performed in healthy volunteers. Twelve healthy volunteers were randomized to receive 10 mg/day of olanzapine for 7 days. Participants underwent skeletal muscle biopsies to analyze DNA methylation changes using a candidate gene approach for the insulin signaling pathway. Ninety-seven methylation sites were statistically significant (false discovery rate < 0.05 and beta difference between the groups of ≥10%). Fifty-five sites had increased methylation in the skeletal muscle of olanzapine-treated participants while 42 were decreased. The largest methylation change occurred at a site in the Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha (PPARGC1A) gene, which had 52% lower methylation in the olanzapine group. Antipsychotic treatment in healthy volunteers causes significant changes in skeletal muscle DNA methylation in the insulin signaling pathway. Future work will need to expand on these findings with expression analyses.
Collapse
Affiliation(s)
- Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (B.H.H.); (S.E.D.)
| | - Paul R. Burghardt
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Bradley H. Howlett
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (B.H.H.); (S.E.D.)
| | - Sabrina E. Dass
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (B.H.H.); (S.E.D.)
| | - Brent Zahn
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ahmad A. Imam
- Internal Medicine Department, College of Medicine, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Abdullah Mallisho
- Division of Endocrinology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (A.M.); (Z.M.); (B.S.)
| | - Zaher Msallaty
- Division of Endocrinology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (A.M.); (Z.M.); (B.S.)
| | - Berhane Seyoum
- Division of Endocrinology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (A.M.); (Z.M.); (B.S.)
| | - Zhengping Yi
- Department of Pharmaceutical Science, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA;
| |
Collapse
|
4
|
Liu X, Lan X, Zhang X, Ye H, Shen L, Hu M, Chen X, Zheng M, Weston-Green K, Jin T, Cui X, Zhou Y, Lu X, Huang XF, Yu Y. Olanzapine attenuates 5-HT2cR and GHSR1a interaction to increase orexigenic hypothalamic NPY: Implications for neuronal molecular mechanism of metabolic side effects of antipsychotics. Behav Brain Res 2024; 463:114885. [PMID: 38296202 DOI: 10.1016/j.bbr.2024.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
The main cause of second-generation antipsychotic (SGA)-induced obesity is considered due to the antagonism of serotonin 2c receptors (5-HT2cR) and activation of ghrelin receptor type 1a (GHSR1a) signalling. It is reported that 5-HT2cR interacted with GHSR1a, however it is unknown whether one of the SGA olanzapine alters the 5-HT2cR/GHSR1a interaction, affecting orexigenic neuropeptide signalling in the hypothalamus. We found that olanzapine treatment increased average energy intake and body weight gain in mice; olanzapine treatment also increased orexigenic neuropeptide (NPY) and GHSR1a signaling molecules, pAMPK, UCP2, FOXO1 and pCREB levels in the hypothalamus. By using confocal fluorescence resonance energy transfer (FRET) technology, we found that 5-HT2cR interacted/dimerised with the GHSR1a in the hypothalamic neurons. As 5-HT2cR antagonist, both olanzapine and S242084 decreased the interaction between 5-HT2cR and GHSR1a and activated GHSR1a signaling. The 5-HT2cR agonist lorcaserin counteracted olanzapine-induced attenuation of interaction between 5-HT2cR and GHSR1a and inhibited activation of GHSR1a signalling and NPY production. These findings suggest that 5-HT2cR antagonistic effect of olanzapine in inhibition of the interaction of 5-HT2cR and GHSR1a, activation GHSR1a downstream signaling and increasing hypothalamic NPY, which may be the important neuronal molecular mechanism underlying olanzapine-induced obesity and target for prevention metabolic side effects of antipsychotic management in psychiatric disorders.
Collapse
Affiliation(s)
- Xiaoli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xia Lan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xinyou Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Huaiyu Ye
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Lijun Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiaoqi Chen
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Katrina Weston-Green
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Tiantian Jin
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia
| | - Yi Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiangyu Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW 2522, Australia.
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
5
|
Kaur Sodhi R, Kumar H, Singh R, Bansal Y, Singh Y, Kiran Kondepudi K, Bishnoi M, Kuhad A. Allyl isothiocyanate, a TRPA1 agonist, protects against olanzapine-induced hypothalamic and hepatic metabolic aberrations in female mice. Biochem Pharmacol 2024; 222:116074. [PMID: 38395265 DOI: 10.1016/j.bcp.2024.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Olanzapine, a widely prescribed atypical antipsychotic, poses a great risk to the patient's health by fabricating a plethora of severe metabolic and cardiovascular adverse effects eventually reducing life expectancy and patient compliance. Its heterogenous receptor binding profile has made it difficult to point out a specific cause or treatment for the related side effects. Growing body of evidence suggest that transient receptor potential (TRP) channel subfamily Ankyrin 1 (TRPA1) has pivotal role in pathogenesis of type 2 diabetes and obesity. With this background, we aimed to investigate the role of pharmacological manipulations of TRPA1 channels in antipsychotic (olanzapine)-induced metabolic alterations in female mice using allyl isothiocyanate (AITC) and HC-030031 (TRPA1 agonist and antagonist, respectively). It was found that after 6 weeks of treatment, AITC prevented olanzapine-induced alterations in body weight and adiposity; serum, and liver inflammatory markers; glucose and lipid metabolism; and hypothalamic appetite regulation, nutrient sensing, inflammatory and TRPA1 channel signaling regulating genes. Furthermore, several of these effects were absent in the presence of HC-030031 (TRPA1 antagonist) indicating protective role of TRPA1 agonism in attenuating olanzapine-induced metabolic alterations. Supplementary in-depth studies are required to study TRPA1 channel effect on other aspects of olanzapine-induced metabolic alterations.
Collapse
Affiliation(s)
- Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India
| | - Hemant Kumar
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India
| | - Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yuvraj Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India
| | - Kanthi Kiran Kondepudi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, Sahibzada Ajit Singh Nagar (SAS Nagar), Punjab, India
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, Sahibzada Ajit Singh Nagar (SAS Nagar), Punjab, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India.
| |
Collapse
|
6
|
Bertossi F. A Possible Role of Akkermansia muciniphila in the Treatment of Olanzapine-Induced Weight Gain. Cureus 2024; 16:e55733. [PMID: 38463411 PMCID: PMC10921070 DOI: 10.7759/cureus.55733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Second-generation antipsychotics are mainly used in both acute and long-term treatment of major psychiatric disorders. Although better tolerated than first-generation antipsychotic drugs, they can frequently induce weight gain and metabolic disorders, of these, olanzapine is one of the drugs more likely to induce these side effects. There is consistent evidence of the role of gut microbiota in modulating the gut-brain axis with complex crosstalk with the host involving satiety signaling pathways, food intake behavior, and weight and metabolic regulation. Second-generation antipsychotics induce important gut microbiota modification thus contributing together with the central and peripheral receptors blockade mechanism to weight gain induction and metabolic impairment. These drugs can alter the composition of gut microbiota and induce dysbiosis, often reducing the concentration of Akkermansia muciniphila, a bacterium that is also decreased in patients with diabetes, obesity, metabolic syndrome, or chronic inflammatory diseases. Probiotic administration can be a safe and well-tolerated approach to modulate microbiota and offer an integrative strategy in psychiatric patients suffering antipsychotic side effects. Multiple strain probiotics and Akkermansia muciniphila alone have been administered both in mice models and in clinical populations demonstrating efficacy on antipsychotic-induced metabolic impairment and showing a contribution in reducing induced weight gain. Akkermansia muciniphila can improve several parameters altered by olanzapine administration, such as weight gain, insulin resistance, hyperglycemia, liver function, systemic inflammation, and gut barrier function. Although we do not have jet trials in the psychiatric population, this probiotic may be a complementary approach to treating olanzapine-induced weight gain and metabolic side effects.
Collapse
Affiliation(s)
- Francesca Bertossi
- Department of Mental Health, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, ITA
| |
Collapse
|
7
|
Langlais AL, Mountain RV, Kunst RF, Barlow D, Houseknecht KL, Motyl KJ. Thermoneutral housing does not rescue olanzapine-induced trabecular bone loss in C57BL/6J female mice. Biochimie 2023; 210:50-60. [PMID: 37236340 PMCID: PMC10357956 DOI: 10.1016/j.biochi.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Antipsychotic drugs are prescribed to a wide range of individuals to treat mental health conditions including schizophrenia. However, antipsychotic drugs cause bone loss and increase fracture risk. We previously found that the atypical antipsychotic (AA) drug risperidone causes bone loss through multiple pharmacological mechanisms, including activation of the sympathetic nervous system in mice treated with clinically relevant doses. However, bone loss was dependent upon housing temperature, which modulates sympathetic activity. Another AA drug, olanzapine, has substantial metabolic side effects, including weight gain and insulin resistance, but it is unknown whether bone and metabolic outcomes of olanzapine are also dependent upon housing temperature in mice. We therefore treated eight week-old female mice with vehicle or olanzapine for four weeks, housed at either room temperature (23 °C) or thermoneutrality (28-30 °C), which has previously been shown to be positive for bone. Olanzapine caused significant trabecular bone loss (-13% BV/TV), likely through increased RANKL-dependent osteoclast resorption, which was not suppressed by thermoneutral housing. Additionally, olanzapine inhibited cortical bone expansion at thermoneutrality, but did not alter cortical bone expansion at room temperature. Olanzapine also increased markers of thermogenesis within brown and inguinal adipose depots independent of housing temperature. Overall, olanzapine causes trabecular bone loss and inhibits the positive effect of thermoneutral housing on bone. Understanding how housing temperature modulates the impact of AA drugs on bone is important for future pre-clinical studies, as well as for the prescription of AA drugs, particularly to older adults and adolescents who are most vulnerable to the effects on bone.
Collapse
Affiliation(s)
- Audrie L Langlais
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Rebecca V Mountain
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Roni F Kunst
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Karen L Houseknecht
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Katherine J Motyl
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Tufts University School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
8
|
Zapata RC, Zhang D, Libster A, Porcu A, Montilla-Perez P, Nur A, Xu B, Zhang Z, Correa SM, Liu C, Telese F, Osborn O. Nuclear receptor 5A2 regulation of Agrp underlies olanzapine-induced hyperphagia. Mol Psychiatry 2023; 28:1857-1867. [PMID: 36765131 PMCID: PMC10412731 DOI: 10.1038/s41380-023-01981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
Antipsychotic (AP) drugs are efficacious treatments for various psychiatric disorders, but excessive weight gain and subsequent development of metabolic disease remain serious side effects of their use. Increased food intake leads to AP-induced weight gain, but the underlying molecular mechanisms remain unknown. In previous studies, we identified the neuropeptide Agrp and the transcription factor nuclear receptor subfamily 5 group A member 2 (Nr5a2) as significantly upregulated genes in the hypothalamus following AP-induced hyperphagia. While Agrp is expressed specifically in the arcuate nucleus of the hypothalamus and plays a critical role in appetite stimulation, Nr5a2 is expressed in both the CNS and periphery, but its role in food intake behaviors remains unknown. In this study, we investigated the role of hypothalamic Nr5a2 in AP-induced hyperphagia and weight gain. In hypothalamic cell lines, olanzapine treatment resulted in a dose-dependent increase in gene expression of Nr5a2 and Agrp. In mice, the pharmacological inhibition of NR5A2 decreased olanzapine-induced hyperphagia and weight gain, while the knockdown of Nr5a2 in the arcuate nucleus partially reversed olanzapine-induced hyperphagia. Chromatin-immunoprecipitation studies showed for the first time that NR5A2 directly binds to the Agrp promoter region. Lastly, the analysis of single-cell RNA seq data confirms that Nr5a2 and Agrp are co-expressed in a subset of neurons in the arcuate nucleus. In summary, we identify Nr5a2 as a key mechanistic driver of AP-induced food intake. These findings can inform future clinical development of APs that do not activate hyperphagia and weight gain.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Avraham Libster
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Aisha Nur
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Baijie Xu
- Center for Hypothalamic Research, Departments of Internal Medicine and Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chen Liu
- Center for Hypothalamic Research, Departments of Internal Medicine and Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Kooij KL, Luijendijk MCM, Drost L, Platenburg G, van Elburg A, Adan RAH. Intranasal administration of olanzapine has beneficial outcome in a rat activity-based anorexia model. Eur Neuropsychopharmacol 2023; 71:65-74. [PMID: 37031523 DOI: 10.1016/j.euroneuro.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023]
Abstract
The atypical antipsychotic drug olanzapine is prescribed despite clinical studies on olanzapine treatment showing mixed results on treatment efficacy in anorexia nervosa. We investigated the effect of systemic and intranasal administration of olanzapine in the activity-based anorexia (ABA) model. Rats were habituated to a running wheel and exposed to the ABA model while treated with olanzapine. During ABA rats had 1.5 h of daily access to food and ad libitum access to a running wheel for seven consecutive days. Olanzapine was administered via an osmotic minipump (1, 2.75, and 7.5 mg/kg) or intranasally 2 h before dark onset (1 and 2.75 mg/kg). We monitored body weight, food intake, wheel revolutions, body temperature, and adipose tissue. We found 2.75 and 7.5 mg/kg systemic olanzapine decreased wheel revolutions during ABA. Relative adipose tissue mass was increased in the 7.5 mg/kg olanzapine-treated group while body weight, food intake, and body temperature were unaltered by the systemic olanzapine. 1 and 2.75 mg/kg intranasal olanzapine diminished wheel revolutions and body temperature during the first 2 h after administration. The intranasal olanzapine-treated rats had a higher body weight at the end of ABA. We find that olanzapine has beneficial outcomes in the ABA via two administration routes by acting mainly on running wheel activity. Intranasal olanzapine showed a rapid effect in the first hours after administration in reducing locomotor activity. We recommend further exploring intranasal administration of olanzapine in anorectic patients to assist them in coping with restlessness.
Collapse
Affiliation(s)
- Karlijn L Kooij
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Altrecht Eating Disorders Rintveld, Zeist, the Netherlands.
| | - Mieneke C M Luijendijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Lisa Drost
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | | | - Annemarie van Elburg
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands; Department of Clinical Psychology, Utrecht University, the Netherlands.
| | - Roger A H Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Altrecht Eating Disorders Rintveld, Zeist, the Netherlands; Dept of Neuroscience and Physiology, Sahlgrenska academy, Univ of Gothenborg, Sweden.
| |
Collapse
|
10
|
Liu X, Zhang H, Zhang S, Mao W, Liu L, Deng C, Hu CH. Olanzapine-induced decreases of FGF21 in brown adipose tissue via histone modulations drive UCP1-dependent thermogenetic impairment. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110692. [PMID: 36509252 DOI: 10.1016/j.pnpbp.2022.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Long-term olanzapine treatment has been associated with serious metabolism disorders, such as abnormal body weight gain, hyperglycemia, and dyslipidemia. Recently, accumulated evidence points to a link between the metabolic disorders caused by olanzapine and thermogenetic impairment. Fibroblast growth factor 21 (FGF21), a pleiotropic protein, is a potent stimulator of thermogenesis in brown adipose tissue (BAT). However, the relationship between autocrine FGF21 in BAT and thermogenetic impairment induced by olanzapine has not been investigated. In this study, C57BL/6 mice and C3H10T1/2 (a brown adipocyte cell line) were used to investigate the role of FGF21 in modulating thermogenetic impairments caused by olanzapine. Our data found a fall in BAT temperature, with a decrease in the protein levels of uncoupling protein 1 (UCP1) and FGF21 in olanzapine-treatment mice. Olanzapine-induced deficits of mitochondrial activity and the expression of UCP1 and related thermogenetic factors could be improved by FGF21-overexpression in brown adipocytes. Furthermore, ChIP-sequencing showed the H3K9me3 modification in Fgf21 was dramatically increased in BAT of mice with olanzapine treatment. Lysine-specific demethylase 4a (KDM4a), a histone demethylase responsible for site-specific erasure of H3K9me3, was decreased in olanzapine-treated C3H10T1/2 cells, whereas FGF21 and UCP1 expression and thermogenesis were upregulated in KMD2a-overexpressing brown adipocyte. We concluded that FGF21 was a crucial regulator mediating UCP1-dependent thermogenetic impairments by olanzapine-modulating histone methylations. Our results also provide novel insights into identifying a new therapeutic target for treating metabolic side effects caused by the antipsychotic drug.
Collapse
Affiliation(s)
- Xuemei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Haotian Zhang
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Shimei Zhang
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Wenxing Mao
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China; Chongqing Institute for Food and Drug Control, NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing 401121, PR China
| | - Lu Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Wang J, Wu Q, Zhou Y, Yu L, Yu L, Deng Y, Tu C, Li W. The mechanisms underlying olanzapine-induced insulin resistance via the brown adipose tissue and the therapy in rats. Adipocyte 2022; 11:84-98. [PMID: 35067163 PMCID: PMC8786323 DOI: 10.1080/21623945.2022.2026590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A rapid increase has been observed in insulin resistance (IR) incidence induced by a long-term olanzapine treatment with no better ways to avoid it. Our study aimed to demonstrate the mechanism underlying the olanzapine-induced insulin resistance and find appropriate drug interventions. In this study, firstly, we constructed rat insulin resistance model using a two-month gavage of olanzapine and used the main active ingredient mixture of Gegen Qinlian Decoction for the treatment. The activity of brown adipose tissue (BAT) was measured using the PET/CT scan, whereas Western blot and quantitative real-time PCR were used to detect the expression of GLUT4 and UCP1. The results showed that the long-term administration of olanzapine impaired glucose tolerance and produced insulin resistance in rats, while Gegen Qinlian Decoction could improve this side effect. The results of the PET/CT scan showed that the BAT activity in the insulin-resistant rats was significantly lower than that of the Gegen Qinlian Decoction treated rats. Also, the expression of GLUT4 and UCP1 in the insulin resistance group showed a significant decrease, which could be up-regulated by Gegen Qinliane Decoction treatment. The results of both in vivo and in vitro experiments were consistent. we demonstrated that the olanzapine could induce IR in vitro and in vivo by decreasing the expression of UCP1; thus, suppressing the thermogenesis of BAT and impairing glucose uptake. More importantly, we demonstrated a possible novel strategy to improve the olanzapine-induced IR by Gegen Qinlian Decoction.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhou
- Department of Pharmacy, Wuhan Xirui Pharmaceutical Technology Co Ltd, Wuhan, China
| | - Liangyu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuyue Tu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyong Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Ferreira V, Folgueira C, Guillén M, Zubiaur P, Navares M, Sarsenbayeva A, López-Larrubia P, Eriksson JW, Pereira MJ, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight. Metabolism 2022; 137:155335. [PMID: 36272468 DOI: 10.1016/j.metabol.2022.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| |
Collapse
|
13
|
Chen PY, Chiu CC, Hsieh TH, Liu YR, Chen CH, Huang CY, Lu ML, Huang MC. The relationship of antipsychotic treatment with reduced brown adipose tissue activity in patients with schizophrenia. Psychoneuroendocrinology 2022; 142:105775. [PMID: 35594830 DOI: 10.1016/j.psyneuen.2022.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Antipsychotic drug (APD) treatment has been associated with metabolic abnormalities. Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and secretes various metabolism-improving factors known as batokines. We explored the association of BAT activity with APD treatment and metabolic abnormalities in patients with schizophrenia by measuring the blood levels of bone morphogenetic protein 8b (BMP8b), a batokine secreted by mature BAT. METHODS BMP8b levels were compared among 50 drug-free, 32 aripiprazole-treated, and 91 clozapine-treated patients with schizophrenia. Regression analysis was used to explore factors, including APD types, that might be associated with BMP8b levels and the potential effect of BMP8b on metabolic syndrome (MS). RESULTS APD-treated patients had decreased BMP8b levels relative to drug-free patients. The difference still existed after adjustment for body mass index and Brief Psychiatric Rating Scale scores. Among APD-treated group, clozapine was associated with even lower BMP8b levels than the less obesogenic APD, aripiprazole. Furthermore, higher BMP8b levels were associated with lower risks of MS after adjustment for BMI and APD treatment. CONCLUSION Using drug-free patients as the comparison group to understand the effect of APDs, this is the first study to show APD treatment is associated with reduced BAT activity that is measured by BMP8b levels, with clozapine associated a more significant reduction than aripiprazole treatment. BMP8b might have a beneficial effect against metabolic abnormalities and this effect is independent of APD treatment. Future studies exploring the causal relationship between APD treatment and BMP8b levels and the underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Po-Yu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychology, National Cheng-chi University, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cho-Yin Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, 250 Wu-Hsing Street, 110 Taipei, Taiwan.
| |
Collapse
|
14
|
He M, Yao J, Zhang Z, Zhang Y, Chen R, Gu Z, Huang X, Deng C, Zhou R, Fan J, Zhang B, Xie Y, Gao G, Sun T. Gold nanoclusters eliminate obesity induced by antipsychotics. Sci Rep 2022; 12:5502. [PMID: 35365730 PMCID: PMC8975852 DOI: 10.1038/s41598-022-09541-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Obesity induced by antipsychotics have plagued more than 20 million people worldwide. However, no drug is available to eliminate the obesity induced by antipsychotics. Here we examined the effect and potential mechanisms of a gold nanoclusters (AuNCs) modified by N-isobutyryl-L-cysteine on the obesity induced by olanzapine, the most prescribed but obesogenic antipsychotics, in a rat model. Our results showed that AuNCs completely prevented and reversed the obesity induced by olanzapine and improved glucose metabolism profile in rats. Further mechanism investigations revealed that AuNCs exert its anti-obesity function through inhibition of olanzapine-induced dysfunction of histamine H1 receptor and proopiomelanocortin signaling therefore reducing hyperphagia, and reversing olanzapine-induced inhibition of uncoupling-protein-1 signaling which increases thermogenesis. Together with AuNCs' good biocompatibility, these findings not only provide AuNCs as a promising nanodrug candidate for treating obesity induced by antipsychotics, but also open an avenue for the potential application of AuNCs-based nanodrugs in treating general obesity.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Yao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zijun Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ying Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Rui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenhua Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - XuFeng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chao Deng
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Baohua Zhang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Capital Medical University, Beijing, 100191, China
| | - Yanqian Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
15
|
PINHO ARYANEC, BURGEIRO ANA, PEREIRA MARIAJOÃO, CARVALHO EUGENIA. Drug-induced metabolic alterations in adipose tissue - with an emphasis in epicardial adipose tissue. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220201819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Affiliation(s)
| | | | | | - EUGENIA CARVALHO
- University of Coimbra, Portugal; University of Coimbra, Portugal; APDP-Portuguese Diabetes Association, Portugal
| |
Collapse
|
16
|
A potential probiotic bacterium for antipsychotic-induced metabolic syndrome: mechanisms underpinning how Akkermansia muciniphila subtype improves olanzapine-induced glucose homeostasis in mice. Psychopharmacology (Berl) 2021; 238:2543-2553. [PMID: 34046717 DOI: 10.1007/s00213-021-05878-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Olanzapine (OLZ) is one of the most effective atypical antipsychotics but is associated with severe metabolic side effects, in which the gut microbiota plays an important role. Akkermansia muciniphila (A. muciniphila; Akk), a Gram-negative anaerobic bacterium in the intestine, can potentially improve metabolic syndrome. OBJECTIVE This study investigated the effect and underlying mechanisms of an A. muciniphila subtype (A. muciniphilasub; Akksub) on OLZ-induced metabolic dysfunction in lean and obese mice. METHODS C57BL/6 female mice were fed a high-fat diet to induce obesity or normal chow for 8 weeks before OLZ treatment for 16 weeks. During the treatment period, mice in each group were orally administrated A. muciniphilasub. Weight gain, glucose and lipid metabolism, and inflammation were evaluated. RESULTS A. muciniphilasub decreased OLZ-related weight gain only at week 16 in lean mice and significantly alleviated OLZ-induced hyperglycemia irrespective of diet. This was accompanied by reduced levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK)-key enzymes in hepatic gluconeogenesis-and OLZ-associated insulin resistance. Moreover, OLZ-induced increases in serum interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels were improved by A. muciniphilasub in both obese and lean mice. OLZ did not increase serum lipid levels or hepatic fat accumulation. CONCLUSIONS A. muciniphilasub improves OLZ-related hyperglycemia via regulation of G6Pase and PEPCK levels and insulin resistance. Moreover, A. muciniphilasub alleviates systemic inflammation caused by OLZ. A. muciniphilasub is a promising probiotic treatment for OLZ-induced metabolic dysfunction.
Collapse
|
17
|
He M, Qian K, Zhang Y, Huang XF, Deng C, Zhang B, Gao G, Li J, Xie H, Sun T. Olanzapine-Induced Activation of Hypothalamic Astrocytes and Toll-Like Receptor-4 Signaling via Endoplasmic Reticulum Stress Were Related to Olanzapine-Induced Weight Gain. Front Neurosci 2021; 14:589650. [PMID: 33584172 PMCID: PMC7874166 DOI: 10.3389/fnins.2020.589650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The antipsychotic drug olanzapine is associated with serious obesity side effects. Hypothalamic astrocytes and associated toll-like receptor-4 (TLR4) signaling play an essential role in obesity pathogenesis. This study investigated the effect of olanzapine on astrocytes and TLR4 signaling both in vitro and in the rat hypothalamus and their potential role in olanzapine-induced weight gain. We found that olanzapine treatment for 24 h dose-dependently increased cell viability, increased the protein expression of astrocyte markers including glial fibrillary acidic protein (GFAP) and S100 calcium binding protein B (S100B), and activated TLR4 signaling in vitro. In rats, 8- and 36-day olanzapine treatment caused weight gain accompanied by increased GFAP and S100B protein expression and activated TLR4 signaling in the hypothalamus. These effects still existed in pair-fed rats, suggesting that these effects were not secondary effects of olanzapine-induced hyperphagia. Moreover, treatment with an endoplasmic reticulum (ER) stress inhibitor, 4-phenylbutyrate, inhibited olanzapine-induced weight gain and ameliorated olanzapine-induced changes in hypothalamic GFAP, S100B, and TLR4 signaling. The expression of GFAP, S100B, and TLR4 correlated with food intake and weight gain. These findings suggested that olanzapine-induced increase in hypothalamic astrocytes and activation of TLR4 signaling were related to ER stress, and these effects may be related to olanzapine-induced obesity.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Kun Qian
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ying Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xu-Feng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Baohua Zhang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
18
|
Romo-Nava F, Buijs RM, McElroy SL. The use of melatonin to mitigate the adverse metabolic side effects of antipsychotics. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:371-382. [PMID: 34225976 DOI: 10.1016/b978-0-12-819975-6.00024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antipsychotic drugs are efficacious first-line treatments for many individuals diagnosed with a psychiatric illness. However, their adverse metabolic side-effect profile, which resembles the metabolic syndrome, represents a significant clinical problem that increases morbidity and limits treatment adherence. Moreover, the mechanisms involved in antipsychotic-induced adverse metabolic effects (AMEs) are unknown and mitigating strategies and interventions are limited. However, recent clinical trials show that nightly administration of exogenous melatonin may mitigate or even prevent antipsychotic-induced AMEs. This clinical evidence in combination with recent preclinical data implicate the circadian system in antipsychotic-induced AMEs and their mitigation. In this chapter, we provide an overview on the circadian system and its involvement in antipsychotic-induced AMEs, as well as the potential beneficial effect of nightly melatonin administration to mitigate them.
Collapse
Affiliation(s)
- Francisco Romo-Nava
- Lindner Center of HOPE Research Institute, Lindner Center of HOPE, Mason, OH, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Susan L McElroy
- Lindner Center of HOPE Research Institute, Lindner Center of HOPE, Mason, OH, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Lis M, Stańczykiewicz B, Liśkiewicz P, Misiak B. Impaired hormonal regulation of appetite in schizophrenia: A narrative review dissecting intrinsic mechanisms and the effects of antipsychotics. Psychoneuroendocrinology 2020; 119:104744. [PMID: 32534330 DOI: 10.1016/j.psyneuen.2020.104744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
Cardiometabolic diseases are the main contributor of reduced life expectancy in patients with schizophrenia. It is now widely accepted that antipsychotic treatment plays an important role in the development of obesity and its consequences. However, some intrinsic mechanisms need to be taken into consideration. One of these mechanisms might be related to impaired hormonal regulation of appetite in this group of patients. In this narrative review, we aimed to dissect impairments of appetite-regulating hormones attributable to intrinsic mechanisms and those related to medication effects. Early hormonal alterations that might be associated with intrinsic mechanisms include low levels of leptin and glucagon-like peptide-1 (GLP-1) together with elevated insulin levels in first-episode psychosis (FEP) patients. However, evidence regarding low GLP-1 levels in FEP patients is based on one large study. In turn, multiple-episode schizophrenia patients show elevated levels of insulin, leptin and orexin A together with decreased levels of adiponectin. In addition, patients receiving olanzapine may present with low ghrelin levels. Post mortem studies have also demonstrated reduced number of neuropeptide Y neurons in the prefrontal cortex of patients with schizophrenia. Treatment with certain second-generation antipsychotics may also point to these alterations. Although our understanding of hormonal regulation of appetite in schizophrenia has largely been improved, several limitations and directions for future studies need to be addressed. This is of particular importance since several novel pharmacological interventions for obesity and diabetes have already been developed and translation of these developments to the treatment of cardiometabolic comorbidities in schizophrenia patients is needed.
Collapse
Affiliation(s)
- Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618, Wroclaw, Poland
| | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460, Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| |
Collapse
|
20
|
Role of TRPV1/TRPV3 channels in olanzapine-induced metabolic alteration: Possible involvement in hypothalamic energy-sensing, appetite regulation, inflammation and mesolimbic pathway. Toxicol Appl Pharmacol 2020; 402:115124. [PMID: 32652086 DOI: 10.1016/j.taap.2020.115124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022]
Abstract
Atypical antipsychotics (AAPs) have the tendency of inducing severe metabolic alterations like obesity, diabetes mellitus, insulin resistance, dyslipidemia and cardiovascular complications. These alterations have been attributed to altered hypothalamic appetite regulation, energy sensing, insulin/leptin signaling, inflammatory reactions and active reward anticipation. Line of evidence suggests that transient receptor potential vanilloid type 1 and 3 (TRPV1 and TRPV3) channels are emerging targets in treatment of obesity, diabetes mellitus and could modulate feed intake. The present study was aimed to investigate the putative role TRPV1/TRPV3 in olanzapine-induced metabolic alterations in mice. Female BALB/c mice were treated with olanzapine for six weeks to induce metabolic alterations. Non-selective TRPV1/TRPV3 antagonist (ruthenium red) and selective TRPV1 (capsazepine) and TRPV3 antagonists (2,2-diphenyltetrahydrofuran or DPTHF) were used to investigate the involvement of TRPV1/TRPV3 in chronic olanzapine-induced metabolic alterations. These metabolic alterations were differentially reversed by ruthenium red and capsazepine, while DPTHF didn't show any significant effect. Olanzapine treatment also altered the mRNA expression of hypothalamic appetite-regulating and nutrient-sensing factors, inflammatory genes and TRPV1/TRPV3, which were reversed with ruthenium red and capsazepine treatment. Furthermore, olanzapine treatment also increased expression of TRPV1/TRPV3 in nucleus accumbens (NAc), TRPV3 expression in ventral tegmental area (VTA), which were reversed by the respective antagonists. However, DPTHF treatment showed reduced feed intake in olanzapine treated mice, which might be due to TRPV3 specific antagonism and reduced hedonic feed intake. In conclusion, our results suggested the putative role TRPV1 in hypothalamic dysregulations and TRPV3 in the mesolimbic pathway; both regulate feeding in olanzapine treated mice.
Collapse
|
21
|
Liu X, Feng X, Deng C, Liu L, Zeng Y, Hu CH. Brown adipose tissue activity is modulated in olanzapine-treated young rats by simvastatin. BMC Pharmacol Toxicol 2020; 21:48. [PMID: 32605639 PMCID: PMC7325271 DOI: 10.1186/s40360-020-00427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
Background Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated. Methods To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O + S), or vehicle (control) for 5 weeks. Results Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O + S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O + S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O + B. Conclusions Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients. Graphical abstract ![]()
Collapse
Affiliation(s)
- Xuemei Liu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China.,Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing, 400715, PR China
| | - Xiyu Feng
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China
| | - Chao Deng
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Lu Liu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China.,North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yanping Zeng
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China. .,Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing, 400715, PR China.
| |
Collapse
|
22
|
Zapata RC, Osborn O. Susceptibility of male wild type mouse strains to antipsychotic-induced weight gain. Physiol Behav 2020; 220:112859. [PMID: 32156556 DOI: 10.1016/j.physbeh.2020.112859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022]
Abstract
While both men and women gain weight as a side effect of antipsychotic (AP) treatment, studies in mice have found only female mice are susceptible to weight gain. Therefore, to we set out to identify a strain of male mice that gain significant weight in response to APs which could better model AP-induced weight gain observed in humans. These studies determined that male Balb/c mice developed late onset olanzapine-induced weight gain. Patients often take APs for many years and thus understanding AP-mediated changes in food intake, energy expenditure and body weight regulation is particularly important.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
23
|
Lian J, Deng C. The dosage-dependent effects of cevimeline in preventing olanzapine-induced metabolic side-effects in female rats. Pharmacol Biochem Behav 2020; 191:172878. [PMID: 32112786 DOI: 10.1016/j.pbb.2020.172878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
Olanzapine has been used for the treatment of schizophrenia and other mental disorders. However, it is associated with serious weight gain and other metabolic side-effects. The antagonistic affinity of olanzapine to muscarinic M3 receptors has been evidenced as one of the main contributors for its weight gain and other metabolic side-effects. Therefore, this study investigated whether the co-treatment of cevimeline (a M3 receptor agonist) could prevent the metabolic side-effects associated with olanzapine medication. Female Sprague Dawley rats were treated orally with olanzapine (2 mg/kg, t.i.d.) and/or cevimeline at 3 dosages (3, 6, 9 mg/kg, t.i.d.), or vehicle for two weeks. Weight gain and food/water intake were measured throughout the drug treatment period. Intraperitoneal glucose tolerance tests and open field tests were conducted. Olanzapine-treated rats demonstrated significantly elevated body weight gain, food intake, feeding efficiency, total white fat mass, liver mass, and plasma triglyceride levels, which could be partly reversed by the co-treatment with cevimeline in a dosage-dependent manner. In general, the body weight gain can only be reversed by the co-treatment of 9 mg/kg cevimeline. The cevimeline co-treatment decreased plasma triglyceride and glucose levels compared with olanzapine only treatment. The results suggested a dosage-dependent effect of cevimeline in ameliorating olanzapine-induced weight gain and metabolic side-effects, which supports further clinical trials using cevimeline to control weight gain and metabolic side-effects caused by antipsychotic medications.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia; School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia; School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia.
| |
Collapse
|
24
|
Ferreira V, Grajales D, Valverde ÁM. Adipose tissue as a target for second-generation (atypical) antipsychotics: A molecular view. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158534. [PMID: 31672575 DOI: 10.1016/j.bbalip.2019.158534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a neuropsychiatric disorder that chronically affects 21 million people worldwide. Second-generation antipsychotics (SGAs) are the cornerstone in the management of schizophrenia. However, despite their efficacy in counteracting both positive and negative symptomatology of schizophrenia, recent clinical observations have described an increase in the prevalence of metabolic disturbances in patients treated with SGAs, including abnormal weight gain, hyperglycemia and dyslipidemia. While the molecular mechanisms responsible for these side-effects remain poorly understood, increasing evidence points to a link between SGAs and adipose tissue depots of white, brown and beige adipocytes. In this review, we survey the present knowledge in this area, with a particular focus on the molecular aspects of adipocyte biology including differentiation, lipid metabolism, thermogenic function and the browning/beiging process.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
25
|
He M, Huang XF, Gao G, Zhou T, Li W, Hu J, Chen J, Li J, Sun T. Olanzapine-induced endoplasmic reticulum stress and inflammation in the hypothalamus were inhibited by an ER stress inhibitor 4-phenylbutyrate. Psychoneuroendocrinology 2019; 104:286-299. [PMID: 30927713 DOI: 10.1016/j.psyneuen.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
Antipsychotics are the most important treatment for schizophrenia. However, antipsychotics, particularly olanzapine and clozapine, are associated with severe weight gain/obesity side-effects. Although numerous studies have been carried out to identify the exact mechanisms of antipsychotic-induced weight gain, it is still important to consider other pathways. Endoplasmic reticulum (ER) stress signaling and its associated inflammation pathway is one of the most important pathways involved in regulation of energy balance. In the present study, we examined the role of hypothalamic protein kinase R like endoplasmic reticulum kinase- eukaryotic initiation factor 2α (PERK-eIF2α) signaling and the inflammatory IkappaB kinase β- nuclear factor kappa B (IKKβ-NFκB) signaling pathway in olanzapine-induced weight gain in female rats. In this study, we found that olanzapine significantly activated PERK-eIF2α and IKKβ-NFκB signaling in SH-SY5Y cells in a dose-dependent manner. Olanzapine treatment for 8 days in rats was associated with activated PERK-eIF2α signaling and IKKβ-NFκB signaling in the hypothalamus, accompanied by increased food intake and weight gain. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate (4-PBA), decreased olanzapine-induced food intake and weight gain in a dose- and time-dependent manner. Moreover, 4-PBA dose-dependently inhibited olanzapine-induced activated PERK-eIF2α and IKKβ-NFκB signaling in the hypothalamus. These results suggested that hypothalamic ER stress may play an important role in antipsychotic-induced weight gain.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China
| | - Ting Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jinqi Hu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jia Chen
- Wuhan Seventh Hospital, Wuhan, Hubei, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Yang CP, Wang YY, Lin SY, Hong YJ, Liao KY, Hsieh SK, Pan PH, Chen CJ, Chen WY. Olanzapine Induced Dysmetabolic Changes Involving Tissue Chromium Mobilization in Female Rats. Int J Mol Sci 2019; 20:640. [PMID: 30717287 PMCID: PMC6387243 DOI: 10.3390/ijms20030640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022] Open
Abstract
Atypical antipsychotics, such as olanzapine, are commonly prescribed to patients with schizophrenic symptoms and other psychiatric disorders. However, weight gain and metabolic disturbance cause adverse effects, impair patient compliance and limit clinical utility. Thus, a better understanding of treatment-acquired adverse effects and identification of targets for therapeutic intervention are believed to offer more clinical benefits for patients with schizophrenia. Beyond its nutritional effects, studies have indicated that supplementation of chromium brings about beneficial outcomes against numerous metabolic disorders. In this study, we investigated whether olanzapine-induced weight gain and metabolic disturbance involved chromium dynamic mobilization in a female Sprague-Dawley rat model, and whether a dietary supplement of chromium improved olanzapine-acquired adverse effects. Olanzapine medicated rats experienced weight gain and adiposity, as well as the development of hyperglycemia, hyperinsulinemia, insulin resistance, hyperlipidemia, and inflammation. The olanzapine-induced metabolic disturbance was accompanied by a decrease in hepatic Akt and AMP-activated Protein Kinase (AMPK) actions, as well as an increase in serum interleukin-6 (IL-6), along with tissue chromium depletion. A daily intake of chromium supplements increased tissue chromium levels and thermogenic uncoupling protein-1 (UCP-1) expression in white adipose tissues, as well as improved both post-olanzapine weight gain and metabolic disturbance. Our findings suggest that olanzapine medicated rats showed a disturbance of tissue chromium homeostasis by inducing tissue depletion and urinary excretion. This loss may be an alternative mechanism responsible for olanzapine-induced weight gain and metabolic disturbance.
Collapse
Affiliation(s)
- Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Yi-Jheng Hong
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Keng-Ying Liao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ping-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
- Department of Pediatrics, Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 447, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
27
|
Perez-Gomez A, Carretero M, Weber N, Peterka V, To A, Titova V, Solis G, Osborn O, Petrascheck M. A phenotypic Caenorhabditis elegans screen identifies a selective suppressor of antipsychotic-induced hyperphagia. Nat Commun 2018; 9:5272. [PMID: 30532051 PMCID: PMC6288085 DOI: 10.1038/s41467-018-07684-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antipsychotic (AP) drugs are used to treat psychiatric disorders but are associated with significant weight gain and metabolic disease. Increased food intake (hyperphagia) appears to be a driving force by which APs induce weight gain but the mechanisms are poorly understood. Here we report that administration of APs to C. elegans induces hyperphagia by a mechanism that is genetically distinct from basal food intake. We exploit this finding to screen for adjuvant drugs that suppress AP-induced hyperphagia in C. elegans and mice. In mice AP-induced hyperphagia is associated with a unique hypothalamic gene expression signature that is abrogated by adjuvant drug treatment. Genetic analysis of this signature using C. elegans identifies two transcription factors, nhr-25/Nr5a2 and nfyb-1/NFYB to be required for AP-induced hyperphagia. Our study reveals that AP-induced hyperphagia can be selectively suppressed without affecting basal food intake allowing for novel drug discovery strategies to combat AP-induced metabolic side effects.
Collapse
Affiliation(s)
- Anabel Perez-Gomez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maria Carretero
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Natalie Weber
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Veronika Peterka
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan To
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Viktoriya Titova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gregory Solis
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
28
|
Zhang Q, Beirne S, Shu K, Esrafilzadeh D, Huang XF, Wallace GG. Electrical Stimulation with a Conductive Polymer Promotes Neurite Outgrowth and Synaptogenesis in Primary Cortical Neurons in 3D. Sci Rep 2018; 8:9855. [PMID: 29959353 PMCID: PMC6026172 DOI: 10.1038/s41598-018-27784-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
Deficits in neurite outgrowth and synaptogenesis have been recognized as an underlying developmental aetiology of psychosis. Electrical stimulation promotes neuronal induction including neurite outgrowth and branching. However, the effect of electrical stimulation using 3D electrodes on neurite outgrowth and synaptogenesis has not been explored. This study examined the effect of 3D electrical stimulation on 3D primary cortical neuronal cultures. 3D electrical stimulation improved neurite outgrowth in 3D neuronal cultures from both wild-type and NRG1-knockout (NRG1-KO) mice. The expression of synaptophysin and PSD95 were elevated under 3D electrical stimulation. Interestingly, 3D electrical stimulation also improved neural cell aggregation as well as the expression of PSA-NCAM. Our findings suggest that the 3D electrical stimulation system can rescue neurite outgrowth deficits in a 3D culturing environment, one that more closely resembles the in vivo biological system compared to more traditionally used 2D cell culture, including the observation of cell aggregates as well as the upregulated PSA-NCAM protein and transcript expression. This study provides a new concept for a possible diagnostic platform for neurite deficits in neurodevelopmental diseases, as well as a viable platform to test treatment options (such as drug delivery) in combination with electrical stimulation.
Collapse
Affiliation(s)
- Qingsheng Zhang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW, 2519, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Stephen Beirne
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW, 2519, Australia
| | - Kewei Shu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW, 2519, Australia
| | - Dorna Esrafilzadeh
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW, 2519, Australia
- Centre for Advanced Electronics and Sensors (CADES), School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW, 2519, Australia.
| |
Collapse
|
29
|
De Santis M, Huang XF, Deng C. Early antipsychotic treatment in juvenile rats elicits long-term alterations to the adult serotonin receptors. Neuropsychiatr Dis Treat 2018; 14:1569-1583. [PMID: 29950841 PMCID: PMC6011877 DOI: 10.2147/ndt.s158545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antipsychotic drug (APD) prescription/use in children has increased significantly worldwide, despite limited insight into potential long-term effects of treatment on adult brain functioning. While initial long-term studies have uncovered alterations to behaviors following early APD treatment, further investigations into potential changes to receptor density levels of related neurotransmitter (NT) systems are required. METHODS The current investigation utilized an animal model for early APD treatment with aripiprazole, olanzapine, and risperidone in male and female juvenile rats to investigate potential long-term changes to the adult serotonin (5-HT) NT system. Levels of 5-HT1A, 5-HT2A, and 5-HT2C receptors were measured in the prefrontal cortex (PFC), caudate putamen (CPu), nucleus accumbens (NAc), and hippocampus via Western Blot and receptor autoradiography. RESULTS In the male cohort, long-term changes to 5-HT2A and 5-HT2C receptors were found mostly across hippocampal and cortical brain regions following early aripiprazole and olanzapine treatment, while early risperidone treatment changed 5-HT1A receptor levels in the NAc and PFC. Lesser effects were uncovered in the female cohort with aripiprazole, olanzapine and risperidone to alter 5-HT1A and 5-HT2A receptors in NAc and hippocampal brain regions, respectively. CONCLUSION The results of this study suggest that early treatment of various APDs in juvenile rats may cause gender and brain regional specific changes in 5-HT2A and 5-HT2C receptors in the adult brain.
Collapse
Affiliation(s)
- Michael De Santis
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
30
|
Huang XF, Weston-Green K, Yu Y. Decreased 5-HT2cR and GHSR1a interaction in antipsychotic drug-induced obesity. Obes Rev 2018; 19:396-405. [PMID: 29119689 DOI: 10.1111/obr.12638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 12/19/2022]
Abstract
Second generation antipsychotics (SGAs), notably atypical antipsychotics including olanzapine, clozapine and risperidone, can cause weight gain and obesity side effects. Antagonism of serotonin 2c receptors (5-HT2cR) and activation of ghrelin receptor type 1a (GHSR1a) signalling have been identified as a main cause of SGA induced obesity. Here we review the pivotal regulatory role of the 5-HT2cR in ghrelin-mediated appetite signalling. The 5-HT2cR dimerizes with GHSR1a to inhibit orexigenic signalling, while 5-HT2cR antagonism reduces dimerization and increases GHSR1a-induced food intake. Dimerization is specific to the unedited 5-HT2cR isoform. 5-HT2cR antagonism by SGAs may disrupt the normal inhibitory tone on the GHSR1a, increasing orexigenic signalling. The 5-HT2cR and its interaction with the GHSR1a could serve as the basis for discovering novel approaches to preventing and treating SGA-induced obesity.
Collapse
Affiliation(s)
- X-F Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW, Australia.,Jiangsu Key Laboratory for Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China.,Centre for Medical and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - K Weston-Green
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW, Australia.,Centre for Medical and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Y Yu
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW, Australia.,Jiangsu Key Laboratory for Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
31
|
Pharmacological Approaches to Minimizing Cardiometabolic Side Effects of Mood Stabilizing Medications. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40501-017-0131-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Chen J, Huang XF, Shao R, Chen C, Deng C. Molecular Mechanisms of Antipsychotic Drug-Induced Diabetes. Front Neurosci 2017; 11:643. [PMID: 29209160 PMCID: PMC5702456 DOI: 10.3389/fnins.2017.00643] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Antipsychotic drugs (APDs) are widely prescribed to control various mental disorders. As mental disorders are chronic diseases, these drugs are often used over a life-time. However, APDs can cause serious glucometabolic side-effects including type 2 diabetes and hyperglycaemic emergency, leading to medication non-compliance. At present, there is no effective approach to overcome these side-effects. Understanding the mechanisms for APD-induced diabetes should be helpful in prevention and treatment of these side-effects of APDs and thus improve the clinical outcomes of APDs. In this review, the potential mechanisms for APD-induced diabetes are summarized so that novel approaches can be considered to relieve APD-induced diabetes. APD-induced diabetes could be mediated by multiple mechanisms: (1) APDs can inhibit the insulin signaling pathway in the target cells such as muscle cells, hepatocytes and adipocytes to cause insulin resistance; (2) APD-induced obesity can result in high levels of free fatty acids (FFA) and inflammation, which can also cause insulin resistance. (3) APDs can cause direct damage to β-cells, leading to dysfunction and apoptosis of β-cells. A recent theory considers that both β-cell damage and insulin resistance are necessary factors for the development of diabetes. In high-fat diet-induced diabetes, the compensatory ability of β-cells is gradually damaged, while APDs cause direct β-cell damage, accounting for the severe form of APD-induced diabetes. Based on these mechanisms, effective prevention of APD-induced diabetes may need an integrated approach to combat various effects of APDs on multiple pathways.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Renfu Shao
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chao Deng
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
33
|
Stefanidis A, Watt MJ, Cowley MA, Oldfield BJ. Prevention of the adverse effects of olanzapine on lipid metabolism with the antiepileptic zonisamide. Neuropharmacology 2017; 123:55-66. [PMID: 28400260 DOI: 10.1016/j.neuropharm.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Atypical antipsychotic drugs, particularly olanzapine, represent a mainstay in the treatment of psychoses; however, their use is commonly associated with weight gain and diabetes. The aim of this study was to determine whether combined administration of olanzapine and zonisamide can be used to prevent olanzapine-induced metabolic disturbances. METHODS AND RESULTS These experiments involved female Sprague Dawley rats (n = 6-8/group) that were administered olanzapine, either acutely (6 mg/kg, s. c) or via continuous osmotic minipump infusion (6 mg/kg/day for 6 or 14 days), in combination with zonisamide (26 mg/kg/day,i.p.). Continuous infusion of olanzapine induced accumulation of adipose tissue and an associated reduction in stimulated lipolysis and reduced protein expression of CGI-58, a critical co-activator of ATGL. Olanzapine treatment caused a preferential shift toward carbohydrate oxidation (or reduced fat oxidation), elevated blood triglycerides and a reduction in locomotor activity. Olanzapine had a direct effect on glucose regulation, causing rapid hyperglycemia, and a reduction in glucose tolerance and insulin sensitivity. Continuous administration of olanzapine caused significant hyperinsulinemia and a significant reduction in insulin sensitivity. Zonisamide did not affect the impact of olanzapine on glucose homeostasis. On the other hand, co-administration of olanzapine with zonisamide completely ameliorated olanzapine-mediated shifts in lipid metabolism resulting in a normalization of olanzapine-induced weight gain. CONCLUSION These data collectively show an impact of olanzapine on body weight and lipid metabolism, which is ameliorated by co-administration with zonisamide. These findings suggest that a combined olanzapine and zonisamide approach might reduce weight gain, but will not provide protection against olanzapine-induced glucose intolerance.
Collapse
Affiliation(s)
- Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Victoria, Australia, Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University.
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria, Australia, Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University
| | - Michael A Cowley
- Department of Physiology, Monash University, Clayton, Victoria, Australia, Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Victoria, Australia, Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University
| |
Collapse
|
34
|
Zhang Q, Esrafilzadeh D, Crook JM, Kapsa R, Stewart EM, Tomaskovic-Crook E, Wallace GG, Huang XF. Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth of Primary Prefrontal Cortical Neurons from NRG1-KO and DISC1-LI Mice. Sci Rep 2017; 7:42525. [PMID: 28198409 PMCID: PMC5309772 DOI: 10.1038/srep42525] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/11/2017] [Indexed: 01/07/2023] Open
Abstract
Deficits in neurite outgrowth, possibly involving dysregulation of risk genes neuregulin-1 (NRG1) and disrupted in schizophrenia 1 (DISC1) have been implicated in psychiatric disorders including schizophrenia. Electrical stimulation using conductive polymers has been shown to stimulate neurite outgrowth of differentiating human neural stem cells. This study investigated the use of the electroactive conductive polymer polypyrrole (Ppy) to counter impaired neurite outgrowth of primary pre-frontal cortical (PFC) neurons from NRG1-knock out (NRG1-KO) and DISC1-locus impairment (DISC1-LI) mice. Whereas NRG1-KO and DISC1-LI exhibited reduced neurite length and number of neurite branches compared to wild-type controls, this was not apparent for cultures on electroactive Ppy. Additionally, the use of the Ppy substrate normalised the synaptophysin and PSD95 protein and mRNA expression whereas both are usually reduced by NRG1-KO or DISC1-LI. Our findings support the utility of Ppy mediated electrical stimulation to prevent the reduction of neurite outgrowth and related synaptic protein expression in the primary PFC neurons from NRG1-KO and DISC1-LI mice, providing proof-of-concept for treating neurodevelopmental diseases including schizophrenia.
Collapse
Affiliation(s)
- Qingsheng Zhang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Dorna Esrafilzadeh
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Departments of Surgery, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert Kapsa
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Departments of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Elise M Stewart
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
35
|
De Santis M, Lian J, Huang XF, Deng C. Early Antipsychotic Treatment in Juvenile Rats Elicits Long-Term Alterations to the Dopamine Neurotransmitter System. Int J Mol Sci 2016; 17:E1944. [PMID: 27879654 PMCID: PMC5133938 DOI: 10.3390/ijms17111944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/31/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Prescription of antipsychotic drugs (APDs) to children has substantially increased in recent years. Whilst current investigations into potential long-term effects have uncovered some alterations to adult behaviours, further investigations into potential changes to neurotransmitter systems are required. The current study investigated potential long-term changes to the adult dopamine (DA) system following aripiprazole, olanzapine and risperidone treatment in female and male juvenile rats. Levels of tyrosine hydroxylase (TH), phosphorylated-TH (p-TH), dopamine active transporter (DAT), and D₁ and D₂ receptors were measured via Western blot and/or receptor autoradiography. Aripiprazole decreased TH and D₁ receptor levels in the ventral tegmental area (VTA) and p-TH levels in the prefrontal cortex (PFC) of females, whilst TH levels decreased in the PFC of males. Olanzapine decreased PFC p-TH levels and increased D₂ receptor expression in the PFC and nucleus accumbens (NAc) in females only. Additionally, risperidone treatment increased D₁ receptor levels in the hippocampus of females, whilst, in males, p-TH levels increased in the PFC and hippocampus, D₁ receptor expression decreased in the NAc, and DAT levels decreased in the caudate putamen (CPu), and elevated in the VTA. These results suggest that early treatment with various APDs can cause different long-term alterations in the adult brain, across both treatment groups and genders.
Collapse
Affiliation(s)
- Michael De Santis
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
36
|
Horska K, Ruda-Kucerova J, Babinska Z, Karpisek M, Demlova R, Opatrilova R, Suchy P, Kotolova H. Olanzapine-depot administration induces time-dependent changes in adipose tissue endocrine function in rats. Psychoneuroendocrinology 2016; 73:177-185. [PMID: 27504985 DOI: 10.1016/j.psyneuen.2016.07.218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/23/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Metabolic adverse effects of atypical antipsychotics (AAP) contribute significantly to increased risk of cardiovascular morbidity and mortality in patients suffering from schizophrenia. Extensive preclinical research has addressed this issue over the past years, though mechanisms underlying these adverse effects of AAP are still not understood completely. Recently, attention is drawn towards the role of adipose tissue metabolism and neurohormonal regulations. METHODS The aim of this study was to evaluate the time-dependent effects of olanzapine depot administration at clinically relevant dosing on the regulation of energy homeostasis, glucose and lipid metabolism, gastrointestinal and adipose tissue-derived hormones involved in energy balance regulations in female Sprague-Dawley rats. The study lasted 8 weeks and the markers were assayed at day 8, 15, 29, 43 and 57. RESULTS The results indicate that in the absence of hyperphagia, olanzapine chronic exposure induced weight gain from the beginning of the study. In the later time-point, increased adiposity was also observed. In the initial phase of the study, lipid profile was altered by an early increase in triglyceride level and highly elevated leptin level was observed. Clear bi-phasic time-dependent effect of olanzapine on leptin serum concentration was demonstrated. Olanzapine treatment did not lead to changes in serum levels of ghrelin, FGF-21 and pro-inflammatory markers IL-1a, IL-6 and TNF-α at any time-point of the study. CONCLUSION This study provides data suggesting early alteration in adipose tissue endocrine function as a factor involved in mechanisms underlying metabolic adverse effects of antipsychotics.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Karpisek
- R&D Department, Biovendor - Laboratorni Medicina, Brno, Czech Republic; Department of Pharmacology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Pavel Suchy
- Department of Pharmacology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Hana Kotolova
- Department of Pharmacology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
37
|
Ameliorating antipsychotic-induced weight gain by betahistine: Mechanisms and clinical implications. Pharmacol Res 2016; 106:51-63. [DOI: 10.1016/j.phrs.2016.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023]
|
38
|
Zhang Q, Yu Y, Huang XF. Olanzapine Prevents the PCP-induced Reduction in the Neurite Outgrowth of Prefrontal Cortical Neurons via NRG1. Sci Rep 2016; 6:19581. [PMID: 26781398 PMCID: PMC4726088 DOI: 10.1038/srep19581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022] Open
Abstract
Accumulating evidence suggests that reducing neurite outgrowth and synaptic plasticity plays a critical role in the pathology of cognitive deficits in schizophrenia. The N-methyl-D-aspartate receptor antagonist phencyclidine (PCP) can induce symptoms of schizophrenia as well as reduce dendritic spine density and neurite growth. The antipsychotic drug olanzapine may improve these deficits. This study aimed to investigate: (1) if olanzapine prevents PCP-induced suppression of neurite outgrowth and synaptic protein expression; (2) if olanzapine affects the Akt-GSK3 signaling pathway; and (3) the role of neuregulin 1 (NRG1) in this process. Immunofluorescence revealed that PCP treatment for 24 hours reduces both neurite length (28.5%) and the number of neurite branches (35.6%) in primary prefrontal cortical neuron cultures. PCP reduced protein and mRNA expressions of synaptophysin (24.9% and 23.2%, respectively) and PSD95 (31.5% and 21.4%, respectively), and the protein expression of p-Akt (26.7%) and p-GSK3β (35.2%). Olanzapine co-treatment prevented these PCP-induced effects in normal neurons but not in neurons from NRG1-knockout mice. These results indicate that NRG1 mediates the preventive effects of olanzapine on the PCP-induced impairment of neurite outgrowth and synaptic protein expression. This study provides potential targets for interventions on improving the efficacy of olanzapine on preventing cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Qingsheng Zhang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia
| | - Yinghua Yu
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia.,Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, 2010, NSW, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia.,Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, 2010, NSW, Australia
| |
Collapse
|
39
|
Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal 2015; 2015:549352. [PMID: 26618193 PMCID: PMC4651788 DOI: 10.1155/2015/549352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022] Open
Abstract
Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue.
Collapse
|
40
|
Pan B, Chen J, Lian J, Huang XF, Deng C. Unique Effects of Acute Aripiprazole Treatment on the Dopamine D2 Receptor Downstream cAMP-PKA and Akt-GSK3β Signalling Pathways in Rats. PLoS One 2015; 10:e0132722. [PMID: 26162083 PMCID: PMC4498891 DOI: 10.1371/journal.pone.0132722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/17/2015] [Indexed: 01/01/2023] Open
Abstract
Aripiprazole is a wide-used antipsychotic drug with therapeutic effects on both positive and negative symptoms of schizophrenia, and reduced side-effects. Although aripiprazole was developed as a dopamine D2 receptor (D2R) partial agonist, all other D2R partial agonists that aimed to mimic aripiprazole failed to exert therapeutic effects in clinic. The present in vivo study aimed to investigate the effects of aripiprazole on the D2R downstream cAMP-PKA and Akt-GSK3β signalling pathways in comparison with a D2R antagonist – haloperidol and a D2R partial agonist – bifeprunox. Rats were injected once with aripiprazole (0.75mg/kg, i.p.), bifeprunox (0.8mg/kg, i.p.), haloperidol (0.1mg/kg, i.p.) or vehicle. Five brain regions – the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), ventral tegmental area (VTA) and substantia nigra (SN) were collected. The protein levels of PKA, Akt and GSK3β were measured by Western Blotting; the cAMP levels were examined by ELISA tests. The results showed that aripiprazole presented similar acute effects on PKA expression to haloperidol, but not bifeprunox, in the CPU and VTA. Additionally, aripiprazole was able to increase the phosphorylation of GSK3β in the PFC, NAc, CPu and SN, respectively, which cannot be achieved by bifeprunox and haloperidol. These results suggested that acute treatment of aripiprazole had differential effects on the cAMP-PKA and Akt-GSK3β signalling pathways from haloperidol and bifeprunox in these brain areas. This study further indicated that, by comparison with bifeprunox, the unique pharmacological profile of aripiprazole may be attributed to the relatively lower intrinsic activity at D2R.
Collapse
Affiliation(s)
- Bo Pan
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jiezhong Chen
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- * E-mail:
| |
Collapse
|
41
|
Dinh CHL, Szabo A, Yu Y, Camer D, Zhang Q, Wang H, Huang XF. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet. Nutrients 2015; 7:4705-23. [PMID: 26066016 PMCID: PMC4488809 DOI: 10.3390/nu7064705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/22/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity.
Collapse
Affiliation(s)
- Chi H L Dinh
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Alexander Szabo
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia.
| | - Yinghua Yu
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Danielle Camer
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Qingsheng Zhang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Hongqin Wang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
42
|
Lian J, De Santis M, He M, Deng C. Risperidone-induced weight gain and reduced locomotor activity in juvenile female rats: The role of histaminergic and NPY pathways. Pharmacol Res 2015; 95-96:20-6. [DOI: 10.1016/j.phrs.2015.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 01/05/2023]
|
43
|
Zhang Q, He M, Deng C, Wang H, Huang XF. Effects of olanzapine on the elevation of macrophage infiltration and pro-inflammatory cytokine expression in female rats. J Psychopharmacol 2014; 28:1161-9. [PMID: 25336715 DOI: 10.1177/0269881114555250] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The metabolic side-effects of olanzapine have undermined drug compliance and increased concern for this otherwise-effective treatment for schizophrenia. As obesity and type 2 diabetes are associated with low-grade inflammation, and olanzapine-induced weight gain has three typical stages, the current study investigated the inflammatory effects of olanzapine in three treatment stages. Female Sprague-Dawley rats were treated orally with olanzapine (1 mg/kg three times daily) or vehicle for one week, two weeks, and five weeks. Olanzapine significantly increased body weight and white visceral fat deposition in all three treatment stages compared to control. Olanzapine enhanced average adipocyte size and level of macrophage infiltration in white adipose tissue (WAT) compared to control, with levels of macrophage infiltration increased over time. There was a high correlation between adipocyte size and macrophage infiltration rate. Olanzapine also caused increased macrophage infiltration in brown adipose tissue (BAT), but not liver. Additionally, pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin (IL)-1β, and IL-6 were upregulated by olanzapine in the hypothalamus, WAT, and BAT compared to control, but not the liver. Finally, plasma triglycerides were elevated by olanzapine compared to control, but not total cholesterol, high density lipoprotein (HDL) or low density lipoprotein (LDL). These findings indicate that olanzapine-induced inflammation and adiposity are closely related, and that peripheral low-grade inflammation develops during olanzapine treatment.
Collapse
Affiliation(s)
- Qingsheng Zhang
- Centre for Translational Neuroscience, University of Wollongong, Wollongong, NSW, Australia Illawarra Health and Medical Research Institute, Wollongong, NSW, NSW, Australia
| | - Meng He
- Centre for Translational Neuroscience, University of Wollongong, Wollongong, NSW, Australia Illawarra Health and Medical Research Institute, Wollongong, NSW, NSW, Australia
| | - Chao Deng
- Centre for Translational Neuroscience, University of Wollongong, Wollongong, NSW, Australia Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| | - Hongqin Wang
- Centre for Translational Neuroscience, University of Wollongong, Wollongong, NSW, Australia Illawarra Health and Medical Research Institute, Wollongong, NSW, NSW, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, University of Wollongong, Wollongong, NSW, Australia Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
44
|
He M, Zhang Q, Deng C, Wang H, Huang XF. Olanzapine-activated AMPK signaling in the dorsal vagal complex is attenuated by histamine H1 receptor agonist in female rats. Endocrinology 2014; 155:4895-904. [PMID: 25264935 DOI: 10.1210/en.2014-1326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Weight gain and its related metabolic disorders are major side effects associated with second generation antipsychotic drug treatment. The dorsal vagal complex (DVC) and AMP-activated protein kinase (AMPK) are implicated in the regulation of food intake and body weight. Blocking the histamine H1 receptor contributes to antipsychotic-induced weight gain. The present study investigated the time-dependent effect of olanzapine treatment (8, 16, and 36 d) on DVC AMPK signaling in olanzapine-induced weight gain and whether these changes are associated with olanzapine-induced H1 receptor antagonism. During the 8-day olanzapine treatment, the rats were hyperphagic and rapidly gained weight. The phosphorylation of AMPK (pAMPK) (activated AMPK) as well as its directly downstream phospho-acetyl-coenzyme A carboxylase was significantly increased. The pAMPK/AMPK ratio, an indicator of AMPK activity, was significantly positively correlated with feeding efficiency and weight gain. As treatment was prolonged (16 and 36 d of olanzapine treatment), the rats were no longer hyperphagic, and there were no longer any changes in DVC AMPK signaling. Although the DVC H1 receptor protein expression was not significantly altered by olanzapine, the pAMPK expression was significantly positively correlated with the H1 receptor level after the 8-, 16-, and 36-day olanzapine treatments. Moreover, we showed that an H1 receptor agonist, 2-(3-trifluoromethylphenyl) histamine, significantly inhibited the olanzapine-induced hyperphagia and DVC AMPK activation in a dose-dependent manner. These results suggest a time-dependent role of DVC AMPK in olanzapine-induced obesity. Thus, olanzapine-induced DVC AMPK activation may be at least partially related to olanzapine's antagonistic effect on the H1 receptor.
Collapse
Affiliation(s)
- Meng He
- Centre for Translational Neuroscience (M.H., Q.Z., C.D., H.W., X.-F.H.), School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, New South Wales, Australia; and Schizophrenia Research Institute (C.D., X.-F.H.), Darlinghurst 2010, New South Wales, Australia
| | | | | | | | | |
Collapse
|
45
|
Lian J, Huang XF, Pai N, Deng C. Preventing olanzapine-induced weight gain using betahistine: a study in a rat model with chronic olanzapine treatment. PLoS One 2014; 9:e104160. [PMID: 25084453 PMCID: PMC4118967 DOI: 10.1371/journal.pone.0104160] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
Olanzapine is the one of first line antipsychotic drug for schizophrenia and other serious mental illness. However, it is associated with troublesome metabolic side-effects, particularly body weight gain and obesity. The antagonistic affinity to histamine H1 receptors (H1R) of antipsychotic drugs has been identified as one of the main contributors to weight gain/obesity side-effects. Our previous study showed that a short term (2 weeks) combination treatment of betahistine (an H1R agonist and H3R antagonist) and olanzapine (O+B) reduced (−45%) body weight gain induced by olanzapine in drug-naïve rats. A key issue is that clinical patients suffering with schizophrenia, bipolar disease and other mental disorders often face chronic, even life-time, antipsychotic treatment, in which they have often had previous antipsychotic exposure. Therefore, we investigated the effects of chronic O+B co-treatment in controlling body weight in female rats with chronic and repeated exposure of olanzapine. The results showed that co-administration of olanzapine (3 mg/kg, t.i.d.) and betahistine (9.6 mg/kg, t.i.d.) significantly reduced (−51.4%) weight gain induced by olanzapine. Co-treatment of O+B also led to a decrease in feeding efficiency, liver and fat mass. Consistently, the olanzapine-only treatment increased hypothalamic H1R protein levels, as well as hypothalamic pAMPKα, AMPKα and NPY protein levels, while reducing the hypothalamic POMC, and UCP1 and PGC-1α protein levels in brown adipose tissue (BAT). The olanzapine induced changes in hypothalamic H1R, pAMPKα, BAT UCP1 and PGC-1α could be reversed by co-treatment of O+B. These results supported further clinical trials to test the effectiveness of co-treatment of O+B for controlling weight gain/obesity side-effects in schizophrenia with chronic antipsychotic treatment.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Centre for Translational Neuroscience, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Schizophrenia Research Institute, Sydney, NSW, Australia
| | - Nagesh Pai
- Centre for Translational Neuroscience, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Centre for Translational Neuroscience, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Schizophrenia Research Institute, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|