1
|
Zhou LY, Liu ZG, Sun YQ, Li YZ, Teng ZQ, Liu CM. Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:13. [PMID: 40172766 PMCID: PMC11965071 DOI: 10.1186/s13619-025-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
Retinal ganglion cells (RGCs) are the visual gateway of the brain, with their axons converging to form the optic nerve, making them the most vulnerable target in diseases such as glaucoma and traumatic optic neuropathy (TON). In both diseases, the disruption of the blood-retinal barrier(BRB) is considered an important mechanism that accelerates RGC degeneration and hinders axon regeneration. The BRB consists of the inner blood-retinal barrier (iBRB) and the outer blood-retinal barrier (oBRB), which are maintained by endothelial cells(ECs), pericytes(PCs), and retinal pigment epithelial (RPE), respectively. Their functions include regulating nutrient exchange, oxidative stress, and the immune microenvironment. However, in glaucoma and TON, the structural and functional integrity of the BRB is severely damaged due to mechanical stress, inflammatory reactions, and metabolic disorders. Emerging evidence highlights that BRB disruption leads to heightened vascular permeability, immune cell infiltration, and sustained chronic inflammation, creating a hostile microenvironment for RGC survival. Furthermore, the dynamic interplay and imbalance among ECs, PCs, and glial cells within the neurovascular unit (NVU) are pivotal drivers of BRB destruction, exacerbating RGC apoptosis and limiting optic nerve regeneration. The intricate molecular and cellular mechanisms underlying these processes underscore the BRB's critical role in glaucoma and TON pathophysiology while offering a compelling foundation for therapeutic strategies targeting BRB repair and stabilization. This review provides crucial insights and lays a robust groundwork for advancing research on neural regeneration and innovative optic nerve protective strategies.
Collapse
Affiliation(s)
- Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yan-Zhong Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
2
|
Wang X, Sun L, Han X, Li Z, Xing Y, Chen X, Xi R, Sun Y, Wang G, Zhao P. The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). Int J Mol Med 2025; 55:63. [PMID: 39950327 PMCID: PMC11878485 DOI: 10.3892/ijmm.2025.5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive and irreversible necrosis and apoptosis of retinal ganglion cells (RGCs). Deformation of the lamina cribrosa (LC) has been identified as a factor leading to damage to the optic nerve and capillaries passing through the LC, ultimately causing visual field defects and glaucoma development. Recent advancements in molecular biology, both domestically and internationally, have enabled a more comprehensive and in‑depth understanding of glaucoma pathogenesis. In the present review, the role of molecular signaling pathways associated with RGCs apoptosis, optic nerve protection and regeneration, and LC damage and remodeling in the development of glaucoma, are summarized and discussed. The insights provided herein may offer new targets and ideas for interventions and treatment strategies for glaucoma.
Collapse
Affiliation(s)
- Xiaotong Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xudong Han
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Zhanglong Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuqing Xing
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xinyue Chen
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Ruofan Xi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuecong Sun
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Guilong Wang
- Shandong Provincial Education Department, Jinan, Shandong 250012, P.R. China
| | - Ping Zhao
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
3
|
Basavarajappa D, Chitranshi N, Oddin Mirshahvaladi SS, Gupta VB, Palanivel V, Parrilla GE, Salkar A, Mirzaei M, Komáromy AM, Krezel W, Graham SL, Gupta V. Retinoid X receptor agonist 9CDHRA mitigates retinal ganglion cell apoptosis and neuroinflammation in a mouse model of glaucoma. FASEB J 2025; 39:e70465. [PMID: 40079201 PMCID: PMC11904862 DOI: 10.1096/fj.202402642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma. We administered 9CDHRA to glaucomatous mice eyes via intravitreal injections and assessed its effects on endoplasmic reticulum (ER) stress markers, glial cell activation, and RGC survival. Our findings demonstrated that 9CDHRA treatment significantly protected inner retinal function and retinal laminar structure in high-IOP glaucoma. The treatment reduced ER stress markers, increased protein lysine acetylation, and diminished glial cell activation, leading to a significant decrease in apoptotic cells under glaucomatous conditions. These results suggest that 9CDHRA exerts neuroprotective effects by modulating key pathogenic pathways in glaucoma, highlighting its potential as a novel therapeutic strategy for preserving vision in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | | | - Veer B. Gupta
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Gabriella E. Parrilla
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Akanksha Salkar
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale (U1258), Centre National de la Recherche Scientifique (UMR7104)Université de Strasbourg, Fédération de Médecine Translationnelle de StrasbourgIllkirchFrance
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Maddineni P, Kodati B, Kaipa BR, Kesavan K, Cameron Millar J, Yacoub S, Kasetti RB, Clark AF, Zode GS. Genetic and pharmacological correction of impaired mitophagy in retinal ganglion cells rescues glaucomatous neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638142. [PMID: 39990391 PMCID: PMC11844533 DOI: 10.1101/2025.02.13.638142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Progressive loss of retinal ganglion cells (RGCs) and degeneration of optic nerve axons are the pathological hallmarks of glaucoma. Ocular hypertension (OHT) and mitochondrial dysfunction are linked to neurodegeneration and vision loss in glaucoma. However, the exact mechanism of mitochondrial dysfunction leading to glaucomatous neurodegeneration is poorly understood. Using multiple mouse models of OHT and human eyes from normal and glaucoma donors, we show that OHT induces impaired mitophagy in RGCs, resulting in the accumulation of dysfunctional mitochondria and contributing to glaucomatous neurodegeneration. Using mitophagy reporter mice, we show that impaired mitophagy precedes glaucomatous neurodegeneration. Notably, the pharmacological rescue of impaired mitophagy via Torin-2 or genetic upregulation of RGC-specific Parkin expression restores the structural and functional integrity of RGCs and their axons in mouse models of glaucoma and ex-vivo human retinal-explant cultures. Our study indicates that impaired mitophagy contributes to mitochondrial dysfunction and oxidative stress, leading to glaucomatous neurodegeneration. Enhancing mitophagy in RGCs represents a promising therapeutic strategy to prevent glaucomatous neurodegeneration.
Collapse
|
5
|
Donkor N, Kiehlbauch CC, Pappenhagen N, Look GC, Morgan AB, Shin R, Hamby ME, Inman DM. Neuroprotective effect of Sigma-2 modulator CT2074 in a mouse model of ocular hypertension. Exp Eye Res 2024; 249:110143. [PMID: 39481675 DOI: 10.1016/j.exer.2024.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocular neurodegenerative diseases, particularly glaucoma, represent a significant global cause of blindness, with current therapies inadequately addressing the degeneration of the retina and optic nerve. Recent research has identified the sigma-2 receptors as a potential druggable target to offer neuroprotection in managing ocular neurodegenerative disorders. This study investigates the neuroprotective potential of CT2074, a sigma-2 receptor modulator, in a mouse model of primary open-angle glaucoma. Male mice were subjected to unilateral magnetic bead-induced elevation of intraocular pressure (IOP) and received daily oral administration of CT2074, commencing three days prior to ocular hypertension (OHT) induction, and continuing for three weeks. Mice received bilateral intraocular injections of cholera toxin B-488 (CTB) to assess retinal ganglion cell (RGC) anterograde transport. Retina, optic nerve, and brain tissues were collected three weeks post OHT induction for quantification of RGC and axon number, with contralateral retinas and cerebelli preserved for assessment of drug exposure. CT2074 was observed in the retina at levels exceeding the 95% receptor occupancy concentration. RGC quantification showed a significant reduction in the Vehicle group compared to Naïve and CT2074 groups. Notably, the CT2074 treatment group exhibited significantly higher RGC density than the Vehicle (p < 0.0001) and was no different than Naïve. Analysis of RGC axons in optic nerve cross-sections revealed significant axonal loss in both the Vehicle and CT2074 groups compared to Naïve, though the CT2074-treated group had significantly higher axon number compared to the Vehicle. Anterograde transport in the Vehicle and CT2074 groups did not differ. This study underscores the potential of CT2074 administered orally to protect RGCs exposed to elevated IOP, as evidenced by substantial preservation of RGCs and their axons compared to Vehicle-treated mice. These findings signify a promising avenue for the development of sigma-2 receptor-targeted therapeutics in glaucoma and related neurodegenerative diseases, addressing a critical unmet need in the field of ocular neuroprotection.
Collapse
Affiliation(s)
- Nina Donkor
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Charles C Kiehlbauch
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Nathaniel Pappenhagen
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Gary C Look
- Cognition Therapeutics Inc. 2403 Sidney St. Suite 261, Pittsburgh, PA, 15203, USA
| | - Autumn B Morgan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Rick Shin
- Cognition Therapeutics Inc. 2403 Sidney St. Suite 261, Pittsburgh, PA, 15203, USA
| | - Mary E Hamby
- Cognition Therapeutics Inc. 2403 Sidney St. Suite 261, Pittsburgh, PA, 15203, USA
| | - Denise M Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| |
Collapse
|
6
|
Muench NA, Schmitt HM, Schlamp CL, Su AJA, Washington K, Nickells RW. Preservation of Murine Whole Eyes With Supplemented UW Cold Storage Solution: Anatomical Considerations. Transl Vis Sci Technol 2024; 13:24. [PMID: 39560629 DOI: 10.1167/tvst.13.11.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Purpose Retinal ganglion cell (RGC) apoptosis and axon regeneration are the principal obstacles challenging the development of successful whole eye transplantation (WET). The purpose of this study was to create a neuroprotective cocktail that targets early events in the RGC intrinsic apoptotic program to stabilize RGCs in a potential donor eye. Methods University of Wisconsin (UW) solution was augmented with supplements known to protect RGCs. Supplements targeted tyrosine kinase signaling, histone deacetylase activity, K+ ion efflux, macroglial stasis, and provided energy support. Modified UW (mUW) solutions with individual supplements were injected into the vitreous of enucleated mouse eyes, which were then stored in cold UW solution for 24 hours. Histopathology, immunostaining of individual retinal cell types, and analysis of cell-specific messenger RNAs (mRNAs) were used to identify supplements that were combined to create optimal mUW solution. Results UW and mUW solutions reduced ocular edema and focal ischemia in globes stored in cold storage. Two major issues were noted after cold storage, including retinal detachment and reduction in glial fibrillary acidic protein staining in astrocytes. A combination of supplements resolved both these issues and performed better than the individual supplements alone. Cold storage resulted in a reduction in cell-specific mRNAs, even though it preserved the corresponding protein products. Conclusions Eyes treated with optimal mUW solution exhibited preservation of retinal and cellular architecture, but did display a decrease in mRNA levels, suggesting that cold storage induced cellular stasis. Translational Relevance Application of optimal mUW solution lowers an important barrier to the development of a successful whole eye transplantation procedure.
Collapse
Affiliation(s)
- Nicole A Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heather M Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Perfuse Therapeutics Inc., Durham, NC, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - An-Jey A Su
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kia Washington
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- https://orcid.org/0000-0002-2998-5494
| |
Collapse
|
7
|
Zhang X, Li T, Zhang R, Li J, Wang K, Wu J. Downregulation of SARM1 Protects Retinal Ganglion Cell Axonal and Somal Degeneration Via JNK Activation in a Glaucomatous Model of Ocular Hypertension. Invest Ophthalmol Vis Sci 2024; 65:7. [PMID: 39499508 PMCID: PMC11540032 DOI: 10.1167/iovs.65.13.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose This study aimed to assess the expression of sterile alpha and TIR motif containing protein 1 (SARM1) in both chronic and acute glaucomatous animal models and investigate the underlying SARM1-JNK signaling mechanism responsible for the protective effects of SARM1 downregulation on retinal ganglion cell (RGC) soma and axons in a chronic intraocular hypertension (COH) model. Methods The COH model was induced by injecting magnetic microbeads into the anterior chamber, whereas the acute model was created through ischemia-reperfusion (I/R) injury. Immunohistochemistry and Western blot were used to assess SARM1 expression and JNK phosphorylation in the retina and optic nerve. SARM1 downregulation was achieved through the intravitreal injection of adeno-associated virus (AAV)2-shRNA. Quantitative analysis of RGC survival was performed by the counting of Brn3A-positive RGCs, and surviving axons were assessed through optic nerve toluidine blue stain. Results The expression of SARM1 increased 1 week after microbead injection in the optic nerve, whereas the retinal SARM1 expression decreased at 3 days post-injection in the COH model. After 24 hours of reperfusion, SARM1 expression increased in both the optic nerves and the retinas in the I/R injury model. SARM1 downregulation led to increased survival of RGC soma and axons in the COH model. In this model, JNK phosphorylation was significantly reduced concomitant with decreased SARM1 expression. Conclusions Elevated SARM1 expression was observed in the optic nerves in both the COH and I/R injury models. Downregulation of SARM1 exhibited a protective effect on RGC soma and axons in the COH model, with JNK identified as a downstream regulator of SARM1 in this context.
Collapse
Affiliation(s)
- Xuejin Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ting Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Rong Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Junfeng Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Kaidi Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
8
|
Oikawa K, Kiland JA, Mathu V, Torne O, Wickland C, Neufcourt S, Mitro C, Lopez R, McLellan GJ. Effects of Telmisartan on Intraocular Pressure, Blood Pressure, and Ocular Perfusion Pressure in Normal and Glaucomatous Cats. Transl Vis Sci Technol 2024; 13:15. [PMID: 39264603 PMCID: PMC11407481 DOI: 10.1167/tvst.13.9.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Purpose To determine the effect of telmisartan on intraocular pressure (IOP), blood pressure (BP), and ocular perfusion pressure (OPP) in normal and glaucomatous cats. Methods A four-week study was conducted in six normal adult cats, followed by a longer six-month study performed in 37 cats with spontaneous glaucoma and 11 age-matched normal cats. Telmisartan (1 mg/kg/day) or placebo-vehicle were administered orally once daily. IOP was measured by rebound tonometry. BP readings were obtained by oscillometric method. OPP was calculated as mean arterial pressure (MAP) - IOP. IOP and BP were obtained three times a week for the first study and weekly for the second study. Results Baseline IOP was significantly higher, and OPP was significantly lower in glaucomatous cats than in normal cats (P < 0.0001). These differences between glaucomatous and normal cats persisted throughout the study, regardless of treatment (P < 0.001). No significant differences in IOP, BP, or OPP were detected between any study phases in the first, normal feline cohort or between telmisartan- and placebo-treated glaucomatous cats at any timepoint in the second study. Conclusions Oral telmisartan was well tolerated and did not have a detrimental effect on BP or OPP in cats but did not lower IOP or improve OPP in cats with glaucoma. Translational Relevance While showing telmisartan could not be used as a sole therapy for IOP lowering, our data affirmed a lack of detrimental effects of telmisartan on BP and OPP in a translationally-relevant, spontaneous, large animal glaucoma model.
Collapse
Affiliation(s)
- Kazuya Oikawa
- Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, Madison, WI, USA
| | - Julie A Kiland
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Virginia Mathu
- Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, Madison, WI, USA
| | - Odalys Torne
- Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, Madison, WI, USA
| | - Colton Wickland
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah Neufcourt
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chloë Mitro
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Lopez
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Gillian J McLellan
- Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, Madison, WI, USA
| |
Collapse
|
9
|
Andersh KM, MacLean M, Howell GR, Libby RT. IL1A enhances TNF-induced retinal ganglion cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596328. [PMID: 38854045 PMCID: PMC11160597 DOI: 10.1101/2024.05.28.596328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Glaucoma is a neurodegenerative disease that leads to the death of retinal ganglion cells (RGCs). A growing body of literature suggests a role for neuroinflammation in RGC death after glaucoma-relevant insults. For instance, it was shown that deficiency of three proinflammatory cytokines, complement component 1, subcomponent q ( C1q ), interleukin 1 alpha ( Il1a ), and tumor necrosis factor ( Tnf ), resulted in near complete protection of RGCs after two glaucoma-relevant insults, optic nerve injury and ocular hypertension. While TNF and C1Q have been extensively investigated in glaucoma-relevant model systems, the role of IL1A in RGC is not as well defined. Thus, we investigated the direct neurotoxicity of IL1A on RGCs in vivo. Intravitreal injection of IL1A did not result in RGC death at either 14 days or 12 weeks after insult. Consistent with previous studies, TNF injection did not result in significant RGC loss at 14 days but did after 12 weeks. Interestingly, IL1A+TNF resulted in a relatively rapid RGC death, driving significant RGC loss two weeks after injection. JUN activation and SARM1 have been implicated in RGC death in glaucoma and after cytokine insult. Using mice deficient in JUN or SARM1, we show RGC loss after IL1A+TNF insult is JUN-independent and SARM1-dependent. Furthermore, RNA-seq analysis showed that RGC death by SARM1 deficiency does not stop the neuroinflammatory response to IL1A+TNF. These findings indicate that IL1A can potentiate TNF-induced RGC death after combined insult is likely driven by a SARM1-dependent RGC intrinsic signaling pathway.
Collapse
|
10
|
Chen D, Miao S, Chen X, Wang Z, Lin P, Zhang N, Yang N. Regulated Necrosis in Glaucoma: Focus on Ferroptosis and Pyroptosis. Mol Neurobiol 2024; 61:2542-2555. [PMID: 37910286 DOI: 10.1007/s12035-023-03732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Glaucoma is one of the most common causes of irreversible blindness worldwide. This neurodegenerative disease is characterized by progressive and irreversible damage to retinal ganglion cells (RGCs) and optic nerves, which can lead to permanent loss of peripheral and central vision. To date, maintaining long-term survival of RGCs using traditional treatments, such as medication and surgery, remains challenging, as these do not promote optic nerve regeneration. Therefore, it is of great clinical and social significance to investigate the mechanisms of optic nerve degeneration in depth and find reliable targets to provide pioneering methods for the prevention and treatment of glaucoma. Regulated necrosis is a form of genetically programmed cell death associated with the maintenance of homeostasis and disease progression in vivo. An increasing body of innovative evidence has recognized that aberrant activation of regulated necrosis pathways is a common feature in neurodegenerative diseases, such as Alzheimer's, Parkinson's, and glaucoma, resulting in unwanted loss of neuronal cells and function. Among them, ferroptosis and pyroptosis are newly discovered forms of regulated cell death actively involved in the pathophysiological processes of RGCs loss and optic nerve injury. This was shown by a series of in vivo and in vitro studies, and these mechanisms have been emerging as a key new area of scientific research in ophthalmic diseases. In this review, we focus on the molecular mechanisms of ferroptosis and pyroptosis and their regulatory roles in the pathogenesis of glaucoma, with the aim of exploring their implications as potential therapeutic targets and providing new perspectives for better clinical decision-making in glaucoma treatment.
Collapse
Affiliation(s)
- Duan Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Sen Miao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
11
|
Zhang J, Yang X, Zong Y, Yu T, Yang X. miR-196b-5p regulates inflammatory process and migration via targeting Nras in trabecular meshwork cells. Int Immunopharmacol 2024; 129:111646. [PMID: 38325046 DOI: 10.1016/j.intimp.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Glaucoma, an insidious ophthalmic pathology, is typified by an aberrant surge in intraocular pressure (IOP) which culminates in the degeneration of retinal ganglion cells and optical neuropathy. The mitigation of IOP stands as the principal therapeutic strategy to forestall vision loss. The trabecular meshwork's (TM) integrity and functionality are pivotal in modulating aqueous humor egress. Despite their potential significance in glaucomatous pathophysiology, the implications of microRNAs (miRNAs) on TM functionality remain largely enigmatic. Transcriptomic sequencing was employed to delineate the miRNA expression paradigm within the limbal region of rodent glaucoma models, aiming to elucidate miRNA-mediated mechanisms within the glaucomatous milieu. Analytical scrutiny of the sequencing data disclosed 174 miRNAs with altered expression profiles, partitioned into 86 miRNAs with augmented expression and 88 with diminished expression. Notably, miRNAs such as hsa-miR-196b-5p were identified as having substantial expression discrepancies with concomitant statistical robustness, suggesting a potential contributory role in glaucomatous progression. Subsequent in vitro assays affirmed that miR-196b-5p augments the inflammatory cascade within immortalized human TM (iHTM) and glaucoma-induced human TM (GTM3) cells, concurrently attenuating cellular proliferation, motility, and cytoskeletal architecture. Additionally, miR-196b-5p implicates itself in the regulation of IOP and inflammatory processes in rodent models. At a mechanistic level, miR-196b-5p modulates its effects via the targeted repression of Nras (neuroblastoma RAS viral oncogene homolog). Collectively, these transcriptomic investigations furnish a comprehensive vista into the regulatory roles of miRNAs within the glaucomatous framework, and the identification of differentially expressed miRNAs alongside their targets could potentially illuminate novel molecular pathways implicated in glaucoma, thereby aiding in the development of innovative therapeutic avenues.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xuejiao Yang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yao Zong
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| | - Xian Yang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
12
|
Grannonico M, Miller DA, Liu M, Krause MA, Savier E, Erisir A, Netland PA, Cang J, Zhang HF, Liu X. Comparative In Vivo Imaging of Retinal Structures in Tree Shrews, Humans, and Mice. eNeuro 2024; 11:ENEURO.0373-23.2024. [PMID: 38538082 PMCID: PMC10972737 DOI: 10.1523/eneuro.0373-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Rodent models, such as mice and rats, are commonly used to examine retinal ganglion cell damage in eye diseases. However, as nocturnal animals, rodent retinal structures differ from primates, imposing significant limitations in studying retinal pathology. Tree shrews (Tupaia belangeri) are small, diurnal paraprimates that exhibit superior visual acuity and color vision compared with mice. Like humans, tree shrews have a dense retinal nerve fiber layer (RNFL) and a thick ganglion cell layer (GCL), making them a valuable model for investigating optic neuropathies. In this study, we applied high-resolution visible-light optical coherence tomography to characterize the tree shrew retinal structure in vivo and compare it with that of humans and mice. We quantitatively characterize the tree shrew's retinal layer structure in vivo, specifically examining the sublayer structures within the inner plexiform layer (IPL) for the first time. Next, we conducted a comparative analysis of retinal layer structures among tree shrews, mice, and humans. We then validated our in vivo findings in the tree shrew inner retina using ex vivo confocal microscopy. The in vivo and ex vivo analyses of the shrew retina build the foundation for future work to accurately track and quantify the retinal structural changes in the IPL, GCL, and RNFL during the development and progression of human optic diseases.
Collapse
Affiliation(s)
- Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - David A Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Mingna Liu
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Michael A Krause
- Departments of Ophthalmology, University of Virginia, Charlottesville, Virginia 22904
| | - Elise Savier
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Alev Erisir
- Psychology, University of Virginia, Charlottesville, Virginia 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia 22904
| | - Peter A Netland
- Departments of Ophthalmology, University of Virginia, Charlottesville, Virginia 22904
| | - Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
- Psychology, University of Virginia, Charlottesville, Virginia 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia 22904
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
- Psychology, University of Virginia, Charlottesville, Virginia 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
13
|
Yi W, Xue Y, Qing W, Cao Y, Zhou L, Xu M, Sun Z, Li Y, Mai X, Shi L, He C, Zhang F, Duh EJ, Cao Y, Liu X. Effective treatment of optic neuropathies by intraocular delivery of MSC-sEVs through augmenting the G-CSF-macrophage pathway. Proc Natl Acad Sci U S A 2024; 121:e2305947121. [PMID: 38289952 PMCID: PMC10861878 DOI: 10.1073/pnas.2305947121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Optic neuropathies, characterized by injury of retinal ganglion cell (RGC) axons of the optic nerve, cause incurable blindness worldwide. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) represent a promising "cell-free" therapy for regenerative medicine; however, the therapeutic effect on neural restoration fluctuates, and the underlying mechanism is poorly understood. Here, we illustrated that intraocular administration of MSC-sEVs promoted both RGC survival and axon regeneration in an optic nerve crush mouse model. Mechanistically, MSC-sEVs primarily targeted retinal mural cells to release high levels of colony-stimulating factor 3 (G-CSF) that recruited a neural restorative population of Ly6Clow monocytes/monocyte-derived macrophages (Mo/MΦ). Intravitreal administration of G-CSF, a clinically proven agent for treating neutropenia, or donor Ly6Clow Mo/MΦ markedly improved neurological outcomes in vivo. Together, our data define a unique mechanism of MSC-sEV-induced G-CSF-to-Ly6Clow Mo/MΦ signaling in repairing optic nerve injury and highlight local delivery of MSC-sEVs, G-CSF, and Ly6Clow Mo/MΦ as therapeutic paradigms for the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Ying Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Wenjie Qing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yingxue Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Lingli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Mingming Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Zehui Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yuying Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xiaomei Mai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Le Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Elia J. Duh
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm17165, Stockholm, Sweden
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| |
Collapse
|
14
|
Chrysostomou V, Bell KC, Ng SW, Suresh S, Karthik G, Millet M, Chung Y, Crowston JG. A new model of axon degeneration in the mouse optic nerve using repeat intraocular pressure challenge. Exp Eye Res 2024; 238:109722. [PMID: 37952724 DOI: 10.1016/j.exer.2023.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
We characterize a new experimental model for inducing retinal ganglion cell (RGC) dysfunction and degeneration in mice. C57BL/6J mice were subjected to two acute periods of intraocular pressure (IOP) elevation (50 mmHg for 30 min) by cannulation of the anterior chamber. We used full-field electroretinography and visual evoked potentials (VEPs) to measure subsequent changes in retina and optic nerve function, and histochemical techniques to assess RGC survival and optic nerve structure. In 12 month old mice, a single IOP challenge caused loss and subsequent recovery of RGC function over the following 28 days with minimal cell death and no observed axonal damage. A second identical IOP challenge resulted in persistent RGC dysfunction and significant (36%) loss of RGC somas. This was accompanied by a 16.7% delay in the latency and a 27.6% decrease in the amplitude of the VEP. Severe axonal damage was seen histologically with enlargement of axons, myelin disruption, reduced axon density, and the presence of glial scarring. In contrast, younger 3 month old mice when exposed to a single or repeat IOP challenge showed quicker RGC functional recovery after a single challenge and full functional recovery after a repeat challenge with no detectable optic nerve dysfunction. These data demonstrate a highly reproducible and minimally invasive method for inducing RGC degeneration and axonal damage in mice. Resilience of the optic nerve to damage is highly dependent on animal age. The time-defined nature of functional versus structural loss seen in this model stands to facilitate investigation of neuroglial responses in the retina after IOP injury and the associated evaluation of neuroprotective treatment strategies. Further, the model may be used to investigate the impact of aging and the cellular switch between neurorecovery and neurodegeneration.
Collapse
Affiliation(s)
- Vicki Chrysostomou
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, 169856, Singapore.
| | - Katharina C Bell
- Singapore Eye Research Institute, The Academia, 20 College Road, 169856, Singapore; EYE-ACP, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Save Sight Institute, Charles Perkins Centre, University of Sydney, Australia
| | - Sze Woei Ng
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
| | - Samyuktha Suresh
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Gayathri Karthik
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Marion Millet
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
| | - Yingying Chung
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
| | - Jonathan G Crowston
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, 169856, Singapore; Save Sight Institute, Charles Perkins Centre, University of Sydney, Australia
| |
Collapse
|
15
|
Basavarajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL, Chitranshi N. Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med 2023; 94:101216. [PMID: 37856930 DOI: 10.1016/j.mam.2023.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Caridad Galindo-Romero
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
16
|
Karg MM, Lu YR, Refaian N, Cameron J, Hoffmann E, Hoppe C, Shirahama S, Shah M, Krasniqi D, Krishnan A, Shrestha M, Guo Y, Cermak JM, Walthier M, Broniowska K, Rosenzweig-Lipson S, Gregory-Ksander M, Sinclair DA, Ksander BR. Sustained Vision Recovery by OSK Gene Therapy in a Mouse Model of Glaucoma. Cell Reprogram 2023; 25:288-299. [PMID: 38060815 PMCID: PMC10739681 DOI: 10.1089/cell.2023.0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.
Collapse
Affiliation(s)
- Margarete M. Karg
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Whitehead Institute for Biomedical Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Nasrin Refaian
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Cameron
- Whitehead Institute for Biomedical Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Emma Hoffmann
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shintaro Shirahama
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Madhura Shah
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Drenushe Krasniqi
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anitha Krishnan
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maleeka Shrestha
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yinjie Guo
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - David A. Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Ksander
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Dixon A, Shim MS, Nettesheim A, Coyne A, Su CC, Gong H, Liton PB. Autophagy deficiency protects against ocular hypertension and neurodegeneration in experimental and spontanous glaucoma mouse models. Cell Death Dis 2023; 14:554. [PMID: 37620383 PMCID: PMC10449899 DOI: 10.1038/s41419-023-06086-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Glaucoma is a group of diseases that leads to chronic degeneration of retinal ganglion cell (RGC) axons and progressive loss of RGCs, resulting in vision loss. While aging and elevated intraocular pressure (IOP) have been identified as the main contributing factors to glaucoma, the molecular mechanisms and signaling pathways triggering RGC death and axonal degeneration are not fully understood. Previous studies in our laboratory found that overactivation of autophagy in DBA/2J::GFP-LC3 mice led to RGC death and optic nerve degeneration with glaucomatous IOP elevation. We found similar findings in aging GFP-LC3 mice subjected to chronic IOP elevation. Here, we further investigated the impact of autophagy deficiency on autophagy-deficient DBA/2J-Atg4bko and DBA/2J-Atg4b+/- mice, generated in our laboratory via CRISPR/Cas9 technology; as well as in Atg4bko mice subjected to the experimental TGFβ2 chronic ocular hypertensive model. Our data shows that, in contrast to DBA/2J and DBA/2J-Atg4b+/- littermates, DBA/2J-Atg4bko mice do not develop glaucomatous IOP elevation. Atg4b deficiency also protected against glaucomatous IOP elevation in the experimental TGFβ2 chronic ocular hypertensive model. Atg4 deletion did not compromise RGC or optic nerve survival in Atg4bko mice. Moreover, our results indicate a protective role of autophagy deficiency against RGC death and ON atrophy in the hypertensive DBA/2J-Atg4b+/- mice. Together, our data suggests a pathogenic role of autophagy activation in ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Angela Dixon
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Myoung Sup Shim
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - April Nettesheim
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Aislyn Coyne
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Chien-Chia Su
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Paloma B Liton
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA.
| |
Collapse
|
18
|
Cen LP, Park KK, So KF. Optic nerve diseases and regeneration: How far are we from the promised land? Clin Exp Ophthalmol 2023; 51:627-641. [PMID: 37317890 PMCID: PMC10519420 DOI: 10.1111/ceo.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
The retinal ganglion cells (RGCs) are the sole output neurons that connect information from the retina to the brain. Optic neuropathies such as glaucoma, trauma, inflammation, ischemia and hereditary optic neuropathy can cause RGC loss and axon damage, and lead to partial or total loss of vision, which is an irreversible process in mammals. The accurate diagnoses of optic neuropathies are crucial for timely treatments to prevent irrevocable RGCs loss. After severe ON damage in optic neuropathies, promoting RGC axon regeneration is vital for restoring vision. Clearance of neuronal debris, decreased intrinsic growth capacity, and the presence of inhibitory factors have been shown to contribute to the failure of post-traumatic CNS regeneration. Here, we review the current understanding of manifestations and treatments of various common optic neuropathies. We also summarise the current known mechanisms of RGC survival and axon regeneration in mammals, including specific intrinsic signalling pathways, key transcription factors, reprogramming genes, inflammation-related regeneration factors, stem cell therapy, and combination therapies. Significant differences in RGC subtypes in survival and regenerative capacity after injury have also been found. Finally, we highlight the developmental states and non-mammalian species that are capable of regenerating RGC axons after injury, and cellular state reprogramming for neural repair.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Department of Neuro-Ophthalmology, Joint Shantou International Eye Centre of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Kevin K. Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kowk-Fai So
- Guangzhou-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Aier School of Ophthalmology, Changsha Aier Hospital of Ophthalmology, Changsha, China
| |
Collapse
|
19
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Wang Y, Zhang W, Xu G, Shi C, Wang X, Qu J, Wang H, Liu C. The role of TRPV4 in the regulation of retinal ganglion cells apoptosis in rat and mouse. Heliyon 2023; 9:e17583. [PMID: 37456002 PMCID: PMC10338314 DOI: 10.1016/j.heliyon.2023.e17583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Retinal ganglion cell (RGC) damages are common in glaucoma, causing atrophy of the optic papilla, visual field damage, and visual loss. Transient receptor potential vanilloid 4 (TRPV4) is significantly expressed in the eyeball and is sensitive to mechanical and osmotic pressure. However, the specific role and mechanism of TRPV4 in glaucoma and RGC progression remain unclear. TRPV4 expression was detected in RGCs under different pressure culture conditions. We also explored the pressure effect on TRPV4 expression and the role and mechanism behind the functional regulation of RGCs. Immunofluorescence staining, western blotting, and TUNEL were utilized in this study. Our results established that TRPV4 was expressed in RGCs. TRPV4 expression was decreased at 40 mmHg and 60 mmHg, and the expression of BAX at 40 mmHg, 60 mmHg. Additionally, the expression of caspase 9 protein increased at 40 mmHg with the pressure increase compared with the conventional culture group. TUNEL staining revealed that the apoptosis rate of RGCs was elevated at 40 mmHg and 60 mmHg, compared with the traditional culture group. Therefore, the expression of BAX and caspase 9 increased, along with the apoptosis rate of RGCs compared with the control group. However, after TRPV4 antagonist treatment, the expression of BAX and caspase 9 decreased, and the apoptosis rate of RGCs decreased. Thus, TRPV4 may affect the mitochondrial apoptosis pathway, such as BAX and caspase 9, leading to the apoptosis of RGCs. The antagonists of TRPV4 could provide a new idea for clinically treating acute glaucoma.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Guozheng Xu
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Changwei Shi
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Xiang Wang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Jianfeng Qu
- Medical Engineering and Technology Research Center, Shandong First Medical University, Taian, Shandong, 271000, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| |
Collapse
|
21
|
Chang S, Xu W, Fan W, McDaniel JA, Grannonico M, Miller DA, Liu M, Zhang HF, Liu X. Alignment of Visible-Light Optical Coherence Tomography Fibergrams with Confocal Images of the Same Mouse Retina. J Vis Exp 2023:10.3791/65237. [PMID: 37458426 PMCID: PMC11932515 DOI: 10.3791/65237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
In recent years, in vivo retinal imaging, which provides non-invasive, real-time, and longitudinal information about biological systems and processes, has been increasingly applied to obtain an objective assessment of neural damage in eye diseases. Ex vivo confocal imaging of the same retina is often necessary to validate the in vivo findings especially in animal research. In this study, we demonstrated a method for aligning an ex vivo confocal image of the mouse retina with its in vivo images. A new clinical-ready imaging technology called visible light optical coherence tomography fibergraphy (vis-OCTF) was applied to acquire in vivo images of the mouse retina. We then performed the confocal imaging of the same retina as the "gold standard" to validate the in vivo vis-OCTF images. This study not only enables further investigation of the molecular and cellular mechanisms but also establishes a foundation for a sensitive and objective evaluation of neural damage in vivo.
Collapse
Affiliation(s)
| | - Wenjin Xu
- Department of Biology, University of Virginia
| | - Weijia Fan
- Department of Biomedical Engineering, Northwestern University
| | | | | | - David A Miller
- Department of Biomedical Engineering, Northwestern University
| | - Mingna Liu
- Department of Biology, University of Virginia
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University
| | - Xiaorong Liu
- Department of Biology, University of Virginia; Department of Ophthalmology, University of Virginia; Program in Fundamental Neuroscience, University of Virginia; Department of Psychology, University of Virginia;
| |
Collapse
|
22
|
Liu P, Chen W, Jiang H, Huang H, Liu L, Fang F, Li L, Feng X, Liu D, Dalal R, Sun Y, Jafar-Nejad P, Ling K, Rigo F, Ye J, Hu Y. Differential effects of SARM1 inhibition in traumatic glaucoma and EAE optic neuropathies. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:13-27. [PMID: 36950280 PMCID: PMC10025007 DOI: 10.1016/j.omtn.2023.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Optic neuropathy is a group of optic nerve (ON) diseases with progressive degeneration of ON and retinal ganglion cells (RGCs). The lack of neuroprotective treatments is a central challenge for this leading cause of irreversible blindness. SARM1 (sterile α and TIR motif-containing protein 1) has intrinsic nicotinamide adenine dinucleotide (NAD+) hydrolase activity that causes axon degeneration by degrading axonal NAD+ significantly after activation by axon injury. SARM1 deletion is neuroprotective in many, but not all, neurodegenerative disease models. Here, we compare two therapy strategies for SARM1 inhibition, antisense oligonucleotide (ASO) and CRISPR, with germline SARM1 deletion in the neuroprotection of three optic neuropathy mouse models. This study reveals that, similar to germline SARM1 knockout in every cell, local retinal SARM1 ASO delivery and adeno-associated virus (AAV)-mediated RGC-specific CRISPR knockdown of SARM1 provide comparable neuroprotection to both RGC somata and axons in the silicone oil-induced ocular hypertension (SOHU) glaucoma model but only protect RGC axons, not somata, after traumatic ON injury. Surprisingly, neither of these two therapy strategies of SARM1 inhibition nor SARM1 germline knockout (KO) benefits RGC or ON survival in the experimental autoimmune encephalomyelitis (EAE)/optic neuritis model. Our studies therefore suggest that SARM1 inhibition by local ASO delivery or AAV-mediated CRISPR is a promising neuroprotective gene therapy strategy for traumatic and glaucomatous optic neuropathies but not for demyelinating optic neuritis.
Collapse
Affiliation(s)
- Pingting Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Wei Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liping Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xue Feng
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dong Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | - Karen Ling
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Corresponding author: Yang Hu, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
23
|
Melatonin protects against NMDA-induced retinal ganglion cell injury by regulating the microglia-TNFα-RGC p38 MAPK pathway. Int Immunopharmacol 2023; 118:109976. [PMID: 37098655 DOI: 10.1016/j.intimp.2023.109976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Glaucoma, one of the most common ocular neurodegenerative diseases worldwide, is characterized by retinal ganglion cell (RGC) loss. There is a large body of literature that describes the neuroprotective role of melatonin against neurodegenerative diseases by regulating neuroinflammation, although the exact mechanism through which melatonin acts on RGC is still uncertain. This study assessed the protective effects of melatonin using a NMDA-induced RGC injury model, and studied the possible mechanisms involved in this process. Melatonin promoted RGC survival, improved retinal function, and inhibited the apoptosis and necrosis of retinal cells. To understand the mechanism of the neuroprotective effects of melatonin on RGC, microglia and inflammation-related pathways were assessed after melatonin administration and microglia ablation. Melatonin promoted RGC survival by suppressing microglia-derived proinflammatory cytokines, in particular TNFα, which in turn inhibited the activation of p38 MAPK pathway. Inhibiting TNFα or manipulating p38 MAPK pathway protected damaged RGC. Our results suggest that melatonin protects against NMDA-induced RGC injury by inhibiting the microglial TNFα-RGC p38 MAPK pathway. It should be considered a candidate neuroprotective therapy against retinal neurodegenerative diseases.
Collapse
|
24
|
Fague L, Marsh-Armstrong N. Dual leucine zipper kinase is necessary for retinal ganglion cell axonal regeneration in Xenopus laevis. PNAS NEXUS 2023; 2:pgad109. [PMID: 37152673 PMCID: PMC10162689 DOI: 10.1093/pnasnexus/pgad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/08/2023] [Indexed: 05/09/2023]
Abstract
Retinal ganglion cell (RGC) axons of the African clawed frog, Xenopus laevis, unlike those of mammals, are capable of regeneration and functional reinnervation of central brain targets following injury. Here, we describe a tadpole optic nerve crush (ONC) procedure and assessments of brain reinnervation based on live imaging of RGC-specific transgenes which, when paired with CRISPR/Cas9 injections at the one-cell stage, can be used to assess the function of regeneration-associated genes in vivo in F0 animals. Using this assay, we find that map3k12, also known as dual leucine zipper kinase (Dlk), is necessary for RGC axonal regeneration and acts in a dose-dependent manner. Loss of Dlk does not affect RGC innervation of the brain during development or visually driven behavior but does block both axonal regeneration and functional vision restoration after ONC. Dlk loss does not alter the acute changes in mitochondrial movement that occur within RGC axons hours after ONC but does completely block the phosphorylation and nuclear translocation of the transcription factor Jun within RGCs days after ONC; yet, Jun is dispensable for reinnervation. These results demonstrate that in a species fully capable of regenerating its RGC axons, Dlk is essential for the axonal injury signal to reach the nucleus but may affect regeneration through a different pathway than by which it signals in mammalian RGCs.
Collapse
Affiliation(s)
- Lindsay Fague
- Department of Ophthalmology and Vision Science, UC Davis Eye Center, University of California, Davis, 1275 Med Science Drive Rm. 3451, Davis, CA 95616, USA
| | | |
Collapse
|
25
|
Zhang Y, Yang X, Deng X, Yang S, Li Q, Xie Z, Hong L, Cao M, Yi G, Fu M. Single-cell transcriptomics-based multidisease analysis revealing the molecular dynamics of retinal neurovascular units under inflammatory and hypoxic conditions. Exp Neurol 2023; 362:114345. [PMID: 36736650 DOI: 10.1016/j.expneurol.2023.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/27/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The retinal neurovascular unit (NVU) is paramount to maintaining the homeostasis of the retina and determines the progression of various diseases, including diabetic retinopathy (DR), glaucoma, and retinopathy of prematurity (ROP). Although some studies have investigated these diseases, a combined analysis of disease-wide etiology in the NUV at the single-cell level is lacking. Herein, we constructed an atlas of the NVU under inflammatory and hypoxic conditions by integrating single-cell transcriptome data from retinas from wild-type, AireKO, and NdpKO mice. Based on the heterogeneity of the NVU structure and transcriptome diversity under normal and pathological conditions, we discovered two subpopulations of Müller cells: Aqp4hi and Aqp4lo cells. Specifically, Aqp4lo cells expresses phototransduction genes and represent a special type of Müller cell distinct from Aqp4hi cells, classical Müller cells. AireKO mice exhibit experimental autoimmune uveitis (EAU) with severe damage to the NVU structure, mainly degeneration of Aqp4hi cells. NdpKO mice exhibited familial exudative vitreoretinopathy (FEVR), with damage to the endothelial barrier, endothelial cell tight junction destruction and basement membrane thickening, accompanied by the reactive secretion of proangiogenic factors by Aqp4hi cells. In both EAU and FEVR, Aqp4hi cells are a key factor leading to NVU damage, and the mechanism by which they are generated is regulated by different transcription factors. By studying the pattern of immune cell infiltration in AireKO mice, we constructed a regulatory loop of "inflammatory cells/NVU - monocytes - APCs - Ifng+ T cells", providing a new target for blocking the inflammatory cascade. Our elucidation of the cell-specific molecular changes, cell-cell interactions and transcriptional mechanisms of the retinal NVU provides new insights to support the development of multipurpose drugs to block or even reverse NVU damage.
Collapse
Affiliation(s)
- Yuxi Zhang
- Zhujiang Hospital, Southern Medical University, Guangzhou, PR China; The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiongyi Yang
- Zhujiang Hospital, Southern Medical University, Guangzhou, PR China; The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoqing Deng
- Zhujiang Hospital, Southern Medical University, Guangzhou, PR China; The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Qiumo Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, PR China; The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhuohang Xie
- Zhujiang Hospital, Southern Medical University, Guangzhou, PR China; The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Libing Hong
- Zhujiang Hospital, Southern Medical University, Guangzhou, PR China; The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China.
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Erheng Road, Yuancun, Tianhe, Guangzhou, Guangdong, PR China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
26
|
Zhang N, Cao W, He X, Xing Y, Yang N. Long Non-Coding RNAs in Retinal Ganglion Cell Apoptosis. Cell Mol Neurobiol 2023; 43:561-574. [PMID: 35226226 PMCID: PMC11415166 DOI: 10.1007/s10571-022-01210-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
Abstract
Traumatic optic neuropathy or other neurodegenerative diseases, including optic nerve transection, glaucoma, and diabetic retinopathy, can lead to progressive and irreversible visual damage. Long non-coding RNAs (lncRNAs), which belong to the family of non-protein-coding transcripts, have been linked to the pathogenesis, progression, and prognosis of these lesions. Retinal ganglion cells (RGCs) are critical for the transmission of visual information to the brain, damage to which results in visual loss. Apoptosis has been identified as one of the most essential modes of RGC death. Emerging evidence suggests that lncRNAs can regulate RGC degeneration by directly or indirectly modulating apoptosis-associated signaling pathways. This review presents a comprehensive overview of the role of lncRNAs in RGC apoptosis at transcriptional, post-transcriptional, translational, and post-translational levels, emphasizing on the potential mechanisms of action. The current limitations and future perspectives of exploring the connection between lncRNAs and RGC apoptosis have been summarized. Understanding the intricate molecular interaction network of lncRNAs and RGC apoptosis will open new avenues for the identification of novel diagnostic biomarkers, therapeutic targets, and molecules for prognostic evaluation of diseases related to RGC injury.
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
27
|
Ishikawa M, Izumi Y, Sato K, Sato T, Zorumski CF, Kunikata H, Nakazawa T. Glaucoma and microglia-induced neuroinflammation. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1132011. [PMID: 38983051 PMCID: PMC11182182 DOI: 10.3389/fopht.2023.1132011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/15/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma is a multifactorial neurodegenerative disease characterized by a progressive optic neuropathy resulting in visual field defects. Elevated intraocular pressure (IOP) is the greatest risk factor for the development of glaucoma, and IOP reduction therapy is the only treatment currently available. However, there are many cases in which retinal degeneration progresses despite sufficient control of IOP. Therefore, it is important to elucidate the pathophysiology of glaucoma that is resistant to current IOP lowering therapies. Experiments using animal glaucoma models show the relationships between microglial neuroinflammatory responses and damage of retinal ganglion cells (RGCs). Inhibition of neuroinflammatory pathways associated with microglial activation appears to be neuroprotective, indicating that microglia may be an important therapeutic target for RGC protection. In this review, we will focus on microglia-induced neuroinflammation in the pathogenesis of glaucoma to offer new insights into the possibility of developing novel neuroprotective therapies targeting microglia.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taimu Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Charles F. Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Liu X, Zhang H. Characterization of retinal ganglion cell damage at single axon bundle level in mice by visible-light optical coherence tomography fibergraphy. Neural Regen Res 2023. [PMID: 35799531 PMCID: PMC9241432 DOI: 10.4103/1673-5374.343906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Huang KC, Gomes C, Meyer JS. Retinal Ganglion Cells in a Dish: Current Strategies and Recommended Best Practices for Effective In Vitro Modeling of Development and Disease. Handb Exp Pharmacol 2023; 281:83-102. [PMID: 36907969 PMCID: PMC10497719 DOI: 10.1007/164_2023_642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) provides an extraordinary opportunity to study the development of RGCs as well as cellular mechanisms underlying their degeneration in optic neuropathies. In the past several years, multiple approaches have been established that allow for the generation of RGCs from hPSCs, with these methods greatly improved in more recent studies to yield mature RGCs that more faithfully recapitulate phenotypes within the eye. Nevertheless, numerous differences still remain between hPSC-RGCs and those found within the human eye, with these differences likely explained at least in part due to the environment in which hPSC-RGCs are grown. With the ultimate goal of generating hPSC-RGCs that most closely resemble those within the retina for proper studies of retinal development, disease modeling, as well as cellular replacement, we review within this manuscript the current effective approaches for the differentiation of hPSC-RGCs, as well as how they have been applied for the investigation of RGC neurodegenerative diseases such as glaucoma. Furthermore, we provide our opinions on the characteristics of RGCs necessary for their use as effective in vitro disease models and importantly, how these current systems should be improved to more accurately reflect disease states. The establishment of characteristics in differentiated hPSC-RGCs that more effectively mimic RGCs within the retina will not only enable their use as effective models of RGC development, but will also create a better disease model for the identification of mechanisms underlying the neurodegeneration of RGCs in disease states such as glaucoma, further facilitating the development of therapeutic approaches to rescue RGCs from degeneration in disease states.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason S Meyer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
30
|
Basavarajappa D, Gupta V, Wall RV, Gupta V, Chitranshi N, Mirshahvaladi SSO, Palanivel V, You Y, Mirzaei M, Klistorner A, Graham SL. S1PR1 signaling attenuates apoptosis of retinal ganglion cells via modulation of cJun/Bim cascade and Bad phosphorylation in a mouse model of glaucoma. FASEB J 2023; 37:e22710. [PMID: 36520045 DOI: 10.1096/fj.202201346r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Roshana Vander Wall
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Peptains block retinal ganglion cell death in animal models of ocular hypertension: implications for neuroprotection in glaucoma. Cell Death Dis 2022; 13:958. [PMID: 36379926 PMCID: PMC9666629 DOI: 10.1038/s41419-022-05407-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Ocular hypertension is a significant risk factor for vision loss in glaucoma due to the death of retinal ganglion cells (RGCs). This study investigated the effects of the antiapoptotic peptides peptain-1 and peptain-3a on RGC death in vitro in rat primary RGCs and in mouse models of ocular hypertension. Apoptosis was induced in primary rat RGCs by trophic factor deprivation for 48 h in the presence or absence of peptains. The effects of intravitreally injected peptains on RGC death were investigated in mice subjected to retinal ischemic/reperfusion (I/R) injury and elevated intraocular pressure (IOP). I/R injury was induced in mice by elevating the IOP to 120 mm Hg for 1 h, followed by rapid reperfusion. Ocular hypertension was induced in mice by injecting microbeads (MB) or silicone oil (SO) into the anterior chamber of the eye. Retinal flatmounts were immunostained with RGC and activated glial markers. Effects on anterograde axonal transport were determined by intravitreal injection of cholera toxin-B. Peptain-1 and peptain-3a inhibited neurotrophic factor deprivation-mediated RGC apoptosis by 29% and 35%, respectively. I/R injury caused 52% RGC loss, but peptain-1 and peptain-3a restricted RGC loss to 13% and 16%, respectively. MB and SO injections resulted in 31% and 36% loss in RGCs following 6 weeks and 4 weeks of IOP elevation, respectively. Peptain-1 and peptain-3a inhibited RGC death; the loss was only 4% and 12% in MB-injected eyes and 16% and 15% in SO-injected eyes, respectively. Anterograde transport was defective in eyes with ocular hypertension, but this defect was substantially ameliorated in peptain-injected eyes. Peptains suppressed ocular hypertension-mediated retinal glial activation. In summary, our results showed that peptains block RGC somal and axonal damage and neuroinflammation in animal models of glaucoma. We propose that peptains have the potential to be developed as therapeutics against neurodegeneration in glaucoma.
Collapse
|
32
|
Hanineva A, Park KS, Wang JJ, DeAngelis MM, Farkas MH, Zhang SX. Emerging roles of circular RNAs in retinal diseases. Neural Regen Res 2022; 17:1875-1880. [PMID: 35142661 PMCID: PMC8848606 DOI: 10.4103/1673-5374.335691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Retinal disorders are a group of ocular diseases whose onset is associated with a number of aberrant molecular and cellular processes or physical damages that affect retinal structure and function resulting in neural and vascular degeneration in the retina. Current research has primarily focused on delaying retinal disease with minimal success in preventing or reversing neuronal degeneration. In this review, we explore a relatively new field of research involving circular RNAs, whose potential roles as biomarkers and mediators of retinal disease pathogenesis have only just emerged. While knowledge of circular RNAs function is limited given its novelty, current evidence has highlighted their roles as modulators of microRNAs, regulators of gene transcription, and biomarkers of disease development and progression. Here, we summarize how circular RNAs may be implicated in the pathogenesis of common retinal diseases including diabetic retinopathy, glaucoma, proliferative vitreoretinopathy, and age-related macular degeneration. Further, we explore the potential of circular RNAs as novel biomarkers and therapeutic targets for the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Aneliya Hanineva
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, USA
| | - Michael H Farkas
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Research Service, Veterans Administration Western New York Healthcare System; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
33
|
Tian F, Cheng Y, Zhou S, Wang Q, Monavarfeshani A, Gao K, Jiang W, Kawaguchi R, Wang Q, Tang M, Donahue R, Meng H, Zhang Y, Jacobi A, Yan W, Yin J, Cai X, Yang Z, Hegarty S, Stanicka J, Dmitriev P, Taub D, Zhu J, Woolf CJ, Sanes JR, Geschwind DH, He Z. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 2022; 110:2607-2624.e8. [PMID: 35767995 PMCID: PMC9391318 DOI: 10.1016/j.neuron.2022.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/10/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
Regulatory programs governing neuronal death and axon regeneration in neurodegenerative diseases remain poorly understood. In adult mice, optic nerve crush (ONC) injury by severing retinal ganglion cell (RGC) axons results in massive RGC death and regenerative failure. We performed an in vivo CRISPR-Cas9-based genome-wide screen of 1,893 transcription factors (TFs) to seek repressors of RGC survival and axon regeneration following ONC. In parallel, we profiled the epigenetic and transcriptional landscapes of injured RGCs by ATAC-seq and RNA-seq to identify injury-responsive TFs and their targets. These analyses converged on four TFs as critical survival regulators, of which ATF3/CHOP preferentially regulate pathways activated by cytokines and innate immunity and ATF4/C/EBPγ regulate pathways engaged by intrinsic neuronal stressors. Manipulation of these TFs protects RGCs in a glaucoma model. Our results reveal core transcription programs that transform an initial axonal insult into a degenerative process and suggest novel strategies for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng Tian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yuyan Cheng
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Songlin Zhou
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Qianbin Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Aboozar Monavarfeshani
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Kun Gao
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Weiqian Jiang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Riki Kawaguchi
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Qing Wang
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Mingjun Tang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ryan Donahue
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Wenjun Yan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Jiani Yin
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Xinyi Cai
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhiyun Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shane Hegarty
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joanna Stanicka
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Phillip Dmitriev
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Taub
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Junjie Zhu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | - Daniel H Geschwind
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Zhao X, Ling F, Zhang GW, Yu N, Yang J, Xin XY. The Correlation Between MicroRNAs and Diabetic Retinopathy. Front Immunol 2022; 13:941982. [PMID: 35958584 PMCID: PMC9358975 DOI: 10.3389/fimmu.2022.941982] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Micro ribonucleic acids (miRNAs), as a category of post-transcriptional gene inhibitors, have a wide range of biological functions, are involved in many pathological processes, and are attractive therapeutic targets. Considerable evidence in ophthalmology indicates that miRNAs play an important role in diabetic retinopathy (DR), especially in inflammation, oxidative stress, and neurodegeneration. Targeting specific miRNAs for the treatment of DR has attracted much attention. This is a review focusing on the pathophysiological roles of miRNAs in DR, diabetic macular edema, and proliferative DR complex multifactorial retinal diseases, with particular emphasis on how miRNAs regulate complex molecular pathways and underlying pathomechanisms. Moreover, the future development potential and application limitations of therapy that targets specific miRNAs for DR are discussed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Ophthalmology, Inner Mongolia Baogang Hospita, Baotou, Inner Mongolia, China
| | - Feng Ling
- Department of Ophthalmology, Inner Mongolia Baogang Hospita, Baotou, Inner Mongolia, China
| | - Guang wei Zhang
- Department of Cardiology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Na Yu
- Department of Scientific research, Inner Mongolia Baogang Hospita, Baotou, Inner Mongolia, China
| | - Jing Yang
- Department of Biology, Inner Mongolia University of Science and Technology Baotou Medical College, Baotou, Inner Mongolia, China
- *Correspondence: Jing Yang, ; Xiang yang Xin,
| | - Xiang yang Xin
- Department of Ophthalmology, Inner Mongolia Baogang Hospita, Baotou, Inner Mongolia, China
- *Correspondence: Jing Yang, ; Xiang yang Xin,
| |
Collapse
|
35
|
Marola OJ, Yablonski SER, Shrager PG, Nickells RW, Libby RT. BclX L (Bcl2l1) gene therapy lessens retinal ganglion cell soma loss but not axonal degeneration after acute axonal injury. Cell Death Discov 2022; 8:331. [PMID: 35869049 PMCID: PMC9307748 DOI: 10.1038/s41420-022-01111-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Olivia J Marola
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA
| | - Sarah E R Yablonski
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Peter G Shrager
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard T Libby
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA.
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
36
|
Gomes C, VanderWall KB, Pan Y, Lu X, Lavekar SS, Huang KC, Fligor CM, Harkin J, Zhang C, Cummins TR, Meyer JS. Astrocytes modulate neurodegenerative phenotypes associated with glaucoma in OPTN(E50K) human stem cell-derived retinal ganglion cells. Stem Cell Reports 2022; 17:1636-1649. [PMID: 35714595 PMCID: PMC9287669 DOI: 10.1016/j.stemcr.2022.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Although the degeneration of retinal ganglion cells (RGCs) is a primary characteristic of glaucoma, astrocytes also contribute to their neurodegeneration in disease states. Although studies often explore cell-autonomous aspects of RGC neurodegeneration, a more comprehensive model of glaucoma should take into consideration interactions between astrocytes and RGCs. To explore this concept, RGCs and astrocytes were differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated OPTN(E50K) mutation along with corresponding isogenic controls. Initial results indicated significant changes in OPTN(E50K) astrocytes, including evidence of autophagy dysfunction. Subsequently, co-culture experiments demonstrated that OPTN(E50K) astrocytes led to neurodegenerative properties in otherwise healthy RGCs, while healthy astrocytes rescued some neurodegenerative features in OPTN(E50K) RGCs. These results are the first to identify disease phenotypes in OPTN(E50K) astrocytes, including how their modulation of RGCs is affected. Moreover, these results support the concept that astrocytes could offer a promising target for therapeutic intervention in glaucoma.
Collapse
Affiliation(s)
- Cátia Gomes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kirstin B VanderWall
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Yanling Pan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Xiaoyu Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sailee S Lavekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kang-Chieh Huang
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clarisse M Fligor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jade Harkin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Theodore R Cummins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jason S Meyer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
37
|
Xu Z, Lei Y, Qin H, Zhang S, Li P, Yao K. Sigma-1 Receptor in Retina: Neuroprotective Effects and Potential Mechanisms. Int J Mol Sci 2022; 23:7572. [PMID: 35886921 PMCID: PMC9321618 DOI: 10.3390/ijms23147572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Retinal degenerative diseases are the major factors leading to severe visual impairment and even irreversible blindness worldwide. The therapeutic approach for retinal degenerative diseases is one extremely urgent and hot spot in science research. The sigma-1 receptor is a novel, multifunctional ligand-mediated molecular chaperone residing in endoplasmic reticulum (ER) membranes and the ER-associated mitochondrial membrane (ER-MAM); it is widely distributed in numerous organs and tissues of various species, providing protective effects on a variety of degenerative diseases. Over three decades, considerable research has manifested the neuroprotective function of sigma-1 receptor in the retina and has attempted to explore the molecular mechanism of action. In the present review, we will discuss neuroprotective effects of the sigma-1 receptor in retinal degenerative diseases, mainly in aspects of the following: the localization in different types of retinal neurons, the interactions of sigma-1 receptors with other molecules, the correlated signaling pathways, the influence of sigma-1 receptors to cellular functions, and the potential therapeutic effects on retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China; (Z.X.); (Y.L.); (H.Q.); (S.Z.); (P.L.)
| |
Collapse
|
38
|
Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants (Basel) 2022; 11:antiox11061199. [PMID: 35740096 PMCID: PMC9220155 DOI: 10.3390/antiox11061199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant “phase 2” enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson’s disease and Alzheimer’s disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.
Collapse
|
39
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
40
|
Sanghani A, Andriesei P, Kafetzis KN, Tagalakis AD, Yu‐Wai‐Man C. Advances in exosome therapies in ophthalmology-From bench to clinical trial. Acta Ophthalmol 2022; 100:243-252. [PMID: 34114746 DOI: 10.1111/aos.14932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery. It has been demonstrated that the exosome cargo, especially miRNAs, is at least partially responsible for the therapeutic effects of exosomes. Exosomes deliver their luminal content to the recipient cells and can be used as vesicles for the therapeutic delivery of RNAs and proteins. Synthetic therapeutic drugs can also be encapsulated into exosomes as they have a hydrophilic core, which makes them suitable to carry water-soluble drugs. In addition, engineered exosomes can display a variety of surface molecules, such as peptides, to target specific cells in tissues. The exosome properties present an added advantage to the targeted delivery of therapeutics, leading to increased efficacy and minimizing the adverse side effects. Furthermore, exosomes are natural nanoparticles found in all cell types and as a result, they do not elicit an immune response when administered. Exosomes have also demonstrated decreased long-term accumulation in tissues and organs and thus carry a low risk of systemic toxicity. This review aims to discuss all the advances in exosome therapies in ophthalmology and to give insight into the challenges that would need to be overcome before exosome therapies can be translated into clinical practice.
Collapse
Affiliation(s)
- Amisha Sanghani
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| | - Petru Andriesei
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| | | | | | - Cynthia Yu‐Wai‐Man
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| |
Collapse
|
41
|
Chen S, Lathrop KL, Kuwajima T, Gross JM. Retinal ganglion cell survival after severe optic nerve injury is modulated by crosstalk between Jak/Stat signaling and innate immune responses in the zebrafish retina. Development 2022; 149:272198. [PMID: 34528064 DOI: 10.1242/dev.199694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022]
Abstract
Visual information is transmitted from the eye to the brain along the optic nerve, a structure composed of retinal ganglion cell (RGC) axons. The optic nerve is highly vulnerable to damage in neurodegenerative diseases, such as glaucoma, and there are currently no FDA-approved drugs or therapies to protect RGCs from death. Zebrafish possess remarkable neuroprotective and regenerative abilities. Here, utilizing an optic nerve transection (ONT) injury and an RNA-seq-based approach, we identify genes and pathways active in RGCs that may modulate their survival. Through pharmacological perturbation, we demonstrate that Jak/Stat pathway activity is required for RGC survival after ONT. Furthermore, we show that immune responses directly contribute to RGC death after ONT; macrophages/microglia are recruited to the retina and blocking neuroinflammation or depleting these cells after ONT rescues survival of RGCs. Taken together, these data support a model in which crosstalk between macrophages/microglia and RGCs, mediated by Jak/Stat pathway activity, regulates RGC survival after optic nerve injury.
Collapse
Affiliation(s)
- Si Chen
- Eye Center of Xiangya Hospital, Central South University, 410008 Changsha, Hunan, People's Republic of China.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Hunan Key Laboratory of Ophthalmology, 410008 Changsha, Hunan, People's Republic of China
| | - Kira L Lathrop
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
| | - Takaaki Kuwajima
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC. The Role of Axonal Transport in Glaucoma. Int J Mol Sci 2022; 23:ijms23073935. [PMID: 35409291 PMCID: PMC8999615 DOI: 10.3390/ijms23073935] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs) and leads to progressive vision loss. The first pathological signs can be seen at the optic nerve head (ONH), the structure where RGC axons leave the retina to compose the optic nerve. Besides damage of the axonal cytoskeleton, axonal transport deficits at the ONH have been described as an important feature of glaucoma. Axonal transport is essential for proper neuronal function, including transport of organelles, synaptic components, vesicles, and neurotrophic factors. Impairment of axonal transport has been related to several neurodegenerative conditions. Studies on axonal transport in glaucoma include analysis in different animal models and in humans, and indicate that its failure happens mainly in the ONH and early in disease progression, preceding axonal and somal degeneration. Thus, a better understanding of the role of axonal transport in glaucoma is not only pivotal to decipher disease mechanisms but could also enable early therapies that might prevent irreversible neuronal damage at an early time point. In this review we present the current evidence of axonal transport impairment in glaucomatous neurodegeneration and summarize the methods employed to evaluate transport in this disease.
Collapse
Affiliation(s)
- Mariana Santana Dias
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Xiaoyue Luo
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Vinicius Toledo Ribas
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
- Correspondence:
| |
Collapse
|
43
|
Syc-Mazurek SB, Yang HS, Marola OJ, Howell GR, Libby RT. Transcriptional control of retinal ganglion cell death after axonal injury. Cell Death Dis 2022; 13:244. [PMID: 35296661 PMCID: PMC8927149 DOI: 10.1038/s41419-022-04666-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Injury to the axons of retinal ganglion cells (RGCs) is a key pathological event in glaucomatous neurodegeneration. The transcription factors JUN (the target of the c-Jun N-terminal kinases, JNKs) and DDIT3/CHOP (a mediator of the endoplasmic reticulum stress response) have been shown to control the majority of proapoptotic signaling after mechanical axonal injury in RGCs and in other models of neurodegeneration. The downstream transcriptional networks controlled by JUN and DDIT3, which are critical for RGC death, however, are not well defined. To determine these networks, RNA was isolated from the retinas of wild-type mice and mice deficient in Jun, Ddit3, and both Jun and Ddit3 three days after mechanical optic nerve crush injury (CONC). RNA-sequencing data analysis was performed and immunohistochemistry was used to validate potential transcriptional signaling changes after axonal injury. This study identified downstream transcriptional changes after injury including both neuronal survival and proinflammatory signaling that were attenuated to differing degrees by loss of Ddit3, Jun, and Ddit3/Jun. These data suggest proinflammatory signaling in the retina might be secondary to activation of pro-death pathways in RGCs after acute axonal injury. These results determine the downstream transcriptional networks important for apoptotic signaling which may be important for ordering and staging the pro-degenerative signals after mechanical axonal injury.
Collapse
Affiliation(s)
- Stephanie B Syc-Mazurek
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Olivia J Marola
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA
| | | | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA.
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
44
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
45
|
Liu S, Xiang K, Lei Q, Qiu S, Xiang M, Jin K. An optimized procedure to record visual evoked potential in mice. Exp Eye Res 2022; 218:109011. [PMID: 35245512 DOI: 10.1016/j.exer.2022.109011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
Abstract
Visual evoked potential (VEP) is commonly used to evaluate visual acuity in both clinical and basic studies. Subdermal needle electrodes or skull pre-implanted screw electrodes are usually used to record VEP in rodents. However, the VEP amplitudes recorded by the former are small while the latter may damage the brain. In this study, we established a new invasive procedure for VEP recording, and made a series of comparisons of VEP parameters recorded from different electrode locations, different times of day (day and night) and bilateral eyes, to evaluate the influence of these factors on VEP in mice. Our data reveal that our invasive method is reliable and can record VEP with good waveforms and large amplitudes. The comparison data show that VEP is greatly influenced by active electrode locations and difference between day and night. In C57 or CD1 ONC (optic nerve crush) models and Brn3bAP/AP mice, which are featured by loss of retinal ganglion cells (RGCs), amplitudes of VEP N1 and P1 waves are drastically reduced. The newly established VEP procedure is very reliable and stable, and is particularly useful for detecting losses of RGC quantities, functions or connections to the brain. Our analyses of various recording conditions also provide useful references for future studies.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province, 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province, 510060, China
| | - Qiannan Lei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province, 510060, China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province, 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province, 510060, China; Guangzhou Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China.
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province, 510060, China.
| |
Collapse
|
46
|
Mázala-de-Oliveira T, de Figueiredo CS, de Rezende Corrêa G, da Silva MS, Miranda RL, de Azevedo MA, Cossenza M, Dos Santos AA, Giestal-de-Araujo E. Ouabain-Na +/K +-ATPase Signaling Regulates Retinal Neuroinflammation and ROS Production Preventing Neuronal Death by an Autophagy-Dependent Mechanism Following Optic Nerve Axotomy In Vitro. Neurochem Res 2022; 47:723-738. [PMID: 34783975 DOI: 10.1007/s11064-021-03481-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Ouabain is a classic Na+K+ATPase ligand and it has been described to have neuroprotective effects on neurons and glial cells at nanomolar concentrations. In the present work, the neuroprotective and immunomodulatory potential of ouabain was evaluated in neonatal rat retinal cells using an optic nerve axotomy model in vitro. After axotomy, cultured retinal cells were treated with ouabain (3 nM) at different periods. The levels of important inflammatory receptors in the retina such as TNFR1/2, TLR4, and CD14 were analyzed. We observed that TNFR1, TLR4, and CD14 were decreased in all tested periods (15 min, 45 min, 24 h, and 48 h). On the other hand, TNFR2 was increased after 24 h, suggesting an anti-inflammatory potential for ouabain. Moreover, we showed that ouabain also decreased Iba-1 (microglial marker) density. Subsequently, analyses of retrograde labeling of retinal ganglion cells (RGC) were performed after 48 h and showed that ouabain-induced RGC survival depends on autophagy. Using an autophagy inhibitor (3-methyladenine), we observed a complete blockage of the ouabain effect. Western blot analyses showed that ouabain increases the levels of autophagy proteins (LC3 and Beclin-1) coupled to p-CREB transcription factor and leads to autophagosome formation. Additionally, we found that the ratio of cleaved/pro-caspase-3 did not change after ouabain treatment; however, p-JNK density was enhanced. Also, ouabain decreased reactive oxygen species production immediately after axotomy. Taken together, our results suggest that ouabain controls neuroinflammation in the retina following optic nerve axotomy and promotes RGC neuroprotection through activation of the autophagy pathway.
Collapse
Affiliation(s)
- Thalita Mázala-de-Oliveira
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Camila Saggioro de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Gustavo de Rezende Corrêa
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Mayra Santos da Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Renan Lyra Miranda
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Mariana Almeida de Azevedo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Aline Araujo Dos Santos
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
47
|
Mead B, Tomarev S. The role of miRNA in retinal ganglion cell health and disease. Neural Regen Res 2022; 17:516-522. [PMID: 34380881 PMCID: PMC8504366 DOI: 10.4103/1673-5374.320974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
miRNA are short non-coding RNA responsible for the knockdown of proteins through their targeting and silencing of complimentary mRNA sequences. The miRNA landscape of a cell thus affects the levels of its proteins and has significant consequences to its health. Deviations in this miRNA landscape have been implicated in a variety of neurodegenerative diseases and have also garnered interest as targets for treatment. Retinal ganglion cells are the sole projection neuron of the retina with their axons making up the optic nerve. They are a focus of study not only for their importance in vision and the myriad of blinding diseases characterized by their dysfunction and loss, but also as a model of other central nervous system diseases such as spinal cord injury and traumatic brain injury. This review summarizes current knowledge on the role of miRNA in retinal ganglion cell function, highlighting how perturbations can result in disease, and how modulating their abundance may provide a novel avenue of therapeutic research.
Collapse
Affiliation(s)
- Ben Mead
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Cáceres-Vélez PR, Hui F, Hercus J, Bui B, Jusuf PR. Restoring the oxidative balance in age-related diseases - An approach in glaucoma. Ageing Res Rev 2022; 75:101572. [PMID: 35065274 DOI: 10.1016/j.arr.2022.101572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
As human life expectancy increases, age-related health issues including neurodegenerative diseases continue to rise. Regardless of genetic or environmental factors, many neurodegenerative conditions share common pathological mechanisms, such as oxidative stress, a hallmark of many age-related health burdens. In this review, we describe oxidative damage and mitochondrial dysfunction in glaucoma, an age-related neurodegenerative eye disease affecting 80 million people worldwide. We consider therapeutic approaches used to counteract oxidative stress in glaucoma, including untapped treatment options such as novel plant-derived antioxidant compounds that can reduce oxidative stress and prevent neuronal loss. We summarize the current pre-clinical models and clinical work exploring the therapeutic potential of a range of candidate plant-derived antioxidant compounds. Finally, we explore advances in drug delivery systems, particular those employing nanotechnology-based carriers which hold significant promise as a carrier for antioxidants to treat age-related disease, thus reviewing the key current state of all of the aspects required towards translation.
Collapse
|
49
|
Finnegan LK, Chadderton N, Kenna PF, Palfi A, Carty M, Bowie AG, Millington-Ward S, Farrar GJ. SARM1 Ablation Is Protective and Preserves Spatial Vision in an In Vivo Mouse Model of Retinal Ganglion Cell Degeneration. Int J Mol Sci 2022; 23:ijms23031606. [PMID: 35163535 PMCID: PMC8835928 DOI: 10.3390/ijms23031606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The challenge of developing gene therapies for genetic forms of blindness is heightened by the heterogeneity of these conditions. However, mechanistic commonalities indicate key pathways that may be targeted in a gene-independent approach. Mitochondrial dysfunction and axon degeneration are common features of many neurodegenerative conditions including retinal degenerations. Here we explore the neuroprotective effect afforded by the absence of sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1), a prodegenerative NADase, in a rotenone-induced mouse model of retinal ganglion cell loss and visual dysfunction. Sarm1 knockout mice retain visual function after rotenone insult, displaying preservation of photopic negative response following rotenone treatment in addition to significantly higher optokinetic response measurements than wild type mice following rotenone. Protection of spatial vision is sustained over time in both sexes and is accompanied by increased RGC survival and additionally preservation of axonal density in optic nerves of Sarm1−/− mice insulted with rotenone. Primary fibroblasts extracted from Sarm1−/− mice demonstrate an increased oxygen consumption rate relative to those from wild type mice, with significantly higher basal, maximal and spare respiratory capacity. Collectively, our data indicate that Sarm1 ablation increases mitochondrial bioenergetics and confers histological and functional protection in vivo in the mouse retina against mitochondrial dysfunction, a hallmark of many neurodegenerative conditions including a variety of ocular disorders.
Collapse
Affiliation(s)
- Laura K. Finnegan
- Department of Genetics, The School of Genetics and Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (N.C.); (P.F.K.); (A.P.); (S.M.-W.); (G.J.F.)
- Correspondence:
| | - Naomi Chadderton
- Department of Genetics, The School of Genetics and Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (N.C.); (P.F.K.); (A.P.); (S.M.-W.); (G.J.F.)
| | - Paul F. Kenna
- Department of Genetics, The School of Genetics and Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (N.C.); (P.F.K.); (A.P.); (S.M.-W.); (G.J.F.)
- The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland
| | - Arpad Palfi
- Department of Genetics, The School of Genetics and Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (N.C.); (P.F.K.); (A.P.); (S.M.-W.); (G.J.F.)
| | - Michael Carty
- Trinity Biomedical Sciences Institute, The School of Biochemistry and Immunology, Trinity College Dublin, D02 R590 Dublin, Ireland; (M.C.); (A.G.B.)
| | - Andrew G. Bowie
- Trinity Biomedical Sciences Institute, The School of Biochemistry and Immunology, Trinity College Dublin, D02 R590 Dublin, Ireland; (M.C.); (A.G.B.)
| | - Sophia Millington-Ward
- Department of Genetics, The School of Genetics and Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (N.C.); (P.F.K.); (A.P.); (S.M.-W.); (G.J.F.)
| | - G. Jane Farrar
- Department of Genetics, The School of Genetics and Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (N.C.); (P.F.K.); (A.P.); (S.M.-W.); (G.J.F.)
| |
Collapse
|
50
|
Age of Rats Affects the Degree of Retinal Neuroinflammatory Response Induced by High Acute Intraocular Pressure. DISEASE MARKERS 2022; 2022:9404977. [PMID: 35132339 PMCID: PMC8817888 DOI: 10.1155/2022/9404977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
Purpose To investigate whether retinal neuroinflammatory response was affected by aging in a rat model of acute glaucoma. Methods Young adult and aged rats were randomly assigned into normal control, 45 mmHg, 60 mmHg, and 90 mmHg groups. Intraocular pressure (IOP) of rats was acutely elevated to 45 mmHg, 60 mmHg, and 90 mmHg, respectively. Three days after high IOP treatment, loss of retinal ganglion cells (RGCs), formation of proinflammatory microglia/macrophages and neurotoxic astrocytes, and deposition of complement C3 in the retina were detected by immunofluorescence. ELISA was used to assess the protein levels of proinflammatory cytokines TNF and IL-1β in the retina. Results Compared with young adult retinae, (1) loss of RGCs was more severe in aged retinae under the same IOP treatment, (2) microglia/macrophages were more prone to adopt proinflammatory phenotype in aged retinae in response to elevated IOP, (3) high IOP treatment induced astrogliosis, formation of neurotoxic astrocytes, and deposition of complement C3 more easily in aged retinae, and (4) aged retinae induced higher levels of proinflammatory cytokines TNF and IL-1β under the same IOP treatment. Conclusion Our data indicated that aging affects the degree of retinal neuroinflammatory response initiated by ocular hypertension, which may contribute to the age-related susceptibility of RGCs to elevated IOP.
Collapse
|