1
|
Cao Y, Yin X, Wu L, Huang D, Wang Z, Wu F, Jiang J, Chen G, Wang Q. High-Efficiency Ocular Delivery of Brain-Derived Neurotrophic Factor and Oligomycin for Neuroprotection in Glaucoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500623. [PMID: 40357695 DOI: 10.1002/adma.202500623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/19/2025] [Indexed: 05/15/2025]
Abstract
Glaucoma is a retinal neurodegenerative disease characterized by progressive apoptosis of retinal ganglion cells (RGCs) and irreversible visual impairment. Current therapies rarely offer direct protection for RGCs, highlighting the need for new neuroprotective approaches. Although viral delivery of brain-derived neurotrophic factor (BDNF) has shown potential, concerns about retinal inflammation and limited applicability persist. Meanwhile, non-viral vectors remain inefficient for in vivo ocular gene delivery. Here, a highly biocompatible nanoplatform-PBAE-PLGA-Oligomycin-pBDNF nanoparticles (PPOB NPs) is reported-that co-delivers oligomycin (an ATP inhibitor) and a BDNF plasmid to Müller cells in vivo. This nanoplatform attains an unprecedented transfection efficiency of 64.26% in Müller cells, thereby overcoming the limitations of monotherapeutic neurotrophic approaches that fail to inhibit ATP overproduction and attendant inflammatory responses. In a chronic ocular hypertension rat model, oligomycin effectively mitigated RGC damage by suppressing Müller cell hyperactivation and excessive ATP production under elevated intraocular pressure. Concurrently, it synergistically enhanced BDNF expression in Müller cells, achieving robust protection of RGCs and preservation of optic nerve function. These findings underscore the promise of PPOB NPs as a dual-functional platform, featuring high biocompatibility and efficient gene delivery, for multifaceted therapies against glaucoma and other ocular diseases.
Collapse
Affiliation(s)
- Yuheng Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xue Yin
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, 21006, China
| | - Lanrong Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiang Jiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Shi S, Liu J, Gao Y, Sun X, Chen W, Zhang W, Wang H, Wang S, Lei Y. κ-Carrageenan from Grateloupia filicina protects against PM 2.5-induced intraocular pressure elevation. Int J Biol Macromol 2025; 306:141299. [PMID: 39993676 DOI: 10.1016/j.ijbiomac.2025.141299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
This study investigates the efficacy of GFP01, an almost pure κ-carrageenan derived from Grateloupia filicina, in counteracting intraocular pressure (IOP) elevation induced by PM2.5 exposure. GFP01, characterized by a molecular weight of 97.8 kDa, exhibits a linear backbone composed of 4-O-sulfated-β-D-galactose and 3,6-anhydro-α-D-galactose. In a murine model subjected to PM2.5-induced high IOP, GFP01 treatment significantly mitigated IOP compared to the PM2.5 group (n = 12, p < 0.01). In vitro assays revealed a 27.7 % increase in cell viability in human trabecular meshwork cells (HTMCs) treated with GFP01 compared to controls exposed to PM2.5 (p < 0.001, n = 5 cell lines). Additionally, GFP01 decreased PM2.5-induced transendothelial electrical resistance (TEER) of angular aqueous plexus (AAP) cells by 35.8 % at 48 h post-treatment (p < 0.05, n = 3 cell lines). Western blot analysis further demonstrated GFP01's role in inhibiting NLRP3/caspase-1/GSDMD/IL-1β axis in ocular tissues and HTMCs. Cytotoxicity assessment and slit-lamp imaging confirmed the safety of GFP01. In conclusion, GFP01 demonstrates a significant protective effect against PM2.5-induced IOP elevation, making it a promising therapeutic candidate for clinical applications.
Collapse
Affiliation(s)
- Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiamin Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China
| | - Yanting Gao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, Shanghai 200080, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiran Zhang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yuan Lei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China; Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
3
|
Lin F, Su Y, Zhao C, Akter F, Yao S, Huang S, Shao X, Yao Y. Tackling visual impairment: emerging avenues in ophthalmology. Front Med (Lausanne) 2025; 12:1567159. [PMID: 40357281 PMCID: PMC12066777 DOI: 10.3389/fmed.2025.1567159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Visual impairment, stemming from genetic, degenerative, and traumatic causes, affects millions globally. Recent advancements in ophthalmology present novel strategies for managing and potentially reversing these conditions. Here, we explore 10 emerging avenues-including gene therapy, stem cell therapy, advanced imaging, novel therapeutics, nanotechnology, artificial intelligence (AI) and machine learning, teleophthalmology, optogenetics, bionics, and neuro-ophthalmology-all making strides to improve diagnosis, treatment, and vision restoration. Among these, gene therapy and stem cell therapy are revolutionizing the treatment of retinal degenerative diseases, while advanced imaging technologies enable early detection and personalized care. Therapeutic advancements like anti-vascular endothelial growth factor therapies and neuroprotective agents, along with nanotechnology, have improved clinical outcomes for multiple ocular conditions. AI, especially machine learning, is enhancing diagnostic accuracy, facilitating early detection, and personalized treatment strategies, particularly when integrated with advanced imaging technologies. Teleophthalmology, further strengthened by AI, is expanding access to care, particularly in underserved regions, whereas emerging technologies like optogenetics, bionics, and neuro-ophthalmology offer new hope for patients with severe vision impairment. In light of ongoing research, we summarize the current clinical landscape and the potential advantages of these innovations to revolutionize the management of visual impairments. Additionally, we address the challenges and limitations associated with these emerging avenues in ophthalmology, providing insights into their future trajectories in clinical practice. Continued advancements in these fields promise to reshape the landscape of ophthalmic care, ultimately improving the quality of life for individuals with visual impairments.
Collapse
Affiliation(s)
- Fang Lin
- Department of Ophthalmology, Xinjiang 474 Hospital, China RongTong Medical Healthcare Group CO. LTD, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuxing Su
- Department of Ophthalmology, Xinjiang 474 Hospital, China RongTong Medical Healthcare Group CO. LTD, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chenxi Zhao
- Department of Ophthalmology, Xinjiang 474 Hospital, China RongTong Medical Healthcare Group CO. LTD, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Farhana Akter
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sheng Huang
- Department of Ophthalmology, TongRen Municipal People’s Hospital, Tongren, Guizhou, China
| | - Xiaodong Shao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizheng Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Chen KY, Chan HC, Chan CM. Can Stem Cell Therapy Revolutionize Ocular Disease Treatment? A Critical Review of Preclinical and Clinical Advances. Stem Cell Rev Rep 2025:10.1007/s12015-025-10884-x. [PMID: 40266467 DOI: 10.1007/s12015-025-10884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Stem cell therapy in regenerative medicine has a scope for treating ocular diseases. Stem cell therapy aims to repair damaged tissue and restore vision. The present review focuses on the advancements in stem cell therapies for ocular disorders, their mechanism of action, and clinical applications while addressing some outstanding challenges. Stem cells that include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells have regenerative potential for ocular repair. They differentiate into specialized ocular cell types, conduct neuroprotection, and modulate immune responses. It is emphasized in preclinical and clinical studies that stem cell therapy can treat corneal disorders such as limbal stem cell deficiency, retinal diseases like dry age macular degeneration and retinitis pigmentosa, and diabetic retinopathy. Various studies suggested that stem cells have considerable scope in glaucoma treatment by supporting retinal ganglion cell survival and optic nerve regeneration. Advanced approaches such as gene editing, organoid generation, and artificial intelligence enhance these therapies. Effective delivery to target areas, engraftment, orientation, and long-term survival of transplanted cells need optimization. Issues such as immune rejection and tumorigenicity must be addressed. This approach is further hindered by regulatory issues and overly complicated approval processes and trials. Ethical issues related to sourcing embryonic stem cells and patient consent complicate the issue. The cost of manufacturing stem cells and their accessibility are other factors posing potential barriers to widespread application. These regulatory, ethical, and economic issues must be tackled if stem cell treatments are to be made safe, accessible, and effective. Future studies will include refining therapeutic protocols, scaling manufacturing processes, and overcoming socio-economic barriers, eventually improving clinical outcomes.
Collapse
Affiliation(s)
- Kai-Yang Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hoi-Chun Chan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Li Q, Pan B, Pan K, Zhang Y, Rupenthal ID, Liu L, Hong Y, He L, Teng X, Yu X, Xiao Z, Huang J, Huang T, Shi Y, Rui W, Long Q, Hou D. Enhanced ocular retention and intraocular pressure-lowering efficacy of hydrophobic microspheres for glaucoma treatment. Colloids Surf B Biointerfaces 2025; 252:114659. [PMID: 40186925 DOI: 10.1016/j.colsurfb.2025.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Glaucoma eye drops often suffer from low bioavailability due to rapid drug release and poor ocular retention. This study aimed to address these challenges by developing betaxolol hydrochloride-loaded mesoporous silica polyacrylic resin microspheres (BH@MCM-41 MPs) and comparing their safety, ocular retention, and intraocular pressure (IOP)-lowering efficacy with previously reported betaxolol hydrochloride-loaded montmorillonite polyacrylic resin microspheres (BH@MMT MPs), BH solution, and commercially available Betoptic®. Both BH@MCM-41 MPs and BH@MMT MPs demonstrated sustained drug release over 12 h and good biocompatibility. The impact of physicochemical particle characteristics on micro-interactions with tear film mucins and corneal epithelial cells was investigated. BH@MCM-41 MPs exhibited significantly higher mucin-binding capacity compared to BH@MMT MPs, with approximately double the binding at mucin concentrations over 0.4 mg·mL-1. Rose Bengal assays indicated a more hydrophobic surface for BH@MCM-41 MPs, with a binding constant (K) of 88.51, compared to 69.84 for BH@MMT MPs. In addition, these positively charged microspheres demonstrated prolonged precorneal retention, with BH@MCM-41 MPs achieving 58.17 minutes, compared to 44.49 minutes for BH@MMT MPs. Tear pharmacokinetics further confirmed the extended precorneal residence time of these formulations. Ex vivo corneal permeation studies revealed that the hydrophobic surface of BH@MCM-41 MPs enhanced interaction with corneal epithelial cells, promoting drug release and permeation. The area under the IOP reduction curve (AUC0-36h) for BH@MCM-41 MPs was 1.2-fold greater than for BH@MMT MPs, and significantly higher than for the BH solution and Betoptic. These findings suggest that BH@MCM-41 MPs offer enhanced efficacy for sustained glaucoma treatment through improving precorneal retention.
Collapse
Affiliation(s)
- Qinyu Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bowen Pan
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Kangyiran Pan
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yangrong Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics unit, Department of Ophthalmology, New Zealand National eye Centre, Faculty of Medical and Health Sciences, university of Auckland, Auckland, New Zealand
| | - Li Liu
- Guangzhou Huangpu District new drug application service center, Guangzhou 510663, PR China
| | - Yuexian Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, PR China
| | - Lin He
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Xifeng Teng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiao Yu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhenping Xiao
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ji Huang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Tianying Huang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yihan Shi
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wen Rui
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Bahrani Fard MR, Chan J, Read AT, Li G, Cheng L, Safa BN, Siadat SM, Jhunjhunwala A, Grossniklaus HE, Emelianov SY, Stamer WD, Kuehn MH, Ethier CR. MAGNETICALLY STEERED CELL THERAPY FOR REDUCTION OF INTRAOCULAR PRESSURE AS A TREATMENT STRATEGY FOR OPEN-ANGLE GLAUCOMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.13.593917. [PMID: 38798683 PMCID: PMC11118342 DOI: 10.1101/2024.05.13.593917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Trabecular meshwork (TM) cell therapy has been proposed as a next-generation treatment for elevated intraocular pressure (IOP) in glaucoma, the most common cause of irreversible blindness. Using a magnetic cell steering technique with excellent efficiency and tissue-specific targeting, we delivered two types of cells into a mouse model of glaucoma: either human adipose-derived mesenchymal stem cells (hAMSCs) or induced pluripotent cell derivatives (iPSC-TM cells). We observed a 4.5 [3.1, 6.0] mmHg or 27% reduction in intraocular pressure (IOP) for nine months after a single dose of only 1500 magnetically-steered hAMSCs, explained by increased outflow through the conventional pathway and associated with an higher TM cellularity. iPSC-TM cells were also effective, but less so, showing only a 1.9 [0.4, 3.3] mmHg or 13% IOP reduction and increased risk of tumorigenicity. In both cases, injected cells remained detectable in the iridocorneal angle three weeks post-transplantation. Based on the locations of the delivered cells, the mechanism of IOP lowering is most likely paracrine signaling. We conclude that magnetically-steered hAMSC cell therapy has potential for long-term treatment of ocular hypertension in glaucoma. One Sentence Summary A novel magnetic cell therapy provided effective intraocular pressure reduction in a mouse model, motivating future translational studies.
Collapse
|
7
|
Sarkis S, Chamard C, Johansen B, Daien V, Michon F. Challenging glaucoma with emerging therapies: an overview of advancements against the silent thief of sight. Front Med (Lausanne) 2025; 12:1527319. [PMID: 40206485 PMCID: PMC11979169 DOI: 10.3389/fmed.2025.1527319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, represents a significant challenge in ophthalmology. This review examines recent advancements in glaucoma treatment, focusing on innovative medications and creative strategies. While new agents offer promising methods for lowering intraocular pressure (IOP), they also pose challenges related to efficacy and side effects. Alongside IOP reduction, emerging neuroprotective approaches are being explored to safeguard retinal ganglion cells (RGCs) from glaucoma-induced damage. The review also evaluates the potential of novel drug delivery systems, such as biodegradable implants and nanoparticles, to enhance treatment effectiveness and patient adherence. Additionally, it highlights the role of personalized medicine in identifying new biomarkers and customizing therapies based on individual genetic and environmental factors.
Collapse
Affiliation(s)
- Solange Sarkis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Laboratoires Théa, Clermont-Ferrand, France
| | - Chloé Chamard
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| | | | - Vincent Daien
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
8
|
Yoo D, Jung SY, Go D, Park JY, You DG, Jung WK, Li Y, Ding J, Park JH, Um W. Functionalized extracellular vesicles of mesenchymal stem cells for regenerative medicine. J Nanobiotechnology 2025; 23:219. [PMID: 40102934 PMCID: PMC11921732 DOI: 10.1186/s12951-025-03300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Stem cell-derived extracellular vesicles (EVs) have emerged as a safe and potent alternative to regenerative medicine in recent decades. Furthermore, the adjustment of EV functions has been recently enabled by certain stem cell preconditioning methods, providing an exceptional opportunity to enhance the therapeutic potential or confer additional functions of stem cell-derived EVs. In this review, we discuss the recent progress of functionalized EVs, based on stem cell preconditioning, for treating various organ systems, such as the musculoskeletal system, nervous system, integumentary system, cardiovascular system, renal system, and respiratory system. Additionally, we summarize the expected outcomes of preconditioning methods for stem cells and their EVs. With recent progress, we suggest considerations and future directions for developing personalized medicine based on preconditioned stem cell-derived EVs.
Collapse
Affiliation(s)
- Donghyeon Yoo
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Se Young Jung
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dabin Go
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ji Yeong Park
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dong Gil You
- Department of Chemical Engineering & Biotechnology, Tech University of Korea, Siheung, 15073, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Yuce Li
- College of Life Science and Health, Wuhan University of Science and Technology (WUST), Wuhan, 430065, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Du R, Yang E, Clark M, Wang N, Du Y. Identification and Validation of Key Biomarkers in the Proximal Aqueous Humor Outflow Pathway. Curr Issues Mol Biol 2025; 47:147. [PMID: 40136401 PMCID: PMC11941153 DOI: 10.3390/cimb47030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Glaucoma is a leading cause of irreversible blindness, with elevated intraocular pressure (IOP) as the most important risk factor. The trabecular meshwork (TM) and Schlemm's canal are the main components of the proximal aqueous humor outflow pathway. Their dysfunction is a major contributor to IOP elevation. This study aims to identify and validate key biomarkers for TM and Schlemm's canal endothelial (SCE) cells. A Microarray was performed on characterized human TM and SCE cells to analyze their transcriptome profiling. Differentially expressed genes (DEGs) were identified and cross-referenced with published single-cell RNA sequencing (scRNA-Seq) datasets to ensure cell-specific relevance. Further validation was performed using qPCR and re-confirmed on the scRNA-seq datasets. One-way ANOVA was used for statistical analysis, and p < 0.05 was considered significant. The Microarray revealed 341 DEGs, with TM cells enriched in metabolic and signaling pathways and SCE cells enriched in adhesion, immune, and morphogenesis-related processes. Cross-referencing with scRNA-Seq data refined the list of candidate biomarkers, and qPCR confirmed the significant gene expression differences between TM and SCE cells. CTTNBP2 and MGARP were identified as TM cell markers. JAM2, PODXL, and IFI27 are new SCE cell biomarkers. The validated biomarkers offer insights into glaucoma pathophysiology and lay the groundwork for targeted therapies.
Collapse
Affiliation(s)
- Rong Du
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730, China
| | - Enzhi Yang
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Madison Clark
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730, China
| | - Yiqin Du
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Kumar A, Yang E, Du Y. Trabecular Meshwork Regeneration for Glaucoma Treatment Using Stem Cell-Derived Trophic Factors. Methods Mol Biol 2025; 2848:59-71. [PMID: 39240516 PMCID: PMC11971979 DOI: 10.1007/978-1-0716-4087-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness. Stem cell therapy has shown promise in the treatment of primary open-angle glaucoma in animal models. Stem cell-free therapy using stem cell-derived trophic factors might be in demand in patients with high-risk conditions or religious restrictions. In this chapter, we describe methods for trabecular meshwork stem cell (TMSC) cultivation, secretome harvesting, and protein isolation, as well as assays to ensure the health of TMSC post-secretome harvesting and for secretome periocular injection into mice for therapeutic purposes.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Enzhi Yang
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yiqin Du
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
11
|
Du Y, Bammidi S, Yang E. Trabecular Meshwork Stem Cells for Glaucoma Treatment. Methods Mol Biol 2025; 2858:143-158. [PMID: 39433674 PMCID: PMC11971977 DOI: 10.1007/978-1-0716-4140-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Elevated intraocular pressure (IOP) is the most important risk factor for primary open-angle glaucoma (POAG) and currently is the only effective treatment target for glaucoma to prevent vision loss. In POAG patients, the trabecular meshwork (TM) cellularity is reduced which might be the main pathologic reason for the conventional outflow pathway dysfunction leading to elevated IOP. Stem cell-based therapy has been shown promising to reduce IOP and preserve retinal ganglion cells and their function in animal models. In this chapter, we describe the method details on TM stem cell cultivation and identification; induction for differentiation into different cell types, including differentiation to TM cell responsiveness to dexamethasone treatment with phagocytic function; and transplantation into mouse anterior chamber for therapeutic purposes.
Collapse
Affiliation(s)
- Yiqin Du
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Sridhar Bammidi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Enzhi Yang
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Cabrera-Aguas M, Downie LE, Munsie MM, Di Girolamo N, O'Connor M, Watson SL. Knowledge, views and experiences of Australian optometrists in relation to ocular stem cell therapies. Clin Exp Optom 2024; 107:754-762. [PMID: 35918176 DOI: 10.1080/08164622.2022.2102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
CLINICAL RELEVANCE Findings from this study examining Australian optometrists' insights into ocular stem cell (SC) therapies have capacity to inform continuing professional development (CPD) about these interventions. BACKGROUND This study investigated Australian optometrists' knowledge, views, experiences, and preferred education sources regarding ocular SC therapies. METHODS An online survey was distributed to optometrists via Optometry Australia, Mivision magazine, professional groups, and social media from August 2020 to March 2021. Data were collected on demographics, and SC knowledge, awareness and experience. RESULTS Of 81 optometrists who completed the survey, many were metropolitan-based (85%), worked in independent practice (47%), female (56%) and >46 years of age (45%). Approximately one-fifth indicated awareness of ocular SC therapies used in standard practice; one-third had knowledge of SC clinical trials. The most noted SC therapies were for corneal disease in the United States [US] (72%) and Australia (44%). Respondents identified the availability of SC therapies for dry eye disease in Australia and the US (39% and 44% respectively), despite no regulatory-approved treatments for this indication. Clinical trials investigating inherited retinal and corneal diseases in Australia were the most commonly identified (44% and 36%, respectively). Half the respondents felt 'unsure' about the quality of evidence for treating eye conditions using SCs. One-fifth indicated concerns with these therapies; of these, most mentioned efficacy (82%), safety (76%) and/or cost (71%). About one-fifth reported being asked for advice about SCs by patients. Two-thirds felt neutral, uncomfortable, or very uncomfortable providing this advice, due to lack of knowledge or the topic being beyond their expertise. Over half (57%) were unsure if clinical management should change if patients received SC therapies. Respondents were receptive to face-to-face education. CONCLUSION Some optometrists responding to this survey were aware of ocular SC therapies and/or clinical trials. CPD programs may assist with maintaining currency in this evolving field.
Collapse
Affiliation(s)
- Maria Cabrera-Aguas
- Save Sight Institute, Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Corneal Unit, Sydney Eye Hospital, Sydney, NSW, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Megan M Munsie
- School of Biomedical Sciences and Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Nick Di Girolamo
- School of Medical Sciences, Faculty of Medicine and Health, University for New South Wales, Sydney, NSW, Australia
| | - Michael O'Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Stephanie L Watson
- Save Sight Institute, Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Corneal Unit, Sydney Eye Hospital, Sydney, NSW, Australia
| |
Collapse
|
13
|
Xi G, Feng P, Zhang X, Wu S, Zhang J, Wang X, Xiang A, Xu W, Wang N, Zhu W. iPSC-derived cells stimulate ABCG2 +/NES + endogenous trabecular meshwork cell proliferation and tissue regeneration. Cell Prolif 2024; 57:e13611. [PMID: 38356373 PMCID: PMC11216930 DOI: 10.1111/cpr.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
A major risk factor for glaucoma, the first leading cause of irreversible blindness worldwide, is the decellularisation of the trabecular meshwork (TM) in the conventional outflow pathway. Stem cell-based therapy, particularly the utilisation of induced pluripotent stem cells (iPSCs), presents an enticing potential for tissue regeneration and intraocular pressure (IOP) maintenance in glaucoma. We have previously observed that differentiated iPSCs can stimulate endogenous cell proliferation in the TM, a pivotal factor in TM regeneration and aqueous humour outflow restoration. In this study, we investigated the response of TM cells in vivo after interacting with iPSC-derived cells and identified two subpopulations responsible for this relatively long-term tissue regeneration: ATP Binding Cassette Subfamily G Member 2 (ABCG2)-positive cells and Nestin (NES)-positive cells. We further uncovered that alterations of these responsive cells are linked to ageing and different glaucoma etiologies, suggesting that ABCG2+ subpopulation decellularization could serve as a potential risk factor for TM decellularization in glaucoma. Taken together, our findings illustrated the proliferative subpopulations in the conventional outflow pathway when stimulated with iPSC-derived cells and defined them as TM precursors, which may be applied to develop novel therapeutic approaches for glaucoma.
Collapse
Affiliation(s)
- Gaiping Xi
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
| | - Pengchao Feng
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
| | - Xiaoyan Zhang
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
| | - Shen Wu
- Beijing Institute of OphthalmologyBeijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical ApplicationCapital Medical UniversityBeijingChina
| | - Jingxue Zhang
- Beijing Institute of OphthalmologyBeijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical ApplicationCapital Medical UniversityBeijingChina
| | - Xiangji Wang
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
| | - Ailing Xiang
- Qingdao Xikai Biotechnology Co., LtdQingdaoChina
| | - Wenhua Xu
- Department of InspectionQingdao UniversityQingdaoChina
| | - Ningli Wang
- Beijing Institute of OphthalmologyBeijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical ApplicationCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Big Data‐Based Precision MedicineBeijing University of Aeronautics and Astronautics‐Capital Medical UniversityBeijingChina
| | - Wei Zhu
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
- Advanced Innovation Center for Big Data‐Based Precision MedicineBeijing University of Aeronautics and Astronautics‐Capital Medical UniversityBeijingChina
| |
Collapse
|
14
|
Niu Y, Ji J, Yao K, Fu Q. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:52-64. [PMID: 38586868 PMCID: PMC10997875 DOI: 10.1016/j.aopr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024]
Abstract
Background Degenerate eye disorders, such as glaucoma, cataracts and age-related macular degeneration (AMD), are prevalent causes of blindness and visual impairment worldwide. Other eye disorders, including limbal stem cell deficiency (LSCD), dry eye diseases (DED), and retinitis pigmentosa (RP), result in symptoms such as ocular discomfort and impaired visual function, significantly impacting quality of life. Traditional therapies are limited, primarily focus on delaying disease progression, while emerging stem cell therapy directly targets ocular tissues, aiming to restore ocular function by reconstructing ocular tissue. Main text The utilization of stem cells for the treatment of diverse degenerative ocular diseases is becoming increasingly significant, owing to the regenerative and malleable properties of stem cells and their functional cells. Currently, stem cell therapy for ophthalmopathy involves various cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In the current article, we will review the current progress regarding the utilization of stem cells for the regeneration of ocular tissue covering key eye tissues from the cornea to the retina. These therapies aim to address the loss of functional cells, restore damaged ocular tissue and or in a paracrine-mediated manner. We also provide an overview of the ocular disorders that stem cell therapy is targeting, as well as the difficulties and opportunities in this field. Conclusions Stem cells can not only promote tissue regeneration but also release exosomes to mitigate inflammation and provide neuroprotection, making stem cell therapy emerge as a promising approach for treating a wide range of eye disorders through multiple mechanisms.
Collapse
Affiliation(s)
- Yifei Niu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Hu BY, Xin M, Chen M, Yu P, Zeng LZ. Mesenchymal stem cells for repairing glaucomatous optic nerve. Int J Ophthalmol 2024; 17:748-760. [PMID: 38638254 PMCID: PMC10988077 DOI: 10.18240/ijo.2024.04.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/09/2024] [Indexed: 04/20/2024] Open
Abstract
Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Currently, there is no effective method to address the cause of RGCs degeneration. However, studies on neuroprotective strategies for optic neuropathy have increased in recent years. Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy. Regenerative medicine research into the repair of optic nerve damage using stem cells has received considerable attention. Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGC-friendly microenvironments through paracrine effects. This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury, raising the controversies and unresolved issues surrounding the future of stem cells.
Collapse
Affiliation(s)
- Bai-Yu Hu
- Eye School of Chengdu University of TCM, Chengdu 610000, Sichuan Province, China
| | - Mei Xin
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| | - Ming Chen
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| | - Ping Yu
- Eye School of Chengdu University of TCM, Chengdu 610000, Sichuan Province, China
| | - Liu-Zhi Zeng
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| |
Collapse
|
16
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
17
|
Ciociola EC, Fernandez E, Kaufmann M, Klifto MR. Future directions of glaucoma treatment: emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies. Curr Opin Ophthalmol 2024; 35:89-96. [PMID: 37910173 DOI: 10.1097/icu.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW The aim of this article is to summarize current research on novel gene, stem cell, neuroprotective, nanomedicine, and vascular therapies for glaucoma. RECENT FINDINGS Gene therapy using viral vectors and siRNA have been shown to reduce intraocular pressure by altering outflow and production of aqueous humor, to reduce postsurgical fibrosis with few adverse effects, and to increase retinal ganglion cell (RGC) survival in animal studies. Stem cells may treat glaucoma by replacing or stimulating proliferation of trabecular meshwork cells, thus restoring outflow facility. Stem cells can also serve a neuroprotective effect by differentiating into RGCs or preventing RGC loss via secretion of growth factors. Other developing neuroprotective glaucoma treatments which can prevent RGC death include nicotinamide, the NT-501 implant which secretes ciliary neurotrophic factor, and a Fas-L inhibitor which are now being tested in clinical trials. Recent studies on vascular therapy for glaucoma have focused on the ability of Rho Kinase inhibitors and dronabinol to increase ocular blood flow. SUMMARY Many novel stem cell, gene, neuroprotective, nanomedicine, and vascular therapies have shown promise in preclinical studies, but further clinical trials are needed to demonstrate safety and efficacy in human glaucomatous eyes. Although likely many years off, future glaucoma therapy may take a multifaceted approach.
Collapse
Affiliation(s)
| | | | | | - Meredith R Klifto
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Xiao Y, McGhee CNJ, Zhang J. Adult stem cells in the eye: Identification, characterisation, and therapeutic application in ocular regeneration - A review. Clin Exp Ophthalmol 2024; 52:148-166. [PMID: 38214071 DOI: 10.1111/ceo.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024]
Abstract
Adult stem cells, present in various parts of the human body, are undifferentiated cells that can proliferate and differentiate to replace dying cells within tissues. Stem cells have specifically been identified in the cornea, trabecular meshwork, crystalline lens, iris, ciliary body, retina, choroid, sclera, conjunctiva, eyelid, lacrimal gland, and orbital fat. The identification of ocular stem cells broadens the potential therapeutic strategies for untreatable eye diseases. Currently, stem cell transplantation for corneal and conjunctival diseases remains the most common stem cell-based therapy in ocular clinical management. Lens epithelial stem cells have been applied in the treatment of paediatric cataracts. Several early-phase clinical trials for corneal and retinal regeneration using ocular stem cells are also underway. Extensive preclinical studies using ocular stem cells have been conducted, showing encouraging outcomes. Ocular stem cells currently demonstrate great promise in potential treatments of eye diseases. In this review, we focus on the identification, characterisation, and therapeutic application of adult stem cells in the eye.
Collapse
Affiliation(s)
- Yuting Xiao
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jie Zhang
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Zeppieri M, Musa M. Beyond the Dusty Fog: Local Eye Drop Therapy and Potentially New Treatment Alternatives in Pseudoexfoliative Glaucoma. Curr Med Chem 2024; 31:1608-1619. [PMID: 37855339 DOI: 10.2174/0109298673255220231010073215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/27/2023] [Indexed: 10/20/2023]
Abstract
Pseudoexfoliative glaucoma (PEG) is a type of secondary open-angle glaucoma characterized by the accumulation of whitish-gray material on the trabecular meshwork and lens, leading to an increase in intraocular pressure (IOP) and optic nerve damage. Local eye drop therapy is one of the first-line treatments for PEG, which include prostaglandin analogues, beta-blockers, and alpha-adrenergic agonists to lower IOP. New treatments beyond conventional techniques, however, are constantly being developed. One potential treatment proposed for PEG is based on magnetic phage display, which involves using magnetic nanoparticles conjugated to specific peptides or proteins selected using phage display techniques to remove aggregates in the anterior chamber of the eye or inflammatory cells and cytokines that contribute to PEG pathogenesis. Other potential treatments include microRNAs (miRNAs) that are involved in the regulation of gene expression at the post-transcription stages. Gene therapies, nanotechnology, immunotherapy and methods based on stem cells can also be potentially used to target and treat specific tissues and cells responsible for regulating IOP. In addition, photobiomodulation therapy (PBMT), a non-invasive procedure that utilizes low-level laser therapy to improve cellular function and promote tissue repair, can prove an interesting alternative in treating PEG. The aim of our mini-review is to provide a brief overview of these innovative methods that appear to offer potentially promising treatment options for PEG.
Collapse
Affiliation(s)
- Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| |
Collapse
|
20
|
Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: now and beyond. Lancet 2023; 402:1788-1801. [PMID: 37742700 DOI: 10.1016/s0140-6736(23)01289-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023]
Abstract
The glaucomas are a group of conditions leading to irreversible sight loss and characterised by progressive loss of retinal ganglion cells. Although not always elevated, intraocular pressure is the only modifiable risk factor demonstrated by large clinical trials. It remains the leading cause of irreversible blindness, but timely treatment to lower intraocular pressure is effective at slowing the rate of vision loss from glaucoma. Methods for lowering intraocular pressure include laser treatments, topical medications, and surgery. Although modern surgical innovations aim to be less invasive, many have been introduced with little supporting evidence from randomised controlled trials. Many cases remain undiagnosed until the advanced stages of disease due to the limitations of screening and poor access to opportunistic case finding. Future research aims to generate evidence for intraocular pressure-independent neuroprotective treatments, personalised treatment through genetic risk profiling, and exploration of potential advanced cellular and gene therapies.
Collapse
Affiliation(s)
- Hari Jayaram
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; UCL Institute of Ophthalmology, London, UK; National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK
| | - Miriam Kolko
- Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; University of Copenhagen, Department of Drug Design and Pharmacology, Copenhagen, Denmark
| | - David S Friedman
- Massachusetts Eye and Ear Hospital, Glaucoma Center of Excellence, Boston, MA, USA; Harvard University, Boston, MA, USA
| | - Gus Gazzard
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; UCL Institute of Ophthalmology, London, UK; National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK.
| |
Collapse
|
21
|
Morya AK, Ramesh PV, Sinha S, Nishant P, Nain N, Ramavath RN, Gone C, Prasad R. Axenfeld-Reiger syndrome: A search for the missing links. World J Clin Cases 2023; 11:7034-7042. [PMID: 37946776 PMCID: PMC10631407 DOI: 10.12998/wjcc.v11.i29.7034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Axenfeld-Rieger syndrome (ARS) is a rare cause of congenital glaucoma and may result in loss of vision. ARS is mostly autosomal dominant in nature characterized by developmental abnormalities in the angle of anterior chamber and iris of the eye, also associated with structural abnormalities in the body. AIM To study and observe the demographics and clinical findings in a very rare ocular disease known as ARS. METHODS Case records of symptomatic patients attending Ophthalmology outpatient department and diagnosed to have ocular hypertension or glaucoma in 3 years from March 2017 to March 2020 were evaluated to search for cases diagnosed with ARS. Records of all patients diagnosed with ARS were then analysed for demographic and clinical characterization as well as management and success of therapy. RESULTS Eight out of ten patients with positive clinical signs were symptomatic and had glaucoma. One of these patients had limbal stem cell deficiency and another had vernal keratoconjunctivitis. CONCLUSION Clinical characterization of ARS is important for making a definitive diagnosis and determining prognosis.
Collapse
Affiliation(s)
- Arvind Kumar Morya
- Department of Ophthalmology, All India Institute of Medical Sciences, Bibi Nagar, Hyderabad 508126, Telangana, India
| | - Prasanna Venkatesh Ramesh
- Glaucoma Medical Officer, Mahathma Eye Hospital Private Limited, Thennur, Trichy 620017, Tamil Nadu, India
| | - Sony Sinha
- Department of Ophthalmology-Vitreo-Retina and Oculoplasty, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Prateek Nishant
- Department of Ophthalmology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Nazia Nain
- Department of Ophthalmology, All India Institute of Medical Sciences, Bibi Nagar, Hyderabad 508126, Telangana, India
| | - Ravi Naik Ramavath
- Department of Ophthalmology, All India Institute of Medical Sciences, Bibi Nagar, Hyderabad 508126, Telangana, India
| | - Chetana Gone
- Department of Ophthalmology, All India Institute of Medical Sciences, Bibi Nagar, Hyderabad 508126, Telangana, India
| | - Ripunjay Prasad
- Department of Ophthalmology, RP Eye Institute, Delhi 110001, Delhi, India
| |
Collapse
|
22
|
Yam GHF, Pi S, Du Y, Mehta JS. Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications. Prog Retin Eye Res 2023; 96:101192. [PMID: 37392960 DOI: 10.1016/j.preteyeres.2023.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The limbus is a transition from the cornea to conjunctiva and sclera. In human eyes, this thin strip has a rich variation of tissue structures and composition, typifying a change from scleral irregularity and opacity to corneal regularity and transparency; a variation from richly vascularized conjunctiva and sclera to avascular cornea; the neural passage and drainage of aqueous humor. The limbal stroma is enriched with circular fibres running parallel to the corneal circumference, giving its unique role in absorbing small pressure changes to maintain corneal curvature and refractivity. It contains specific niches housing different types of stem cells for the corneal epithelium, stromal keratocytes, corneal endothelium, and trabecular meshwork. This truly reflects the important roles of the limbus in ocular physiology, and the limbal functionality is crucial for corneal health and the entire visual system. Since the anterior limbus containing epithelial structures and limbal epithelial stem cells has been extensively reviewed, this article is focused on the posterior limbus. We have discussed the structural organization and cellular components of the region beneath the limbal epithelium, the characteristics of stem cell types: namely corneal stromal stem cells, endothelial progenitors and trabecular meshwork stem cells, and recent advances leading to the emergence of potential cell therapy options to replenish their respective mature cell types and to correct defects causing corneal abnormalities. We have reviewed different clinical disorders associated with defects of the posterior limbus and summarized the available preclinical and clinical evidence about the developing topic of cell-based therapy for corneal disorders.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore.
| |
Collapse
|
23
|
Bahrani Fard MR, Chan J, Sanchez Rodriguez G, Yonk M, Kuturu SR, Read AT, Emelianov SY, Kuehn MH, Ethier CR. Improved magnetic delivery of cells to the trabecular meshwork in mice. Exp Eye Res 2023; 234:109602. [PMID: 37488007 PMCID: PMC10530071 DOI: 10.1016/j.exer.2023.109602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide and its most prevalent subtype is primary open angle glaucoma (POAG). One pathological change in POAG is loss of cells in the trabecular meshwork (TM), which is thought to contribute to ocular hypertension and has thus motivated development of cell-based therapies to refunctionalize the TM. TM cell therapy has shown promise in intraocular pressure (IOP) control, but existing cell delivery techniques suffer from poor delivery efficiency. We employed a novel magnetic delivery technique to reduce the unwanted side effects of off-target cell delivery. Mesenchymal stem cells (MSCs) were labeled with superparamagnetic iron oxide nanoparticles (SPIONs) and after intracameral injection were magnetically steered towards the TM using a focused magnetic apparatus ("point magnet"). This technique delivered the cells significantly closer to the TM at higher quantities and with more circumferential uniformity compared to either unlabeled cells or those delivered using a "ring magnet" technique. We conclude that our point magnet cell delivery technique can improve the efficiency of TM cell therapy and in doing so, potentially increase the therapeutic benefits and lower the risk of complications such as tumorigenicity and immunogenicity.
Collapse
Affiliation(s)
- M Reza Bahrani Fard
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jessica Chan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Marybeth Yonk
- College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shreya R Kuturu
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Stanislav Y Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Markus H Kuehn
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - C Ross Ethier
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Beardslee LA, Halman JR, Unser AM, Xie Y, Danias J, Bergkvist M, Sharfstein ST, Torrejon KY. Recreating the Trabecular Outflow Tissue on Implantable, Micropatterned, Ultrathin, Porous Polycaprolactone Scaffolds. Bioengineering (Basel) 2023; 10:679. [PMID: 37370610 PMCID: PMC10294786 DOI: 10.3390/bioengineering10060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Glaucoma, where increased intraocular pressure (IOP) leads to damage to the optic nerve and loss of sight, is amongst the foremost causes of irreversible blindness worldwide. In primary open angle glaucoma, the increased IOP is a result of the malfunctioning human trabecular meshwork (HTM) cells' inability to properly regulate the outflow of aqueous humor from the eye. A potential future treatment for glaucoma is to replace damaged HTM cells with a tissue-engineered substitute, thus restoring proper fluid outflow. Polycaprolactone (PCL) is a versatile, biodegradable, and implantable material that is widely used for cell culture and tissue engineering. In this work, PCL scaffolds were lithographically fabricated using a sacrificial process to produce submicron-thick scaffolds with openings of specific sizes and shapes (e.g., grid, hexagonal pattern). The HTM cell growth on gelatin-coated PCL scaffolds was assessed by scanning electron microscopy, tetrazolium metabolic activity assay, and cytoskeletal organization of F-actin. Expression of HTM-specific markers and ECM deposition were assessed by immunocytochemistry and qPCR analysis. Gelatin-coated, micropatterned, ultrathin, porous PCL scaffolds with a grid pattern supported proper HTM cell growth, cytoskeleton organization, HTM-marker expression, and ECM deposition, demonstrating the feasibility of using these PCL scaffolds to tissue-engineer implantable, healthy ocular outflow tissue.
Collapse
Affiliation(s)
- Luke A. Beardslee
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Justin R. Halman
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Andrea M. Unser
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - John Danias
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Magnus Bergkvist
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Susan T. Sharfstein
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Karen Y. Torrejon
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
- Glauconix Biosciences Inc., 251 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
25
|
Sharif NA. Recently Approved Drugs for Lowering and Controlling Intraocular Pressure to Reduce Vision Loss in Ocular Hypertensive and Glaucoma Patients. Pharmaceuticals (Basel) 2023; 16:791. [PMID: 37375739 DOI: 10.3390/ph16060791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices, and surgical techniques have been developed to lower and control IOP. The constant quest for new pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances, early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted effort and attention.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169856, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London SW7 2BX, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
26
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
27
|
Tao Y, Zhang Q, Meng M, Huang J. A bibliometric analysis of the application of stem cells in glaucoma research from 1999 to 2022. Front Cell Dev Biol 2023; 11:1081898. [PMID: 36743419 PMCID: PMC9889543 DOI: 10.3389/fcell.2023.1081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Glaucoma, a neurodegenerative disease of the retina, is the leading cause of irreversible blindness. Stem cells have therapeutic potential for glaucoma. However, few bibliometric studies have been published in this field. Concerning a visual map, this article aims to characterize the research context, cooperation relationship, hotspots, and trends concerning the application of stem cells in glaucoma research. Methods: Publications focusing on stem cell research and glaucoma were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, Microsoft Excel, and Scimago Graphica were used to map the contributions of countries or regions, authors, organizations, and journals. Journal Impact Factor data were obtained from the Web of Science Core Collection. We analyzed the tendencies, hotspots, and knowledge networks using VOSviewer, and CiteSpace. Results: We analyzed 518 articles published from 1999 through 2022. In the first decade, the number of articles in this field increased slowly, and there was a marked acceleration in publication frequency after 2010. The United States, China, and England were the main contributors. Yiqin Du was the most prolific author, and among the top 10 prolific writers, Keith R. Martin's work was cited most frequently. Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Cornea published the most articles in this domain. The three most commonly co-cited journals were Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Proceedings of the National Academy of Sciences of the United States of America. The Central South University, the University of Pittsburgh, and the National Institutes of Health National Eye Institute were highly prolific institutions in this research area. Our keywords analysis with VOSviewer suggested directions of future research and yielded the following recent key themes, extracellular vesicles, exosomes, mitochondria, growth factors, oxidative stress, and ocular diseases. Four co-cited references had a citation burst duration until 2022. Conclusion: With improvements in overall quality of life and demographic transitions toward population aging, research and clinical focus on eye care has increased, with glaucoma as a key area of emphasis. This study added to our understanding of the global landscape and Frontier hotspots in this field.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
28
|
Abstract
The trabecular meshwork (TM) of the eye serves as an essential tissue in controlling aqueous humor (AH) outflow and intraocular pressure (IOP) homeostasis. However, dysfunctional TM cells and/or decreased TM cellularity is become a critical pathogenic cause for primary open-angle glaucoma (POAG). Consequently, it is particularly valuable to investigate TM characteristics, which, in turn, facilitates the development of new treatments for POAG. Since 2006, the advancement in induced pluripotent stem cells (iPSCs) provides a new tool to (1) model the TM in vitro and (2) regenerate degenerative TM in POAG. In this context, we first summarize the current approaches to induce the differentiation of TM-like cells from iPSCs and compare iPSC-derived TM models to the conventional in vitro TM models. The efficacy of iPSC-derived TM cells for TM regeneration in POAG models is also discussed. Through these approaches, iPSCs are becoming essential tools in glaucoma modeling and for developing personalized treatments for TM regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China.
| | - Xiaoyan Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
29
|
Karimi A, Razaghi R, Rahmati SM, Downs JC, Acott TS, Kelley MJ, Wang RK, Johnstone M. The Effect of Intraocular Pressure Load Boundary on the Biomechanics of the Human Conventional Aqueous Outflow Pathway. Bioengineering (Basel) 2022; 9:672. [PMID: 36354583 PMCID: PMC9687513 DOI: 10.3390/bioengineering9110672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Aqueous humor outflow resistance in the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) endothelium of the conventional outflow pathway actively contribute to intraocular pressure (IOP) regulation. Outflow resistance is actively affected by the dynamic outflow pressure gradient across the TM, JCT, and SC inner wall tissues. The resistance effect implies the presence of a fluid-structure interaction (FSI) coupling between the outflow tissues and the aqueous humor. However, the biomechanical interactions between viscoelastic outflow tissues and aqueous humor dynamics are largely unknown. METHODS A 3D microstructural finite element (FE) model of a healthy human eye TM/JCT/SC complex was constructed with elastic and viscoelastic material properties for the bulk extracellular matrix and embedded elastic cable elements. The FE models were subjected to both idealized and a physiologic IOP load boundary using the FSI method. RESULTS The elastic material model for both the idealized and physiologic IOP load boundary at equal IOPs showed similar stresses and strains in the outflow tissues as well as pressure in the aqueous humor. However, outflow tissues with viscoelastic material properties were sensitive to the IOP load rate, resulting in different mechanical and hydrodynamic responses in the tissues and aqueous humor. CONCLUSIONS Transient IOP fluctuations may cause a relatively large IOP difference of ~20 mmHg in a very short time frame of ~0.1 s, resulting in a rate stiffening in the outflow tissues. Rate stiffening reduces strains and causes a rate-dependent pressure gradient across the outflow tissues. Thus, the results suggest it is necessary to use a viscoelastic material model in outflow tissues that includes the important role of IOP load rate.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|