1
|
Xu B, Li Z, Guo Q, Zha L, Li C, Yu P, Chen M, Zhao Y. The Purification and Characterization of a Novel Neutral Protease from Volvariella volvacea Fruiting Bodies and the Enzymatic Digestion of Soybean Isolates. J Fungi (Basel) 2025; 11:190. [PMID: 40137228 PMCID: PMC11942766 DOI: 10.3390/jof11030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
A novel protease was isolated from the fruiting bodies of the straw mushroom Volvariella volvacea. The protease was purified 13.48-fold using a series of techniques, including ammonium sulfate precipitation, ultrafiltration, diethylaminoethyl fast-flow (DEAE FF) ion-exchange chromatography, and Superdex 75 gel filtration chromatography, resulting in a specific enzyme activity of 286.82 U/mg toward casein as a substrate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the purified protease had a molecular weight of 24 kDa. The enzyme exhibited optimal activity at pH 7 and 50 °C, showing sensitivity to alkaline conditions and instability at elevated temperatures. The presence of Ca2+ significantly enhanced enzyme activity, whereas Ni2+ and Cu2+ exerted strong inhibitory effects, with other metal ions showing weak inhibition. β-mercaptoethanol, Tween-80, and Triton X-100 had more pronounced inhibitory effects, whereas PMSF, EDTA, and CTAB had weaker inhibitory effects. The Michaelis constant (Km) and maximum velocity (Vm) of the protease were determined to be 1.34 g/L and 3.45 μg/(mL·min), respectively. The protease exhibited a greater degree of enzymatic degradation of soybean-isolate protein (7.58%) compared to trypsin (5.24%), with the enzyme product containing a high percentage of medicinal amino acids (73.54%), particularly phenylalanine (Phe) and arginine (Arg), suggesting their presence at the enzyme's active site. These findings suggest that the protease from V. volvacea holds promising potential for applications in the food industry, particularly in protein hydrolysate production and flavor enhancement.
Collapse
Affiliation(s)
- Baoting Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.X.); (P.Y.)
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Zhiping Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Qian Guo
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Chuanhua Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Panling Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.X.); (P.Y.)
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| |
Collapse
|
2
|
Noskova Y, Nedashkovskaya O, Balabanova L. Production, Purification, and Biochemical Characterization of a Novel ATP-Dependent Caseinolytic Protease from the Marine Bacterium Cobetia amphilecti KMM 296. Microorganisms 2025; 13:307. [PMID: 40005674 PMCID: PMC11857851 DOI: 10.3390/microorganisms13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
A novel caseinolytic protease (ClpP) of the S14 family from Cobetia amphilecti KMM 296 (CamClpP), comprising 206 amino acids, with a calculated molecular weight of 22.66 kDa and a pI of 4.88, was expressed in Escherichia coli cells to verify the functional annotation of the encoding gene that has low identity with known structures. The proteolytic activity of the purified recombinant enzyme was found to be 2824 U/mg, using 1% casein as a substrate. Enzyme activity was maximal at pH 5.6 and 7.4 in phosphate buffer and was maintained over a wide pH range of 4-10. The optimum temperature for protease activity was 45 °C. The enzyme in its optimal state required the presence of either NaCl or KCl at concentrations of 0.3 and 0.2 M, respectively. The addition of the metal ions Mg2+, Ca2+, Ni2+, Mn2+, Li+, and Zn2+ at 2 mM resulted in a significant inhibition of the protease activity. However, the presence of Co2+ led to a marked activation of the enzyme in the absence of ATP. The enzyme activity was inhibited by ethanol, isopropanol, glycerol, SDS, EGTA, and EDTA. The presence of Triton X-100, acetone, DTT, and PMSF resulted in a significant increase in the CamClpP protease activity. The protease CamClpP effectively and preferentially degrades high-polymer wheat and rye flour proteins. This new proteolytic enzyme with unique properties is of great ecological and biotechnological importance.
Collapse
|
3
|
Pradhoshini KP, Santhanabharathi B, Priyadharshini M, Ahmed MS, Murugan K, Sivaperumal P, Alam L, Duong VH, Musthafa MS. Microbial consortium and impact of industrial mining on the Natural High Background Radiation Area (NHBRA), India - Characteristic role of primordial radionuclides in influencing the community structure and extremophiles pattern. ENVIRONMENTAL RESEARCH 2024; 244:118000. [PMID: 38128601 DOI: 10.1016/j.envres.2023.118000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.
Collapse
Affiliation(s)
- Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India
| | - Munawar Suhail Ahmed
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India
| | - Karuvelan Murugan
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Sciences (VISTAS), Pallavaram, Chennai, Tamilnadu, 600117, India
| | - Pitchiah Sivaperumal
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, 600077, India
| | - Lubna Alam
- Fisheries Economics Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, Canada
| | - Van-Hao Duong
- VNU School of Interdisciplinary Studies, Vietnam National University, Hanoi, Viet Nam
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Egbune EO, Ezedom T, Odeghe OB, Orororo OC, Egbune OU, Ehwarieme AD, Aganbi E, Ebuloku CS, Chukwuegbo AO, Bogard E, Ayomanor E, Chisom PA, Edafetano FL, Destiny A, Alebe PA, Aruwei TK, Anigboro AA, Tonukari NJ. Solid-state fermentation production of L-lysine by Corynebacterium glutamicum (ATCC 13032) using agricultural by-products as substrate. World J Microbiol Biotechnol 2023; 40:20. [PMID: 37996724 DOI: 10.1007/s11274-023-03822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
To meet the growing demand for L-lysine, an essential amino acid with various applications, it is crucial to produce it on a large scale locally instead of relying solely on imports. This study aimed to evaluate the potential of using Corynebacterium glutamicum ATCC 13032 for L-lysine production from agricultural by-products such as palm kernel cake, soybean cake, groundnut cake, and rice bran. Solid-state fermentation was conducted at room temperature for 72 h, with the addition of elephant grass extract as a supplement. The results revealed that these agricultural by-products contain residual amounts of L-lysine. By employing solid-state fermentation with C. glutamicum (106 CFU/ml) in 100 g of various agricultural by-products, L-lysine production was achieved. Interestingly, the addition of elephant grass extract (1 g of elephant grass: 10 ml of water) further enhanced L-lysine production. Among the tested substrates, 100 g of groundnut cake moistened with 500 ml of elephant grass extract yielded the highest L-lysine concentration of 3.27 ± 0.02 (mg/gds). Furthermore, fermentation led to a substantial rise (p < 0.05) in soluble protein, with solid-state fermented soybean cake moistened with 500 ml of elephant grass extract exhibiting the highest amount of 7.941 ± 0.05 mg/gds. The activities of xylanase, amylase and protease were also significantly enhanced. This study demonstrates a viable biotechnological approach for locally producing L-lysine from agricultural by-products using solid-state fermentation with C. glutamicum. The findings hold potential for both health and industrial applications, providing a sustainable and economically feasible method for L-lysine production.
Collapse
Affiliation(s)
- Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria.
- Tonukari Biotechnology Laboratory, Sapele, Delta State, Nigeria.
| | - Theresa Ezedom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Otuke B Odeghe
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Osuvwe C Orororo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Olisemeke U Egbune
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Ayobola D Ehwarieme
- Department of Microbiology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Eferhire Aganbi
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- J. Mack Robinson College of Business, Georgia State University, 3348 Peachtree Rd NE, Atlanta, GA, 30326, USA
| | - Chijindu S Ebuloku
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Alma O Chukwuegbo
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Ebiyeiferu Bogard
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Edesiri Ayomanor
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Patricia A Chisom
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Fejiro L Edafetano
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Albert Destiny
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Peace A Alebe
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Toboke-Keme Aruwei
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Tonukari Biotechnology Laboratory, Sapele, Delta State, Nigeria
| |
Collapse
|
5
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
6
|
Abdel-Hady GN, Tajima T, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. A novel salt- and organic solvent-tolerant phosphite dehydrogenase from Cyanothece sp. ATCC 51142. Front Bioeng Biotechnol 2023; 11:1255582. [PMID: 37662428 PMCID: PMC10473253 DOI: 10.3389/fbioe.2023.1255582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Phosphite dehydrogenase (PtxD) is a promising enzyme for NAD(P)H regeneration. To expand the usability of PtxD, we cloned, expressed, and analyzed PtxD from the marine cyanobacterium Cyanothece sp. ATCC 51142 (Ct-PtxD). Ct-PtxD exhibited maximum activity at pH 9.0°C and 50°C and high stability over a wide pH range of 6.0-10.0. Compared to previously reported PtxDs, Ct-PtxD showed increased resistance to salt ions such as Na+, K+, and NH4 +. It also exhibited high tolerance to organic solvents such as ethanol, dimethylformamide, and methanol when bound to its preferred cofactor, NAD+. Remarkably, these organic solvents enhanced the Ct-PtxD activity while inhibiting the PtxD activity of Ralstonia sp. 4506 (Rs-PtxD) at concentrations ranging from 10% to 30%. Molecular electrostatic potential analysis showed that the NAD+-binding site of Ct-PtxD was rich in positively charged residues, which may attract the negatively charged pyrophosphate group of NAD+ under high-salt conditions. Amino acid composition analysis revealed that Ct-PtxD contained fewer hydrophobic amino acids than other PtxD enzymes, which reduced the hydrophobicity and increased the hydration of protein surface under low water activity. We also demonstrated that the NADH regeneration system using Ct-PtxD is useful for the coupled chiral conversion of trimethylpyruvic acid into L-tert-leucine using leucine dehydrogenase under high ammonium conditions, which is less supported by the Rs-PtxD enzyme. These results imply that Ct-PtxD might be a potential candidate for NAD(P)H regeneration in industrial applications under the reaction conditions containing salt and organic solvent.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Takahisa Tajima
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ikeda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Zaman U, Khan SU, Alem SFM, Rehman KU, Almehizia AA, Naglah AM, Al-Wasidi AS, Refat MS, Saeed S, Zaki MEA. Purification and thermodynamic characterization of acid protease with novel properties from Melilotus indicus leaves. Int J Biol Macromol 2023; 230:123217. [PMID: 36634806 DOI: 10.1016/j.ijbiomac.2023.123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
A thermostable acid protease from M. indicus leaves was purified 10-fold using a 4-step protocol. We were able to isolate a purified protease fraction with a molecular weight of 50 kDa and exhibited maximal protease activity at pH 4.0 and 40 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. The addition of epoxy monocarboxylic acid, iodoacetic acid, and dimethyl sulfoxide significantly reduced protease activity while dramatically increasing the inhibition of Mn2+, Fe2+, and Cu2+. The activation energy of the hydrolysis reaction (33.33 kJ mol-1) and activation energy (Ed = 105 kJ mol-1), the standard enthalpy variation of reversible protease unfolding (2.58 kJ/mol) were calculated after activity measurements at various temperatures. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50 °C, 60 °C, and 70 °C was 385, 231, and 154 min, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by M. indicus. The novel protease appears to be particularly thermostable and may be important for industrial applications based on these thermodynamic properties.
Collapse
Affiliation(s)
- Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KPK, Pakistan; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
8
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
9
|
Homaei A, Izadpanah F. Purification and characterization of a robust thermostable protease isolated from
Bacillus subtilis
strain
HR02
as an extremozyme. J Appl Microbiol 2022; 133:2779-2789. [DOI: 10.1111/jam.15725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology University of Hormozgan Bandar Abbas Iran
| | - Fatemeh Izadpanah
- Department of Marine Biology, Faculty of Marine Science and Technology University of Hormozgan Bandar Abbas Iran
| |
Collapse
|
10
|
Microbial Diversity in the Indian Ocean Sediments: An Insight into the Distribution and Associated Factors. Curr Microbiol 2022; 79:115. [PMID: 35195780 DOI: 10.1007/s00284-022-02801-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/23/2021] [Indexed: 11/03/2022]
Abstract
Indian Ocean is the third largest oceanic division of the world and shelter to a huge microbial diversity. These microbes play an important role in the metabolism of carbon, sulfur, nitrogen, and phosphorus in the ocean water. They are also major contributors of carbon fixing and sequestration, as much as terrestrial plants to achieve CO2 emissions reduction. The prokaryotic community in the East Indian Ocean primarily comprises of heterotrophic bacteria like Alphaproteobacteria and Gammaproteobacteria, followed by Firmicutes and Actinobacteria. The Arabian Sea and the Bay of Bengal are typically characterized by presence of vast areas of oxygen minimum zones (OMZs) and have been witnessing a shift in the microbial diversity due to the changing conditions in the ocean water. Several canonical correspondence analyses reveal temperature, salinity, and phosphate levels as crucial environmental factors in propelling the distribution of diazotrophs. The viral consortia are dominated by the Caudovirales, an order of tailed bacteriophages. Due to the rapid change in the environmental factors such as topography, temperature, and sunlight contributing toward climate change, their role in sustaining the chemical composition of the ocean can be drastically affected especially with the evidence of several bacterial and fungal communities responding to latitudinal and temperature change. Therefore, we aim to critically review the status of microbial diversity in Indian Ocean to predict their response toward climate change as they are the sentinels of change in marine life and to understand the dynamics of microbial communities in the various locations of Indian Ocean.
Collapse
|
11
|
Goda DA, Bassiouny AR, Abdel Monem NM, Soliman NA, Abdel-Fattah YR. Feather protein lysate optimization and feather meal formation using YNDH protease with keratinolytic activity afterward enzyme partial purification and characterization. Sci Rep 2021; 11:14543. [PMID: 34267231 PMCID: PMC8282803 DOI: 10.1038/s41598-021-93279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Incubation parameters used for the creation of a protein lysate from enzymatically degraded waste feathers using crude keratinase produced by the Laceyella sacchari strain YNDH were optimized using the Response Surface Methodology (RSM); amino acids quantification was also estimated. The optimization elevated the total protein to 2089.5 µg/ml through the application of the following optimal conditions: a time of 20.2 h, a feather concentration (conc.) of 3 g%, a keratinase activity of 24.5 U/100 ml, a pH of 10, and a cultivation temperature of 50 °C. The produced Feather Protein Lysate (FPL) was found to be enriched with essential and rare amino acids. Additionally, this YNDH enzyme group was partially purified, and some of its characteristics were studied. Crude enzymes were first concentrated with an Amicon Ultra 10-k centrifugal filter, and then concentrated proteins were applied to a "Q FF" strong anion column chromatography. The partially purified enzyme has an estimated molecular masses ranging from 6 to 10 kDa. The maximum enzyme activity was observed at 70 °C and for a pH of 10.4. Most characteristics of this protease/keratinase group were found to be nearly the same when the activity was measured with both casein and keratin-azure as substrates, suggesting that these three protein bands work together in order to degrade the keratin macromolecule. Interestingly, the keratinolytic activity of this group was not inhibited by ethylenediamine tetraacetic acid (EDTA), phenylmethanesulfonyl fluoride (PMSF), or iron-caused activation, indicating the presence of a mixed serine-metallo enzyme type.
Collapse
Affiliation(s)
- Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt.
| | - Ahmad R Bassiouny
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nihad M Abdel Monem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt
| |
Collapse
|
12
|
Farooq S, Nazir R, Ganai SA, Ganai BA. Isolation and characterization of a new cold-active protease from psychrotrophic bacteria of Western Himalayan glacial soil. Sci Rep 2021; 11:12768. [PMID: 34140593 PMCID: PMC8211794 DOI: 10.1038/s41598-021-92197-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
As an approach to the exploration of cold-active enzymes, in this study, we isolated a cold-active protease produced by psychrotrophic bacteria from glacial soils of Thajwas Glacier, Himalayas. The isolated strain BO1, identified as Bacillus pumilus, grew well within a temperature range of 4-30 °C. After its qualitative and quantitative screening, the cold-active protease (Apr-BO1) was purified. The Apr-BO1 had a molecular mass of 38 kDa and showed maximum (37.02 U/mg) specific activity at 20 °C, with casein as substrate. It was stable and active between the temperature range of 5-35 °C and pH 6.0-12.0, with an optimum temperature of 20 °C at pH 9.0. The Apr-BO1 had low Km value of 1.0 mg/ml and Vmax 10.0 µmol/ml/min. Moreover, it displayed better tolerance to organic solvents, surfactants, metal ions and reducing agents than most alkaline proteases. The results exhibited that it effectively removed the stains even in a cold wash and could be considered a decent detergent additive. Furthermore, through protein modelling, the structure of this protease was generated from template, subtilisin E of Bacillus subtilis (PDB ID: 3WHI), and different methods checked its quality. For the first time, this study reported the protein sequence for psychrotrophic Apr-BO1 and brought forth its novelty among other cold-active proteases.
Collapse
Affiliation(s)
- Saleem Farooq
- grid.412997.00000 0001 2294 5433Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India ,grid.412997.00000 0001 2294 5433Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, India Jammu and Kashmir 190006
| | - Ruqeya Nazir
- grid.412997.00000 0001 2294 5433Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, India Jammu and Kashmir 190006
| | - Shabir Ahmad Ganai
- grid.444725.40000 0004 0500 6225Division of Basic Sciences and Humanities, FoA, SKUAST-Kashmir, Srinagar, Jammu and Kashmir 193201 India
| | - Bashir Ahmad Ganai
- grid.412997.00000 0001 2294 5433Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, India Jammu and Kashmir 190006
| |
Collapse
|
13
|
Elleuch J, Hadj Kacem F, Ben Amor F, Hadrich B, Michaud P, Fendri I, Abdelkafi S. Extracellular neutral protease from Arthrospira platensis: Production, optimization and partial characterization. Int J Biol Macromol 2020; 167:1491-1498. [PMID: 33202265 DOI: 10.1016/j.ijbiomac.2020.11.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Proteases are industrially important catalysts. They belong to a complex family of enzymes that perform highly focused proteolysis functions. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. In the present study, a novel extracellular neutral protease produced from Arthrospira platensis was detected and characterized. Its proteolytic activity was strongly activated by β-mercaptoethanol, 5,5-dithio-bis-(2-nitrobenzoic acid) and highly inhibited by Hg2+ and Zn2+ metal ions which support the fact that the studied protease belongs to the cysteine protease family. Using statistical modelling methodology, the logistic model has been selected to predict A. platensis growth-kinetic values. The optimal culture conditions for neutral protease production were found using Box-Behnken Design. The maximum experimental protease activities (159.79 U/mL) was achieved after 13 days of culture in an optimized Zarrouk medium containing 0.625 g/L NaCl, 0.625 g/L K2HPO4 and set on 9.5 initial pH. The extracellular protease of A. platensis can easily be used in the food industry for its important activity at neutral pH and its low production cost since it is a valuation of the residual culture medium after biomass recovery.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Farah Hadj Kacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Faten Ben Amor
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoroire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
14
|
Marine microbial alkaline protease: An efficient and essential tool for various industrial applications. Int J Biol Macromol 2020; 161:1216-1229. [DOI: 10.1016/j.ijbiomac.2020.06.072] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
15
|
Babalola MO, Ayodeji AO, Bamidele OS, Ajele JO. Biochemical characterization of a surfactant-stable keratinase purified from Proteus vulgaris EMB-14 grown on low-cost feather meal. Biotechnol Lett 2020; 42:2673-2683. [PMID: 32740782 DOI: 10.1007/s10529-020-02976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The bioaccumulation of keratinous wastes from poultry and dairy industries poses a danger of instability to the biosphere due to resistance to common proteolysis and as such, microbial- and enzyme-mediated biodegradation are discussed. RESULTS In submerged fermentation medium, Proteus vulgaris EMB-14 utilized and efficiently degraded feather, fur and scales by secreting exogenous keratinase. The keratinase was purified 14-fold as a monomeric 49 kDa by DEAE-Sephadex A-50 anion exchange and Sephadex G-100 size-exclusion chromatography. It exhibited optimum activity at pH 9.0 and 60 °C and was alkaline thermostable (pH 7.0-11.0), retaining 87% of initial activity after 1 h pre-incubation at 60 °C. The Km and Vmax of the keratinase with keratin azure were respectively 0.283 mg/mL and 0.241 U/mL/min. Activity of P. vulgaris keratinase was stimulated by Ca2+, Mg2+, Zn2+, Na+ and maintained in the presence of some denaturing agents, except β-mercaptoethanol while Cu2+ and Pb2+ showed competitive and non-competitive inhibition with Ki 6.5 mM and 17.5 mM, respectively. CONCLUSION This purified P. vulgaris keratinase could be surveyed for the biotechnological transformation of bioorganic keratinous wastes into valuable products such as soluble peptides, cosmetics and biodegradable thermoplastics.
Collapse
Affiliation(s)
- Michael O Babalola
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Adeyemi O Ayodeji
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria.
| | - Olufemi S Bamidele
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Joshua O Ajele
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
16
|
Ahmad MN, Shuhaimen MS, Normaya E, Omar MN, Iqbal A, Ku Bulat KH. The applicability of using a protease extracted from cashew fruits (Anacardium occidentale), as possible meat tenderizer: An experimental design approach. J Texture Stud 2020; 51:810-829. [PMID: 32401337 DOI: 10.1111/jtxs.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/28/2022]
Abstract
Meat tenderness is one of the most important organoleptic properties in determining consumer acceptance in meat product marketability. Therefore, an effective meat tenderization method is sought after by exploring plant-derived proteolytic enzymes as meat tenderizer. In this study, a novel protease from Cashew was identified as a new alternative halal meat tenderizer. The extraction of cashew protease was optimized using response surface methodology (R2 = 0.9803) by varying pH, CaCl2 concentration, mixing time, and mass. pH 6.34, 7.92 mM CaCl2 concentration, 5.51 min mixing time, and 19.24 g sample mass were the optimal extraction conditions. There was no significant difference (n = 3; p < 0.05) between the calculated (6.302 units/ml) and experimental (6.493 ± 0.229 units/ml) protease activity. The ascending order of the effects was pH < mixing time < CaCl2 < sample mass. In meat tenderizing application, the meat samples treated with 9% (v/w) crude protease extract obtained the lowest shear force (1.38 ± 0.25 N) to cause deformation on the meat. An electrophoretic analysis showed that protein bands above ~49.8 kDa were completely degraded into protein bands below ~22.4 kDa. Scanning electron microscopy shows the disruption of the muscle fibers after being treated by the Cashew protease. The results of this study show the Cashew (Anacardium occidentale) crude extract can be used as an alternative of the animal and microbial protease as meat tenderizer and subsequently overcome the shortcoming of the halal industrial protease.
Collapse
Affiliation(s)
- Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhammad Shahrain Shuhaimen
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhammad Nor Omar
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ku Halim Ku Bulat
- Department of Chemistry, Faculty of Science, University Malaysia Terengganu, Terengganu, Malaysia
| |
Collapse
|
17
|
Mechri S, Bouacem K, Amziane M, Dab A, Nateche F, Jaouadi B. Identification of a New Serine Alkaline Peptidase from the Moderately Halophilic Virgibacillus natechei sp. nov., Strain FarD T and its Application as Bioadditive for Peptide Synthesis and Laundry Detergent Formulations. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6470897. [PMID: 31886235 PMCID: PMC6914889 DOI: 10.1155/2019/6470897] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
A new peptidase designated as SAPV produced from a moderately halophilic Virgibacillus natechei sp. nov., strain FarDT was investigated by purification to homogeneity followed by biochemical and molecular characterization purposes. Through optimization, it was determined that the optimum peptidase activity was 16,000 U/mL. It was achieved after 36 h incubation at 35°C in the optimized enzyme liquid medium (ELM) at pH 7.4 that contains only white shrimp shell by-product (60 g/L) as sole energy and carbon sources. The SAPV enzyme is a monomer protein with a molecular mass of 31 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography (HPLC) gel filtration chromatography. The sequence of its NH2-terminal amino-acid residues showed homology with those of Bacillus peptidases S8/S53 superfamily. The SAPV showed optimal activity at pH 9 and 60°C. Irreversible inhibition of enzyme activity by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine peptidases. Considering its interesting biochemical characterization, the sapV gene was cloned, sequenced, and heterologously overexpressed in the extracellular fraction of E. coli BL21(DE3)pLysS. The biochemical properties of the recombinant peptidase (rSAPV) were similar to those of the native one. The highest sequence identity value (97.66%) of SAPV was obtained with peptidase S8 from Virgibacillus massiliensis DSM 28587, with 9 amino-acid residues of difference. Interestingly, rSAPV showed an outstanding and high resistance to several organic solvents than SPVP from Aeribacillus pallidus VP3 and Thermolysin type X. Furthermore, rSAPV exhibited an excellent detergent stability and compatibility than Alcalase 2.4 L FG and Bioprotease N100L. Considering all these remarkable properties, rSAPV has attracted the interest of industrialists.
Collapse
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Meriam Amziane
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Ahlem Dab
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Farida Nateche
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
- Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| |
Collapse
|
18
|
Accumanno GM, Richards VA, Gunther NW, Hickey ME, Lee JL. Purification and characterization of the thermostable protease produced by Serratia grimesii isolated from channel catfish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2428-2437. [PMID: 30362163 DOI: 10.1002/jsfa.9451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Microbial spoilage of fishery products accounts for significant financial losses, yearly on a global scale. Psychrotrophic spoilage bacteria often secrete extracellular enzymes to break down surrounding fish tissue, rendering the product unsuitable for human consumption. For a better understanding of bacterial spoilage due to enzymatic digestion of fish products, proteases in Serratia grimesii isolated from North American catfish fillets (Ictalurus punctatus) were investigated. RESULTS Mass spectrometric evidence demonstrated that S. grimesii secretes two distinct extracellular proteases and one lipase. Protease secretion displayed broad thermostability in the 30-90 °C range. The major protease-secretion (O-1) was most active under alkaline conditions and utilized manganese as a co-factor. Organic solvents significantly disrupted the efficacy of S. grimesii extracellular enzymes and, in a series of bactericidal detergents, protease activity was highest when treated with Triton X-100. Ethylenediaminetetraacetic acid (EDTA) and phenylmethylsulfonyl fluoride (PMSF) significantly inhibited the enzyme activity, while protease was moderately stable under freeze-thaw and refrigerated storage. CONCLUSION The influence of fish spoilage-related enzymes, depending on various factors, is discussed in this paper. This study will provide new insight into enzymatic spoilage and its control, which can be exploited to enhance food safety and the shelf-life of fishery products worldwide. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gina M Accumanno
- Department of Human Ecology, Food Science and Biotechnology Program, Food Microbiology Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| | - Vanessa A Richards
- Department of Human Ecology, Food Science and Biotechnology Program, Food Microbiology Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| | - Nereus W Gunther
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Molecular Characterization of Foodborne Pathogens Research Unit, Wyndmoor, PA, USA
| | - Michael E Hickey
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jung-Lim Lee
- Department of Human Ecology, Food Science and Biotechnology Program, Food Microbiology Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| |
Collapse
|
19
|
Nazari L, Mehrabi M. Purification and characterization of an extracellular thermotolerant alkaliphilic serine protease secreted from newly isolated Bacillus sp. DEM07 from a hot spring in Dehloran, Iran. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Kaur N, Gat Y, Panghal A. Cost-Effective Purification and Characterization of an Industrially Important Alkaline Protease from a Newly Isolated Strain of Bacillussp. ICTF2. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2018.0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Narinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, India
| | - Yogesh Gat
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, India
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Anil Panghal
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, India
| |
Collapse
|
21
|
Characterization of partially purified alkaline protease secreted by halophilic bacterium Citricoccus sp. isolated from agricultural soil of northern India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Mokashe N, Chaudhari B, Patil U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int J Biol Macromol 2018; 117:493-522. [DOI: 10.1016/j.ijbiomac.2018.05.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 09/30/2022]
|
23
|
Barzkar N, Homaei A, Hemmati R, Patel S. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 2018; 22:335-346. [DOI: 10.1007/s00792-018-1009-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
24
|
Yildirim V, Baltaci MO, Ozgencli I, Sisecioglu M, Adiguzel A, Adiguzel G. Purification and biochemical characterization of a novel thermostable serine alkaline protease from Aeribacillus pallidus C10: a potential additive for detergents. J Enzyme Inhib Med Chem 2017; 32:468-477. [PMID: 28097910 PMCID: PMC6010106 DOI: 10.1080/14756366.2016.1261131] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022] Open
Abstract
An extracellular thermostable alkaline serine protease enzyme from Aeribacillus pallidus C10 (GenBank No: KC333049), was purified 4.85 and 17. 32-fold with a yield of 26.9 and 19.56%, respectively, through DE52 anion exchange and Probond affinity chromatography. The molecular mass of the enzyme was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with approximately 38.35 kDa. The enzyme exhibited optimum activity at pH 9 and at temperature 60 °C. It was determined that the enzyme had remained stable at the range of pH 7.0-10.0, and that it had preserved more than 80% of its activity at a broad temperature range (20-80 °C). The enzyme activity was found to retain more than 70% and 55% in the presence of organic solvents and commercial detergents, respectively. In addition, it was observed that the enzyme activity had increased in the presence of 5% SDS. KM and Vmax values were calculated as 0.197 mg/mL and 7.29 μmol.mL-1.min-1, respectively.
Collapse
Affiliation(s)
- Vildan Yildirim
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ilknur Ozgencli
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Melda Sisecioglu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Gulsah Adiguzel
- Department of Food Hygiene and Technology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| |
Collapse
|
25
|
Mokashe N, Chaudhari B, Patil U. Detergent-Compatible Robust Alkaline Protease from Newly Isolated Halotolerant Salinicoccus sp. UN-12. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-2024-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
|
27
|
Białkowska AM, Morawski K, Florczak T. Extremophilic proteases as novel and efficient tools in short peptide synthesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s10295-017-1961-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
The objective of this review is to outline the crucial role that peptides play in various sectors, including medicine. Different ways of producing these compounds are discussed with an emphasis on the benefits offered by industrial enzyme biotechnology. This paper describes mechanisms of peptide bond formation using a range of proteases with different active site structures. Importantly, these enzymes may be further improved chemically and/or genetically to make them better suited for their various applications and process conditions. The focus is on extremophilic proteases, whose potential does not seem to have been fully appreciated to date. The structure of these proteins is somewhat different from that of the common commercially available enzymes, making them effective at high salinity and high or low temperatures, which are often favorable to peptide synthesis. Examples of such enzymes include halophilic, thermophilic, and psychrophilic proteases; this paper also mentions some promising catalytic proteins which require further study in this respect.
Collapse
Affiliation(s)
- Aneta M Białkowska
- 0000 0004 0620 0652 grid.412284.9 Institute of Technical Biochemistry Lodz University of Technology Stefanowskiego Street 4/10 90-924 Lodz Poland
| | - Krzysztof Morawski
- 0000 0004 0620 0652 grid.412284.9 Institute of Technical Biochemistry Lodz University of Technology Stefanowskiego Street 4/10 90-924 Lodz Poland
| | - Tomasz Florczak
- 0000 0004 0620 0652 grid.412284.9 Institute of Technical Biochemistry Lodz University of Technology Stefanowskiego Street 4/10 90-924 Lodz Poland
| |
Collapse
|
28
|
Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Trincone A. Enzymatic Processes in Marine Biotechnology. Mar Drugs 2017; 15:E93. [PMID: 28346336 PMCID: PMC5408239 DOI: 10.3390/md15040093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|
30
|
Datta S, Menon G, Varughese B. Production, characterization, and immobilization of partially purified surfactant–detergent and alkali-thermostable protease from newly isolated Aeromonas caviae. Prep Biochem Biotechnol 2016; 47:349-356. [DOI: 10.1080/10826068.2016.1244688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sumitra Datta
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
- School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Sastra University, Thanjavur, Tamilnadu, India
| | | | - Bincy Varughese
- School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Sastra University, Thanjavur, Tamilnadu, India
| |
Collapse
|
31
|
Yavuz S, Kocabay S, Çetinkaya S, Akkaya B, Akkaya R, Yenidunya AF, Bakıcı MZ. Production, purification, and characterization of metalloprotease from Candida kefyr 41 PSB. Int J Biol Macromol 2016; 94:106-113. [PMID: 27717786 DOI: 10.1016/j.ijbiomac.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 11/30/2022]
Abstract
A thermostable metalloprotease, produced from an environmental strain of Candida kefyr 41 PSB, was purified 16 fold with a 60% yield by cold ethanol precipitation and affinity chromatography (bentonite-acrylamide-cysteine microcomposite). The purified enzyme appeared as a single protein band at 43kDa. Its optimum pH and temperature points were found to be 7.0 and 105°C, respectively. Km and Vmax values of the enzyme were determined to be 3.5mg/mL and 4.4μmolmL-1min-1, 1.65mg/mL and 6.1μmolmL-1min-1, using casein and gelatine as the substrates, respectively. The activity was inhibited by using ethylenediamine tetraacetic acid (EDTA), indicating that the enzyme was a metalloprotease. Stability of the enzyme was investigated by using thermodynamic and kinetic parameters. The thermal inactivation profile of the enzyme conformed to the first order kinetics. The half life of the enzyme at 95, 105, 115, 125 and 135°C was 1310, 610, 220, 150, and 86min, respectively.
Collapse
Affiliation(s)
- Sevgi Yavuz
- Cumhuriyet University Faculty of Engineering, Department of Bioengineering, 58140 Sivas, Turkey
| | - Samet Kocabay
- Inönü University Faculty of Science, Department of Molecular Biology and Genetics, 44280 Malatya, Turkey
| | - Serap Çetinkaya
- Cumhuriyet University Faculty of Science, Department of Molecular Biology and Genetics, 58140 Sivas, Turkey
| | - Birnur Akkaya
- Cumhuriyet University Faculty of Science, Department of Molecular Biology and Genetics, 58140 Sivas, Turkey.
| | - Recep Akkaya
- Cumhuriyet University, Vocational School of Health Services, 58140 Sivas, Turkey
| | - Ali Fazil Yenidunya
- Cumhuriyet University Faculty of Science, Department of Molecular Biology and Genetics, 58140 Sivas, Turkey
| | - Mustafa Zahir Bakıcı
- Cumhuriyet University, Faculty of Medicine, Department of Microbiology, 58140 Sivas, Turkey
| |
Collapse
|
32
|
Mageswari A, Subramanian P, Chandrasekaran S, Karthikeyan S, Gothandam KM. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp. Food Chem 2016; 217:18-27. [PMID: 27664603 DOI: 10.1016/j.foodchem.2016.08.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Psychrotolerant bacteria isolated from natural and artificially cold environments were screened for synthesis of cold-active protease. The strain IMDY showing the highest protease production at 5°C was selected and phylogenetic analysis revealed that IMDY as novel bacterium with Chryseobacterium soli(T) as its nearest neighbor. Classical optimization enhanced the protease production from 18U/mg to 26U/mg and the enzyme was found to be active at low temperature, activity enhanced by CaCl2, inhibited by PMSF, stable against NaCl, and its activity retained in the presence of surfactants, organic solvents and detergents. On testing, the meat tenderization, myofibril fragmentation, pH, and TBA values were favorable in IMDY-protease treated meat compared to control. SDS profiling and SEM analysis also showed tenderization in meat samples. Hence, this study proposes to consider the cold-active protease from Chryseobacterium sp. IMDY as a pertinent candidate to develop potential applications in food processing industry.
Collapse
Affiliation(s)
- Anbazhagan Mageswari
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Parthiban Subramanian
- Department of Agricultural Biotechnology (Metabolic Engineering Division), National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Alves MP, Salgado RL, Eller MR, Vidigal PMP, Fernandes de Carvalho A. Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity. J Dairy Sci 2016; 99:7842-7851. [PMID: 27497896 DOI: 10.3168/jds.2016-11236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/11/2016] [Indexed: 01/25/2023]
Abstract
This work discusses the biological and biochemical characterization of an extracellular protease produced by Pseudomonas fluorescens. The enzyme has a molecular weight of 49.486 kDa and hydrolyzes gelatin, casein, and azocasein, but not BSA. Its maximum activity is found at 37°C and pH 7.5, but it retained almost 70% activity at pH 10.0. It was shown to be a metalloprotease inhibited by Cu(2+), Ni(2+), Zn(2+), Hg(2+), Fe(2+), and Mg(2+), but induced by Mn(2+). After incubation at 100°C for 5min, the enzyme presented over 40% activity, but only 14 to 30% when submitted to milder heat treatments. This behavior may cause significant problems under conditions commonly used for the processing and storage of milk and dairy products, particularly UHT milk. A specific peptide sequenced by mass spectrometer analysis allowed the identification of gene that encodes this extracellular protease in the genome of Pseudomonas fluorescens 07A strain. The enzyme has 477 AA and highly conserved Ca(2+)- and Zn(2+)-binding domains, indicating that Ca(2+), the main ion in milk, is also a cofactor. This work contributes to the understanding of the biochemical aspects of enzyme activity and associates them with its sequence and structure. These findings are essential for the full understanding and control of these enzymes and the technological problems they cause in the dairy industry.
Collapse
Affiliation(s)
- Maura P Alves
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000
| | - Rafael L Salgado
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000
| | - Monique R Eller
- Department of Food Technology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000
| | - Pedro Marcus P Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000
| | - Antonio Fernandes de Carvalho
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000.
| |
Collapse
|
34
|
Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Food Chem 2016; 202:110-5. [DOI: 10.1016/j.foodchem.2016.01.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/21/2022]
|
35
|
Purification and Characterization of a New Thermostable, Haloalkaline, Solvent Stable, and Detergent Compatible Serine Protease from Geobacillus toebii Strain LBT 77. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9178962. [PMID: 27069928 PMCID: PMC4812217 DOI: 10.1155/2016/9178962] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022]
Abstract
A new thermostable, haloalkaline, solvent stable SDS-induced serine protease was purified and characterized from a thermophilic Geobacillus toebii LBT 77 newly isolated from a Tunisian hot spring. This study reveals the potential of the protease from Geobacillus toebii LBT 77 as an additive to detergent with spectacular proprieties described for the first time. The protease was purified to homogeneity by ammonium sulfate precipitation followed by Sephadex G-75 and DEAE-Cellulose chromatography. It was a monomeric enzyme with molecular weight of 30 kDa. The optimum pH, temperature, and NaCl for maximum protease activity were 13.0, 95°C, and 30%, respectively. Activity was stimulated by Ca(2+), Mg(2+), DTNB, β-mercaptoethanol, and SDS. The protease was extremely stable even at pH 13.25, 90°C, and 30% NaCl and in the presence of hydrophilic, hydrophobic solvents at high concentrations. The high compatibility with ionic, nonionic, and commercial detergents confirms the utility as an additive to cleaning products. Kinetic and thermodynamic characterization of protease revealed K m = 1 mg mL(-1), V max = 217.5 U mL(-1), K cat/K m = 99 mg mL(-1) S(-1), E a = 51.5 kJ mol(-1), and ΔG (⁎) = 56.5 kJ mol(-1).
Collapse
|
36
|
Extremophilic Proteases: Developments of Their Special Functions, Potential Resources and Biotechnological Applications. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Maruthiah T, Somanath B, Immanuel G, Palavesam A. Deproteinization potential and antioxidant property of haloalkalophilic organic solvent tolerant protease from marine Bacillus sp. APCMST-RS3 using marine shell wastes. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2015; 8:124-132. [PMID: 28352581 PMCID: PMC4980707 DOI: 10.1016/j.btre.2015.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022]
Abstract
The current increase in the vast amount of marine crustacean shell waste produced by the fish processing industries has led to the need to find new methods for its disposal. Hence, the present study was carried out via marine shell wastes as substrate for protease production. The maximum production (4000.65 U/ml) from Bacillus sp. APCMST-RS3 was noticed in 3:1% shrimp and oyster shell powder (SOSP) as substrate. Purified protease showed 53.22% and 22.66% enzyme yield; 3.48 and 8.49 fold purity with 40 kDa molecular weight; whereas, its Km and Vmax values were 0.6666 g/l, 1111.11 U/ml. This enzyme showed optimum activity at pH 9 and 60 °C temperature. Also, it retained maximum protease activity in the presence of NaCl (2.5 M), surfactants (Tween 20, 40, 60, 80 and SDS) and metal ions (MnCl2, CaCl2, HgCl2 and BaCl2) and solvents. The candidate bacterium effectively deproteinized (84.35%) shrimp shell and its antioxidant potentials.
Collapse
Affiliation(s)
- Thirumalai Maruthiah
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, 629 502 Kanyakumari District, Tamil nadu, India
| | - Beena Somanath
- Department of Zoology, Rani Anna Government College for Women, Manonmaniam Sundaranar University, Tirunelveli, 627 012 Tamil nadu, India
| | - Grasian Immanuel
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, 629 502 Kanyakumari District, Tamil nadu, India
| | - Arunachalam Palavesam
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, 627 012 Tamil nadu, India
| |
Collapse
|
38
|
Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization. Extremophiles 2015; 19:961-71. [PMID: 26159877 DOI: 10.1007/s00792-015-0771-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30-50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml(-1), 42.5 µM min(-1) mg(-1), and 392.46 × 10(3) min(-1), respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.
Collapse
|
39
|
Gohel S, Singh S. Thermodynamics of a Ca2+-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete. Int J Biol Macromol 2015; 72:421-9. [DOI: 10.1016/j.ijbiomac.2014.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 11/28/2022]
|
40
|
Sinha R, Khare SK. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity. BIORESOURCE TECHNOLOGY 2013; 145:357-361. [PMID: 23219691 DOI: 10.1016/j.biortech.2012.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 06/01/2023]
Abstract
A moderately halophilic protease producer, Bacillus sp. strain isolated from sea water is described. The protease is purified to homogeneity by ammonium sulphate precipitation and CM cellulose chromatography. The serine protease has a molecular mass of 29 kDa. Enzymatic characterization of protease revealed K(m) 2.22 mg mL(-1), Vmax 1111.11 U mL(-1), pH optimum 9.0, t1/2 190 min at 60°C and salt optima 1% (w/v) NaCl. The protease is remarkably stable in hydrophilic and hydrophobic solvents at high concentrations. The purified preparation is unstable at room temperature. Ca(2+) ions are required for preventing this loss of activity. Interestingly, the activity and stability are modulated differentially. Whereas, divalent cation Ca(2+) are involved in maintaining stability in solution at room temperature by preventing unfolding, monovalent Na(+) and K(+) ions participate in regulating the activity and assist in refolding of the enzyme. Application of the protease is shown in efficient removal of blood stain.
Collapse
Affiliation(s)
- Rajeshwari Sinha
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | | |
Collapse
|
41
|
Annapoorani A, Kalpana B, Musthafa KS, Pandian SK, Ravi AV. Antipathogenic potential of Rhizophora spp. against the quorum sensing mediated virulence factors production in drug resistant Pseudomonas aeruginosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:956-963. [PMID: 23746758 DOI: 10.1016/j.phymed.2013.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/14/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
Quorum sensing (QS) is a process of cell-cell communication mechanism occurs between the bacterial cells through the secretary signal molecules. This QS mechanism has been shown to control over the expression of various genes responsible for the production of virulence factors in several bacterial pathogens. Hence, the present study was intended to evaluate the antipathogenic potential of mangrove trees of the genus Rhizophora against the QS dependent virulence factors production in Pseudomonas aeruginosa PAO1, clinical isolates CI-I (GU447237) and CI-II (GU447238). The methanol extract of Rhizophora apiculata and R. mucronata (1 mg/ml) showed significant inhibition against QS dependent virulence factors production such as LasA protease, LasB elastase, total protease, pyocyanin pigment production and biofilm formation in P. aeruginosa PAO1, CI-I and CI-II. This study for the first time, reports the quorum sensing inhibitory (QSI) potential of Rhizophora spp. against P. aeruginosa infections.
Collapse
Affiliation(s)
- Angusamy Annapoorani
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
42
|
Bose A, Chawdhary V, Keharia H, Subramanian RB. Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0669-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Vijayaraghavan P, Lazarus S, Vincent SGP. De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties. Saudi J Biol Sci 2013; 21:27-34. [PMID: 24596497 DOI: 10.1016/j.sjbs.2013.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022] Open
Abstract
Agro-industrial residues and cow dung were used as the substrate for the production of alkaline protease by Bacillus cereus strain AT. The bacterial strain Bacillus cereus strain AT produced a high level of protease using cow dung substrate (4813 ± 62 U g(-1)). Physiological fermentation factors such as the incubation time (72 h), the pH (9), the moisture content (120%), and the inoculum level (6%) played a vital role in the enzyme bioprocess. The enzyme production improved with the supplementation of maltose and yeast extract as carbon and nitrogen sources, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram analysis of the purified protease indicated an estimated molecular mass of 46 kDa. The protease enzyme was stable over a temperature range of 40-50 °C and pH 6-9, with maximum activity at 50 °C and pH 8. Among the divalent ions tested, Ca(2+), Na(+) and Mg(2+) showed activities of 107 ± 0.7%, 103.5 ± 1.3%, and 104.6 ± 0.9, respectively. The enzyme showed stability in the presence of surfactants such as sodium dodecyl sulfate and on various commercially available detergents. The crude enzyme effectively de-haired goat hides within 18 h of incubation at 30 °C. The enzymatic properties of this protease suggest its suitable application as an additive in detergent formulation and also in leather processing. Based on the laboratory results, the use of cow dung for producing and extracting enzyme is not cumbersome and is easy to scale up. Considering its cheap cost and availability, cow dung is an ideal substrate for enzyme bioprocess in an industrial point of view.
Collapse
Affiliation(s)
- Ponnuswamy Vijayaraghavan
- International Centre for Nanobiotechnology, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam 629 502, Kanyakumari District, Tamil Nadu, India
| | - Sophia Lazarus
- Department of Biotechnology, Holycross College, Nagercoil, Kanyakumari District, India
| | - Samuel Gnana Prakash Vincent
- International Centre for Nanobiotechnology, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam 629 502, Kanyakumari District, Tamil Nadu, India
| |
Collapse
|
44
|
Singh SK, Singh SK, Tripathi VR, Garg SK, Khare SK. Downstream processing, characterization, and structure-function relationship of solvent-, detergent-, psychro-, thermo-, alkalistable metalloprotease from metal-, solvent-tolerant psychrotrophic Pseudomonas putida SKG-1 isolate. Biotechnol Prog 2012; 29:99-108. [PMID: 23125172 DOI: 10.1002/btpr.1654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/03/2012] [Indexed: 11/06/2022]
Abstract
The purification and characterization of psychro-thermoalkalistable protease from psychrotrophic Pseudomonas putida isolate is being reported for the first time. A ~53 kDa protease was purified 21.4-folds with 57.2% recovery by ultrafiltration and hydrophobic interaction chromatography. Kinetic analyses revealed the K(m) and V(max) to be 1.169 mg mL(-1) and 0.833 mg mL(-1) min(-1) , respectively. The k(cat) value of 3.05 × 10(2) s(-1) indicated high affinity and catalytic efficiency toward casein. The protease was most active at pH 9.5 and 40°C, with 100% stability in pH and temperature range of 6.0-11.0 and 10-40°C, respectively. Presence of Zn(2+) increased the thermostability of protease (at 70°C) by 433%. Ethylene diamine tetra acetic acid (EDTA) and 1,10-phenanthroline were inhibitory, whereas phenyl methyl sulfonyl fluoride (PMSF), p-chloro mercuric benzoate (PCMB), and β-mercaptoethanol were ineffective, revealing the enzyme to be a metalloprotease. Zinc, calcium, iron, nickel, and copper at 1 mM increased the enzyme activity (102-134%). Complete reversion of enzyme inhibition (caused by Ethylene diamine tetra acetic acid [EDTA]) by Zn(2+) affirmed this enzyme as zinc-dependent metalloprotease. At 0.1% concentration, Triton X-100 and Tween 80 slightly increased, while SDS and H(2) O(2) reduced the protease activity. In the presence of 0.1% commercial detergents, the enzyme was fairly stable (54-81%). In the presence of organic solvent, the protease was remarkably stable exhibiting 72-191% activities. In contrast, savinase exhibited good stability in the presence of hydrophilic solvents, while chymotrypsin showed elevated activities with benzene, toluene, and xylene only. Circular dichroism analysis revealed the protease as a β-rich protein, having large fraction (∼40%) of β-sheets. Presence of different environmental conditions altered the β-content, which accordingly affected the protease activity.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Center of Excellence, Dept. of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh 224001, India
| | | | | | | | | |
Collapse
|
45
|
Singh SK, Singh SK, Tripathi VR, Garg SK. Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature. J Biosci Bioeng 2012; 114:251-6. [DOI: 10.1016/j.jbiosc.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
47
|
Jain D, Pancha I, Mishra SK, Shrivastav A, Mishra S. Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: a potential additive for laundry detergents. BIORESOURCE TECHNOLOGY 2012; 115:228-236. [PMID: 22100240 DOI: 10.1016/j.biortech.2011.10.081] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 05/31/2023]
Abstract
An extracellular haloalkaline, thermoactive, solvent stable, SDS-induced serine protease was purified and characterized from an alkali-thermo tolerant strain Bacillus sp. SM2014 isolated from reverse osmosis reject. The enzyme was purified to homogeneity with recovery of 54.4% and purity fold of 64. The purified enzyme was composed of single polypeptide of molecular mass about 71 kDa. The enzyme showed optimum activity at alkaline pH 10 and temperature 60°C. The km and Vmax for the enzyme was 0.57 mg/ml and 445.23 U/ml respectively. The enzyme showed novel catalytic ability at high pH (10), temperature (60°C) and salinity (3M). Moreover, the stability of enzyme in organic solvents (50% v/v) of logP ≥ 2 signified the prospective of this enzyme for peptide synthesis. The compatibility of the enzyme with surfactants and various detergent matrices together with wash performance test confirmed its potential applicability in laundry industry.
Collapse
Affiliation(s)
- Deepti Jain
- Discipline of Salt Marine and Inorganic Chemicals, Central Salt and Marine Chemicals Research Institute, Council for Scientific and Industrial Research (CSIR), GB Marg, Bhavnagar, India
| | | | | | | | | |
Collapse
|
48
|
Rajeswari VD, Jayaraman G, Sridharan T. Purification and Characterization of Extracellular Protease from Halotolerant Bacterium Virgibacillus dokdonensis VITP14. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajb.2012.123.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
A protease from the medicinal mushroom Pleurotus sajor-caju; production, purification and partial characterization. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Dasu VV, Sen S, Dutta K, Mandal B. Characterization of a Novel Surfactant and Organic Solvent Stable High-alkaline Protease from New Bacillus pseudofirmus SVB1. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jm.2011.769.783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|