1
|
Noreen S, Maqbool I, Saleem A, Mahmood H, Rai N. Recent insights and applications of nanocarriers-based drug delivery systems for colonic drug delivery and cancer therapy: An updated review. Crit Rev Oncol Hematol 2025; 208:104646. [PMID: 39914570 DOI: 10.1016/j.critrevonc.2025.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant tumor globally and is associated with high morbidity and mortality rates. The advancement of novel nanocarrier-based drug delivery systems has revolutionized therapeutic strategies for colonic drug delivery and cancer treatment. This review provides updated insights into various nanocarrier technologies, including quantum dots (QDs), polymeric nanoparticles (PNPs), magnetic and metallic nanoparticles, solid lipid nanoparticles (SLNs), and self-microemulsifying and self-nanoemulsifying drug delivery systems (SMEDDS/SNEDDS). These nanocarriers offer enhanced drug stability, controlled release, and targeted delivery, particularly for CRC treatment, resulting in up to 70 % improved therapeutic efficacy and a significant reduction in systemic toxicity as reported in preclinical studies. The review comprehensively discusses the structural composition, mechanisms of action, therapeutic potential, and imaging capabilities of these systems, with a focus on their applications in theranostics and targeted CRC therapy. For instance, polymeric nanoparticles have demonstrated a 50 % increase in bioavailability compared to conventional formulations, while QDs have enabled real-time imaging with high precision for tumor localization. Additionally, the toxicity profiles and challenges associated with these nanocarriers are critically evaluated. Despite significant progress in preclinical and clinical studies, the review highlights the need for optimizing biocompatibility, scalability, and regulatory standards to facilitate the clinical translation of these promising technologies. Emerging formulations such as graphene quantum dots and PEGylated nanoparticles have shown potential for achieving dual therapeutic and diagnostic applications with fewer adverse effects. Overall, nanocarrier-based systems hold great potential for personalized and more effective treatments in colon-targeted therapies.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; Centre for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria.
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Anum Saleem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Hassan Mahmood
- Humanities Department, COMSATS University Islamabad, Lahore Campus, Punjab, Pakistan
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
2
|
Gunasena MDKM, Galpaya GDCP, Abeygunawardena CJ, Induranga DKA, Priyadarshana HVV, Millavithanachchi SS, Bandara PKGSS, Koswattage KR. Advancements in Bio-Nanotechnology: Green Synthesis and Emerging Applications of Bio-Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:528. [PMID: 40214574 PMCID: PMC11990282 DOI: 10.3390/nano15070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
The field of bio-nanotechnology has seen significant advancements in recent years, particularly in the synthesis and application of bio-nanoparticles (BNPs). This review focuses on the green synthesis of BNPs using biological entities such as plants, bacteria, fungi, and algae. The utilization of these organisms for nanoparticle synthesis offers an eco-friendly and sustainable alternative to conventional chemical and physical methods, which often involve toxic reagents and high energy consumption. Phytochemicals present in plant extracts, unique metabolic pathways, and biomolecules in bacteria and fungi, and the rich biochemical composition of algae facilitate the production of nanoparticles with diverse shapes and sizes. This review further explores the wide-ranging applications of BNPs in various fields like therapeutics, fuel cells, energy generation, and wastewater treatment. In therapeutics, BNPs have shown efficacy in antimicrobial, anti-inflammatory, antioxidant, and anticancer activities. In the energy sector, BNPs are being integrated into fuel cells and other energy generation systems like bio-diesel to improve efficiency and sustainability. Their catalytic properties and large surface area enhance the performance of these devices. Wastewater treatment is another critical area where BNPs are employed for the removal of heavy metals, organic pollutants, and microbial contaminants, offering a cost-effective and environmentally friendly solution to water purification. This comprehensive review highlights the potential of bio-nanoparticles synthesized through green methods. It highlights the need for further research to optimize synthesis processes, understand mechanisms of action, and expand the scope of their applications. BNPs can be utilized to address advantages and some of the pressing challenges in medicine, energy, and environmental sustainability, paving the way for innovative and sustainable technological advancements in future prospects.
Collapse
Affiliation(s)
- M. D. K. M. Gunasena
- Department of Biosystems Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka; (M.D.K.M.G.); (S.S.M.); (P.K.G.S.S.B.)
- Center for Nanodevice Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka; (G.D.C.P.G.); (D.K.A.I.); (H.V.V.P.)
| | - G. D. C. P. Galpaya
- Center for Nanodevice Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka; (G.D.C.P.G.); (D.K.A.I.); (H.V.V.P.)
| | | | - D. K. A. Induranga
- Center for Nanodevice Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka; (G.D.C.P.G.); (D.K.A.I.); (H.V.V.P.)
- Department of Engineering Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - H. V. V. Priyadarshana
- Center for Nanodevice Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka; (G.D.C.P.G.); (D.K.A.I.); (H.V.V.P.)
- Department of Engineering Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - S. S. Millavithanachchi
- Department of Biosystems Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka; (M.D.K.M.G.); (S.S.M.); (P.K.G.S.S.B.)
| | - P. K. G. S. S. Bandara
- Department of Biosystems Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka; (M.D.K.M.G.); (S.S.M.); (P.K.G.S.S.B.)
| | - K. R. Koswattage
- Center for Nanodevice Fabrication and Characterization, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka; (G.D.C.P.G.); (D.K.A.I.); (H.V.V.P.)
- Department of Engineering Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| |
Collapse
|
3
|
Ravi AK, Muthukrishnan S, Gunasangkaran G, Arumugam VA, Shanmugam V, Sakthivel KM, Pushpam MA, Kaliyaperumal A. Biosynthesis of chitosan encapsulated silver- nanoparticles using Probiotic-Lactobacillus plantarum strain and it's in vitro anticancer assessment on HeLa cells. MEDICINE IN MICROECOLOGY 2024; 22:100117. [DOI: 10.1016/j.medmic.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
|
4
|
Abdellatif AAH, Mostafa MAH, Konno H, Younis MA. Exploring the green synthesis of silver nanoparticles using natural extracts and their potential for cancer treatment. 3 Biotech 2024; 14:274. [PMID: 39450421 PMCID: PMC11496425 DOI: 10.1007/s13205-024-04118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Silver nanoparticles (AgNPs) have attracted increasing attention in nanomedicine, with versatile applications in drug delivery, antimicrobial treatments, and cancer therapies. While chemical synthesis remains a common approach for AgNP production, ensuring environmental sustainability requires a shift toward eco-friendly, "green" synthesis techniques. This article underscores the promising role of plant extracts in the green synthesis of AgNPs, highlighting the importance of their natural sources and diverse bioactive compounds. Various characterization methods for these nanomaterials are also reviewed. Furthermore, the anticancer potential of green AgNPs (Gr-AgNPs) is examined, focusing on their mechanisms of action and the challenges to their clinical implementation. Finally, future directions in the field are discussed.
Collapse
Affiliation(s)
- Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Al Qassim, Saudi Arabia
| | - Mahmoud A. H. Mostafa
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, 41477 Al Madinah, Al Munawarah Saudi Arabia
- Departmentof Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524 Egypt
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Yamagata University, Yonezawa, Yamagata 982-8510 Japan
| | - Mahmoud A. Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|
5
|
Zulfiqar Z, Khan RRM, Summer M, Saeed Z, Pervaiz M, Rasheed S, Shehzad B, Kabir F, Ishaq S. Plant-mediated green synthesis of silver nanoparticles: Synthesis, characterization, biological applications, and toxicological considerations: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 57:103121. [DOI: 10.1016/j.bcab.2024.103121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
|
6
|
Golestannezhad N, Divsalar A, Badalkhani-Khamseh F, Rasouli M, Seyedarabi A, Ghalandari B, Ding X, Goli F, Bekeschus S, Movahedi AAM, Moghadam ME. Oxali-palladium nanoparticle synthesis, characterization, protein binding, and apoptosis induction in colorectal cancer cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:4. [PMID: 38206473 PMCID: PMC10784377 DOI: 10.1007/s10856-023-06766-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
This paper focuses on the synthesis of nano-oxali-palladium coated with turmeric extract (PdNPs) using a green chemistry technique based on the reduction in the Pd (II) complex by phytochemicals inherent in turmeric extract. PdNPs were examined and characterized using Field Emission Scanning Electron Microscopy (FESEM), Dynamic Light Scattering (DLS), Fourier Transform Infrared (FTIR), and Atomic Force Microscopy (AFM). Using different spectroscopic and molecular dynamics simulations, a protein-binding analysis of the produced nanoparticle was conducted by observing its interaction with human serum albumin (HSA). Lastly, the cytotoxic effects and apoptotic processes of PdNPs were studied against the HCT116 human colorectal cell line using the MTT assay and flow cytometry tests. According to the findings, PdNPs with spherical and homogenous morphology and a size smaller than 100 nm were generated. In addition, they can induce apoptosis in colorectal cancer cells in a dose-dependent manner with a lower Cc50 (78 µL) than cisplatin and free oxali-palladium against HCT116 cells. The thermodynamic characteristics of protein binding of nanoparticles with HSA demonstrated that PdNPs had a great capacity for quenching and interacting with HSA through hydrophobic forces. In addition, molecular dynamics simulations revealed that free oxali-palladium and PdNP attach to the same area of HSA via non-covalent interactions. It is conceivable to indicate that the synthesized PdNPs are a potential candidate for the construction of novel, nature-based anticancer treatments with fewer side effects and a high level of eco-friendliness.
Collapse
Affiliation(s)
- Nasim Golestannezhad
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551, Tehran, Iran.
| | - Farideh Badalkhani-Khamseh
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University, Jalale-Al-Ahmad Ave, P.O. Box 14117-13116, Tehran, Iran
| | - Milad Rasouli
- Department of Physics, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran, 15614, Iran
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, 1417614418, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fatemeh Goli
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551, Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | | | - Mahboube Eslami Moghadam
- Chemistry & Chemical Engineering Research Center of Iran, Pajohesh Blvd,17th Km of Tehran-Karaj Highway, 1497716320, Tehran, Iran
| |
Collapse
|
7
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
8
|
Singh KR, Natarajan A, Pandey SS. Bioinspired Multifunctional Silver Nanoparticles for Optical Sensing Applications: A Sustainable Approach. ACS APPLIED BIO MATERIALS 2023; 6:4549-4571. [PMID: 37852204 DOI: 10.1021/acsabm.3c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu 641004, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
9
|
Sharma D, Radha, Kumar M, Andrade-Cetto A, Puri S, Kumar A, Thakur M, Chandran D, Pundir A, Prakash S, Pandiselvam R, Sandhu S, Khosla A, Kumar S, Lorenzo JM. Chemical Diversity and Medicinal Potential of Vitex negundo L.: From Traditional Knowledge to Modern Clinical Trials. Chem Biodivers 2023; 20:e202301086. [PMID: 37851484 DOI: 10.1002/cbdv.202301086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND In Vedic context, Nirgundi (V. negundo) has been utilized for its anti-inflammatory, analgesic, and wound-healing properties. It has been employed to alleviate pain, treat skin conditions, and address various ailments. The plant's leaves, roots, and seeds have all found applications in traditional remedies. The knowledge of Nirgundi's medicinal benefits has been passed down through generations, and it continues to be a part of Ayurvedic and traditional medicine practices in India.
Collapse
Affiliation(s)
- Diksha Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR- Central Institute for Research on Cotton Technology, Mumbai, 400019, India
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Departamento de BiologíaCelular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Coyoacán, C.U., Mexico City, 04510, Mexico
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Amit Kumar
- GLA University, Mathura, Uttar Pradesh, 281 406, India
| | - Mamta Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad, 679335, Kerala, India
| | - Ashok Pundir
- School of Mechanical and Civil Engineering, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124, Kerala, India
| | - Surinder Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ananya Khosla
- Stanford University, 450 Serra Mall, Stanford, California, USA, 94305
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Jose M Lorenzo
- CentroTecnológico de la Carne de Galicia, rúa Galicia n○ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| |
Collapse
|
10
|
Isaq M, Ramachandra YL, Rai PS, Chavan A, Sekar R, Lee MJ, Somu P. Biogenic synthesized silver nanoparticles using fungal endophyte Cladosporium oxysporum of Vateria indica induce apoptosis in human colon cancer cell line via elevated intracellular ROS generation and cell cycle arrest. J Mol Liq 2023; 386:122601. [DOI: 10.1016/j.molliq.2023.122601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Al-Fahdawi MQ, Aldoghachi AF, Alhassan FH, Al-Doghachi FA, Alshwyeh HA, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN. Physicochemical characterization and cancer cell antiproliferative effect of silver-doped magnesia nanoparticles. Heliyon 2023; 9:e15560. [PMID: 37159701 PMCID: PMC10163622 DOI: 10.1016/j.heliyon.2023.e15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Silver-doped magnesia nanoparticles (Ag/MgO) were synthesized using the precipitation method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), Brunner-Emmett-Teller (BET) surface area measurements, and dispersive X-ray spectroscopy (EDX). The morphology of Ag/MgO nanoparticles was determined by transmission and scanning electron microscopy, which revealed cuboidal shaped nanoparticles with sizes ranging from 31 to 68 nm and an average size of 43.5 ± 10.6 nm. The anticancer effects of Ag/MgO nanoparticles were evaluated on human colorectal (HT29) and lung adenocarcinoma (A549) cell lines, and their caspase-3, -8, and -9 activities, as well as Bcl-2, Bax, p53, cytochrome C protein expressions were estimated. Ag/MgO nanoparticles showed selective toxicity towards HT29 and A549 cells while remaining relatively innocuous towards the normal human colorectal, CCD-18Co, and lung, MRC-5 cells. The IC50 values of Ag/MgO nanoparticles on the HT29 and A549 cells were found to be 90.2 ± 2.6 and 85.0 ± 3.5 μg/mL, respectively. The Ag/MgO nanoparticles upregulated caspase-3 and -9 activities, downregulated Bcl-2, upregulated Bax and p53 protein expressions in the cancer cells. The morphology of the Ag/MgO nanoparticle treated HT29 and A549 cells was typical of apoptosis, with cell detachment, shrinkage, and membrane blebbing. The results suggest that Ag/MgO nanoparticles induce apoptosis in cancer cells and exhibit potential as a promising anticancer agent.
Collapse
Affiliation(s)
| | - Ahmed Faris Aldoghachi
- Faculty of Medicine and Health Sciences, University Putra Malaysia, UPM, Serdang, 43300, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, 43000, Malaysia
| | - Fatah H. Alhassan
- Department of Applied Chemistry and Technology, College of Science and Arts, Alkamel University of Jeddah, Jeddah, 21589, Saudi Arabia
- Department of Nanoscience and Nanotechnology, Africa City of Technology, Khartoum Bahari, Khartoum, Sudan
| | | | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Corresponding author.Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Corresponding author. Department of Biomedical sciences, College of Health sciences, QU Health, Qatar University, Qatar.
| |
Collapse
|
12
|
Wang J, Yuan Q, Morovvati H, Goorani S. Green synthesis, characterization and anti-atherosclerotic properties of vanadium nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Introducing a novel chemotherapeutic supplement prepared by silver nanoparticles green-formulated by Salvia officinalis leaf aqueous extract to treat the human oral squamous cell carcinoma. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Green formulation, chemical characterization and anti-acute leukemia effects of vanadium nanoparticles containing Foeniculum vulgare extract. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Hovhannisyan Z, Timotina M, Manoyan J, Gabrielyan L, Petrosyan M, Kusznierewicz B, Bartoszek A, Jacob C, Ginovyan M, Trchounian K, Sahakyan N, Nasim MJ. Ribes nigrum L. Extract-Mediated Green Synthesis and Antibacterial Action Mechanisms of Silver Nanoparticles. Antibiotics (Basel) 2022; 11:antibiotics11101415. [PMID: 36290073 PMCID: PMC9598068 DOI: 10.3390/antibiotics11101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Silver nanoparticles (Ag NPs) represent one of the most widely employed metal-based engineered nanomaterials with a broad range of applications in different areas of science. Plant extracts (PEs) serve as green reducing and coating agents and can be exploited for the generation of Ag NPs. In this study, the phytochemical composition of ethanolic extract of black currant (Ribes nigrum) leaves was determined. The main components of extract include quercetin rutinoside, quercetin hexoside, quercetin glucuronide, quercetin malonylglucoside and quercitrin. The extract was subsequently employed for the green synthesis of Ag NPs. Consequently, R. nigrum leaf extract and Ag NPs were evaluated for potential antibacterial activities against Gram-negative bacteria (Escherichia coli ATCC 25922 and kanamycin-resistant E. coli pARG-25 strains). Intriguingly, the plant extract did not show any antibacterial effect, whilst Ag NPs demonstrated significant activity against tested bacteria. Biogenic Ag NPs affect the ATPase activity and energy-dependent H+-fluxes in both strains of E. coli, even in the presence of N,N’-dicyclohexylcarbodiimide (DCCD). Thus, the antibacterial activity of the investigated Ag NPs can be explained by their impact on the membrane-associated properties of bacteria.
Collapse
Affiliation(s)
- Zaruhi Hovhannisyan
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Marina Timotina
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Jemma Manoyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
| | - Margarit Petrosyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Mikayel Ginovyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 0025 Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 0025 Yerevan, Armenia
| | - Naira Sahakyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 0025 Yerevan, Armenia
- Correspondence: (N.S.); (M.J.N.); Tel.: +374-60710547 (N.S.); +496-8130257335 (M.J.N.)
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
- Correspondence: (N.S.); (M.J.N.); Tel.: +374-60710547 (N.S.); +496-8130257335 (M.J.N.)
| |
Collapse
|
16
|
Taha RH. Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; a review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl Biochem Biotechnol 2022; 194:4187-4219. [PMID: 35551613 PMCID: PMC9099041 DOI: 10.1007/s12010-022-03963-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
Abstract
Nanotechnology sculptures the current scenario of science and technology. The word nano refers 'small' which ranges from 10 to 100 nm in size. Silver and gold nanoparticles can be synthesized at nanoscale and have unique biological properties like antibacterial, antifungal, antiviral, antiparasitic, antiplatelet, anti-inflammatory, and anti-tumor activity. In this mini review, we shall discuss the various applications of silver and gold nanoparticles (AuNPs) in the field of therapy, imaging, biomedical devices and in cancer diagnosis. The usage of silver nanoparticles(AgNPs) in dentistry and dental implants, therapeutic abilities like wound dressings, silver impregnated catheters, ventricular drainage catheters, combating orthopedic infections, and osteointegration will be elaborated. Gold nanoparticles in recent years have garnered large importance in bio medical applications. They are being used in diagnosis and have recently seen a surge in therapeutics. In this mini review, we shall see about the various applications of AuNP and AgNP, and highlight their evolution in theranostics.
Collapse
Affiliation(s)
- R Sakthi Devi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - M Siddharth
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.
| |
Collapse
|
18
|
Verma M, Fatima S, Ansari IA. Phytofabricated Nanoparticle Formulation for Cancer Treatment: A Comprehensive Review. Curr Drug Metab 2022; 23:818-826. [PMID: 35490313 DOI: 10.2174/1389200223666220427101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023]
Abstract
In recent times, nanotechnology has made significant advances in the field of cancer. The majority of chemotherapeutic drugs do not selectively target cancer cells, and they might cause side effects and damage to healthy cells, resulting in a variety of adverse effects. Having a thorough understanding of nanoparticles may improve drug targeting and administration. The nano-engineering of pharmacological and natural compounds can improve the diagnosis and treatment. Polymeric micelles, liposomes, and dendrimers are examples of innovative cancer therapeutic nano-formulations. It has been demonstrated that quantum dots, nano-suspensions, and gold nanoparticles can improve drug delivery. Nanomedicines may be delivered more effectively, focusing on cancerous cells instead of healthy tissues, which minimizes undesirable side effects and drug resistance to chemotherapeutic agents. However, limited water solubility, low stability, poor absorption, and quick metabolism limit their therapeutic effectiveness. Nanotechnology has generated unique formulations to optimise the potential use of phytochemicals in anticancer therapy. Nanocomposites can improve phytochemical solubility and bioavailability, extend their half-life in circulation, and even transport phytochemicals to specific locations. The progress in using phytochemical-based nanoparticles in cancer treatment is summarized in this paper.
Collapse
Affiliation(s)
- Mahima Verma
- Department of Biosciences, Integral University, IIRC1, Lucknow, India
| | - Shireen Fatima
- Department of Biosciences, Integral University, IIRC1, Lucknow, India
| | | |
Collapse
|
19
|
Green Synthesis of a Novel Silver Nanoparticle Conjugated with Thelypteris glandulosolanosa (Raqui-Raqui): Preliminary Characterization and Anticancer Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10071308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the last decade, the green synthesis of nanoparticles has had a prominent role in scientific research for industrial and biomedical applications. In this current study, silver nitrate (AgNO3) was reduced and stabilized with an aqueous extract of Thelypteris glandulosolanosa (Raqui-raqui), forming silver nanoparticles (AgNPs-RR). UV-vis spectrophotometry, dynamic light scattering (DLS), and scanning transmission electron microscopy (STEM) were utilized to analyze the structures of AgNPs-RR. The results from this analysis showed a characteristic peak at 420 nm and a mean hydrodynamic size equal to 39.16 nm, while the STEM revealed a size distribution of 6.64–51.00 nm with an average diameter of 31.45 nm. Cellular cytotoxicity assays using MCF-7 (ATCC® HTB-22™, mammary gland breast), A549 (ATCC® CCL-185, lung epithelial carcinoma), and L929 (ATCC® CCL-1, subcutaneous connective tissue of Mus musculus) demonstrated over 42.70% of MCF-7, 59.24% of A549, and 8.80% of L929 cells had cell death after 48 h showing that this nanoparticle is more selective to disrupt neoplastic than non-cancerous cells and may be further developed into an effective strategy for breast and lung cancer treatment. These results demonstrate that the nanoparticle surfaces developed are complex, have lower contact angles, and have excellent scratch and wear resistance.
Collapse
|
20
|
Rani N, Singla RK, Redhu R, Narwal S, Sonia, Bhatt A. A Review on Green Synthesis of Silver Nanoparticles and its Role Against Cancer. Curr Top Med Chem 2022; 22:1460-1471. [PMID: 35652404 DOI: 10.2174/1568026622666220601165005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
Cancer is a fatal disease, with a collection of related diseases in various body parts. The conventional therapies cannot show the desired results of treatment due to their imprecise targeting, deprived drug delivery, and side effects. Therefore, it is required to make the drug engineered in such a way that it can target only cancerous cells and can inhibit its growth and proliferation. Nanotechnology is a technology that can target and differentiate between cancerous cells and the normal cells of the body. Silver itself is a good anticancer and antibacterial agent and employing it with phytochemicals having anticancer properties, and nanotechnology can give the best approach for the treatment. The synthesis of silver nanoparticles using plant extracts is an economical, energy-efficient, low-cost approach and it doesn't need any hazardous chemicals. In the present review, we discussed different methods of synthesis of silver nanoparticles using herbal extracts and their role against cancer therapy along with the synergistic role of silver and plant extracts against cancer in the formulation.
Collapse
Affiliation(s)
- Neeraj Rani
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani (HR), India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,iGlobal Research and Publishing Foundation, New Delhi, India
| | - Rakesh Redhu
- Vaish Institute of Pharmaceutical Education and Research, Rohtak (HR), India
| | - Sonia Narwal
- Faculty of Pharmaceutical Sciences, PDM University, Bahadurgarh (HR), India
| | - Sonia
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani (HR), India
| | - Alok Bhatt
- School of Pharmaceutical Sciences Himgiri Zee University, Dehradun, India
| |
Collapse
|
21
|
Ge C, Wang P, Ji D, Xu Z. Green Synthesized Silver Nanoparticle via Cissus quadrangularis as a Theranostic Agent for Colon Cancer. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1047.1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol 2022; 16:115-144. [PMID: 35426251 PMCID: PMC9114445 DOI: 10.1049/nbt2.12078] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
The alarming effect of antibiotic resistance prompted the search for alternative medicine to resolve the microbial resistance conflict. Over the last two decades, scientists have become increasingly interested in metallic nanoparticles to discover their new dimensions. Green nano synthesis is a rapidly expanding field of interest in nanotechnology due to its feasibility, low toxicity, eco‐friendly nature, and long‐term viability. Some plants have long been used in medicine because they contain a variety of bioactive compounds. Silver has long been known for its antibacterial properties. Silver nanoparticles have taken a special place among other metal nanoparticles. Silver nanotechnology has a big impact on medical applications like bio‐coating, novel antimicrobial agents, and drug delivery systems. This review aims to provide a comprehensive understanding of the pharmaceutical qualities of medicinal plants, as well as a convenient guideline for plant‐based silver nanoparticles and their antimicrobial activity.
Collapse
Affiliation(s)
| | - Ranjithkumar Dhandapani
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
- Chimertech Private Limited Chennai Tamilnadu India
| | - Santhoshini Narayanan
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
| | - Velmurugan Palanivel
- Centre for Materials Engineering and Regenerative Medicine Bharath Institute of Higher Education and Research Chennai Tamilnadu India
| | | | | | - Sathiamoorthi Thangavelu
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
| | - Saravanan Muthupandian
- Division of Biomedical Sciences College of Health Sciences School of Medicine Mekelle Ethiopia
- AMR and Nanotherapeutics Laboratory Department of Pharmacology Saveetha Dental College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamilnadu India
| |
Collapse
|
23
|
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. NANOSCALE 2022; 14:2534-2571. [PMID: 35133391 DOI: 10.1039/d1nr08144f] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches via microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Siaw Fui Kiew
- Curtin Malaysia Research Institute, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
- Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Stephen Boakye-Ansah
- Rowan University, Henry M. Rowan College of Engineering, Department of Chemical Engineering, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Ahmed Barhoum
- Nanostruc, Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
24
|
Li S, Xu Z, Alrobaian M, Afzal O, Kazmi I, Almalki WH, Altamimi ASA, Al-Abbasi FA, Alharbi KS, Altowayan WM, Singh T, Akhter MH, Gupta M, Rahman M, Beg S. EGF-functionalized lipid-polymer hybrid nanoparticles of 5-fluorouracil and sulforaphane with enhanced bioavailability and anticancer activity against colon carcinoma. Biotechnol Appl Biochem 2021; 69:2205-2221. [PMID: 34775646 DOI: 10.1002/bab.2279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/30/2021] [Indexed: 12/19/2022]
Abstract
The present research work describes development of dual drug-loaded lipid-polymer hybrid nanoparticles (LPHNPs) of anticancer therapeutics for the management of colon cancer. The epidermal growth factor (EGF)-functionalized LPHNPs coloaded with 5-fluorouracil (FU) and sulforaphane (SFN) were prepared by one-step nanoprecipitation method. Box-Behnken design was applied for optimizing the material attributes and process parameters. The optimized LPHNPs revealed particle size 198 nm, polydispersity index 0.3, zeta potential -25.3 mV, and drug loading efficiency 19-20.3% for 5-FU and SFN, respectively. EGF functionalization on LPHNPs was confirmed from positive magnitude of zeta potential to 21.3 mV as compared with the plain LPHNPs. In vitro drug release performance indicated sustained and non-Fickian mechanism release nature of the drugs from LPHNPs. Anticancer activity evaluation in HCT-15 colon cancer cells showed significant reduction (p < 0.001) in the cell growth and cytotoxicity of the investigated drugs from various treatments in the order: EGF-functionalized LPHNPs > plain LPHNPs > free drug suspensions. Overall, the research work corroborated improved treatment efficacy of EGF-functionalized LPHNPs for delivering chemotherapeutic agents for the management of colon carcinoma.
Collapse
Affiliation(s)
- Shumin Li
- Department of Gastroenterology, Binzhou Central Hospital, Binzhou, Shandong Province, China
| | - Zhongkai Xu
- Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shangdong, China
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed M Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| | | | - Manish Gupta
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via Premnagar, Dehradun, Uttarakhand, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
25
|
Soni V, Raizada P, Singh P, Cuong HN, S R, Saini A, Saini RV, Le QV, Nadda AK, Le TT, Nguyen VH. Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. ENVIRONMENTAL RESEARCH 2021; 202:111622. [PMID: 34245729 DOI: 10.1016/j.envres.2021.111622] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 05/24/2023]
Abstract
Conventionally utilized physical and chemical routes for constructing nanoparticles are not eco-friendly. They are associated with many shortcomings like the requirement of specially designed equipment, templates, extremely high temperature, and pressure. Biosynthesis seems to be drawn unequivocal attention owing to its upsurge of applications in different fields like; energy, nutrition, pharmaceutical, and medicinal sciences. To harness the biological sources, the present review describes an environment-friendly route to generate biogenic nanoparticles from the natural plant extracts and the followed mechanisms for their synthesis, growth, and stabilization. The present review summarizes the recent trends involved in the photosynthesis of metallic nanoparticles and their effective use in controlling malaria, hepatitis, cancer, like various endemic diseases. Also, various characterization approaches, such as UV-visible spectrophotometry, Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy, are discussed here examine the properties of as-fabricated nanoparticles. Various plant parts like leaves, stems, barks, fruit, and flowers are rich in flavonoids, phenols, steroids, terpenoids, enzymes, and alkaloids, thereby playing an essential role in reducing metal ions that generate metallic nanoparticles. Herein, the uniqueness of phytofabricated nanoparticles along with their distinctive antibacterial, antioxidant, cytotoxic, and drug delivery properties are featured. Lastly, this work highlights the various challenges and future perspectives to further synthesize biogenic metal nanoparticles toward environmental and pharmaceutical advances in the coming years.
Collapse
Affiliation(s)
- Vatika Soni
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Raizada
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Pardeep Singh
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Rangabhashiyam S
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Adesh Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Thi-Thu Le
- Institute of Hydrogen Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, D-21502, Geesthacht, Germany
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam.
| |
Collapse
|
26
|
Green Biosynthesis, Antioxidant, Antibacterial, and Anticancer Activities of Silver Nanoparticles of Luffa acutangula Leaf Extract. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5125681. [PMID: 34631882 PMCID: PMC8494549 DOI: 10.1155/2021/5125681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.
Collapse
|
27
|
Wani IA, Ahmad T, Khosla A. Recent advances in anticancer and antimicrobial activity of silver nanoparticles synthesized using phytochemicals and organic polymers. NANOTECHNOLOGY 2021; 32:462001. [PMID: 34340224 DOI: 10.1088/1361-6528/ac19d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Development of eco-friendly synthetic methods has resulted in the production of biocompatible Ag NPs for applications in medical sector. To overcome the prevailing antibiotic resistance in bacteria, Ag NPs are being extensively researched over the past few years due to their broad spectrum and robust antimicrobial properties. Silver nanoparticles are also being studied widely in advanced anticancer therapy as an alternative anticancer agent to combat cancer in an effective manner. Keeping this backdrop in consideration, this review aims to provide an extensive coverage of the recent progresses in the green synthesis of Ag NPs specifically using plant derived reducing agents such phytochemicals and numerous other biopolymers. Current development in antimicrobial activity of Ag NPs against various pathogens has been deliberated at length. Recent advances in potent anticancer activity of the biogenic Ag NPs against various cancerous cell lines has also been discussed in detail. Mechanistic details of the synthesis of Ag NPs, their anticancer and antimicrobial action has also been highlighted.
Collapse
Affiliation(s)
- Irshad A Wani
- Postgraduate Department of Chemistry, Govt. Degree College Bhadarwah, University of Jammu, Jammu & Kashmir-182222, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
28
|
Ramasamy K, Dhavamani S, Natesan G, Sengodan K, Sengottayan SN, Tiwari M, Shivendra Vikram S, Perumal V. A potential role of green engineered TiO 2 nanocatalyst towards enhanced photocatalytic and biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41207-41223. [PMID: 33782825 DOI: 10.1007/s11356-021-13530-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
This study demonstrates a simple protocol for phytofabrication of titanium dioxide nanoparticles (TiO2NPs) wrapped with bioactive molecules from Ludwigia octovalvis leaf extract and their characterization by UV-visible absorption spectroscopy, Fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectrum (XPS), and diffuse reflectance spectrum (DRS). The bandgap energy of pure green engineered TiO2 nanoparticles was determined by DRS analysis. The XPS analysis confirmed the purity of the TiO2 nanoparticles. Results show that the synthesized TiO2NPs were spherical in shape with the size ranged from 36 to 81 nm. The green engineered titanium oxide nanocatalyst exhibited enhanced rate of photocatalytic degradation of important textile toxic dyes namely crystal violet (93.1%), followed by methylene blue (90.6%), methyl orange (76.7%), and alizarin red (72.4%) after 6-h exposure under sunlight irradiation. Besides, this study determines the antimicrobial efficiency of TiO2NPs (25 μl and 50 μl), leaf extract (25 μl), and antibiotic (25 μl) against clinically isolated human pathogenic bacterial strains namely Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus epidermidis, and Escherichia coli. Results show that maximum antibacterial activity with nanotitania treatment noticed was 21.6 and 18.3-mm inhibition in case of S. epidermis and P. aeruginosa, respectively. Enhanced rate of antibiofilm activity towards S. aureus and K. pneumoniae was also observed with TiO2NPs exposure. The biomolecule loaded TiO2NPs exhibited the fastest bacterial deactivation dynamics towards gram-negative bacteria (E. coli), with a complete bacterial inactivation within 105-min exposure. Interestingly, anticancer activity result indicates that percentage of human cervical carcinoma cell (HeLa) viability was negatively correlated with TiO2NPs doses used. The AO/EtBr fluorescent staining result exhibited the occurrence of more apoptosis (dead cells) of HeLa cells due to the exposure of TiO2NPs. Altogether, the present study clearly showed that biomolecules wrapped nanotitania could be used as effective and promising compound for enhanced photocatalytic and biomedical applications in the future.
Collapse
Affiliation(s)
- Kawsalya Ramasamy
- Department of Biotechnology, Periyar University, Salem, TN, 636011, India
| | | | - Geetha Natesan
- Department of Botany, Bharathiar University, Coimbatore, TN, 624 046, India
| | - Karthik Sengodan
- Division of Biopesticide and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, TN, 627 412, India
| | - Senthil-Nathan Sengottayan
- Division of Biopesticide and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, TN, 627 412, India
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sahi Shivendra Vikram
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, 19104-4495, USA
| | | |
Collapse
|
29
|
Shali R, Neamati A, Tabrizi MH, Etminan A, Ghandehari S, Noghondar MK. Green fabrication of silver nanoparticles mediated by Bistorta officinalis aqueous extract: putative mechanism for apoptosis-inducing properties. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Reyhaneh Shali
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ayda Etminan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sara Ghandehari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
30
|
Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A, Nadeem M, Hano C, Lorenzo JM, Abbasi BH. A Systematic Review of Biosynthesized Metallic Nanoparticles as a Promising Anti-Cancer-Strategy. Cancers (Basel) 2021; 13:cancers13112818. [PMID: 34198769 PMCID: PMC8201057 DOI: 10.3390/cancers13112818] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the foremost causes of death worldwide. Cancer develops because of mutation in genes that regulate normal cell cycle and cell division, thereby resulting in uncontrolled division and proliferation of cells. Various drugs have been used to treat cancer thus far; however, conventional chemotherapeutic drugs have lower bioavailability, rapid renal clearance, unequal delivery, and severe side effects. In the recent years, nanotechnology has flourished rapidly and has a multitude of applications in the biomedical field. Bio-mediated nanoparticles (NPs) are cost effective, safe, and biocompatible and have got substantial attention from researchers around the globe. Due to their safe profile and fewer side effects, these nanoscale materials offer a promising cure for cancer. Currently, various metallic NPs have been designed to cure or diagnose cancer; among these, silver (Ag), gold (Au), zinc (Zn) and copper (Cu) are the leading anti-cancer NPs. The anticancer potential of these NPs is attributed to the production of reactive oxygen species (ROS) in cellular compartments that eventually leads to activation of autophagic, apoptotic and necrotic death pathways. In this review, we summarized the recent advancements in the biosynthesis of Ag, Au, Zn and Cu NPs with emphasis on their mechanism of action. Moreover, nanotoxicity, as well as the future prospects and opportunities of nano-therapeutics, are also highlighted.
Collapse
Affiliation(s)
- Anisa Andleeb
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
| | - Aneeta Andleeb
- Proteomics Lab, School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54590, Pakistan;
| | - Salman Asghar
- Media and Production Group, Centre for Media and Communication Studies, University of Gujrat, Gujrat 50700, Pakistan;
| | - Gouhar Zaman
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
| | - Muhammad Tariq
- Nanobiotechnology Group, Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan;
| | - Azra Mehmood
- Stem Cell & Regenerative Medicine Lab, National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan;
| | - Muhammad Nadeem
- Department of Biotechnology, Institute of Integrative Biosciences, Peshawar 25100, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, CEDEX 2, 45067 Orléans, France;
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia no 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
- Correspondence: ; Tel./Fax: +92-51-9064-4121
| |
Collapse
|
31
|
Yousefbeyk F, Dabirian S, Ghanbarzadeh S, Eghbali Koohi D, Yazdizadeh P, Ghasemi S. Green synthesis of silver nanoparticles from Stachys byzantina K. Koch: characterization, antioxidant, antibacterial, and cytotoxic activity. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1930302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Fatemeh Yousefbeyk
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Ghanbarzadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Diba Eghbali Koohi
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Yazdizadeh
- Department of Physiology and Anatomy, Institute for Cardiovascular & Metabolic Disease, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX, USA
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
32
|
Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. MICRO AND NANO SYSTEMS LETTERS 2021. [PMCID: PMC8091155 DOI: 10.1186/s40486-021-00131-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnology holds an emerging domain of medical science as it can be utilized virtually in all areas. Phyto-constituents are valuable and encouraging candidates for synthesizing green silver nanoparticles (AgNPs) which possess great potentials toward chronic diseases. This review gives an overview of the Green approach of AgNPs synthesis and its characterization. The present review further explores the potentials of Phyto-based AgNPs toward anticancer and antiviral activity including its probable mechanism of action. Green synthesized AgNPs prepared by numerous medicinal plants extract are critically reviewed for cancer and viral infection. Thus, this article mainly highlights green synthesized Phyto-based AgNPs with their potential applications for cancer and viral infection including mechanism of action and therapeutic future prospective in a single window. ![]()
Collapse
|
33
|
Singh SP, Mishra A, Shyanti RK, Singh RP, Acharya A. Silver Nanoparticles Synthesized Using Carica papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells. Biol Trace Elem Res 2021; 199:1316-1331. [PMID: 32557113 DOI: 10.1007/s12011-020-02255-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Treatment of cancer has been limited by the poor efficacy and toxicity profiles of available drugs. There is a growing demand to develop alternative approaches to combat cancer such as use of nano-formulation-based drugs. Here, we report biosynthesis and characterization of silver nanoparticles (AgNPs) with papaya leaf extract (PLE) and its anti-cancer properties against different human cancer cells. Purified nanoparticles were characterized by standard techniques, such as TEM, STM, SEM, EDS, XRD, and FTIR. Furthermore, cytotoxic activity of AgNPs-PLE was carried out against different human cancer cells and non-tumorigenic human keratinocytes cells. AgNPs-PLE when compared with AgNPs-citric acid or PLE showed better efficacy against cancer cells and was also relatively less toxic to normal cells. Treatment of DU145 cells with AgNPs-PLE (0.5-5.0 μg/ml) for 24-48 h lowered total cell number by 24-36% (P < 0.05). Inhibition of cell growth was linked with arrest of cell cycle at G2/M phase at 24 h, while G1 and G2/M phase arrests at 48 h. ROS production was observed at earlier time points in presence of AgNPs-PLE, suggesting its role behind apoptosis in DU145 cells. Induction of apoptosis (57%) was revealed by AO/EB staining in DU145 cells along with induction of Bax, cleaved caspase-3, and cleaved PARP proteins. G1-S phase cell cycle check point marker, cyclin D1 was down-regulated along with an increase in cip1/p21 and kip1/p27 tumor suppressor proteins by AgNPs-PLE. These findings suggest the anti-cancer properties of AgNPs-PLE.
Collapse
Affiliation(s)
- Surya P Singh
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Abhijeet Mishra
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritis K Shyanti
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arbind Acharya
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
34
|
Pandey Y, Ambwani S. Nano Metal based Herbal theranostics for Cancer management: coalescing nature's boon with nanotechnological advancement. Curr Pharm Biotechnol 2021; 23:30-46. [PMID: 33480341 DOI: 10.2174/1389201022666210122141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
Cancer is amongst the leading public health problems globally with continuously increasing prevalence rate that demands for extensive and expensive treatment. Despite availability of number of potential cancer therapies, inadequate success has been achieved due to complexity and heterogeneity of tumors. Moreover, late/ terminal stage cancer leads to multidrug resistance, excruciating side effects, recurrence, etc. This is because of low penetrability and deleterious effects of drug on non-target cells/ tissues. This requires for cost effective, efficacious, alternative/ adjunct, complementary medicines with targeted drug delivery approach. A potential strategy to resolve this difficulty is to use theranostics i.e., formulations having both a therapeutic element and an imaging agent. Phytotherapeutics have been extensively used since times immemorial, having wide acceptability, easy availability, minimal side effects and comparatively inexpensive. These herbal formulations are mostly orally administered and thus subjected to adverse pH, enzymatic degradation, poor gut absorption, low bioavailability and non-targeted delivery that ultimately lead to their poor effectiveness. Constraints associated with conventional phyto-pharmaceuticals can be improved by designing and using "Nano Delivery Systems" (NDS). The foremost aim of metal based NDS is to provide sustained drug release, site-specific action, improved patient's compliance and enhanced efficacy. Metal Nanocarriers carrying herbal drugs will avoid these obstructions, so the drug can circulate into the blood for a longer period of time and provide optimal amount of the drug to the site of action. Besides, Herbal drugs with NDS thus would be efficacious as alternative/ complementary cancer theranostics. Present review describes about novel theranostic systems employing metal nanocarriers with diagnostic and therapeutic properties as are an effective strategy for cancer treatment. These systems when conjugated with herbal drugs provide an efficient management strategy for cancer.
Collapse
Affiliation(s)
- Yogesh Pandey
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., G.B. Pant University of Agriculture &Technology, Pantnagar, 263145, Uttarakhand. India
| | - Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., G.B. Pant University of Agriculture &Technology, Pantnagar, 263145, Uttarakhand. India
| |
Collapse
|
35
|
Amin H, Khan A, Makeen HA, Rashid H, Amin I, Masoodi MH, Khan R, Arafah A, Rehman MU. Nanosized delivery systems for plant-derived therapeutic compounds and their synthetic derivative for cancer therapy. PHYTOMEDICINE 2021:655-675. [DOI: 10.1016/b978-0-12-824109-7.00020-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Patil SP, Kumbhar ST. Vitex negundo assisted green synthesis of metallic nanoparticles with different applications: a mini review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00111-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Several attempts have been made for green synthesis of nanoparticles of different metals and metal oxides, revealing the significance of plant extracts in reducing metal source to nanoparticles and applications in various scientific domains.
Main body
The present article focus on applications of Vitex negundo leaves extract in fabrication of nanoparticles of various metals like silver, gold, zinc oxide, and copper oxide. Vitex negundo is evergreen, perennial shrub, belonging to family Verbenaceae. Its leaves are reported to contain several phytochemicals like iridoids, flavonoids, and their glycosides, terpenoids. In respective research attempts, these metallic nanoparticles were evaluated for one or more applications like anti-microbial activity and/or photocatalytic activity.
Conclusions
Use of V. negundo polar extract indicated involvement of its polar phytocompounds in reducing the metal source and stabilizing the nanoparticles. In conclusion, it could be noted that metal nanoparticles have better antimicrobial activity and photocatalytic potential over aqueous leaves extract.
Collapse
|
37
|
Javed B, Mashwani ZUR, Sarwer A, Raja NI, Nadhman A. Synergistic response of physicochemical reaction parameters on biogenesis of silver nanoparticles and their action against colon cancer and leishmanial cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2020; 48:1340-1353. [PMID: 33241944 DOI: 10.1080/21691401.2020.1850467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Physicochemical parameters include pH, temperature, the concentration of the AgNO3, ratio of reactants, agitation and incubation period that act synergistically and provide a steering force to modulate the biogenesis of nanoparticles by influencing the molecular dynamics, reaction kinetics, protein conformations, and catalysis. The current study involved the bio-fabrication of silver nanoparticles (SNPs) by using the reducing abilities of Mentha longifolia (L.) L. leaves aqueous extract. Spectrophotometric analysis of various biochemical reactions showed that 3 mM of AgNO3 at 120 °C in an acidic pH when mixed in 1-9 ratio of plant extract and AgNO3 respectively, are the optimised conditions for SNPs synthesis. Different analytical techniques confirmed that the nanoparticles are anisotropic and nearly spherical and have a size range of 10-100 nm. The ∼10 µg/ml of SNPs killed ∼66% of Leishmania population and IC50 was measured at 8.73 µg/ml. SRB assay and Annexin V apoptosis assay results showed that the plant aqueous extract and SNPs are not active against HCT116 colon cancer cells and no IC50 (80% survival) was reported. ROS generation was quantified at 0.08 Φ, revealed that the SNPs from M. longifolia can generate free radicals and no photothermal activity was recorded which makes them non-photodynamic.
Collapse
Affiliation(s)
- Bilal Javed
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | | | - Abdullah Sarwer
- Nawaz Sharif Medical College, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, Department of Biotechnology, CECOS University, Peshawar, Pakistan
| |
Collapse
|
38
|
Javed B, Nadhman A, Mashwani ZUR. Phytosynthesis of Ag nanoparticles from Mentha longifolia: their structural evaluation and therapeutic potential against HCT116 colon cancer, Leishmanial and bacterial cells. APPLIED NANOSCIENCE 2020; 10:3503-3515. [DOI: 10.1007/s13204-020-01428-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/23/2020] [Indexed: 12/30/2022]
|
39
|
Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH. Suppressing growth, migration, and invasion of human hepatocellular carcinoma HepG2 cells by Catharanthus roseus‑silver nanoparticles. Toxicol In Vitro 2020; 67:104910. [PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nur Asna Azhar
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Siti Zulaikha Ghozali
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Siti Aishah Abu Bakar
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia; Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia.
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Nor Hazwani Ahmad
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
40
|
Chen D, Li B, Jiang L, Li Y, Yang Y, Luo Z, Wang J. Pristine Cu-MOF Induces Mitotic Catastrophe and Alterations of Gene Expression and Cytoskeleton in Ovarian Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:4081-4094. [PMID: 35025483 DOI: 10.1021/acsabm.0c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metals-organic frameworks (MOFs) have been widely explored in biomedicine, mostly in drug delivery, biosensing, and bioimaging due to their large surface area, tunable porosity, readily chemical functionalization, and good biocompatibility. However, the underlining cellular mechanisms controlling the process for MOF cytotoxicity remains almost completely unknown. Here, we demonstrate that pristine Cu-MOF without any loaded drug selectively inhibited ovarian cancer mainly through promoting tubulin polymerization and destroying the cell actin cytoskeleton (F-actin) to trigger the mitotic catastrophe, accompanying by conventional programmed cell death. To our knowledge, this is the first report claiming that mitotic catastrophe may be an explaining mechanism of MOF cytotoxicity. Cu-MOF with an intrinsic protease-like activity also hydrolyzed cellular cytoskeleton proteins (F-actin). The RNA sequencing data indicated the differential expressional mRNA of cell proliferation and actin cytoskeleton (ACTA2, ACTN3, FSCN2, and SCIN) and mitotic spindles (PLK1 and TPX2) related genes. We found that Cu-MOF as a promising candidate in the disruption of cellular cytoskeleton and the change of the gene expression could be actin altering and antimitotic agents against cancer cells, allowing for fundamental biological and biophysical studies of MOFs.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Liang Jiang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yizhou Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yepeng Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Zhifang Luo
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
41
|
Synthesis and Characterization of Pyrogallol Capped Silver Nanoparticles and Evaluation of Their In Vitro Anti-Bacterial, Anti-cancer Profile Against AGS Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01813-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Hashemi SF, Tasharrofi N, Saber MM. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127889] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Javed B, Nadhman A, Razzaq A, Mashwani ZUR. One-pot phytosynthesis of nano-silver from Mentha longifolia L.: their characterization and evaluation of photodynamic potential. MATERIALS RESEARCH EXPRESS 2020; 7:055401. [DOI: 10.1088/2053-1591/ab903b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Abstract
The present study deals with the ecofriendly one-pot synthesis and stabilization of silver nanoparticles (AgNPs) by using aqueous extract of Mentha longifolia branches. Spectrophotometric analysis of different ratios of reactants revealed that a 1 to 9 ratio of plant extract and silver salt solution respectively is the most suitable proportion for synthesis. Synthesis of AgNPs was confirmed initially by the observation of change in the color of the reaction mixture which was carried out at 60 °C by using 3 mM of silver salt and the pH of the reaction medium was maintained at 5.22. A characteristic surface plasmon resonance (SPR) band was observed at 495 nm of light wavelength. SEM images revealed that the nanoparticles are in ∼20–80 nm and are anisotropic and nearly spherical while EDX analysis showed the presence of elemental Ag with ∼90% signal intensity. Size distribution analysis of AgNPs was performed by dynamic light scattering technique and AgNPs were found in the range of ∼8–30 nm. ROS quantification revealed that the AgNPs have a quantum yield of 0.09 Φ which provides them the ability to proteolytically treat cancer and other microbial pathogenic cells. AgNPs did not report any photothermal activity to be used as photodynamic agents. These findings explain the redox potential of M. longifolia to bio-fabricate AgNPs and their abilities to generate ROS may help to curb dreading diseases.
Collapse
|
44
|
Facile Synthesis of Silver Nanoparticles Using Asian Spider Flower and Its In Vitro Cytotoxic Activity Against Human Breast Carcinoma Cells. Processes (Basel) 2020. [DOI: 10.3390/pr8040430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer is one of the most dangerous threats to human health and possibly the utmost task for current medicine. Currently, bio-based synthesis of nanoparticles from plants has gained much interest due to its potential medicinal applications. In the present study, a biological approach was employed for biogenic (green) synthesis of silver nanoparticles (AgNPs) using dried leaf extract of Asian spider flower (Asf). The biogenic synthesis of Asf-AgNPs (Asian spider flower-Silver nanoparticles) was established using ultra violet-visible (UV-vis) spectra which exhibited a wide superficial plasmon resonance of AgNPs at 445 nm. These nanoparticles clearly showed the formation of poly-disperse crystalline solids (spherical shape) with particle size range of <50 nm based on observation under a transmission electron microscope (TEM). Infrared spectroscopy (FTIR) revealed carboxylic acids (C = O stretch) known to act as a capping agent and a reductant in plant extracts. Elemental silver signal peak was observed in the graph obtained from energy-dispersive X-ray (EDX) analysis. Biocompatibility tests for Asf-AgNPs at different doses were evaluated against human breast cancer cells (MCF7) for cell viability and apoptotic analysis. According to the evaluation, biosynthesized Asf-AgNPs could prevent the explosion of human breast tumor cells (MCF7) in IC50 at a dose of 40 μg/mL after 48 h of treatment. The results obtained in the IC50 dosage treatments were statistically significant (p < 0.05) when compared with control. Nuclear damage of cells was further investigated using annexin V-FITC/PI dual staining and DAPI (4′,6-diamidino-2-phenylindole) staining method. Bright blue fluorescence with condensed and fragmented chromatin was observed. Western blot analysis showed increased expression levels of caspases-3 and 9 (apoptotic proteins). These results indicate that bio-approached AgNPs synthesized through Asf plant extract could be used as potential therapeutic medications for human cancer cells.
Collapse
|
45
|
Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AS, Shim YY, Reaney MJ, Cho JY. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel) 2020; 12:E855. [PMID: 32244822 PMCID: PMC7226404 DOI: 10.3390/cancers12040855] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Nanobiotechnology has grown rapidly and become an integral part of modern disease diagnosis and treatment. Biosynthesized silver nanoparticles (AgNPs) are a class of eco-friendly, cost-effective and biocompatible agents that have attracted attention for their possible biomedical and bioengineering applications. Like many other inorganic and organic nanoparticles, such as AuNPs, iron oxide and quantum dots, AgNPs have also been widely studied as components of advanced anticancer agents in order to better manage cancer in the clinic. AgNPs are typically produced by the action of reducing reagents on silver ions. In addition to numerous laboratory-based methods for reduction of silver ions, living organisms and natural products can be effective and superior source for synthesis of AgNPs precursors. Currently, plants, bacteria and fungi can afford biogenic AgNPs precursors with diverse geometries and surface properties. In this review, we summarized the recent progress and achievements in biogenic AgNPs synthesis and their potential uses as anticancer agents.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh;
| | - Md. Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA;
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh;
| | | | - Youn Young Shim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Martin J.T. Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
| |
Collapse
|
46
|
Ashraf A, Fatima N, Shahzadi I, Tariq H, Shahzadi A, Yameen MA, Iqbal J, Rafi M. Datura suaveolens and Verbena tenuisecta mediated silver nanoparticles, their photodynamic cytotoxic and antimicrobial evaluation. World J Microbiol Biotechnol 2020; 36:31. [DOI: 10.1007/s11274-019-2787-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
|
47
|
Pushpa Sweety J, Sowparani S, Mahalakshmi P, Selvasudha N, Yamini D, Geetha K, Ruckmani K. Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – Insight into thymoquinone’s improved physicochemical properties. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Abstract
The synthesis of nanostructured materials can be considered a research field of high importance, especially in the recent past, due to the unique properties that make these materials applicable in different fields of science and technology. Metallic nanoparticles gained significant interest due to the possibility to obtain them through biological means, among other techniques. Silver nanoparticles are some of the most investigated metallic nanoparticles, due to their recognized anticancer, antimicrobial, and antiviral potential. This chapter aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly through the use of silver nanoparticles biosynthesized via microbes and plants pathways.
Collapse
|
49
|
|
50
|
Cytotoxic and mutagenic effects of green silver nanoparticles in cancer and normal cells: a brief review. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00293-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|